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Abstract 

A fundamental question for alcohol use disorder is how naïve brain networks are reorganized in 

response to the consumption of alcohol. The current study aimed to determine the progression of 

alcohol’s effect on functional brain networks during the transition from naïve, to early, to chronic 

consumption. Resting-state brain networks of six female monkeys were acquired using 

magnetoencephalography prior to alcohol exposure, after early exposure, and after free-access to 

alcohol using a well-established model of chronic heavy alcohol use. Functional brain network 

metrics were derived at each time point. Assortativity, average connection frequency, and 

number of gamma connections changed significantly over time. All metrics remained relatively 

stable from naïve to early drinking, and displayed significant changes following increased 

quantity of alcohol consumption. The assortativity coefficient was significantly less negative (p 

= .043), connection frequency increased (p = .03), and gamma connections increased (p = .034). 

Further, brain regions considered hubs (p = .037) and members of the Rich Club (p = .012) 

became less common across animals following the introduction of alcohol. The minimum degree 

of the Rich Club prior to alcohol exposure was significantly predictive of future free-access 

drinking (r = -.88, p < .001). Results suggest naïve brain network characteristics may be used to 

predict future alcohol consumption, and that alcohol consumption alters the topology of 

functional brain networks, shifting hubs and Rich Club membership away from previous regions 

in a non-systematic manner. Further work to refine these relationships may lead to the 

identification of a high-risk AUD phenotype.   

Key words: magnetoencephalography, substance use disorder, risk factor  
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Introduction 

Alcohol use disorder (AUD) constitutes a global problem and is ranked among the top substance 

abuse problems in the United States, with over 70% of adults that struggle with substance use 

disorder estimated to abuse alcohol 1(SAMSHA 2018). AUD impacts global brain functional 

networks including the default mode, executive, attentional, salience and reward networks 2-7 but 

the neurocircuitry underlying vulnerability and resilience to alcohol use disorder (AUD) is not 

clearly understood, making it difficult to establish viable, targeted treatment options.  

 

This lack of clarity is due, in part, to the difficulty in capturing an alcohol-naïve baseline in 

human subjects. Clinical studies are often conducted with long-term drinkers at different 

drinking phases after changes in brain networks have likely already manifested. It is clear that 

AUD is characterized in part by dysfunctional information processing 8 that occurs in part 

through altered brain activity during both resting state (RS) and task performance in alcoholics 9 

as compared to other neurological conditions 10. Functional brain networks including the default 

mode, salience, and executive networks are known to be sensitive to chronic alcohol use 11,12,7 

however, the temporal nature and anatomic directionality of changes that occur remains unclear.  

 

A limitation of studies involving humans is the significant individual variation in history 

regarding substance use, comorbid exposure to substances, and living environments. NHP 

models 13 have demonstrated that daily drinking for 15 months causes functional and genomic 

changes across the brain when contrasted against the alcohol naïve brain 14-21, as well as 

reorganization of brain networks measured by fMRI 22 and significantly altered signal power of 

multiple bandwidths across the brain using magnetoencephalography (MEG) 23.  
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The objective of the current study was a longitudinal examination of the trajectory of these 

changes to identify at what point they begin to manifest and if baseline, alcohol-naïve indicators 

of future drinking can be identified.  

 

Materials and Methods 

Animals 

Adult female rhesus monkeys (n = 6, 5-7 years old at study start) were subjects in an ongoing 

ethanol (EtOH) self-administration study. This age group reflects late adolescence to early 

adulthood in humans. The monkeys were trained on an operant panel to self-administer all fluids 

and food using a well-established drinking model 13,24. This process begins with EtOH-naïve 

monkeys that are induced to drink escalating doses of EtOH (0.5, 1.0 and 1.5 g/kg) for 30 days at 

each dose (induction phase). All monkeys were maintained at 1.5 g/kg for 20 drinking days 

while operant panels were serviced and re-programed. Animals were then provided free access to 

EtOH and water for 22 hours per day, 5 days per week for 180 days. Sessions began at 11:00 am 

each day. MEG recordings were acquired under EtOH naïve conditions (Baseline), after 

completion of the induction phase (Post Induction) and after 180 open access drinking days (Free 

Access). Control animals were not utilized in the current study due to the previously well-

established effects of EtOH in this model contrasting EtOH-exposed and control animals  14-21,23.  

 

Preparation for MEG scans 

Animals were fasted overnight from food but not EtOH prior to scans. On the day prior to the 

Post-Induction scan all animals had consumed the provided 1.5 g/kg EtOH dose by 6 pm. The 
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time to finish the 1.5 g/kg dose ranged from 6-300 minutes. Average time between last drink and 

sedation for imaging was 1183.0 minutes (SD = 124.7, min = 1025, max = 1340) at the Post-

induction scan and 344.2 minutes (SD = 377.9, min = 0.0, max = 977) at the Free Access Scan. 

These time frames raise the possibility of acute withdrawal 25; however, symptoms were not 

observed during similar time frames on non-imaging days 26 and the anesthetic agent (propofol, a 

GABAa receptor positive allosteric modulator 27) helped ensure acute withdrawal symptoms 

were not present during data acquisition. Previous work has shown that acute withdrawal in this 

model peaks between 24 - 72 hours 20, which is beyond the duration of abstinence present here. 

Animals were sedated with ketamine (12 mg/kg, i.m.) for transport to the MEG suite. Anesthesia 

was induced with a bolus injection of 2.0-4.0 mg/kg propofol to allow intubation and was 

maintained via intravenous continuous infusion of 200 μg/kg/min propofol via syringe pump 

(Sage, Orion Research Corporation, Cambridge, Mass). Animals were placed in a supine position 

and artificially ventilated. These preparations are consistent with our previous reports 22,23.  

 

Magnetoencephalography recordings 

Data were acquired using a whole head CTF Systems Inc. MEG 2005 neuromagnetometer 

system equipped with 275 first-order axial gradiometer coils. Head localization was achieved 

using a conventional three-point fiducial system (nasion and preauricular points). Each monkey 

was tattooed at each fiducial location to ensure consistent placement over time. Resting-state 

recording was conducted with animals lying supine for 5 minutes. Data were sampled at 1200 or 

2400 Hz over a DC-300 or DC-600 Hz bandwidth, respectively.  MEG data were preprocessed 

using synthetic 3rd order gradient balancing, whole trial DC offset, and band pass filtered from 

DC-80 Hz with powerline filtering. Data were visually inspected for obvious muscle artifact, and 
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such epochs, if present, were discarded from further analyses. Following initial MEG recording, 

a T1 weighted MRI image was obtained for each animal for co-registration and localization of 

MEG signals.  

 

Network analysis 

Network analysis was conducted identically to previous work 28,29. Network analysis proceeded 

by first identifying nodes of the network and quantifying communication among those nodes. 

The resulting matrices are conducive to the application of graph theory for calculating metrics 

describing the topology of the network.  

 

Network creation 

For each animal 41 non-adjacent bilateral regions of interest (ROIs, 2 mm3) were identified in 

native brain space. ROIs were chosen to represent the default mode and reward networks. These 

networks have been previously demonstrated to be affected by chronic heavy alcohol 

consumption in humans 3,30,31. Brain regions included the anterior cingulate, medial and lateral 

orbital frontal cortex, principle sulcus, nucleus accumbens, caudate head and body, head of the 

putamen, parietal area, precuneus, lateral and medial amygdala, anterior, medial, and posterior 

hippocampus, vermis, anterior and posterior lobes of the cerebellum, thalamus, and anterior 

insula. Source series representing the unique weighted sum of the output across all MEG sensors 

for a specific ROI in the brain were calculated using a well-validated beamformer (synthetic 

aperture magnetometry, SAM) 32,33.  The weighted phase lag index (wPLI); 34 was calculated 

between all pairs of nodes using the source series to measure functional connectivity, filtered 

between 1 and 80 Hz. The wPLI is a phase-based metric insensitive to fluctuations in source 
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amplitude. Connectivity was operationalized at the frequency with the highest wPLI value, 

allowing the frequency at which connections occurred to vary from connection to connection. 

This represents a better model of brain activity than restricting connectivity to a specific 

frequency band. Data were first thresholded using 5,000 unique pairs of phase-randomized 

surrogate time series calculated for each animal individually (Prichard and Theiler, 1994) to 

remove connections not different from noise. The resulting networks were then thresholded by 

satisfying the equation S = log(N)/log(K) where N represents the number of nodes in the network 

and K the average degree using S=2.5 35.   

 

Network metrics 

Network metrics calculated are listed in Table 1. Metrics were selected with a focus on 

characterizing the topology of the overall network. Clustering Coefficient was selected as an 

indicator of clustering and subgroup formation within the network. This metric was calculated as 

defined in Stam, Reijneveld 36. Modularity was selected as an indicator of well-defined 

subnetworks within the larger network. This metric was calculated using the Louvain method of 

community detection as defined in Blondel, Guillaume, Lambiotte, Lefebvre 37. The analysis was 

run 500 times, using the average number of modules (Number Modules) as outcome variables. 

Assortativity coefficient represents the correlation coefficient of the degree of nodes on each end 

of a connection. The degree of a node is the number of direct connections that node has to other 

nodes in the network. A positive coefficient suggests nodes are preferentially connecting to other 

nodes of similar degree, while a negative coefficient suggests nodes preferentially connect to 

those of different degree 38. Rich Club was selected as an indicator of the presence of a “network 

backbone”. The Rich Club is a subset of highly connected and highly interconnected nodes 
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forming the basis of the broader network. Rich Club metrics were calculated as defined in 

Colizza, Flammini, Serrano, Vespignani 39 using 500 independently generated random networks. 

The number of nodes (Rich Club Nodes) within the Rich Club, the minimum degree of those 

nodes (Rich Club Degree), and interconnectivity among those nodes (Rich Club Coefficient) 

were used as outcome variables. The Rich Club Coefficient was weighted by the average of the 

same metric across the 500 random networks, representing the level of increased 

interconnectivity over a random network. Hubs of the network were identified as the 10% of 

nodes (n = 4) with the highest degree.             

 

Materials 

Beamforming and source series construction were completed using software provided by CTF 

MEG International Services LP (Coquitlam, BC, Canada).  Further analyses of source series data 

and network creation were conducted using Matlab 2016a.  Network metrics were calculated 

using the Brain Connectivity Toolbox 40. SAS Enterprise Guide 7.1 (SAS Institute Inc., Cary, 

NC) was used for statistical analysis. 

 

Analyses 

Differences across time in network metrics (3 time-points) were examined using repeated-

measures ANOVA. When the omnibus effect of Time was significant, additional paired sample 

t-tests were used to identify the differences among specific time points. Consistency in hubs and 

Rich Club membership were examined using the number of animals for which a region was 

considered a hub or Rich Club member as the dependent variable and brain regions listed in 

Tables 3 and 4 as the independent variable in a repeated measures ANOVA. Brain regions were 
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further characterized as highly common (> 3 animals) or not. Spearman rank correlations were 

conducted to examine the relationship between network metrics and drinking outcomes (daily 

average g/kg). Two-tailed tests and alpha of 0.05 were used for significance.  

 

Results 

Daily average g/kg EtOH consumption (see Figure 1) increased significantly once given free 

access (mean [SD]; Post-Induction = 1.0 [0.0], Free-Access = 4.7 [1.0], p<.01, Cohen’s d = 

5.23). Network metrics at Baseline, Post-Induction (after 120 days escalating controlled doses), 

and Free-Access (after 180 days unrestricted access) are shown in Table 1. 

 

Networks predicting EtOH consumption 

Table 2 illustrates correlations between Baseline (EtOH naïve) network metrics and Free Access 

consumption. The minimum degree of the Rich Club at baseline was strongly related to Free 

Access consumption levels (Figure 2). No correlation between Post-Induction network metrics 

and Free Access EtOH consumption reached significance, thought the qualitative pattern was 

similar to Baseline results.  

 

Effects of EtOH on networks 

Assortatitvity coefficient, F(2,8) = 4.77, p = .043), average connection frequency, F(2,8) = 5.64, 

p = .030, and the number of connections in the gamma bandwidth, F(2,8) = 5.33, p = .034  

changed significantly over time (see Table 1). The assortativity coefficient was negative and 

stable from baseline to post-induction, suggesting disassortivity, but increased significantly 

following chronic exposure to EtOH (contrasting Post-Induction against Free Access, t(5) = -
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3.63, p = .015). The average connection frequency remained stable from Baseline to Post-

Induction, was significantly higher at Free Access than at Baseline, t(5)=-3.20, p = .024, but not 

Post Induction, t(5) = -2.48, p = .056. Finally, while the omnibus test of change in the number of 

connections in the gamma bandwidth over time was significant, no post-hoc contrast reached 

statistical significance. Qualitatively, the number of connections increased upon Free Access, 

mirroring the previous two findings. 

 

Specific Brain Regions 

Table 3 demonstrates areas considered hubs across animals at each time point. For brain 

structures with multiple aspects, the region was considered a hub if any of the aspects were 

considered a hub (e.g. if either the posterior, medial, or anterior hippocampus was a hub, then 

Table 3 indicates the hippocampus as a hub). There was an interaction between brain regions and 

time, F(2,10) = 4.67, p = .037, such that those brain regions commonly serving as hubs across 

animals (i.e. thalamus and cerebellum) at baseline became less so following the introduction of 

alcohol. Table 4 includes brain regions that were members of the Rich Club for at least three 

animals at any time point, again collapsing within regions. A significant effect of time was 

observed, F(2, 16) = 5.91, p = .012 demonstrating a decrease in the commonality of regions in 

the Rich Club across animals. There was no interaction with common regions at baseline.  

 

Discussion 

The current study demonstrates that aspects of the Rich Club of alcohol-naïve brain networks are 

strongly related to future drinking behaviors. In addition, results demonstrate increasing 

alterations of network topology as the duration of exposure to alcohol increases and the quantity 
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of alcohol consumed increases. As exposure and quantity increased, the hubs of the network and 

membership of the Rich Club were observed to shift, becoming less consistent across animals.    

 

Aspects of alcohol-naïve resting-state functional brain networks were demonstrated to predict 

future drinking levels. The minimum degree of the Rich Club observed at Baseline (alcohol-

naïve) was strongly and inversely correlated with the level of alcohol consumption during the 

future free access period. Interconnectivity among the Rich Club nodes (Rich Club Coefficient) 

was not related to future drinking, demonstrating that as the interconnectivity increased between 

the Rich Club members and the rest of the network at baseline, future alcohol consumption 

decreased. This suggests that Rich Club characteristics of functional brain networks may be 

predictive of future drinking levels, even when measured prior to alcohol exposure.   

 

These results are consistent with previous work using the same NHP model indicating that 

premorbid behaviors and those occurring early in the drinking history may be predictive of future 

consumption levels. These factors include low cognitive flexibility 41, early drinking phenotypes 

(i.e., gulping vs sipping) 13,42, age, latency to begin drinking, and the number of “bouts” of 

drinking 42,43. The current results are the first to provide a brain-based factor indicative of future 

drinking in this model, suggesting that premorbid alcohol-naïve differences in Rich Club 

characteristics of functional brain networks also predict future drinking in this model.  

 

These results extend recent findings in human participants demonstrating that white matter brain 

networks of individuals with AUD displayed lower Rich Club characteristics compared to their 

non-abusing siblings, who displayed lower levels compared to control participants 44. While 
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Zorlu, Capraz, Oztekin, Bagci, Di Biase, Zalesky, Gelal, Bora, Durmaz, Besiroglu, Saricicek 44 

suggest potential premorbid differences in white matter network structure may be a marker of 

risk or susceptibility to AUD, the results of the current study provide direct empirical support for 

this hypothesis, showing that Rich Club characteristics of premorbid functional brain networks 

are directly related to future drinking levels.   

 

Alcohol-induced changes in functional brain networks were observed following significant 

increases in the quantity of alcohol consumed. Networks remained disassortive, but significantly 

less so. In addition, the mean connection frequency increased significantly, mirrored by a non-

significant increase in the mode of the connection frequency. There was a significant increase in 

the number of connections in the gamma bandwidth mirrored by non-significant decreases in the 

number of connections in the delta bandwidth. Significant changes were also seen in the 

backbone of networks. Brain regions considered hubs and members of the Rich Club were more 

common across animals at baseline than following the introduction of alcohol, suggesting the 

networks were being altered in an inconsistent manner across animals. It should be noted that the 

quantity of alcohol consumed during the induction period is relatively low (0.5 to 1.5 g/kg) and 

increased between 100% and 300% during unrestricted access. These results support the 

potential for a dose-dependent relationship between patterns of alcohol consumption and the 

structure of functional brain networks 45-47.  

  

Limitations of the current study include the small sample size, which limits the complexity and 

sensitivity of analyses that can be conducted. Neuroimaging was conducted under anesthesia, 

which has known effects on brain function 48-50. Possible interactions between the anesthetic and 
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alcohol could have occurred, if not directly, then through the indirect development of tolerance. 

However, anesthesia was maintained at consistent levels and physiological indicators of arousal 

were monitored continuously, suggesting that levels of sedation were consistent across scans. 

Neuroimaging under conscious conditions will be required to completely understand the effects 

of alcohol on brain function using this model. The interval between ethanol access and MEG 

scans raises the possibility that some animals may have been experiencing symptoms of 

withdrawal 25. However, signs of withdrawal were not observed during the same time periods on 

non-imaging days 20,26. Also, propofol was used as the anesthesic agent, helping to ensure 

animals were not experiencing withdrawal symptoms during scans 27. Finally, animals who 

ceased alcohol consumption prior to scans did so voluntarily and in a time frame consistent with 

non-imaging days and were not forcibly fasted.  

  

The Rich Club is a community of nodes within the network that have high degree and 

interconnectedness 39. These nodes represent hubs within the network and communication among 

these nodes can often serve as “shortcuts” within the network, increasing efficiency of 

communication across otherwise distantly connected nodes. Alterations to this important 

subnetwork are likely to have broad and sweeping effects on brain communication and 

information processing 51. However, differences in Rich Club characteristics have been observed 

in many neurodevelopmental disorders, including schizophrenia 52, bipolar disorder 53, and 

autism 54. As such, the broad differences in Rich Club characteristics observed in this study are 

unlikely to serve as a direct “neurophenotype” of alcohol use disorder without further refinement 

and empirical study. However, these results identify that differences in network topology are 

important to understanding individuals who might be at risk for future heavy drinking or AUD.  
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Assortativity describes the tendency for connectivity to occur between nodes similar in a 

particular characteristic, usually degree. The assortativity coefficient was strongly negative at 

baseline, suggesting disassortativity, or the tendency for nodes to connect to other nodes of 

different degree. This is common in biological networks and suggests a hierarchical nature to 

connectivity supportive of clustering and modularity around central hubs38. As demonstrated by 

the current results, increased quantity of alcohol consumption disrupted the disassortativity of 

networks. This is further supported by reduced commonality in network hubs (Table 3) and Rich 

Club membership (Table 4) across time.    

 

Conclusions 

The current study identified a relationship between functional brain networks in the alcohol-

naïve state and future alcohol consumption, consistent with other work using this model 

demonstrating early behavioral markers of future drinking. Additionally, significant alterations to 

the topology of the network were observed following the significant increase in quantity of 

alcohol consumption during the Free Access period. Future work will be invaluable in clarifying 

the changes, and potentially the timing of those changes, that infer risk specific to AUD in 

humans. 
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Table 1. Descriptive statistics of network metrics prior to and following exposure to ethanol.  
Network Metric Baseline Post-Induction Free Access 
Clustering Coefficient, mean (SD) 0.35(0.1) 0.28(0.1) 0.30(0.1) 
Assortativity coefficient, mean (SD)a,b -0.40(0.1) -0.44(0.1) -0.19(0.2) 
Rich Club Coefficient, mean (SD) 1.84(0.1) 1.72(0.1) 1.91(0.3) 
Rich Club Nodes, mean (SD) 13.17(1.7) 14.5(2.9) 10.83(4.3) 
Rich Club Minimum Degree, mean (SD) 7.50(1.1) 6.67(0.8) 9.50(2.7) 
Number of Modules, mean (SD) 10.50(3.4) 7.83(2.4) 8.83(4.4) 
Mean Connection Frequency, mean (SD)a,c 6.57(5.7) 5.61(4.9) 16.01(10.6) 
Mode Connection Frequency, mean (SD)  4.39(5.9) 4.79(6.0) 11.13(14.3) 
Delta Connections, mean (SD) 172.67(96.0) 202.0(79.5) 99.0(99.7) 
Gamma Connections, mean (SD)a 1.67(4.1) 4.0(8.9) 54.67(64.5) 
Note. n = 6, aOmnibus test of change over time p < .05, bpaired samples t-test between Post 
Induction and 6 months p < .05; cpaired samples t-test between EtOH Naïve and 6 months p < 
.05; EtOH = ethanol, SD = Standard Deviation, follow-up paired samples t-tests were only 
conducted when the Omnibus test was significant. 
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Table 2. Baseline network metrics correlated with Free Access drinking levels.  
 Conn 

Freq  
Rich Club 
Coefficient 

Rich Club 
Nodes  

Rich Club 
Degree  

Clustering 
Coefficient  

Assortativity  

Free Access Avg 
Daily g/kg 

0.60 -0.26 0.71 -0.88a -0.31 0.03 

Note. n = 6, Free Access Avg Daily g/kg = daily consumption in g/kg during the 180 days of 
unrestricted access, Conn Freq = Connection Frequency, Avg = Average, g = gram, kg = 
kilogram, ap = .02.  
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Table 3. The number of subjects for which each brain region was considered 
a hub of the network. Nodes are considered hubs if they in the upper 10% of 
the network for degree. Only node considered a hub for at least 2 subjects at 
any time point are presented. 
Brain Region Baseline Post-Induction Free Access 
Parietal 3 2 0 
Thalamus 4 2 2 
Precuneus 2 1 1 
Cerebellum 4 4 2 
Amygdala 2 0 2 
Hippocampus 2 2 4 
Note. n = 6. 
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Table 4. The number of subjects for which each brain region was 
considered a member of the Rich Club.  
Brain Region Baseline Post-Induction Free Access 
Putamen 5 5 4 
Hippocampus 5 6 5 
Thalamus 5 5 3 
Insula 5 5 2 
Cerebellum 5 6 3 
Parietal 4 4 3 
Amygdala 4 4 5 
OrbitoFrontal 4 4 3 
Caudate 3 6 3 
Precuneus 3 1 2 
Note. n = 6. 
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Figure 1. Average daily g/kg EtOH consumption during the Baseline (naïve), Induction (0.5, 

1.0, and 1.5 g/kg at 30 day intervals), and Free Access (180 days unrestricted) periods.  

 

Figure 2. The minimum degree of the Rich Club of the alcohol naïve (Baseline) functional brain 

network was strongly related to future drinking when animals were provided free-access to 

alcohol (r = -.88, p = .02).  
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