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Highlights 

• Optimal detection of high frequency oscillations (HFOs) improves demarcation of 

seizure onset zone (SOZ) channels. 

• Optimal detection parameters for HFOs are patient-specific and vary over a wide range. 

• Assessment of SOZ localization accuracy can be impacted by an imbalanced number of 

SOZ and non-SOZ channels. 
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Abstract  

Objective: High frequency oscillations (HFOs) are a promising biomarker of epileptogenicity, 

and automated algorithms are critical tools for their detection. However, it is not uncommon 

for a previously validated algorithm to work poorly when applied to a new data set. There is no 

consensus on whether (or how) parameters should be optimized. Here we evaluate the impact 

of parameter selection on seizure onset zone (SOZ) localization using automatically detected 

HFOs. 

Methods: We detected HFOs in intracranial EEG from twenty medically refractory epilepsy 

patients with seizure free surgical outcomes using an automated algorithm. For each patient, 

we assessed classification accuracy of channels inside/outside the SOZ using a wide range of 

detection parameters and identified the parameters associated with maximum classification 

accuracy. 

Results: Only three of twenty patients achieved maximal localization accuracy using 

conventional HFO detection parameters, and optimal parameter ranges varied significantly 

across patients. The use of individualized optimal parameters led to substantial improvements 

in localization accuracy, particularly in reducing HFO rates in non-SOZ channels. 

Conclusion: Optimal HFO detection parameters are patient-specific and often differ from 

conventional parameters. The use of optimal parameters significantly improves SOZ 

localization. 

Significance: Individual variability should be considered when implementing automatic HFO 

detection, and novel methods for patient-specific optimization are needed. 
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1. Introduction 

For patients with medically refractory epilepsy, surgical resection of the epileptogenic zone (EZ) 

offers the potential to eliminate the occurrence of seizures (Noachtar & Borggraefe, 2009; 

Schuele & Lüders, 2008). However, the EZ remains a largely theoretical construct, as there are 

no biomarkers that enable identification of this brain region (Kovac et al., 2017; Ryvlin et al., 

2014). Current clinical practice aims to identify the seizure onset zone (SOZ), currently the best 

proxy of the EZ, during the patients’ pre-surgical evaluation. As a complementary biomarker, 

epileptiform discharges are considered indicative of the SOZ due to their high degree of 

association with seizures (Westmoreland, 1996); however, they are not specific to the SOZ 

(Bautista et al., 1999). Furthermore, patients with spikes occurring in multiple brain areas are 

less likely to become seizure free after surgery than patients with well localized spikes (Bautista 

et al., 1999). Overall, only 50-60% of patients are seizure free following resective surgery, 

emphasizing the need to improve localization of the EZ (Edelvik et al., 2013). 

Over the past two decades, there has been growing interest in studying electrographic events 

called high-frequency oscillations (HFOs) as potential biomarkers of the EZ. HFOs are generally 

defined as spontaneous EEG patterns that consist of at least four oscillations with frequency > 

80 Hz that clearly stand out from the background activity (Bragin et al., 1999). Interictal HFOs 

have a demonstrated association with the SOZ, as they occur more frequently at the site of 

seizure onset (Jacobs et al., 2012; Zijlmans et al., 2012). They were first discovered in rodent 

models of epilepsy, but numerous studies have demonstrated the measurement of HFOs in 

humans using clinical macro electrodes (Crépon et al., 2010; Worrell et al., 2008). Because HFOs 

occur interictally, their use in surgical planning could reduce risk and discomfort for patients by 

minimizing recording time and the necessity of ictal recordings (Migliorelli et al., 2017). It has 

also been suggested that HFOs are more specific to the SOZ than spikes (Crépon et al., 2010; 

Jacobs et al., 2008; Staba & Bragin, 2011), although another study found that their co-

occurrence with spikes was the best predictor of the SOZ (Roehri et al., 2018). The removal of 

HFO-generating regions has also been correlated with good post-surgical outcome (Akiyama et 

al., 2011; Jacobs et al., 2010; J. Y. Wu et al., 2010). Moreover, it was demonstrated that HFOs 
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are not specific to brain lesions, further strengthening its case as a marker of epileptogenic 

tissue rather than other pathologic tissue changes (Jacobs et al., 2009). Despite its potential as 

a biomarker of the EZ, HFO analysis has not yet proven to be reliable in individual patients 

(Jacobs et al., 2018; Roehri et al., 2018). 

One possible reason for the lack of individual patient reliability is the method of detection and 

analysis. HFOs are sometimes detected through visual identification by expert reviewers 

(Ferrari-Marinho et al., 2015; Jacobs et al., 2014); however, visual marking is time-consuming, 

subjective, and is insufficiently reproducible (Spring et al., 2017, 2018; Zelmann et al., 2012). 

Therefore, automated methods of HFO detection have been developed to address these 

shortcomings (Sindhu et al., 2020), and this is seen as a critical step to translating HFO analysis 

into clinical practice (Worrell et al., 2012). Automatic HFO detection algorithms are generally 

designed to be applied to a specific frequency band, location of the brain, and/or electrode 

type (Zelmann et al., 2012). When these algorithms are subsequently applied to a new dataset, 

it is preferable to use the parameter values for the algorithm defined in the original publication, 

in order to provide independent validation of the algorithm’s utility, promote reproducibility of 

results, and to avoid overfitting to the data. However, the use of such standard configurations 

can lead to suboptimal performance when used for a different data set or frequency range. For 

example, studies implementing previously published algorithms without optimizing parameters 

often produce results worse than originally reported (Burnos et al., 2014; Gardner et al., 2007; 

M. Wu et al., 2018; Zelmann et al., 2012). Furthermore, studies typically apply the same 

detection parameters to all patients (Gliske et al., 2016; Jacobs et al., 2018; Zelmann et al., 

2012). There is evidence that optimization of HFO detection parameters can improve sensitivity 

(Zelmann et al., 2012) and localization accuracy (Chaibi et al., 2013; Charupanit & Lopour, 2017; 

Dümpelmann et al., 2012), however, the optimization procedures in these studies were often 

limited to small parameter ranges, were performed only to compare performance across 

detectors, and did not account for patient variability. Thus, it remains unknown whether 

patient-specific optimization is necessary, which parameter ranges are relevant for HFOs, and 

how this optimization should be accomplished to support feasibility in clinical settings. 
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Therefore, we evaluated the significance of parameter selection for automatic HFO detection 

using two independent datasets. Using a frequently cited automatic detector, we tested a wide 

range of algorithm parameter sets and determined the SOZ localization accuracy for each one. 

This allowed us to estimate the best possible localization accuracy using HFOs, assuming that an 

optimization procedure had been used to select the detection parameters. We also measured 

the improvement in accuracy when using individualized detection parameters versus the 

conventional set. Our goal was to determine optimal parameter ranges for HFO detection, 

assess the variation in results across patients, and investigate the impact of optimization on the 

accuracy of SOZ localization.  

2. Methods 

2.1. Clinical data collection 

Twenty patients with medically refractory epilepsy from two medical centers were identified 

retrospectively and included in this study. Seven of these patients underwent implantation of 

intracranial electrodes for presurgical evaluation from June 2015 to March 2017 at the 

University of California, Irvine (UCI) Medical Center. We will refer to this as the UCI dataset. We 

included only patients with a postoperative outcome of Engel Class I, which suggests that the 

clinical SOZ localization was successful. For each patient, the SOZ was defined as electrodes 

involved within the first three seconds of seizure onset, based on visual assessment of the ictal 

intracranial EEG (iEEG). If patients had multiple seizures with different regions of onset during 

recording, all SOZ channels were considered SOZ. The demographic and clinical characteristics 

of these patients are shown in Table 1. Collection and analysis of retrospective patient data for 

this study was approved by the Institutional Review Board of the University of California, Irvine.  

Table 1. Patient demographics of the UCI dataset. Abbreviations: AM = amygdala; AH = anterior 

hippocampus; depth = depth electrode; FLE = frontal lobe epilepsy; grid = subdural grid 

electrode; HH = head of hippocampus; HP = hippocampus; L = left; MF = mesial frontal; PFC = 

pre-frontal cortex; TH = tail of hippocampus; TLE = temporal lobe epilepsy; R = right 
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Patient Age, 

Gender 

Seizure 

semiology 

MRI     Diagnosis Electrodes SOZ 

channels 

Surgery Engel 

outcome 

Postoperative 

follow-up 

(months) 

1 44, M Complex 

Partial 

Seizures 

Cortical 

Dysplasia in 

PFC 

FLE 1 grid 8x8  

2 grid 2x8  

1 grid 4x8 

RMF28-32 R Frontal 

Lobectomy 

IA 47 

2 50, M Complex 

Partial 

Seizures 

White matter 

changes in 

frontal lobe; 

possible right 

mesial 

temporal 

atrophy 

TLE 5 depth 

1x16 

RAH5-8 R Temporal 

Lobectomy 

IB 22 

3 46, M Complex 

Partial 

Seizures 

Right 

Hippocampal 

Sclerosis 

TLE 5 depth 

1x16 

RAH4 R Temporal 

Lobectomy 

IA 41 

4 34, M Complex 

Partial 

Seizures 

Bilateral 

hippocampal 

abnormalities 

with mild left-

sided atrophy 

TLE 2 depth 

(1x14)  

3 depth 

(1x16) 

2 grid (2x6) 

1 depth 

(1x10) 

RAM1-2, 

RHP1-3 

R Temporal 

Lobectomy 

IA 2 

5 57, F Complex 

Partial 

Seizures 

None TLE 11 depth 

(1x10) 

1 depth 

(1x12) 

LHH1-3, 

LTH2-3 

L Lateral 

Temporal 

Lobectomy, 

L Amygdala 

and 

Hippocamp

al 

Resection 

IA 23 

6 53, F Complex 

Partial 

Seizures 

Left Mesial 

Temporal 

Sclerosis 

TLE 10 depth 

(1x10) 

LTH1 L Temporal 

Lobectomy 

IA 32 

7 54, F Complex 

Partial 

Seizures 

None TLE 10 depth, 

(1x10) 

RHH1-4, 

RAM1-2 

R Temporal 

Lobectomy 

IB 26 

 

The remaining thirteen patients included in this study were obtained from the freely available 

online database associated with Fedele et al., 2017 at iEEG.org (http://crcns.org/data-
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sets/methods/ieeg-1/about-ieeg-1). These patients underwent invasive EEG recordings with 

subdural and/or depth electrodes from March 2012 to April 2016 at the University Hospital 

Zurich as part of their presurgical evaluation. We refer to these thirteen patients as the ETH 

Zurich dataset. We included all patients that reported good clinical outcomes (class 1) at least 1 

year following resective surgery based on the International League Against Epilepsy (ILAE) scale. 

Information regarding electrode types, data acquisition, and sleep scoring can be found in 

Fedele et al., 2017. Patient demographics for the ETH Zurich dataset are in Table 2.  

Table 2. Patient demographics of the ETH Zurich dataset. Abbreviations: depth = depth 

electrode; ETE = extratemporal epilepsy; ILAE = International League Against Epilepsy; Les = 

lesionectomy; sAHE = selective amygdala hippocampectomy; strip = strip electrode; TLE = 

temporal lobe epilepsy.  

Patient Age, 

Gender 

Epilepsy Type of 

electrodes 

Number of channels 

in resected tissue 

Number of channels 

in non-resected 

tissue 

Surgery ILAE 

outcome 

Postoperative 

follow-up 

(months) 

8 25, M TLE 5 depth  

1 strip 4 x 1 

1 strip 6 x 1 

9 14 sAHE; Les I 12 

9 33, M TLE 8 depth 12 12 sAHE; Les I 29 

10 20, F TLE 5 depth 12 3 sAHE I 13 

11 20, F TLE 8 depth 12 12 sAHE I 41 

12 40, M TLE 8 depth 12 12 sAHE I 14 

13 48, M TLE 8 depth 12 12 sAHE I 11 

14 37, M ETE 1 grid 8 x 4 

2 strips 4 x 1 

3 31 Les I 36 

15 36, M ETE 1 grid 8 x 8  

1 depth 

3 62 Les I 37 

16 49, M ETE 1 grid 8 x 4 

1 depth 

21 16 Les I 25 

17 17, M ETE 1 grid 8 x 8  

1 depth 

3 50 Les I 25 

18 46, F ETE 2 grids 8 x 2 

1 strip 6 x 1 

1 strip 4 x 1 

1 depth 

1 29 Les I 10 
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19 31, F ETE 1 grid 8 x 4 

2 strips 4 x 1 

4 23 Les I 25 

20 17, F ETE 1 grid 8 x 4 

1 depth 

3 34 Les I 19 

 

2.2. Data acquisition 

Intracranial EEG was recorded for each patient using a combination of subdural 

electrocorticogram (ECoG) grids and strips, as well as depth electrodes. Recordings from the 

UCI dataset were collected using a Nihon Kohden JE-120A amplifier with a minimum sampling 

frequency of 2000 Hz for all patients. Recorded data were re-referenced to a bipolar montage 

for analysis. All bipolar re-referenced channel pairs that included an SOZ channel were deemed 

as SOZ (for example, channels RAH3-4 and RAH4-5 of UCI patient 3 were considered SOZ). Five 

3-minute epochs from one night of iEEG recording were randomly selected for each UCI 

patient, for a total of 15 minutes per patient. Each epoch was chosen from data recorded 

between 8pm and 8am to improve the likelihood of analyzing sleep data, as HFO rates are 

increased and the occurrence of muscle artifacts is reduced during slow-wave sleep compared 

to wakefulness (Bagshaw et al., 2009; Clemens et al., 2003; Staba et al., 2004). We confirmed 

that all epochs were interictal data, recorded at least 1 hour away from seizures to reduce the 

influence of seizures on HFOs (Pearce et al., 2013). We analyzed all implanted electrodes, which 

ranged from 80 to 128 contacts for each UCI patient.  

All interictal recordings from the ETH Zurich dataset were obtained at least 3 hours away from 

seizure activity, and we analyzed five 5-minute epochs of slow wave sleep from one night of 

recording. We included the same channels used for analysis by the original authors; the 

included and excluded channels can be found in the supplementary information provided by 

Fedele et al., 2017. Of note, the number of analyzed channels for each patient ranged from 15 

to 53. For the analysis in the current study, we will define the “SOZ channels” to be the bipolar 

re-referenced channels within the resected area for each patient; the specific sites of seizure 

onset within the resected area were not provided. Defining the SOZ based on the resected 

volume will likely overestimate the true SOZ in the ETH Zurich dataset, while the method used 
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for the UCI dataset is likely an underestimate due to limited sampling of brain tissue using iEEG 

electrodes. These datasets are therefore complementary and represent the full range of 

possible SOZ definitions. 

 

2.3. Data processing 

2.3.1 Automatic HFO detection 

Automated HFO detection was performed using an algorithm based on the root-mean-square 

(RMS) amplitude of bandpass filtered data (Staba et al., 2002). We will refer to this as the RMS 

detector. We used the RMS detector because it is referenced often as a benchmark for new 

algorithms (Charupanit et al., 2020; Gardner et al., 2007; Zelmann et al., 2012), serves as the 

core of many other detectors (Blanco et al., 2010; Burnos et al., 2014; Chaibi et al., 2013; Gliske 

et al., 2016; M. Wu et al., 2018; Zelmann et al., 2010), and is algorithmically simple to 

implement and examine. In this algorithm, broadband data is bandpass filtered in the 100-

500Hz frequency range, and candidate events are identified when the RMS of the bandpass 

filtered signal exceeds a threshold for a minimum duration (which we will abbreviate as 

“min_dur;” see Figure 1A).  The RMS signal is calculated using a moving window (“RMS_win”), 

and the first threshold (“nSD1”) is defined as five standard deviations above the mean RMS 

signal. Consecutive events separated by less than a predefined gap time (“gap”) are combined 

into one event. Candidate events are retained when a minimum number of peaks (“min_pk”) in 

the rectified filtered data exceed a second threshold (“nSD2”) defined as 3 standard deviations 

above the mean rectified data.  
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Figure 1. Automatic HFO detection algorithm. (A) Full RMS detector and (B) Reduced RMS 

detector used in our analysis. The shaded gray region represents the window containing the 

identified candidate event. Detection thresholds are indicated by horizontal red lines, and each 

peak in the candidate event is marked by a red triangle. Abbreviations: RMS = root-mean-

square, std = standard deviation 

 

To reduce algorithmic complexity and minimize the number of parameters to be optimized, we 

simplified the RMS detector algorithm by modifying the threshold applied to the rectified data 

(Figure 1B). We set threshold two equal to threshold one (nSD2 = nSD1), as they both ensure 

that the signal’s energy exceeds a threshold determined from baseline activity. As in the 

original algorithm, we required that a minimum number of peaks in the rectified filtered data 

exceed this threshold, to promote rejection of fast transients. All other steps in the original 

algorithm were maintained.  
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The detection algorithm used in our analysis thus contains five parameters that must be 

considered during optimization: RMS window size (RMS_win), minimum event duration 

(min_dur), number of standard deviations above the mean RMS signal (nSD1), minimum gap 

time (gap), and minimum number of peaks (min_pk). From these parameters, we varied the 

three that directly affect initial detection of candidate events: RMS window size, minimum 

event duration, and threshold. Because the minimum gap time is a post-processing step to join 

candidate events and the minimum number of peaks has little impact as a criterion due to the 

redundancy with minimum event duration, we kept these variables constant at their default 

values. The default values of each parameter and values tested during the optimization 

procedure are described in Table 3.   

Table 3. Detection parameters varied during optimization and corresponding ranges of values. 

Default values are underlined. The default value for minimum gap time is 10ms and minimum 

number of oscillations is 6. 

Parameter Values 

Threshold (nSD1) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 

RMS window size (RMS_win) (ms) 2, 3, 5, 7, 9, 11, 15, 17, 20 

Minimum event duration (min_dur) (ms) 6, 12 

 

 

2.3.2 Automatic artifact rejection 

Because the RMS detector is highly sensitive (Gardner et al., 2007), we implemented two 

artifact rejection methods to improve specificity: PopDet and BkgStabaDet. Both methods were 

introduced by Gliske et al., 2016 for the purpose of creating a generalized HFO detection 

algorithm for long-term intracranial EEG recordings, such that the algorithm automatically 

identifies quality HFOs without any patient-specific tuning or operator intervention (Gliske et 

al., 2016). These artifact rejection steps were designed using the RMS detector for initial 

detection, making them appropriate for our analysis. In this study, the default parameters from 

Gliske et al., 2016 were used for all patients and all parameter sets. 
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The popDet criterion was designed to detect DC shifts and fast transients commonly found in 

EEG data (Figure 2A, B). When a DC shift or fast transient is filtered, it can have the appearance 

of an HFO in the 100-500 Hz frequency band (Bénar et al., 2010; Zelmann et al., 2010). 

However, these transients also contain power at very high frequencies, whereas a true HFO 

should have band-limited power. Therefore, the popDet identifies instances when the line 

length of a 0.1s window in the 850-990 Hz frequency range exceeds a threshold of 5 standard 

deviations above the mean line length calculated from baseline. Baseline is defined as a 5-

second window preceding the window being evaluated. 

The BkgStabaDet was designed to detect spatially diffuse HFOs, which are considered false 

positive detections because they contradict the idea that HFOs should be focal events (Bragin et 

al., 2002, 2011). If an HFO occurs in all channels of a depth electrode or grid, it will appear in 

the common average (Figure 2C). Therefore, detections in a single channel that occurred within 

100ms of a detection in the common average were excluded from further analysis. As in the 

Gliske et al., 2016 implementation, we applied the RMS detector from Staba et al., 2002 to the 

common average within each depth electrode or grid using the default parameters..   
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Figure 2. Examples of rejected artifacts. (A) DC Shift in the broadband data (top) detected by 

popDet in the bandpass filtered data (bottom), and (B) fast transient in the broadband data 

(top) detected by popDet in bandpass filtered data (bottom), with the artifacts highlighted in 

red. (C) Diffuse HFO in the bandpass filtered data (top) detected by BkgStabaDet in the common 

average of the bandpass filtered data (bottom). The artifact (highlighted in green) represents 

the common average HFO that occurred at or near (±100ms) the same time as the detected HFO 

(highlighted in red) in the bandpass filtered signal. 

 

2.4  Data analysis 

2.4.1  SOZ localization defined by rate thresholding 

After HFO detection and artifact rejection were performed for a given parameter set, the HFO 

rate (number per minute) for each channel was averaged across epochs. A threshold was then 
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applied to the average HFO rates; channels with average HFO rates exceeding the rate 

threshold were classified as SOZ and the remaining channels were classified as non-SOZ (nSOZ).  

 

2.4.2 Receiver operating characteristic curves and precision-recall curves 

For each parameter set, we used a receiver operating characteristic (ROC) curve to characterize 

the ability of automatic HFO detection to localize the clinically-determined SOZ. For channels 

defined clinically as SOZ (based on visual interpretation of ictal iEEG), those with HFO rates that 

exceeded the threshold were marked as true positives (TP), and those that did not exceed the 

rate threshold were marked as false negatives (FN). For channels defined clinically as nSOZ, 

those that had HFO rates below the threshold were marked as true negatives (TN), and those 

with HFO rates above the threshold were marked as false positives (FP). The ROC curve was 

plotted by varying the HFO rate threshold and determining the true positive rate (TPR) and false 

positive rate (FPR) for each value:  

TPR =  
TP

TP+FN 
    (1) 

FPR =
FP

FP+TN
    (2) 

The area under the ROC curve (which we will abbreviate AUC) and the optimum cutoff (defined 

as the minimum distance between the ROC curve and the top left corner) were determined for 

each parameter set for all patients.  

As a complementary measure, Precision-Recall (PR) scores were evaluated to examine the 

positive predictive value for each parameter set. Precision-Recall analyses are preferred when 

prediction power of imbalanced classes is being evaluated; in our case, we have imbalanced 

classes represented by the small subset of SOZ channels compared to the larger class of nSOZ 

channels for UCI patients, and the small subset of nSOZ channels compared to the larger class 

of SOZ channels for some ETH Zurich patients (specifically, patients 10 and 16). Precision (P), 

Recall (R), and the F1 score (F1) were computed as follows: 
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P =
TP

TP+FP
  (3) 

R =
TP

TP+FN
  (4) 

F1 = 2 
P∗R

P+R
  (5) 

Like the ROC curve, the PR curve was constructed by varying the rate threshold and calculating 

the precision, recall, and F1 score for each value. The optimal F1 score was defined as its 

maximum value, which represents the maximum harmonic mean of precision and recall. After 

calculating the ROC and PR results for each parameter set, the maximum AUC and optimal 

cutoff of the ROC curve, as well as the maximum AUC and optimal F1 score of the PR curve 

were determined for each patient.  

2.4.3 Artifact counting 

To assess the impact of the automated artifact rejection steps, we calculated the percentage of 

candidate HFOs rejected for each parameter set. The percentage of rejected candidates by 

popDet was calculated as the total number of candidates marked by popDet over the total 

number of candidates counted across all epochs. The same procedure was applied to 

candidates marked by BkgStabaDet. Because a candidate can be marked by both popDet and 

BkgStabaDet, the total percentage of rejected candidates by popDet and BkgStabaDet can 

exceed 100. 

3. Results 

3.1  Minimum event duration does not significantly impact SOZ localization  

SOZ localization results were similar when HFO detection was done using minimum event 

duration (min_dur) values of 6ms or 12ms. We noted this pattern in all patients; one 

representative example is shown in Figure 3, and additional examples can be found in 

Supplementary Figure S1. Comparing the heatmaps in Figures 3A and 3B, the range of optimal 

F1 scores remained the same across the parameter space, with the highest optimal F1 score 
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achieved using a low threshold and short RMS window. A similar pattern of optimal parameters 

occurred in the AUC values. Because doubling the minimum event duration did not significantly 

alter localization results for any patient, the remaining results are reported using only a 

minimum event duration of 6ms, which was the value used in the original publication.  

 

Figure 3. Minimum event duration does not affect SOZ localization performance. Representative 

examples of SOZ localization performance across the parameter space, comparing results 

calculated using minimum event duration of (A) min_dur=6ms and (B) min_dur=12ms. 

Heatmaps of AUC of the ROC curve and optimal F1 score are shown across the parameter space 

for patient 5, with RMS window length (RMS_win) varying on the horizontal axis and RMS 

threshold (nSD1) varying on the vertical axis. All values range from 0 to 1, with results closer to 1 

indicating good classification of SOZ and nSOZ channels. 
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3.2 Artifact rejection does not significantly impact SOZ localization 

The addition of artifact rejection steps did not change the detection parameters that produced 

the best classification of SOZ and nSOZ channels. A representative example of localization 

performance before artifact rejection is shown in Figure 4A. For this subject, the best 

performance, denoted by the highest optimal F1 score, occurred when the threshold was low 

(around nSD1 = 3-5) and across most RMS window sizes. Similar results were achieved after 

artifact rejection (Figure 4B). The optimal parameter set was the same in both cases (RMS_win 

= 3ms, nSD1 = 4), but we note that artifact rejection improved performance for higher values of 

nSD1 for this patient. Across all patients, the optimal parameters were preserved after artifact 

rejection, with some improvement for other parameter sets. 

The percent of rejected candidates varied across the parameter space (Figure 4C, D). Near the 

optimal parameter set, the percent of rejected candidates by popDet ranged from 5.2 – 8% and 

by BkgStabaDet ranged from 6.6 – 9% for this representative example. Generally, higher 

percentages of detected events were rejected as artifacts when the RMS window was short and 

the threshold was high (top left corner of Figure 4C, D). In contrast, the smallest percentages of 

rejected candidates occurred when the RMS window was long and the threshold was low 

(bottom right). This pattern was similar across all patients and for both artifact rejection 

methods. The total percentage of rejected candidates was also generally consistent across 

patients. 
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Figure 4. Artifact rejection does not impact the optimal detection parameters. Comparison of 

optimal F1 scores (A) without and (B) with artifact rejection across the parameter space. 

Percentage of candidate events rejected by (C) popDet and (D) BkgStabaDet across the 

parameter space. Results from patient 5 are shown as a representative example. 

 

3.3 Optimal parameters are patient-specific and vary across a wide range 

The optimal HFO detection parameters, which provided the most accurate classification of SOZ 

and nSOZ channels, varied across patients. Figure 5 displays the SOZ localization results for all 

twenty patients reported as optimal F1 score of the PR curve (left) and AUC of the ROC curve 

(middle). Similar results were obtained for the maximum AUC of the PR curve and optimal 

cutoff of the ROC curve (Supplementary Figure S2). A consistent range of generally good 

performance was found for all patients as both the RMS window and threshold increased 

(indicated by the red bands stretching from the lower left corner to the upper right corner). 

However, within this range, patients had their own subrange of optimal parameters. Four of the 
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twenty patients (patients 4, 5, 7, and 17) displayed a pattern with optimal values at or near the 

default detection parameters. These same patients reported high optimal F1 scores and AUC 

values, indicating a clear distinction between channels classified as SOZ and nSOZ based on HFO 

rate. Based on the optimal F1 score results, four other patients (patients 2, 3, 8, and 19) had 

optimal performance using a higher threshold and larger RMS window than the default 

parameters. However, patient 8 obtained similar localization accuracy at the default 

parameters and the optimal parameters. In six patients (patients 4, 7, 15, 16, 17, 18), the 

optimal parameters were spread over a wide range that included various RMS window lengths, 

indicating little influence of the RMS window parameter on detection. Five patients (patients 1, 

6, 14, 19, and 20) had low optimal F1 scores across the parameter space, suggesting a 

substantial presence of false positives. However, three of these patients (patients 6, 14, and 20) 

displayed favorable results based on the ROC curve, indicating that the number of true positives 

was also high.   
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Figure 5. Optimal HFO detection parameters are patient-specific. Optimal F1 scores (left 

column) and AUC values of the ROC curve (middle column) across the parameter space are 

shown for all patients. Results based on the default detection parameters are outlined in green. 
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Parameter sets achieving optimal SOZ/nSOZ classification are outlined in white. Representative 

ripples detected using optimal parameters are shown in the right column. 

 

3.4 Class imbalance affects interpretation of PR and ROC results  

For all seven patients from the UCI dataset (patients 1-7), the ROC results provided a greater 

range of optimal detection parameters than the PR results. This can be explained by the 

definitions of precision and false positive rate — two distinct components of the PR and ROC 

curve. Precision is interpreted as a positive predictive value determined by the number of true 

positives relative to all predicted positives, as defined in equation 3. In patients from the UCI 

dataset, the number of nSOZ channels considerably outnumbers the SOZ channels; this 

increases the probability of marking a false positive, which increases the denominator of 

equation 3. Furthermore, since there are fewer SOZ channels (and therefore fewer true 

positives), the probability of obtaining a significant positive predictive value is low. In contrast, 

the false positive rate in ROC analysis is interpreted as the proportion of nSOZ channels with 

HFO rates above the threshold. Due to the large number of nSOZ channels (and thereby the 

high likelihood of having true negative channels based on HFO rate), the false positive rate can 

generally be kept low while the true positive rate increases, resulting in more favorable ROC 

results within the UCI dataset. 

For example, in patient 6, good classification performance was only visible in the AUC of the 

ROC curve (Figure 5). In this case, we observe that the HFO rate distribution contains a 

considerable number of nSOZ channels with high HFO rates (Figure 6A). Twenty-four nSOZ 

channels have higher HFO rates than the SOZ channel, thereby giving a poor PR curve (Figure 

6B). However, we see a better ROC result due to the large proportion of nSOZ channels with 

lower rates compared the SOZ channel (Figure 6C). Therefore, nSOZ channels with high HFO 

rates significantly affect the positive predictive value in PR, but they have a modest effect on 

ROC analysis when the proportion of nSOZ channels outweighs the SOZ channels. 
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In contrast to the UCI dataset, most patients from the ETH Zurich dataset (patients 8-20) had 

wider ranges of optimal parameters based on the PR results (Figure 5, left column) compared to 

the ROC results (Figure 5, right column). This relationship is inverted compared to the UCI 

dataset due to the smaller sampling of analyzed electrodes and broader interpretation of the 

SOZ, which was defined by the resected volume. Therefore, the proportion of SOZ channels 

outweighs the nSOZ channels, improving the likelihood of obtaining favorable positive 

predictive performance. Furthermore, due to the decreased number of electrodes, we see less 

variation in results across the parameter space for some ETH Zurich patients (patients 9, 10, 11, 

12, 13, and 16).  

 

Figure 6. Imbalanced proportion of SOZ channels and nSOZ channels alters interpretations of 

precision-recall and receiver-operator-characteristic results. (A) Average HFO rate for each 

channel in Patient 6 using an RMS threshold of three standard deviations (nSD1=3), RMS 

window size of 20ms (rms_win=20ms), and minimum event duration of 6ms (min_dur=6ms). (B) 
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The resulting PR curve with the optimal F1 point circled in red, and (C) the ROC curve. The low 

number of SOZ channels (relative to the large number of nSOZ channels) negatively impacts the 

PR curve when the number of false positives is high, but it minimally impacts the ROC curve. 

 

3.5 Optimizing HFO detection parameters improves SOZ localization  

For each patient, we determined the optimal parameter sets based on the highest optimal F1 

score and AUC of the ROC curve, then compared the results obtained from these parameters to 

the default detection parameters (Figure 7). In total, seventeen of the twenty patients (85%) 

showed improved localization results using optimized detection parameters, while the 

remaining three maintained the same results. We found substantial increases in optimal F1 

scores (>0.2) for eight of the twenty patients (patients 2, 3, 4, 5, 12, 15, 18, 19; Figure 7A). Two 

patients (patients 7 and 17) showed no change in optimal F1 score or AUC because the optimal 

parameters matched the default parameters with good localization accuracy. Patient 20 also 

showed no change in the optimal F1 score due to consistent optimal and default parameters, 

however showed improvement in AUC. Six patients (patients 8, 9, 10, 11, 13, and 16) had 

reasonable localization results (optimal F1 score > 0.6) using default parameters, however still 

showed improvement in optimal F1 using optimal parameters. The remaining three patients 

(patients 1, 6 and 14) showed marginal growth in optimal F1 scores with optimization, but the 

value did not exceed 0.65. Note that improvements in ROC results carry more weight than 

improvements in optimal F1 scores because the optimal F1 score represents the best 

localization possible (at a single rate threshold), while the AUC represents the overall 

localization accuracy across a range of rate thresholds.  
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Figure 7. The use of optimal HFO detection parameters improves precision, sensitivity, and 

specificity. Results for default values vs. optimal values are shown for (A) Optimal F1 scores and 

(B) AUC of the ROC curve for all patients.  

 

We assessed the number of observed true positive and false positive channels in each patient 

to evaluate the clinical relevance of the difference in classification accuracy using optimal 

versus default detection parameters (Figure 8). The optimal parameter set and optimal rate 

thresholds were determined based on the highest optimal F1 score. In four patients (patients 2, 

4, 9, and 19), the number of true positives increased using optimal detection parameters 

compared to default (Figure 8A).  For three of the four patients (patients 2, 4, and 19), the 

difference in marked true positives with optimal detection parameters was at least 20% of all 

SOZ channels, indicating a substantial improvement in SOZ localization. Only two patients 

(patients 12 and 13), both from the ETH Zurich dataset, had a greater number of true positives 

with default parameters, however the difference was only one channel. In sixteen of the twenty 

patients, the number of true negatives increased with optimal detection parameters, with 

differences ranging from +1 to +70 (Figure 8B). This suggests that optimization of HFO detection 

can substantially decrease the likelihood of misidentifying nSOZ channels as SOZ channels 

based on HFO rate. Overall, seventeen of the twenty patients showed improved SOZ 
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localization with optimal parameters, while the remaining three showed results consistent with 

default parameters. 

 

Figure 8. The use of optimal HFO detection parameters increases the number of observed true 

positives in the SOZ and true negatives in the nSOZ. The number of channels for default values 

(blue) and optimal values (green) are shown for all patients. (A) The number of SOZ channels 

correctly marked as true positives (TP) are displayed as positive values, while the number of SOZ 

channels marked as false negatives (FN) are depicted as negative values. (B) The number of 

nSOZ channels correctly marked as true negatives (TN) are shown as positive values, while the 

nSOZ channels marked as false positives (FP) are negative. The difference in correctly classified 

channels using default and optimal values are listed to the right of the bar graph for each 

patient. 
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3.6 Optimal parameters vary widely across the parameter space 

For many patients, the highest classification accuracy was obtained with more than one 

parameter set. For each patient, we plotted all optimal parameter sets across the ranges of 

tested values (Figure 9). The optimal parameters derived from the optimal F1 score (Figure 8A) 

and AUC of the ROC curve (Figure 8B) spanned the parameter space. Most patients had the 

same or similar optimal parameters determined from both measures; deviants from this 

pattern included patients 5, 8, 13, and 20.  In some patients, the parameter sets spanned the 

entire range of RMS window sizes, but with different values of the amplitude threshold (nSD1).  

 

Figure 9. Optimal HFO detection parameters based on (A) optimal F1 score and (B) AUC of the 

ROC curve for all patients. 

 

4. Discussion 

4.1 Summary of findings 

This study assessed SOZ localization accuracy over a wide range of HFO detection parameters to 

measure the impact of parameter optimization in two patient cohorts. In both patient 

populations, we found that the range of parameters for optimal classification of SOZ/nSOZ 

electrodes was patient-specific and spanned a wider range of values than those used in most 
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prior studies. The parameters with the biggest effect on SOZ localization accuracy were the 

RMS window length and the amplitude thresholds; in contrast, artifact rejection had minimal 

impact. Additionally, detection using optimal parameters led to improved localization results 

compared to the standard parameters established in the original publication. This suggests that 

proper selection of automatic detection parameters can increase the power of HFOs as a 

biomarker of the SOZ, and future efforts should be directed to development of patient-specific 

optimization procedures. 

 

4.2 Influence of class imbalance on interpretation of results 

In this study, the class imbalance (number of SOZ channels relative to nSOZ channels) affected 

the interpretation of the results for each patient. The number, type, and placement of 

electrodes varied per patient based on clinical indication, resulting in inconsistent sample sizes. 

Furthermore, the localized SOZ was specific to each patient, leading to variable numbers of SOZ 

channels and nSOZ channels. Because of this, we characterized the classification performance 

using both the ROC and PR curves, as they are complementary measures. The ROC curve 

provides valuable information on the classification sensitivity for each parameter set, and it has 

been widely used to characterize classification performance (K. Charupanit & Lopour, 2017; 

Roehri et al., 2018; Zelmann et al., 2012). In the UCI dataset, characterized by larger 

proportions of nSOZ channels for all patients, we saw smaller variations in AUC ROC results 

across the parameter space. This was because the small proportion of SOZ channels led to true 

positive rates that varied only marginally as the rate threshold was varied. In contrast, the 

Precision-Recall curves provided valuable information on the positive predictive value (PPV) of 

the classification, and this method is considered to be appropriate for analysis in imbalanced 

datasets (Saito & Rehmsmeier, 2015). Because the PPV is indicative of the proportion of true 

positives relative to the predicted positives, this metric varies more significantly than the true 

positive rate (which is used in ROC analysis). Furthermore, the PPV provides key information on 

the presence of false positives, which occur more frequently in the UCI dataset than false 

negatives due to the small proportion of SOZ channels. As a demonstration of this, we observed 
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more localized optimal parameter ranges for the optimal F1 scores than the AUC for all UCI 

patients in Figure 5.  

The patterns described here for both ROC and Precision-Recall curves were also observed in the 

ETH Zurich dataset, albeit reversed because the proportion of SOZ channels was greater. 

Because we cannot compare classification accuracy between the UCI dataset and ETH Zurich 

dataset directly due to the variables described, we only conclude that the patient’s optimal 

parameters differ, and we cannot make comparisons on the performance of HFO rate as a 

biomarker across the patient populations. In summary, the dissimilarities in electrode sampling 

led to different ROC and PR outcomes, and for some patients, localization was deemed poor 

based on these results. 

 

4.3 Characteristics of resulting HFO detections 

Detecting HFOs over a wide range of parameters led to substantial differences in the number of 

HFOs detected. For parameter sets with low thresholds and small RMS windows, we detected 

more than 1,000 HFOs per channel over 15 minutes of data on average for all patients. These 

detections were likely a mix of true HFOs and false positive detections; however, in some cases, 

the resulting distribution of average detection rates across channels yielded favorable 

localization results when a rate threshold was applied. In the opposite corner of the parameter 

space, parameter sets with high thresholds and large RMS windows contained very few 

detections. These events needed to have inordinately high amplitude to meet the threshold 

and minimum event duration criteria, especially because the amplitude was damped by the use 

of a large RMS window. We detected very few of these events, as low as 0-3 detections across 

all channels, which likely led to the unreliable localization results when using these extreme 

parameters. However, the best localization results for patient 2 occurred for such parameter 

sets (nSD1 = 9-10, RMS_win = 20 ms). This is consistent with previous findings that demonstrate 

amplitude as an important metric in HFO analysis (Charupanit et al., 2020; Malinowska et al., 

2015; Matsumoto et al., 2013). 
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4.4 Influence of underlying pathologies 

A subset of patients did not achieve accurate SOZ localizations for any parameter set, and the 

presence of secondary pathologies or specific epilepsy disorders is one possible explanation for 

this. In the UCI dataset, MRI results of patients 1, 2, 3, and 6 revealed lesional or tissue 

abnormalities consisting of hippocampal and temporal sclerosis, cortical dysplasia of the 

prefrontal cortex, and imaging abnormalities in the frontal cortex. The presence of these 

secondary pathologies may have influenced the HFO rates detected in these regions, due to 

various types of neuronal derangements in abnormal brain tissue (Ferrari-Marinho et al., 2015). 

Regarding the influence of epilepsy disorder on HFO rate in the SOZ, previous studies have 

found distinctions between patients with temporal and extratemporal epilepsy. For example, 

Guragain et al., 2018 and Haegelen et al., 2013 examined the spatial mapping of HFOs and 

found that patients with extratemporal epilepsy disorders did not contain significantly elevated 

HFOs rates in the SOZ compared to the nSOZ. In contrast, patients with mesial temporal lobe 

epilepsy showed significantly elevated HFO rates in the SOZ, suggesting that HFOs may be a 

specific marker for patients with mesial temporal lobe epilepsies (Bragin et al., 1999; Staba et 

al., 2004; Worrell et al., 2008). Similar distinctions were found between patients with 

neocortical epilepsies and mesial temporal lobe epilepsies, where patients with neocortical 

epilepsies did not exhibit HFOs in epileptic structures or healthy regions (Crépon et al., 2010). 

However, HFOs were recorded in the SOZ of all patients with mesial temporal lobe epilepsy 

(Crépon et al., 2010). Of the UCI patients included in this study, patient 1 was diagnosed with 

frontal lobe epilepsy, which may explain the suboptimal SOZ localization results across all 

parameter sets. Similarly, patients 14-20 from the ETH Zurich dataset were diagnosed with 

extratemporal epilepsy and underwent lesionectomy, which may have influenced localization 

because different lesion types have various levels of intrinsic epileptogenicity and may 

contribute dissimilarly to epileptogenic networks (Jacobs et al., 2009).  In summary, underlying 

pathologies may play a role in the ability to accurately localize the SOZ based on findings within 

our cohort; however, additional patients should be studied to make robust conclusions.  
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4.5 Limitations and future work 

There are several limitations to our work. Our study demonstrates that patient-specific 

optimization can significantly improve SOZ localization using HFOs; however, two important 

questions remain unanswered. First, how could such optimization be implemented in clinical 

practice? Our analysis was retrospective, and we reported the best possible localization results 

assuming that the optimal detection parameters were chosen; however, in clinical practice, 

optimization would need to be performed on a reserved subset of patient data and without 

prior knowledge of the SOZ. Without knowledge of the SOZ, the detector could be optimized to 

match visually detected HFOs, but this approach may not reliably correlate to optimal surgical 

outcome. Thus, future work should address methods for implementation of per-patient 

optimization in clinical settings. Second, is the improvement in SOZ localization due to HFO 

detection parameter optimization clinically meaningful? For example, if the AUC increases from 

0.80 to 0.85 due to parameter optimization, would this change the patient’s treatment or 

outcome? We have estimated the improvement due to optimization by quantifying the 

differences in observed true positive and false positive channels; however, the long-term 

impact on surgical outcome for each patient cannot be predicted. Future work should aim to 

address the question of what constitutes clinically meaningful improvement. 

Another limitation was the relatively small cohort size. However, our results were consistent 

across two independent datasets, with each dataset demonstrating patient-specific variability 

in optimal parameters. This was the main goal of our study. Also, the ETH Zurich dataset 

delineated the SOZ based on resected volume, while the UCI dataset used ictal EEG analysis, 

and both datasets contained varying class imbalances that affected our interpretation of the 

SOZ localization results. These differences restricted our ability to make more definitive 

conclusions regarding SOZ localization. The resected volume is typically a larger region of the 

brain that encompasses the EEG-defined SOZ. Therefore, the SOZ was more loosely defined for 

the ETH Zurich dataset, which also had varying numbers of recording channels, and this likely 

affected ROC and PR results. 
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Regarding automatic HFO detection, we aimed to analyze artifact-free intracranial EEG data 

during sleep. However, concurrent scalp EEG was not available for the UCI dataset, and the data 

were therefore not sleep staged. Previous studies have shown that HFO activity varies across 

wakefulness and sleep and for specific sleep stages (Bagshaw et al., 2009; Clemens et al., 2003; 

Staba et al., 2004). Therefore, ensuring that all data were recorded during the same sleep stage 

may provide more accurate results. Another limitation in our study was the lack of optimization 

of our artifact rejection methods. Although Gliske et al., 2016 performed an optimization 

procedure to determine the rejection threshold of the popDet, one set of parameters does not 

necessarily work equally well for all patients, as we have shown here. Furthermore, Gliske et al., 

2016 tested the threshold ranging from 5 to 15 standard deviations; however, in some of our 

patients, we found that the popDet performed better using a lower threshold. Ideally, to 

improve localization results, visual validation on a reserved subset of data should be used to 

optimize parameters for artifact rejection.  

5. Conclusion 

This study examined the impact of optimization of automatic HFO detection parameters on SOZ 

localization in medically refractory epilepsy patients. All patients achieved seizure freedom 

following resective surgery, and the majority of patients exhibited elevated HFO rates in the 

SOZ, which led to favorable localization results. However, only 15% of these patients achieved 

their maximum localization accuracy using conventional detection parameters, highlighting the 

significance of patient variability and the importance of tuning automatic HFO detectors. Future 

studies should propose patient-specific optimization techniques for the clinical setting and 

examine the characteristics of pathological HFOs that provide optimal classification of SOZ and 

nSOZ channels. 
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Supplementary Figure 1. 

 

 

Figure S1. Representative heatmaps of optimal F1 and AUC of the ROC curve using minimum 

event duration of 12ms (min_dur=12ms) are shown across the parameter space for patients 3 

and 4 from the UCI dataset and patients 15 and 20 from the ETH Zurich dataset. This can be 

compared to the results in Figure 5 which used min_dur=6ms. 
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Supplementary Figure 2 
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Figure S2. AUC of the PR curve (left column) and optimal cutoff distance for the ROC curve (right 

column) across the parameter space are shown for all patients. Results based on the default 

parameters are outlined in green. Parameter sets achieving optimal SOZ/nSOZ classification are 

outlined in white. 
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