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Abstract 

Development of an assay to predict response to chemotherapy has remained an elusive goal in cancer research. We 

report a phenotypic chemosensitivity assay for epithelial ovarian cancer based on Doppler spectroscopy of infrared 

light scattered from intracellular motions in living three-dimensional tumor biopsy tissue measured in vitro. The 

study analyzed biospecimens from 20 human patients with epithelial ovarian cancer. Matched primary and metastatic 

tumor tissues were collected for 3 patients, and an additional 3 patients provided only metastatic tissues. Doppler 

fluctuation spectra were obtained using full-field optical coherence tomography through off-axis digital holography. 

Frequencies in the range from 10 mHz to 10 Hz are sensitive to changes in intracellular dynamics caused by 

platinum-based chemotherapy. Metastatic tumor tissues were found to display a biodynamic phenotype that was 

similar to primary tissue from patients who had poor clinical outcomes. The biodynamic phenotypic profile correctly 

classified 90% [88% to 91% c.i.] of the patients when the metastatic samples were characterized as having a 

chemoresistant phenotype. This work suggests that Doppler profiling of tissue response to chemotherapy has the 

potential to predict patient clinical outcomes based on primary, but not metastatic, tumor tissue. 
 

 
Introduction 

The tumor microenvironment plays an essential role in the complex biological and molecular 

communication between cancer cells and the host, determining both tumor progression and response to 

therapy. The microenvironmental influences on the cancer state are associated with mechano-transduction1, 

2, paracrine signaling, as well as immune cell infiltration and endocrine signaling. Chemosensitivity assays3, 

4 seek to measure the sensitivity of patient-derived cells to a range of chemotherapies.  However, the 
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conventional assays destroy the microenvironmental influences by disaggregating cells from tumor biopsies 

and growing them in two-dimensional cell culture or as xenografts implanted in host animals. The growth 

in the environment of the cell culture plate or the animal host changes the cellular phenotype, which may no 

longer represent the phenotype of the intact tumor. In consequence, chemosensitivity assays have limited 

ability to test cancer cells from clinical specimens, they lack predictive power for subsequent clinical 

applications5-7, and they rely exclusively on epithelial tumor components. Therefore, a need exists for a 

phenotypic assay that maintains the three-dimensional microenvironment and tests the functional response 

of living tissue to selected therapies.   

To meet this need, a Doppler fluctuation spectroscopy approach to chemosensitivity testing, called 

biodynamic imaging (BDI), was developed as the first coherence-domain imaging technique to use 

intracellular motion as functional image contrast8. Intracellular motion includes molecular-motor-dependent 

transport of vesicles and mitochondria, intranuclear alterations associated with pre- and post-mitotic 

processes, cytoplasmic streaming, cytoskeletal restructuring, active membrane modulations, and cell shape 

changes 9.  These motions range in speed from nanometers per second for cell-scale motions to microns 

per second for organelle and vesicle transport, generating Doppler frequency shifts from 10 mHz to 10 Hz, 

respectively.  There has been growing recognition of the importance of intracellular dynamics for 

functional imaging on intact tissue 10-16. Biodynamic imaging is a form of full-frame optical coherence 

tomography (FF-OCT) 17, 18 based on off-axis digital holography that uses principles of coherent laser 

ranging that can quantify the dynamic response of tumors to chemotherapy treatment19. Cellular motions 

are unusual but specific biomarkers of cellular health and response. By penetrating volumetrically into 

tissue up to 1 mm deep, BDI maps out heterogeneous tissue layers. BDI has previously been applied to 

drug screening 20-22, phenotypic profiling 23, and preclinical chemosensitivity testing on ovarian xenografts 

in mice and canine B-cell lymphoma19, 24, 25. Light scattering of near-infrared light from living ex vivo tissue 

biopsies displays Doppler frequency shifts caused by intracellular motion9. Chemotherapy agents applied to 

the living biopsies in vitro modify the intracellular dynamics and the associated Doppler frequencies. The 

Doppler frequency shifts and their changes are interpretable through the speeds of intracellular motions 

affected by anti-cancer drugs. In a previous study24, we used biodynamic imaging to assess ovarian 

xenografts grown in mice from human ovarian cancer cell lines whose platinum resistance and sensitivity 

were associated with biodynamic signatures. The work presented here is the first application of BDI to 

naturally-occurring cancer in human patients. 
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Results 

Biodynamic Spectra of Human Ovarian Cancer Biopsies 

The core optical components of the biodynamic imaging system are illustrated in Fig. 1a.  The system 

is configured as a Mach-Zehnder interferometer with low-coherence digital holography.  Fluctuation 

spectra of a living tissue sample are obtained from time series of dynamic speckle images on the digital 

camera, and changes in the spectra are tracked after a drug treatment is applied to the sample well 

(described in the Methods section). The time-frequency format of a typical drug-response spectrogram is 

shown in Fig. 1b.  Frequency is along the horizontal axis spanning from 10 mHz to 10 Hz. Time is along 

the vertical axis spanning 17.8 hours: 5.5 hours of baseline followed by 12.3 hours after a treatment is 

dispensed into the well. The baseline is used for reference, and the treatment is applied at the time of the 

horizontal blue line. The shifts in the spectral content caused by the drug action are captured in color in the 

figure, blue representing loss of spectral density and red representing an increase of spectral density.  The 

Doppler frequency is related to the intracellular speed through Dw= qv, where q = 4pn/l0 , l0 is the free-

space wavelength, n is the refractive index, and v is the internal speed.  For reference, a speed of 1 micron 

per second produces a Doppler frequency shift of 3 Hz at a wavelength of 840 nm in a backscattering 

geometry. The high-frequency region corresponds to the organelle transport band 26. The low-frequency 

region represents slow membrane rearrangement and possible cell motility 27, 28 (described in Table 2 in 

Methods). 

To generate spectral fingerprints of sensitive versus resistant patients, we partitioned the patient samples 

into sensitive and resistant groups. Platinum-sensitive tumors were defined as those tumors that did not 

recur for more than 6 months, while platinum-resistant tumors were those that progressed in less than 6 

months after completion of platinum-based therapy. Average drug-response spectrograms in Fig. 1c were 

obtained for the two cohorts averaged over samples immobilized by poly-lysine (see Methods and 

Supplemental Information for sample immobilization methods).  The differences of the resistant minus the 

sensitive spectrograms are shown in Fig. 1d with enhanced low frequencies (red shifts) in the resistant 

samples relative to the sensitive. A so-called “red shift” (increased spectral density at low frequencies and 

decreased spectral density at high frequency) represents a decrease in average cellular speeds. 
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Figure 1. Drug-response spectrograms for poly-lysine-immobilized biopsies treated with carboplatin (25 µM), 

paclitaxel (5 µM) and carboplatin + paclitaxel (25 µM+5 µM). The axes are the same for all spectrograms. a) A 

schematic of the biodynamic platform (BDP). The imaging system (including the light source, lenses, beam splitters 

and the CCD) is placed on an optical platform mounted on a motorized stage that moves in the horizontal plane. (IP 

image plane. L1-3 lenses. BS beam splitter. FP Fourier plane. CCD charge-coupled device digital camera.)  b) In the 

spectrogram time-frequency format the Doppler frequency spans three orders of magnitude.  The spectrogram is the 

relative change of spectral density relative to the pre-dose baseline.  The spectral response is monitored for 12 hours 

after the dose.  c) The average spectrograms (DMSO-subtracted) for resistant and sensitive phenotypes. d) The 

difference of the resistant spectrograms minus the sensitive.  

 

Association of Biodynamic Phenotype with Patient Outcome 

The time-frequency representation of the drug-response spectrograms was converted using linear filters into 

quantitative biomarkers that have strong co-dependence. The features are called “biomarkers” by analogy 

with genetic or proteomic biomarkers because they represent distinct behavior of the tissue, but the 

biodynamic biomarkers have not yet been related to specific traditional biomarkers or pathways. Principal 

component analysis (PCA) was used to find a set of orthogonal biomarkers that are linear combinations of 

the original biomarkers. The principal components of the spectrogram-based biomarkers having the largest 

signal-to-noise ratios that differentiate the resistant/sensitive groups are shown in Fig. 2a). The biomarkers 

are designated by the principal component and by the treatment. For instance, BM2tax+carb represents the 

2nd principal component in the singular-value decomposition of the drug response under combination 
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treatment.  The feature vectors shown in Fig. 2a) are BM7carb, BM2tax+carb, BM4tax+carb, 

BM7tax+carb and BM1tax. The feature definitions, selection, and the singular value decomposition (SVD) 

coefficients of the linear combination of these biomarkers in terms of the original biomarkers are given in 

Methods. 

 

 
Figure 2. Associating biodynamic features with patient clinical outcomes.  a) Feature vectors selected using SVD 

that show the strongest correlation with clinical outcomes.  The patients are partitioned into a resistant group of 

patients, a metastatic group and a sensitive group. b) The similarity matrix generated from the feature vectors.  The 

matrix is approximately block diagonal.  c) The similarity network constructed from the similarity matrix.  The 

sensitive group (red) tends to split into two sub-phenotypes.  The metastatic samples share strong similarity with the 

resistant phenotype, even if the patient was sensitive to treatment. 

 

 

The selected feature vectors of Fig. 2a) are the central data structure for all downstream machine 

learning algorithms. The goal is to identify which patients share similarities with each other, and with the 

sensitive/resistant phenotypes. For instance, the feature vectors are used to construct the similarity matrix in 

Fig. 2b). The order of the patients was preselected according to their clinical outcomes, separated into 

resistant, metastatic and sensitive groups. Identical vectors have vector contrast near unity (red), opposite 

vectors have vector contrast near negative unity (blue), and independent vectors have vector contrast near 

zero (white). The similarity matrix has an approximately block-diagonal structure. A key observation is that 

the resistant and metastatic block of biopsies share strong similarities with each other, implying that the 

metastatic tissues have a dynamic phenotype that is similar to the resistant primary tumor tissue. Because 

none of the metastatic data were used in the feature selection or training, this resistant phenotype of the 
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metastatic samples is one of the principal conclusions of this study.  Among the samples from patients 

who had sensitive clinical outcomes there appear to be two sub-blocks. 

Network theory provides analysis techniques for identifying relationships among a set of feature vectors. 

A similarity network for this clinical study is shown in Fig. 2c. Links in the network are assigned according 

to a k-neighbor adjacency matrix with k = 3. The patients are color-coded according to their clinical 

outcomes. Dark red nodes are primary tumors that have resistant clinical outcomes, dark blue nodes are 

primary tumors that have sensitive clinical outcomes, purple are metastatic tissues. The metastatic samples 

cluster closely with the resistant primary samples. The network structure provides direct visualization of the 

similarity matrix.  The upper blue group in the network is from the lower right group of sensitive patients 

in the similarity matrix. The similarity matrix and the network structure suggests two general phenotypes: 

R-class that includes the resistant and metastatic samples (defined by tumor location and patient clinical 

outcome), and S-class that contains the sensitive non-metastatic samples. 

We used several binary classifier algorithms that were combined to yield an average ensemble 

chemosensitivity prediction for each patient.  These algorithms are: 1) a single-neuron perceptron (logistic 

regression), 2) a continuous-valued recurrent neural network, 3) log-likelihood and 4) a binary network 

analysis. These are combined into an ensemble average to predict the chemosensitivity of a patient by using 

one-hold-out cross-validation for the non-metastatic poly-lysine-immobilized samples.  The trained 

algorithm was then used to predict independently the test set of agar-immobilized samples as well as the 

metastatic samples.  The ensemble average of the classifiers is shown in Fig. 3a.  The patient sequence in 

the figure was pre-ordered into resistant, metastatic and sensitive patients and was clustered by similarity 

within each of those groups.  The error bars are the standard errors obtained from alternative training 

subsets (described in the Supplemental Material (see Fig. S4)) that included agar-immobilized training 

samples as well as the poly-lysine.  

A continuous-valued probability distribution function (PDF) is generated from the means and standard 

errors by generating a Gaussian mixture model composed of Gaussian probabilities assigned the mean and 

standard deviation from each patient. The resulting PDF is shown in Fig. 3b showing a clear separation 

between the R-class and the S-class patients. The mean separation is 0.77 with confidence interval (0.59 – 

0.95). The receiver operating characteristic (ROC) curve is generated from the Gaussian mixture model and 

is shown in Fig. 3c with an area under the curve (AUC) of 97%. By using the continuous-valued Gaussian 

mixture to generate the ROC instead of the discrete values, the ROC is less sensitive to threshold selection.  

Two decision points (thresholds) on the ROC are shown that relate to two thesholds: one (blue) at the preset 

threshold between positive and negative prediction values, and the other (red) at the optimal separation 

between the two classes.  The accuracy is approximately 90% for either decision point.  For the optimal 
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threshold, the sensitivity is 93%, the specificity is 89%, the positive likelihood ratio (PLR) is 8.6, the 

negative likelihood ratio (NLR) is 0.08, the positive predictive value (PPV) is 89%, and the negative 

predictive value (NPV) is 93%. 

 
Figure 3.  Chemosensitivity prediction with hold-out cross-validation for the training-set samples using an 

ensemble of algorithms trained on samples immobilized using poly-lysine.  a) Ensemble predicted chemosensitivity. 

Error bars are standard errors on the ensemble averages (calculated from Fig. S4).  R-Class are the resistant and 

metastatic specimens, and S-Class are the sensitive specimens. b) Gaussian mixture model of the chemosensitivity 

prediction probability density functions (PDF) for R-Class and S-Class specimens.  The vertical dashed lines 

represent two possible decision points: a pre-fixed threshold at zero (blue) and for optimum sensitivity and specificity 

performance (red).  c) Receiver operator curve (ROC) by integrating the Gaussian PDFs.  The two decision points 

are shown.  The prediction accuracy is approximately 90% when distinguishing between the two phenotypic 
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signatures. 

 

 

Discussion 

The work presented in this paper is the first application of biodynamic imaging to human tissue samples. 

This study included 23 specimens collected prospectively from 20 patients with ovarian cancer. Seven 

specimens were derived from metastatic tumors and sixteen were from primary tumors. There were three 

patients from which matched metastatic implant and primary tumor were collected and analyzed. All 

patients in the study received carboplatin-based therapy, but additional therapies administered to some 

patients were not tested using BDI, which is one limitation of the current study. 

 As shown in Fig. 1c and 1d for the poly-lysine-immobilized specimens, resistant biopsies 

responding to the carboplatin and paclitaxel monotherapies display a spectral red shift feature that is absent 

from the sensitive phenotype. However, when the treatments are applied as a combination, there is 

broadband inhibition for both the sensitive and the resistant cohort (loss of spectral density across all 

frequencies represented by a blue color on the spectrogram) indicating the non-additive character of the 

combination therapy.   

 Two strong biodynamic phenotypes emerged from the analysis, as shown in the similarity matrix of 

Fig. 2b and the network of Fig. 2c. The resistant and the metastatic specimens share a common phenotype 

that is distinct from the sensitive specimens.  In Fig. 2c, marginal members of the subgroups are the 

patients hov5, hov17, hov18b and hov20.  These four patients share some features of both phenotypes 

either because they display a rare phenotype, or because of measurement error. 

 In Fig. 3a, all five ovarian tissues that had resistant clinical outcomes have resistant biodynamic 

signatures. Of the 7 metastatic samples, all have resistant biodynamic signatures. In the 3 cases where 

primary and metastatic materials were obtained from the same patient (hov8/hov8b, hov18a/hov18b and 

hov20a/hov20b), the metastatic tissue always displayed a resistant phenotype even when the primary tumor 

displayed a sensitive phenotype (hov18a/hov18b and hov20a/hov20b), although hov18b did not achieve a 

significant prediction. In Fig. 3b and 3c the Gaussian mixture and the corresponding ROC yield an 

accuracy of 90% for prediction of the two phenotypes whether the threshold is fixed prior to prediction 

(threshold at zero) or is adjusted to optimize sensitivity and specificity. Based on these findings, a 

metastatic sample does not predict patient clinical outcome.  Therefore, one limitation of this technique, if 

it is to be used to predict patient outcomes, is the necessity to acquire primary tumor tissue for the assay.  

When considering only the 16 primary tumor tissues in this study by excluding the metastatic specimens, 
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the accuracy is 92% with sensitivity= 0.93, specificity = 0.88, PLR = 8.1, NLR = 0.08, PPV = 0.95 and 

NPV = 0.85.  

 The drug-response spectrograms, capturing changes in intracellular motions caused by the applied 

therapies, are generally able to discriminate between the two phenotypes associated with patients who were 

resistant or sensitive to platinum-based chemotherapy. Our findings support that BDI has the potential to 

predict chemotherapy outcome and warrants future testing. In ovarian cancer patients, new predictive 

biomarkers, such as BDI profiles, could be particularly helpful for selecting second and later lines of 

treatment. Because the six metastatic specimens displayed a resistant phenotype, even though the patients 

themselves were clinically sensitive to platinum, it is possible that metastatic implants have resistant 

behavior, but this possibility must be studied with a larger trial size. 

 

Methods 

Patient Enrollment and Sample Collection 

Eligible patients were those with suspected ovarian cancer who were undergoing standard-of-care 

cytoreductive surgery and who were willing to allow tissues to be collected for research, if available. Forty-

eight patients enrolled in the study between June 2016 and November 2018. Twenty-eight patients were 

withdrawn, and twenty patients who passed all selection criteria were included in the final analysis. The 

most common reason for withdrawal was the inability to collect sufficient tumor tissue for research at the 

time of surgery. A total of twenty-three biospecimens were collected and used for analysis. Of these, 

sixteen were primary tumors and seven were metastatic tumors. Three of the metastatic implants were 

collected from patients who also had primary tumors collected, allowing a direct comparison of the 

response of primary versus metastatic lesions to chemotherapy treatment in the chemosensitivity assay. 

Patients eligible for the study were age ≥ 18 years, planning to undergo surgery or biopsy as a standard-

of-care treatment for suspected ovarian cancer, with subsequent histologic confirmation of ovarian, 

fallopian or primary peritoneal cancer. All histological types and stages were eligible for enrollment. The 

study was approved by the Northwestern University Institutional Review Board (protocol # 

STU00202733), and all patients provided written informed consent. Tissue was deidentified before 

processing. Enrolled patients underwent cytoreductive surgery followed by a platinum-based chemotherapy 

regimen, as indicated by the treating physician, per standard of care. Patients were followed for up to 18 

months for clinical outcomes. Given that most patients underwent surgery with removal of tumor bulk, 

response to treatment (i.e., platinum sensitivity versus resistance) was determined based on time to 
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progression (i.e., calculated from the platinum-free interval), using standard criteria 29. Platinum-sensitive 

tumors were defined as those tumors that did not recur for ≥ 6 months, while platinum-resistant tumors 

were those that progressed within < 6 months after completion of platinum-based therapy. All methods 

were carried out in accordance with relevant guidelines and regulations. A table of enrolled patients is 

given in Table 1. Some patients received neoadjuvant chemotherapy prior to surgery. 

Table 1. Enrolled patients. C = carboplatin, CT = carboplatin+paclitaxel, CGT = carboplatin+paclitaxel, gemcitabine, 
CG = carboplatin+gemcitabine , CD = carboplatin+docetaxel, Cyclophos = cyclophosphamide.  *Patient hov7 is 
clear cell carcinoma which is resistant to platinum therapy. 

No. Tissue Pathology Treatment Neoadj. Response Cell Immobilization 

1 primary papillary serous carcinoma CT No sensitive hov5 

Agar 

2 primary clear cell carcinoma CT No sensitive* hov7 

3 primary 
serous carcinoma 

CGT Yes 
resistant 

hov8 

4 metastatic CGT Yes hov8b 

5 metastatic serous carcinoma CT Yes sensitive hov9 

6 primary serous carcinoma CT Yes sensitive hov10 

7 peritoneum serous carcinoma 
CT, Taxotere 

Bevacizumab 

No 
sensitive hov11 

8 metastatic serous adenocarcinoma 
CT, Niraparib, 

Cisplatin 

Yes 
sensitive hov12 

9 primary serous carcinoma CGT Yes sensitive hov13 

poly-lysine 

10 primary clear cell adenocarcinoma CT No resistant hov14 

11 primary serous adenocarcinoma CG Yes sensitive hov15 

12 primary carcinosarcoma 
C, 

Pembrolizumab 

Yes 
resistant hov16 

13 primary serous carcinoma CG Yes resistant hov17 

14 primary 
serous carcinoma 

CG No 
sensitive 

hov18a 

15 metastatic CG No hov18b 

16 primary 
serous carcinoma 

CT No 
sensitive 

hov20a 

17 metastatic CT No hov20b 

18 primary serous carcinoma C Yes sensitive hov22 

19 primary serous carcinoma CD Yes sensitive hov23 

20 primary 
endometrioid 

adenocarcinoma 
C, Cyclophos 

No 
sensitive hov25 

21 metastatic serous adenocarcinoma 
C, Taxol, 

Cisplatin 

No 
sensitive hov26 

22 primary serous carcinoma C, Taxol Yes sensitive hov30 

23 primary serous carcinoma CT Yes sensitive hov31 
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Sample Preparation and Immobilization 

The samples were dissected to approximately 1mm3 pieces and immobilized in 36 wells of two 96-well 

plates for a total of 72 wells. Two different immobilization methods were used to keep the samples fixed 

during measurements. Eight samples (hov5, hov7, hov8, hov8b, hov9, and hov10, hov11 and hov12) were 

placed in a layer of agarose covered with culture medium, while the other samples were immobilized on 

poly-lysine coated plates. The switch from agar to poly-lysine was undertaken partway through this trial 

because poly-lysine is more effective at attaching a sample to the bottom of the plate with minimal effect 

on the drug response (see Fig. S1 for systematic effects of each immobilization approach). Each sample 

received one of four treatments: carboplatin, paclitaxel, carboplatin+paclitaxel and negative control (0.1% 

dimethyl sulfoxide (DMSO) in RPMI-1640 growth medium). 

Biodynamic Spectroscopy 

Living biopsy materials from human epithelial ovarian cancer patients were shipped in cold-packs 

overnight to the measurement facilities at Animated Dynamics, Inc., where the samples were dissected into 

approximately 72 samples of approximately 1 mm3 volume and immobilized in wells of a 96-well plate. 

Two immobilization methods were used: soft agar (low-gel temperature agarose at 1% concentration in 

serum-free RPMI-1640 medium.) and poly-D lysine. Treatments of 25 µM carboplatin, 5 µM paclitaxel or 

25 µM carboplatin + 5 µM paclitaxel combination were applied to individual samples in individual wells 

and were monitored using the biodynamic imaging system for up to 12 hours. The drug concentrations were 

chosen near the IC50 (in vitro 50% response) for each single-agent therapies, and these concentrations were 

maintained in the combination.  The well replicate numbers were 17 for negative control (0.1% DMSO 

dimethyl sulfoxide in RPMI-1640 medium), 18 for paclitaxel, 18 for carboplatin, and 18 for carboplatin + 

paclitaxel. The time-course of the experiment is a 5.5-hour baseline with the system successively sampling 

each of 36 wells in a repeating cycle that takes 82 minutes to measure all 36 wells before repeating. The 

drug is administered by withdrawing approximately100 µL of old growth medium and gently pipetting 100 

µL of treatment volume at twice the target concentration.  The drugs are dissolved in DMSO and diluted 

into RPMI-1640 growth medium. The system acquires data for 12.3 hours after the drugs are applied. 
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BDI Measurement and Drug Treatment 

Sample imaging was carried out on the biodynamic platform (BDP) (Animated Dynamics Inc, 

Indianapolis). The imaging system is placed on a motorized optical platform that moves on the horizontal 

plane, while the plate is on a fixed mount keeping it stationary during the entire measurement. The BDI 

system is Mach-Zehnder interferometer using off-axis digital holography, as shown in Fig. 1a. The light 

source is a low-coherence superluminescent diode (20 mW power 50 nm bandwidth centered on 840 nm) 

that illuminates the sample at an oblique angle. The scattered light is collected through a Fourier imaging 

system that projects the Fourier transform of the tissue speckle onto the camera plane. A delay stage is 

placed in the reference arm to modify the optical path length of the arm to achieve depth-selective 

coherence gating of the sample. The optical tissue section is reconstructed through a 2D FFT of the digital 

hologram. The frame rate of the camera is 25 frames per second with a Nyquist sampling frequency of 12.5 

Hz. The time series of the intensity fluctuations are Fourier transformed to a frequency spectrum which is 

averaged over the sample. When a drug is applied to the tissue, the motions change, which are captured by 

shifts in the Doppler spectrum. These shifts are represented as drug-response spectrograms that track shifts 

in spectral density as a function of time.  

 The drug-response spectrograms are generated by creating a series of logarithmic fluctuation power 

spectra at successive times and subtracting the average baseline. The resulting spectrograms display the 

shift in Doppler spectral content of the sample over the 17.8-hour assay. Details of tissue dynamic 

spectroscopy are given in previous publications19, 24. The baseline spectrum S(w,0) is defined as the last 4 

loops prior to the treatment. The drug-response spectrogram is defined as

, where the time index t represents the loop number. A spectrogram is generated for each well for a given 

patient and a given treatment. An algorithm assigns a data quality factor for each well based on multiple 

quality control criteria such as a sudden jump in brightness/intensity (indicating immobilization shift) or 

low cell activity. The value is initialized at unity and is reduced by a factor of 2 for each violation of a 

criterion. Typical data qualities are around 0.25. The spectrograms are averaged over the replicate numbers 

for the treatment weighted by the DQ.  A patient is thus represented by an average spectrogram for each 

treatment. 

 
Biomarker Definition and Feature Extraction 
 
There are approximately 5 spectral bands that can be defined in the drug-response spectrograms.  These 

are defined in Table 2 with their presumed biophysical origins (See Ref. 9 for biophysical origins). The 

time-frequency representation of the drug-response spectrograms are converted into 18 quantitative 

D ω ,t( ) = logS ω ,t( )− logS ω ,0( )
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biomarkers through linear filters. Additional biomarkers represent sample preconditions and changes in 

these conditions caused by the applied drug. 

 

Table 2:  Spectral Bands (Backscattering geometry with l = 840 nm) 
 

Band Name Frequency Range Speed Range Biophysics Origins 
Cell Motility Band 10 mHz < 3 nm/s Crawling 
Rheology Band 12.5 mHz – 100 mHz 4 nm/s – 30 nm/s Shape change 
Mid Band 100 mHz – 1 Hz 30 nm/s – 300 nm/s Membrane/Nuclear 
High Band 1 Hz – 10 Hz 300 nm/s – 3 µm/s Organelle transport 
Nyquist Band 12.5 Hz > 4 µm/s Vesicle transport 

 
 
 

 The time-frequency spectrograms are converted into feature vectors with parts or patterns of the 

spectrograms.  In addition to spectrogram-based features, there are also preconditions (such as sample 

brightness and dynamic range, etc.) as well as drug-induced changes in these preconditions.  All the raw 

biomarkers are defined in Table S3.  The time-frequency decomposition is approached globally and locally.  

Global patterns are generated as low-order Legendre polynomials.  These polynomials are taken as an inner 

product over the spectrograms to generate Legendre coefficients that represent the global features of the 

spectrograms.  Orders 0, 1 and 2 are used along the frequency and time axes to generate 9 global features.  

Local patterns are simply low, mid, and high-frequency bands with average, linear and quadratic time 

dependence for 9 local features.  The precondition biomarkers are NSD, BSB, NCNT, DR, NY, KNEE, 

HW, S, SF that represent properties such as sample speckle contrast, brightness, sample size, dynamic range 

of the signal, the spectral density of the Nyquist floor, the knee frequency, the half-width of the Doppler 

spectrum, and the slope of the roll-off above the Doppler knee frequency, respectively.  (Note that NCNT, 

KNEE, and S are subject to fitting errors and are down-selected as features.)  Each precondition is changed 

by the drug treatment, providing additional features that are the changes in the preconditions from baseline 

to endpoint of the assay.  There are 27 drug-response features for a given drug: 18 are based on spectrograms 

and 9 are drug-induced changes in preconditions.  These 27 features are concatenated for each drug to create 

a feature vector of 27x3 = 81 drug elements. The 9 global and 9 local time-frequency filter masks are shown 

in Fig. 4a) and 4b, respectively.  The decomposition into the 18 spectrogram-based biomarkers generates 

strong covariance among the biomarkers. Therefore, singular-value decomposition (SVD) is used to find 

orthogonal time-frequency biomarkers that are linear combinations of the original biomarkers. Linear 

combinations of the spectrogram-based biomarkers with the largest signal-to-noise (also called the z-factor, 

which is the mean difference divided by the standard deviation) for the resistant/sensitive groups are shown 
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in Fig. 4c. The biomarkers are designated by the level of the orthogonal component and by the treatment. For 

instance, BM7tax+carb represents the 7th principal component in the singular-value decomposition of the 

drug response under Taxol+carboplatin treatment. 

 

 
Figure 4. Time-frequency biomarker masks.  a) Global biomarker filters are low-order Legendre 

polynomials along the time and frequency axes.  b) Local biomarker filters are low, mid- and high-frequency 

bands with 0, 1 and 2nd-order polynomial time dependence.  c) The 4 dominant singular-value 

decomposition (SVD) biomarkers represented as time-frequency patterns.  The numerical values are the z-

factors for each biomarker. 

 

 

 

Machine Learning Methods 
 

The similarity matrix measure that we selected is correlation contrast that equals the correlation coefficient 

when the magnitudes of the vectors are similar, but down-weights the correlation if there is a mismatch in 

vector magnitude. This down-weights similarities when the amplitudes of the two feature vectors are not 

matched.  The motivation for this metric is the fringe contrast in interferometric measurements.  The 

metric is 

 

where b is the amplitude ratio of the two vectors.  This metric is used to construct the similarity matrix in 
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Fig. 2b. The similarity matrix is the central data structure for all down-stream machine learning methods.  

For instance, the similarity network in Fig. 2c is constructed using a k-neighbor algorithm that connects each 

node to k nodes to which it shares the highest similarity. The network in Fig. 2c used k = 3.   

 The ensemble approach to patient chemosensitivity prediction used 4 binary classifiers and averaged 

the results: 1) a single-neuron perceptron (logistic regression), 2) a continuous-valued recurrent neural 

network, 3) log-likelihood and 4) a binary network analysis.  Logistic regression minimizes the cost function 
30 using ridge regularization 

 

where yp = ±1 is the objective classification of the p-th patient, fTp is the feature vector for the p-th patient, 

b and w are adjusted to minimize the squared error, and l = 0.1 is the regularization parameter.  Once the 

parameters are trained, the predicted chemosensitivity Pj of hold-out or non-training feature vectors are 

predicted as 

 

 The continuous-valued recurrent neural network uses Gibbs sampling 31 and sequential updating of 

the j-th feature vector from the set of inner products where the probability of selecting the p-th feature 

vector as the update is  

 

and where the updating is performed at each iteration on a single randomly-selected feature of the p-th 

feature vector.  The sampling is iterated to convergence to the updated feature vector f’j, and the similarity 

of the updated feature vector is calculated to each of the training features and used as the weighting factor 

on the objective classification yp. The predicted chemosensitivity Pj of hold-out or non-training feature 

vectors are predicted as 

 

 The log-likelihood prediction constructs a Gaussian mixture model to construct probability 

distribution functions L-1,1 of the features among the training set 31.  In the binary classifier, each PDF has 

a classification index. The predicted chemosensitivity Pj of hold-out or non-training feature vectors are 
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predicted as 

 

 The network binary classifier uses the adjacency matrix A(j,l) constructed by the k-neighbor 

algorithm from the similarity matrix.  The predicted chemosensitivity Pj of hold-out or non-training 

feature vectors are predicted as 

 

where lp is the target node of the p-th link to the j-th node.  The ensemble learning takes the ensemble 

average over the four binary classifiers to yield the average predicted chemosensitivity of Fig. 3. The error 

bars are the standard error of the ensemble values added in quadrature for the root-variance of the training 

sub-sets of Fig. S4.   
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