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2 

Abstract  22 

Understanding how parents’ cognitive and non-cognitive skills influence offspring education is 23 

vital for educational, family and economic policy. We use genetics (GWAS-by-subtraction) to 24 

assess a latent, broad non-cognitive skills dimension. To index parental effects controlling for 25 

genetic transmission, we estimate indirect parental genetic effects of polygenic scores on 26 

childhood and adulthood educational outcomes, using siblings (N=47,459), adoptees (N=6,407), 27 

and parent-offspring trios (N=2,534) in three UK and Dutch cohorts. We find that parental 28 

cognitive and non-cognitive skills affect offspring education through their environment: on 29 

average across cohorts and designs, indirect genetic effects explain 36-40% of population 30 

polygenic score associations. However, indirect genetic effects are lower for achievement in the 31 

Dutch cohort, and for the adoption design. We identify causes of higher sibling- and trio-based 32 

estimates: prenatal indirect genetic effects, population stratification, and assortative mating. Our 33 

phenotype-agnostic, genetically sensitive approach has established overall environmental effects 34 

of parents’ skills, facilitating future mechanistic work.  35 
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Introduction 36 

Parents and children tend to have similar educational outcomes. Given the ties between 37 

education, social mobility and health1,2, understanding the mechanisms underlying the 38 

intergenerational transmission of education could inform efforts to alleviate inequalities. Many 39 

studies have investigated how much certain parental characteristics influence offspring 40 

education, but relatively few have considered non-cognitive skills. Whereas cognitive skills 41 

relate to learning and problem solving, non-cognitive skills are ‘socio-emotional’. Given the 42 

growing recognition of the importance of individuals’ non-cognitive skills for their educational 43 

outcomes3, it follows that parents’ non-cognitive skills might also matter.  44 

Parents’ non-cognitive skills appear to be less salient for children’s education than parents’ 45 

cognitive skills. In one study, sons’ standardised test scores at age 16 were more strongly 46 

associated with fathers’ cognitive than non-cognitive skills (0.47 and 0.09, respectively)4. 47 

Measures of parents’ non-cognitive skills also account for less of the intergenerational 48 

transmission of socioeconomic status than cognitive skills (10 vs 20%, respectively)5, and less of 49 

the socioeconomic gap in children’s achievement (8 vs 16%)6. Indicators of non-cognitive skills 50 

in these studies included self-esteem, locus of control5, attitudes and social skills6, and 51 

perseverance and extraversion4.  52 

Two key limitations weaken this evidence based on the relative effects of parents’ cognitive and 53 

non-cognitive skills on offspring education: poor phenotypic assessments of parents’ non-54 

cognitive skills, and genetic confounding.  55 
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First, regarding assessment, whereas cognitive skills can be directly measured by tests of 56 

domain-specific or general cognitive performance, non-cognitive skills are more challenging 57 

with measures often inconsistent, incomplete or unreliable7,8. There is little agreement on what 58 

non-cognitive skills to measure. Some researchers focus on personality, whereas others include 59 

self-control, self-esteem, motivation and interests. An alternative, broader definition of non-60 

cognitive skills is all traits positively affecting educational success beyond cognitive skills9. 61 

Important non-cognitive characteristics may have been neglected – for instance, in the study by 62 

Grönqvist et al. (2017) direct skill measures for mothers, and paternal measures of motivation, a 63 

key education-linked trait, were unavailable. Importantly, studies identifying partial effects of 64 

specific parental cognitive and non-cognitive skills are less informative about the overall 65 

influences of these domains. More severe measurement error could also mean that effects of 66 

parents’ non-cognitive relative to cognitive skills have been underestimated.  67 

Genetic methods offer a new approach to defining and estimating the importance of domains of 68 

parental skills for offspring education. Both cognitive and non-cognitive skills (as far as we 69 

know what they are) are substantially genetically influenced, with twin study heritability 70 

estimates of 40-70%10,11. Non-cognitive skills assessed in these studies included grit, intellectual 71 

curiosity, the Big Five personality traits, and subject-specific enjoyment and ability. A new 72 

method – ‘GWAS-by-subtraction’ – makes it possible to ‘subtract’ cognitive ability-related 73 

genetic variation from educational attainment genetic variation and assess the remaining latent 74 

genetic non-cognitive construct12. These non-cognitive aspects of educational attainment are 75 

independent of cognitive skills, and associated with higher socioeconomic attainment, more open 76 

and conscientious personality, and some psychiatric disorders (e.g., higher risk for schizophrenia, 77 

lower risk for attention deficit/hyperactivity disorder). A GWAS-by-subtraction-derived measure 78 
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of non-cognitive skills captures a broader construct that is not reliant upon measurement of 79 

specific traits. This method opens up the possibility of assessing the overall effect of all parent 80 

phenotypes that are influenced by common genetic variants linked to educational attainment, 81 

independent of cognitive skills. This could include parental phenotypes not traditionally classed 82 

as ‘non-cognitive’ or ‘skills’, such as mental health. This broad, phenotype-agnostic approach is 83 

a necessary first step towards characterizing pathways from parents’ skills to offspring 84 

educational outcomes. After establishing overall effects, subsequent studies can use phenotypic 85 

measures of parental non-cognitive skills to find specific mediating mechanisms. 86 

Second, regarding genetic confounding, existing research relies on designs that cannot 87 

distinguish social (i.e., environmental) from genetic transmission. None of the associations 88 

between parental skills and offspring education cited above were estimated using genetically 89 

sensitive designs. This is problematic, because from just parent-offspring correlations one cannot 90 

conclude that parents’ skills shape offspring education, for instance by providing resources, 91 

experiences and support. Ignoring any shared genetic influences on parents’ skills and child 92 

educational outcomes confounds estimation of the effects of parental phenotypes on offspring 93 

outcome13. To establish the extent that parents’ (non-)cognitive skills influence child educational 94 

outcomes socially, it is vital to control for inherited genetic effects.  95 

Genetic study designs can isolate environmental effects of parental skills on offspring education, 96 

controlling for genetic transmission. Several designs estimate a genetic effect of the child’s 97 

genotype on the child phenotype (direct genetic effect), and an environmentally mediated effect 98 

of the parental genotype on the child's phenotype (parental indirect genetic effect). For example, 99 

polygenic scores (individual-level indices of trait-specific genetic endowment; PGS) for 100 
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educational attainment based on parents’ genotypes that were not transmitted to offspring, are 101 

associated with offspring attainment14–16. Non-transmitted variants affect offspring attainment 102 

indirectly via the environment shaped by parents that influences the development of their 103 

children. Complementary evidence of indirect effects of parents’ education-linked genetics on 104 

offspring education has also accumulated from sibling and adoption designs14,15,17,18. It is not 105 

known whether parental indirect genetic effects on offspring education occur through cognitive 106 

or non-cognitive pathways (or both), because studies have not parsed out the contributions of 107 

sub-components of the educational attainment PGS. 108 

Importantly, we directly compare estimates of parental indirect genetic effects obtained from 109 

different designs. Estimation of genetic associations may involve numerous biases19. Sibling, 110 

adoption and non-transmitted allele designs have different assumptions and subtle differences in 111 

biases and components affecting the estimated indirect genetic effect. As shown by our data 112 

simulations (see Supplementary Note and GitHub), indirect genetic effect estimates from the 113 

sibling and non-transmitted allele designs are more strongly biased by assortative mating and 114 

population stratification than the adoption design. Estimates obtained from the adoption design 115 

unfortunately do not capture prenatal parental environmental effects on child education. The 116 

sibling design may estimate parental indirect genetic effects with more bias from sibling genetic 117 

effects. Triangulation across designs and sensitivity analyses can help detect possible biases and 118 

quantify parental indirect genetic effects and other environmental effects. 119 

In the current study (pre-registration: https://osf.io/mk938/), we use a novel approach to estimate 120 

the social effects of parents’ cognitive and non-cognitive skills on offspring education. We 121 

deploy GWAS-by-subtraction to estimate individuals’ genetic endowments (PGS) for cognitive 122 
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and non-cognitive skills, and test how much these operate environmentally via parental 123 

influences on offspring educational outcomes. We provide a multi-cohort comparison of parental 124 

indirect genetic effects in three cohorts of genotyped families in two countries with different 125 

educational systems (UK Biobank, UK Twins Early Development Study, Netherlands Twin 126 

Register). Each cohort includes multiple achievement outcome measures (i.e., standardised test 127 

results and teacher-reported grades in childhood and adolescence) and attainment (i.e., years of 128 

completed education reported in adulthood). We triangulate across three complementary study 129 

designs for estimating parental indirect genetic effects and assess the presence of components 130 

and biases. 131 

Results  132 

GWAS-by-subtraction results 133 

We identified the genetic components of cognitive and non-cognitive skills using Genomic SEM, 134 

following Demange et al. 2020, in samples that excluded participants used for polygenic score 135 

analyses. Educational attainment and cognitive performance meta-analytic summary statistics 136 

(see Methods) were regressed on two independent latent variables, Cog and NonCog (see 137 

Supplementary Figure 1). These two latent factors were then regressed on 1,071,804 HapMap3 138 

SNPs in a genome wide association (GWA) design. The LD score regression-based SNP 139 

heritabilities of Cog and NonCog were 0.18 (SE=0.01) and 0.05 (SE=0.00), respectively. More 140 

information on the GWAS is presented in Supplementary Table 1.  141 
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Descriptive statistics  142 

SNP associations with the Cog and NonCog latent variables provided the weights to create 143 

individual-level polygenic scores in 3 cohorts with family data and educational achievement 144 

and/or attainment outcomes. Sample sizes for individuals with polygenic score and educational 145 

outcome data were: 39,500 UK Biobank siblings, 6,409 UK Biobank adoptees, up to 4,796 DZ 146 

twins in the Twins Early Development Study (TEDS), up to 3,163 twins and siblings in the 147 

Netherlands Twin Register (NTR), and up to 2,534 NTR individuals with both parents 148 

genotyped. Full phenotypic descriptive statistics are available in Supplementary Table 2.  149 

Overview of the three designs for estimating direct and indirect polygenic 150 

score effects 151 

To estimate direct offspring-led and indirect parent-led effects of polygenic scores for cognitive 152 

and non-cognitive skills on educational outcomes, we considered three family-based genomic 153 

designs. The designs are illustrated in Figure 1. All models jointly included Cog and NonCog 154 

PGS. Note that population effects are equivalent to PGS effects estimated in standard population 155 

analyses that do not use within-family data. In contrast, within-family designs exploit the 156 

principles of Mendelian segregation or the natural experiment of adoption to separate direct and 157 

indirect/social components of the overall population PGS effect. Importantly, a direct genetic 158 

effect is only direct in the sense that it does not originate from another individual’s genotype. 159 

Direct effects are also not necessarily ‘purely’ genetic, but lead to educational outcomes via 160 

intermediate pathways, and are expressed in the context of environments. 161 

 162 
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163 

Figure 1. Analytical designs to estimate direct and parental indirect genetic effects. Note: 164 

square = observed variable, circle = unobserved / latent variable; β = estimated effect of 165 

polygenic score (PGS) on outcome; the population effect of a PGS captures both direct and 166 

indirect genetic effects; direct genetic effects (controlling for indirect genetic effects) are 167 

represented with solid arrows. 168 

 169 

First, the sibling design estimates indirect genetic effects by comparing population-level and 170 

within-family (i.e., within-sibling or within-DZ twin) polygenic score associations (equation 171 

(1))17. The direct effect of a polygenic score is estimated based on genetic differences between 172 

siblings, which are due to random segregations of parental genetic material, independent of 173 

shared family effects (including parental indirect genetic effects). Specifically, the direct effect is 174 

estimated using a variable representing individuals’ (i) polygenic scores minus the average 175 
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polygenic score for their family (j): the within-family beta (βWithin in equation (1)). The 176 

population effect of a polygenic score is estimated in a separate model, simply regressing the 177 

outcome variable on polygenic score differences between individuals from different families 178 

(equation (2)). The indirect genetic effect is obtained by subtracting the within-family PGS effect 179 

estimate from the population effect estimate.  180 

 EAij  =  α00 +  βWithinCog
(PGS(Cog)ij − PGS(Cog)

j
)

+  βBetweenCog
(PGS(Cog)

j
)

+   βWithinNonCog
(PGS(NonCog)ij  − PGS(NonCog)

j
)

+  βBetweenNonCog
(PGS(NonCog)

j
) +  sex +  age +  sex ∗ age 

+  10PCs +  genotyping platform 

(1) 

 181 

 EAij  =  α00 +  βCog(PGS(Cog)ij) + βNonCog(PGS(NonCog)ij) +  sex +  age 

+  sex ∗ age +  10PCs +  genotyping platform 

(2) 

Note: EA is the educational outcome, PGS is the polygenic score (for Cog PGS(Cog) and 182 

NonCog PGS(NonCog)). PGS refers to the average polygenic score in the family j. i refers to the 183 

individual sibling. α0 refers to the intercept, PCs are principal components to capture genetic 184 

ancestry. See Supplementary Note for a comparison of different versions of this sibling design, 185 

using data simulation.   186 

Second, indirect genetic effects can be estimated by comparing polygenic score associations 187 

estimated in a sample of adoptees against those estimated for individuals who were reared by 188 
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their biological parents18. Therefore, we estimate the regression model shown in equation (2) 189 

separately for adoptees and for non-adopted individuals. 190 

The population effect is estimated as the polygenic score effect on phenotypic variation among 191 

non-adopted individuals (i.e., a combination of direct and indirect genetic mechanisms). The 192 

direct genetic effect is the effect of the polygenic score among adoptees. Adoptees do not share 193 

genes by descent with their adoptive parents, so we expect their polygenic scores to be 194 

uncorrelated with the genotypes of their adoptive parents. Therefore, the polygenic score effect 195 

in adoptees cannot be inflated by environmentally mediated parental indirect genetic effects. In 196 

this design, the indirect genetic effect is estimated by subtracting this direct PGS effect from the 197 

population effect estimated in the non-adopted group. When taking the difference, it is important 198 

that the groups are similar in characteristics other than genetic relatedness to their parents. We 199 

did not find strong evidence for differences in several demographic and early-life characteristics 200 

of adoptees and non-adopted individuals in the UK Biobank (see Supplementary Table 11, 201 

Supplementary Note, and Supplementary Figure 2). 202 

Third, indirect genetic effects can be estimated, and disentangled from direct genetic effects, 203 

using information on parental genetic variation that was not transmitted to offspring14,15 204 

(equation (3)). 205 

 EA =  α00 + βTCog
(PGS(Cog)T) +  βTNonCog

(PGS(NonCog)T)  

+  βNTCog
(PGS(Cog)NT)  +  βNTNonCog

(PGS(NonCog)NT)  

+  sex +  age +  sex ∗ age +  10PCs +  genotyping platform 

(3) 
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The population effect is estimated from a polygenic score based on transmitted variants (βT). 206 

Transmitted genetic variants are present in an offspring and in at least one of their parents, and so 207 

may influence offspring education via both direct and indirect mechanisms. The parental indirect 208 

genetic effect is estimated as the effect of a polygenic score based on parental variants that were 209 

not transmitted to offspring (βNT). Non-transmitted variants can only take effect on offspring 210 

education through the environment. The direct genetic effect is estimated by partialling out the 211 

effect of the non-transmitted polygenic score from that of the transmitted polygenic score (βT - 212 

βNT). Maternal and paternal scores are averaged in order to create overall parental non-213 

transmitted polygenic scores.  214 

Parents’ heritable cognitive and non-cognitive skills both influence offspring 215 

education indirectly via the environment. 216 

In the overall meta-analysis across cohorts, designs and outcomes, the Cog PGS showed a 217 

slightly stronger association with educational outcomes than the NonCog PGS (indicated by the 218 

total height of the bars in Figure 2a; population βNonCog=0.22, SE=0.01; population βCog=0.25, 219 

SE=0.01). We investigated environmental effects of parents’ non-cognitive and cognitive skills 220 

on offspring education by estimating the contribution of parental indirect genetic effects to the 221 

population effects of NonCog and Cog PGS. Figure 2a shows that, for both NonCog and Cog 222 

PGS, indirect genetic effects of parents on offspring education were present (meta-analytic 223 

indirect βNonCog=0.08, SE=0.03; indirect βCog=0.10, SE=0.01), in addition to direct genetic effects 224 

(direct βNonCog=0.14, SE=0.03; direct βCog=0.15, SE=0.02). Averaged across all designs, 225 

outcomes and cohorts, indirect environmentally-mediated effects explained 36% of the 226 

population effect of the NonCog PGS, and 40% of the population effect of the Cog PGS. 227 
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However, results varied depending on the methods used and outcomes investigated. Results per 228 

cohort, outcome and design, as well as population genetic effects and the ratio of indirect to 229 

population effects are reported in Supplementary Table 3 and Supplementary Figure 3, 4 and 5. 230 

Meta-analytic results are reported in Supplementary Table 4. Z-tests results comparing direct and 231 

indirect effects are reported Supplementary Table 5. 232 

 233 

 234 

 235 

 236 
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 240 
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Figure 2. 
a. Population effects of NonCog and Cog PGS 
on educational outcomes include both direct 
and indirect genetic mechanisms. Indirect 
genetic effects work through the environment 
that parents provide for their children. Notes: 
beta coefficients were obtained from meta-
analysis of effects across cohorts, designs and 
outcome phenotypes; bars = 95% CIs. 
b. Estimates of direct and indirect effects of 
NonCog and Cog PGS by cohort (for age 12 and 
adult outcomes), using the sibling design only. 
NTR is a Dutch cohort (N=1631 and N=3163 
respectively), TEDS (N=2862) and UKB 
(N=16,624) are UK cohorts; bars = 95% CIs. 
c. Estimates of direct and indirect effect of 
NonCog and Cog PGS by analytic design (for 
adult educational attainment outcomes only). 
Samples sizes: N=42,663 (results meta-    
analysed across UKB and NTR); N=6407 
adoptees   and 6500 non-adopted individuals 
(UKB); N=2534 trios in NTR; bars = 95%CIs.   
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Estimates of parental indirect genetic effects vary slightly by age, outcome 243 

and cohort.  244 

Figure 2b shows estimates of direct and indirect genetic effects of NonCog and Cog PGS for 245 

different cohorts and educational outcomes, holding the design constant (i.e., the sibling design, 246 

which was available for all cohorts and outcomes). Estimates were highly consistent across 247 

cohorts except for age 12 achievement in Dutch versus UK cohorts: indirect genetic effects were 248 

negligible and represented a small fraction of the population effect in NTR (3% and 23% for 249 

NonCog and Cog, respectively), whereas they accounted for 56% and 48% of the population 250 

effects of NonCog and Cog PGS in TEDS. For adult educational attainment, estimates of direct 251 

and indirect effects were more similar for the Dutch (NTR: indirect βNonCog=0.11, SE=0.03; 252 

indirect βCog=0.06, SE=0.03) and UK (UKB: indirect βNonCog=0.12, SE=0.01; indirect βCog=0.12, 253 

SE=0.01) cohorts. See Supplementary Table 3 for full results. 254 

Estimates of indirect genetic effect depend on the analytical design: adoption-255 

based estimates are lower. 256 

Figure 2c shows estimates of direct and indirect genetic effects of NonCog and Cog PGS for 257 

different designs, holding the phenotype constant (i.e., educational attainment, which was 258 

available for all three methods). While estimates obtained with sibling and non-transmitted PGS 259 

methods indicate equal indirect effect sizes (indirect βs for educational attainment ranged 260 

between 0.11-0.12; see Supplementary Tables 3 and 4), the adoption design yielded low to null 261 

indirect genetic effects for both NonCog and Cog PGS (indirect βNonCog=0.02, SE=0.02; indirect 262 

βCog=0.08, SE=0.02).  263 
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Figure 3 summarises how the three designs estimate parental indirect genetic effects in the 264 

presence of different contributors, thus highlighting explanations for lower adoption-based 265 

estimates. This information is based on simulations (see Supplementary Note, Supplementary 266 

Figure 9, and GitHub). First, unlike the sibling and non-transmitted allele designs, the adoption 267 

design does not capture indirect genetic effects occurring in the prenatal period. Second, the 268 

adoption design estimates indirect genetic effects with less bias from population stratification 269 

and assortative mating. Notably, the adoption design uniquely estimates parental indirect genetic 270 

effects without bias from assortative mating if there is no parental indirect genetic effect, and is 271 

slightly less biased by assortment than the other designs in the presence of a parental indirect 272 

genetic effect. Any excess indirect genetic effect estimated in the sibling/non-transmitted allele 273 

designs compared to the adoption design therefore indicates the overall impact of population 274 

stratification, assortative mating, and prenatal indirect genetic effects.  275 

With the adoption design, the indirect genetic effect of the NonCog PGS on educational 276 

attainment in UK Biobank is 83% lower than with the sibling design, while it is only 33% lower 277 

for Cog. This suggests that estimates for NonCog are affected more strongly than Cog by 278 

population stratification, assortative mating and/or prenatal indirect genetic effects. 279 

Indirect genetic effects from siblings are the only potential source of difference between sibling- 280 

and trio-based estimates – positive sibling effects inflate estimates from the sibling design but 281 

not the other (see Supplementary Note, Supplementary Figure 9, and GitHub). Since we did not 282 

find evidence of differences between results from these two designs, sibling indirect genetic 283 

effects are likely to be small or non-existent. 284 
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285 
Figure 3. Estimates of parental indirect genetic effects from the three designs, based on data 286 

simulated to include different components (parental prenatal and postnatal indirect genetic 287 

effects) and biases (sibling indirect genetic effects, assortative mating, and population 288 

stratification). Boxplots of 100 replicates based on a simulated sample of 20,000 families. Red 289 

line is the true simulated (postnatal) parental indirect effect. 290 

 291 

Population stratification and assortative mating, but not sibling indirect 292 

effects, might inflate estimates of indirect genetic effects from sibling and non-293 

transmitted alleles designs. 294 

Although triangulating designs suggested that population stratification, assortative mating, and 295 

prenatal indirect genetic effects contribute to the higher estimated parental indirect genetic 296 
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effects from non-transmitted alleles/sibling designs relative to the adoption design, this approach 297 

cannot disentangle the relative importance of these individual biases. To this end, we conducted 298 

additional sensitivity analyses to assess the magnitudes of these biases (not pre-registered).  299 

First, we analysed the GWAS summary data on which the polygenic scores were based, using 300 

LD score regression to detect population stratification. The LD score regression ratio statistics of 301 

uncorrected educational attainment and cognitive performance GWAS were 0.11 (SE=0.01) and 302 

0.06 (SE=0.01), respectively (Supplementary Table 1). These non-null estimates indicated that a 303 

small but significant portion of the GWAS signal was potentially attributable to residual 304 

population stratification. As CP seems less prone to population stratification than EA, it is 305 

possible our estimates of direct and indirect genetic effects of NonCog were more biased by 306 

population stratification than Cog.  307 

Second, we detected slight evidence of assortative mating, which appeared stronger in the UK 308 

than Dutch cohorts. In NTR, parental PGS correlations are non-significant (NonCog r= 0.03, 309 

Cog r=0.02). Sibling PGS intraclass correlations ranged between 0.49-0.52 in NTR, and between 310 

0.53-0.56 in TEDS and UK Biobank. This supports the presence of assortative mating on 311 

NonCog and Cog PGS potentially biasing our estimates of indirect genetic effects in UK cohorts, 312 

but less in our Dutch cohort. See Supplementary Table 6 for full correlations.  313 

Third, we performed three sensitivity analyses, none of which supported the presence of indirect 314 

effects of siblings’ NonCog and Cog PGS on individuals’ educational outcomes. Our first 315 

approach leveraged sibling polygenic scores, the rationale being that in the presence of a sibling 316 

effect, a sibling’s PGS will influence a child’s outcome beyond child and parent PGS. In NTR, 317 

siblings’ NonCog or Cog PGS had non-significant effects on achievement and attainment 318 
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(Supplementary Table 7). In a second approach, the difference in PGS effects on EA between 319 

monozygotic (MZ) and dizygotic (DZ) individuals was tested. Since MZ twins are more 320 

genetically similar than DZ twins, their PGS should capture more of the indirect genetic effect of 321 

their twin. In NTR and TEDS, PGS effects were not significantly different between MZs and 322 

DZs (Supplementary Table 8 & Supplementary Figure 6). Finally, in UKB, we tested PGS 323 

effects on EA given the number of siblings individuals reported having. If more siblings leads to 324 

a stronger sibling effect, this will be captured as an increased effect of an individual’s own PGS 325 

on the outcome in the presence of more genetically related siblings. As a negative control, we 326 

conducted the same analysis in adoptees. Since adoptees are unrelated to their siblings, their PGS 327 

do not capture sibling effects at any family size. NonCog PGS effects weakly increased with 328 

number of siblings, but this pattern was also present in adoptees, suggesting confounding by 329 

unobserved characteristics of families with numerous children (Supplementary Table 9 & 330 

Supplementary Figure 7).  331 

Discussion  332 

We used genetic methods to study environmental effects of parents’ skills on child education. 333 

We found evidence that characteristics tagged by NonCog and Cog polygenic scores (PGS) are 334 

both involved in how parents provide environments conducive to offspring education. Indeed, 335 

indirect genetic mechanisms explained 36% of the population effect of the NonCog PGS, and 336 

40% of the population effect of the Cog PGS (population βNonCog=0.22, SE=0.01; population 337 

βCog=0.25, SE=0.01). This result was consistent across countries, generations, outcomes and 338 

analytic designs, with two notable exceptions. First, estimated parental indirect genetic effects 339 
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were null for childhood achievement in our Dutch cohort (NTR), but not for comparable 340 

outcomes in our UK cohort (TEDS). Second, parental indirect genetic effects estimated with the 341 

adoption design were lower than for the sibling and non-transmitted allele designs, particularly 342 

for the NonCog PGS. Given our evidence from data simulations that the adoption-based 343 

estimates of indirect genetic effects are more robust to population stratification and assortative 344 

mating, these biases may contribute substantially in the other two designs, especially for the 345 

NonCog PGS. This was supported by results from sensitivity analyses. 346 

This study demonstrates utility of genetic methods for assessing elusive phenomena: non-347 

cognitive skills, and genuine environmental influences from parents, unconfounded by offspring-348 

led effects of inherited genes. Compared to analysing a set of measured parental non-cognitive 349 

skills, our GWAS-by-subtraction approach captures a wider array of traits linked genetically to 350 

attainment, and therefore broadly quantifies the overall salience of parents’ non-cognitive skills. 351 

Our evidence that parents’ non-cognitive and cognitive skills are both important for children’s 352 

education complements the growing literature that has considered effects of specific measured 353 

skills within both of these domains4,5. These studies found that effects of parents’ non-cognitive 354 

skills on offspring education were less than half the size of the effects of parents’ cognitive 355 

skills. In contrast, we found that indirect genetic effects of NonCog PGS were almost as large as 356 

for Cog skills. This discrepancy is likely to stem from our comprehensive definition of non-357 

cognitive skills, as we do not rely on possibly unreliable and incomplete phenotypic measures. 358 

Importantly, the parental indirect genetic effects we have identified may capture proximal forms 359 

of ‘nurture’ (e.g., a parent directly training their child’s cognitive skills, or cultivating their 360 

child’s learning habits through participation and support) and/or more distal environmental 361 

effects (e.g., a parent’s openness to experience leading them to move to an area with good 362 
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schools). The environmental effects of parents’ non-cognitive and cognitive skills are likely to be 363 

larger than we estimate, because our approach only captures effects of parent skills tagged by 364 

current GWAS. Polygenic scores index a subset of the common genetic component of parent 365 

skills, which is in turn a fraction of the total genetic component (missing heritability20,21), and 366 

cannot account for the non-heritable component of parent skills. 367 

The lower importance of parental indirect genetic effects for child achievement in the 368 

Netherlands compared to similar UK outcomes indicates that our UK achievement outcomes 369 

more strongly capture variation in family background. This difference could result from the 370 

design of these achievement measures: Dutch test results are standardized based on a 371 

representative population, but UK teacher reports might still be affected by student social 372 

background. Societal differences offer another explanation. Some argue that estimates of family 373 

shared-environmental variance in twin studies are indicators of social inequality, and this logic 374 

holds for indirect genetic effects22. For adult attainment, results were more consistent across UK 375 

and Dutch cohorts, corresponding with recent evidence for consistent shared-environment 376 

influence on educational attainment across social models23. This consistency also suggests that 377 

the difference in childhood is not due to a cohort or population difference. The higher indirect 378 

genetic effects in adult attainment might reflect an increase in environmental variance due to 379 

tracking in secondary schools in the Netherlands16. Socioeconomic disparities in achievement 380 

seem to increase more between ages 10 and 15 in the Netherlands than in the UK24. Despite no 381 

statistically significant parental indirect genetic effects on the achievement test at 12, children 382 

whose parents have a higher education are more likely to enroll in a higher educational track25, 383 

suggestive of greater parental effects on secondary and later education, which should be tested in 384 

further studies.  385 
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We found that the choice of design used to estimate indirect genetic effects matters, with the 386 

adoption design giving systematically lower estimates. Direct comparison of results across 387 

designs suggested that 33% (for Cog) and 83% (for NonCog) of the indirect genetic effects on 388 

adult educational attainment, estimated using the sibling design, are due to population 389 

stratification, assortative mating, and prenatal indirect genetic effects. The importance of 390 

population stratification for genetic associations with educational attainment was suggested by 391 

recent UK Biobank studies26,27, and was reflected in our sensitivity analyses. Our LD score 392 

regression results indicated residual population stratification, which was more severe for the 393 

NonCog GWAS. There was some evidence of assortative mating, with sibling PGS correlations 394 

above expectation (>0.5) particularly in the UK cohorts. This country difference in assortment is 395 

supported by the lower estimated spouse PGS correlations in NTR (0.02 for Cog, 0.03 for 396 

NonCog) than for the EA PGS in the UK Biobank (0.06)28. There was no statistically significant 397 

difference in assortative mating between Cog and NonCog, suggesting that population 398 

stratification explains the particularly large design-based discrepancy between estimates of 399 

indirect genetic effects for NonCog. Population stratification should be carefully considered in 400 

studies using NonCog PGS. Methods should be developed to parse the contributions of 401 

assortative mating, population stratification, indirect and direct genetic effects to complex traits. 402 

This could be achieved using genomic data on extended pedigrees, inspired by extended twin-403 

family designs29. Additionally, indirect genetic effects on education might not only arise from 404 

parents but might span across more than a single generation, for example the influence of 405 

grandparents. Since cumulative indirect genetic effects are all removed when a child is adopted, 406 

their presence would contribute to the observed difference in indirect effect between the adoption 407 

and other designs.  408 
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Regarding siblings, we did not find evidence that indirect effects of siblings’ NonCog and Cog 409 

PGS affect individual differences in educational outcomes, using three different approaches. This 410 

corresponds with null findings regarding indirect effects of siblings’ educational attainment 411 

genetics in the UK Biobank26,27. This does not rule out the existence of indirect sibling genetic 412 

effects in other populations (or effects such as parental compensation of sibling PGS 413 

differences30). Indirect genetic effects of sibling EA PGS were found in an Icelandic cohort15. 414 

One extended twin study found that the sibling environment contributed 12% of the total 415 

phenotypic variation in educational attainment in Norway, whereas the environment provided by 416 

parents explained only 2.5% of the variance31. It is possible that our PGS analyses were not 417 

sufficiently powered to detect indirect genetic effects of siblings, since they were based on lower 418 

sample size than our main analyses. However, our results suggest that indirect genetic effects of 419 

siblings on education are small. Therefore, our methods provide good proxies for parental 420 

indirect genetic effects, with minimal inflation from sibling effects.  421 

Our data suggest that the adoption design provides a useful lower-bound estimate of indirect 422 

genetic effects of parents. Given that there was no evidence for sibling effects of the Cog or 423 

NonCog PGS, our adoption-based estimates, less biased by population stratification and 424 

assortative mating, are likely a closer measure of parental indirect genetic effects. However, 425 

three factors may make the adoption-based estimates of indirect genetic effects too conservative. 426 

First, adoption based indirect effect estimates exclude prenatal indirect genetic effects (and 427 

indirect genetic effects taking place between the birth and moment of adoption), which might 428 

influence educational outcomes32,33. While we are unable to test for prenatal indirect effects, 429 

these could be investigated in cohorts with pregnancy information, adjusting for postnatal 430 

indirect genetic effects. Second, adoptees may have been exposed to a narrower range of 431 
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environments (e.g., family socioeconomic status) compared to non-adopted individuals 34. This 432 

form of selection bias is likely to increase the genetic variance at the expense of the indirect 433 

genetic effect. Third, selective placement of children in adoptive families matching 434 

characteristics of their biological families could result in correlation between child and 435 

(adoptive) parent genotypes, leading to an underestimation of the indirect genetic effect. There is 436 

modest evidence for selective placement of adoptees based on education in the US35. We cannot 437 

directly test for selection factors in the UK Biobank, since there is no information on the 438 

adoptive parents.  439 

We acknowledge several limitations. First, while we suggest that an attribute of our study is the 440 

broad and phenotype-agnostic characterisation of non-cognitive skills, our GWAS-by-441 

subtraction approach is unable to identify specific parental characteristics, and is also still limited 442 

by measures of cognitive performance and educational attainment in the original GWAS. Some 443 

cognitive skills might not be reflected in the available Cognitive Performance GWAS, so the 444 

NonCog factor could capture genetic influences affecting cognition. However, previous analyses 445 

have shown that NonCog PGS predicts substantially less variation in cognition than the Cog 446 

PGS36. Additionally, our NonCog latent variable reflects the residual variance of adult 447 

educational attainment, and therefore is a measure of non-cognitive aspects of adult EA. Non-448 

cognitive aspects of childhood achievement might differ somewhat, which might lead to an 449 

underestimation of indirect genetic effects of the NonCog PGS on these outcomes. Second, the 450 

generalisability of our results is limited. Highly educated individuals are over-represented in all 451 

cohorts. Participation bias also affects GWAS results37. Selection effects may be especially 452 

strong in the adoption design as adoptions may depend on (partially heritable) phenotypes of the 453 

biological parents, and many adoptive parents are also selected on the basis of their (partially 454 
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heritable) behavioural phenotypes. Additionally, only participants of European descent were 455 

included in the analysis. Third, replication efforts are needed. Special effort should be targeted to 456 

include diverse ancestry participants. While our overall estimates are well powered due to the 457 

aggregation of cohorts, some analyses rely on a single sample. As such, results from these 458 

analyses might reflect specifics of these samples and not design-specific biases, and should be 459 

replicated. Finally, although our within-family methods allowed us to evaluate biases in 460 

polygenic score effects within the target samples, the same biases are likely to influence the 461 

effect size estimates from the original GWAS upon which our polygenic scores are based. 462 

Increasingly large within-sibship GWAS will allow this to be resolved.   463 

Several future research directions emerge. First, given that we have quantified overall 464 

environmental effects of parents on offspring education tagged by NonCog and Cog PGS, the 465 

next step is to identify specific mediating parent characteristics, whether proximal or distal. 466 

Researchers could also examine mediating child characteristics on the pathway between their 467 

parents’ characteristics and their own educational outcomes. We speculate that parents’ non-468 

cognitive skills do not affect offspring education by affecting those same non-cognitive skills in 469 

offspring. This is because existing twin research shows no influence of shared environmental 470 

factors on individual differences in children’s measured non-cognitive skills such as grit and 471 

self-control38–40. 472 

A second future direction is to incorporate gender and socioeconomic status into research on 473 

indirect genetic effects on education. Twin data show that shared environmental contributions to 474 

educational attainment are larger for women than for men23. It is unknown whether this finding 475 

holds for indirect genetic effects and for childhood achievement. Another gender aspect to 476 

consider is differential maternal and paternal indirect genetic effects41. There is some evidence 477 
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(although not genetically informed) that mother and father skills show unique associations with 478 

offspring education4. Indirect effects of parents’ genetic endowment for non-cognitive skills on 479 

child education might be mediated or moderated by parents’ income and cultural capital 480 

(including school-related skills and habits). While the home learning environment has been 481 

found to be more stimulating in higher socioeconomic status families42,43, there is recent 482 

evidence that low-income mothers report more frequent activities that facilitate cognitive 483 

stimulation44. 484 

 485 

In sum, this study provides evidence for environmental effects of parents’ non-cognitive and 486 

cognitive skills on offspring educational outcomes, indexed by indirect genetic effects of 487 

polygenic scores. Combining three cohorts and three designs for estimating indirect genetic 488 

effects allowed us to obtain robust findings. These results have significance for human health, as 489 

the role parents play in successful cognitive development and (mental) health development go 490 

hand in hand. 491 

Methods 492 

Our research complies with all relevant ethical regulations. Project approval for the Twins Early 493 

Development Study (TEDS) was granted by King’s College London’s ethics committee for the 494 

Institute of Psychiatry, Psychology and Neuroscience PNM/09/10–104. Ethical approval for the 495 

Netherlands Twin Register (NTR) was provided by the Central Ethics Committee on Research 496 

Involving Human Subjects of the VU University Medical Center, Amsterdam, and Institutional 497 

Review Board certified by the U.S. Office of Human Research Protections (IRB number IRB-498 
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2991 under Federal-wide Assurance-3703; IRB/institute codes 94/105, 96/205, 99/068, 499 

2003/182, 2010/359) and participants provided informed consent. The UK Biobank has received 500 

ethical approval from the National Health Service North West Centre for Research Ethics 501 

Committee (reference: 11/NW/0382). Informed consent was obtained from all human 502 

participants.  503 

The study methods were pre-registered on the Open Science Framework (https://osf.io/mk938/) 504 

on the 24/02/2020. Additional non-preregistered analyses are indicated as such below and should 505 

be considered exploratory. Additional deviations from the pre-registration are detailed in 506 

Supplementary Note.  507 

Samples 508 

UK Biobank 509 

The UK Biobank is an epidemiological resource including British individuals aged 40 to 70 at 510 

recruitment45. Genome-wide genetic data came from the full release of the UK Biobank data, and 511 

were collected and processed according to the quality control pipeline46.  512 

We defined three subsamples of the UK Biobank to be used for polygenic score analyses: 513 

adopted participants, a control group of non-adopted participants, and siblings. Starting with UK 514 

Biobank participants with QC genotype data and educational attainment data (N=451,229), we 515 

first identified 6,407 unrelated adopted individuals who said yes to the question “Were you 516 

adopted as a child?” (Data-Field 1767). We restricted the sample to unrelated participants 517 

(kinship coefficient <1/(2^9/2))47. Second, our comparison sample (N=6,500) was drawn at 518 
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random from non-adopted participants who were unrelated to each other and to the adopted 519 

participants. Third, we identified 39,500 full-siblings, excluding adopted individuals. We defined 520 

full-siblings as participants with a kinship coefficient between 1/(2^(3/2)) and 1/(2^(5/2)) and a 521 

probability of zero IBS sharing >0.0012, as suggested by 46 and 47.  522 

After excluding the three sub-samples for polygenic score analyses and individuals related to 523 

these participants, we were left with 388,196 UK Biobank individuals with educational 524 

attainment (EA) data, and 202,815 individuals with cognitive performance (CP) data. We used 525 

these remaining individuals for the GWAS of EA and CP, and later meta-analysis with external 526 

GWASs48 (see ‘Statistical Analyses’ and Supplementary Note).  527 

Twins Early Development Study (TEDS) 528 

The Twins Early Development Study (TEDS) is a multivariate, longitudinal study of >10,000 529 

twin pairs representative of England and Wales, recruited 1994–199649. The demographic 530 

characteristics of TEDS participants and their families closely match those of families in the UK. 531 

Analyses were conducted on a sub-sample of dizygotic (DZ) twin pairs with genome-wide 532 

genotyping and phenotypic data on school achievement at age 12 (1,431 DZ pairs) and age 16 533 

(2,398 pairs).  534 

Netherlands Twins Register (NTR) 535 

The Netherlands Twin Register (NTR)50 is established by the Department of Biological 536 

Psychology at the Vrije Universiteit Amsterdam and recruits children and adults twins for 537 
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longitudinal research. Data on health, personality, lifestyle and others, as well as genotyping data 538 

have been collected on participants and their families.  539 

We included in our analyses genotyped European-ancestry participants. We created a subsample 540 

of full-siblings. NTR contains information on numerous monozygotic multiples (twins or 541 

triplets). Because MZ multiples share the same genes, we randomly excluded all individuals but 542 

one per MZ multiple. Only siblings with complete genetic and outcome data were subsequently 543 

included in the analyses: 1,631 siblings with CITO (achievement test taken during the last year 544 

of primary school) data (from 757 families) and 3,163 siblings with EA data available (from 545 

1,309 families).  546 

We created a subsample with complete offspring, maternal and paternal genotypic data (i.e., 547 

trios). Among individuals with available parental genotypes, respectively 1,526 (from 765 548 

families) and 2,534 (from 1,337 families) had reported CITO and EA information.  549 

The sibling and trio subsets are not independent: for CITO, 823 participants are present in both 550 

subsets, 1,374 for EA.   551 

Phenotypic Measures 552 

UK Biobank 553 

Educational attainment and cognitive performance phenotypes were defined following Lee et al. 554 

2018 48. From data-field 6,238, educational attainment was defined according to ISCED 555 

categories and coded as the number of Years of Education. The response categories are: none of 556 

the above (no qualifications) = 7 years of education; Certificate of Secondary Education (CSEs) 557 
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or equivalent = 10 years; O levels/GCSEs or equivalent = 10 years; A levels/AS levels or 558 

equivalent = 13 years; other professional qualification = 15 years; National Vocational 559 

Qualification (NVQ) or Higher National Diploma (HNC) or equivalent = 19 years; college or 560 

university degree = 20 years of education. For cognitive performance, we used the (standardized) 561 

mean of the standardized scores of the fluid intelligence measure (data-field 20016 for in-person 562 

and 20191 for an online assessment).  563 

TEDS 564 

Educational achievement at age 12 was assessed by teacher reports, aggregated across the three 565 

core subjects (Mathematics, English, and Science).  566 

Educational achievement at age 16 was assessed by self-reported results for standardized tests 567 

taken at the end of compulsory education in England, Wales and Northern Ireland: General 568 

Certificate of Secondary Education; GCSE). GCSE grades were coded from 4 (G; the minimum 569 

pass grade) to 11 (A∗; the highest possible grade). As with the age 12 measure, we analysed a 570 

variable representing mean score for the compulsory core subjects.  571 

NTR 572 

Educational attainment was measured by self-report of the highest obtained degree51. This 573 

measure was re-coded as the number of years in education, following Okbay et al. 201652.  574 

Academic achievement is assessed in the Netherlands by a nation-wide standardized educational 575 

performance test (CITO) around the age of 12 during the last year of primary education. CITO is 576 

used to determine tracking placement in secondary school in the Netherlands, in combination 577 
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with teacher advice. The total score ranges from 500 to 550, reflecting the child’s position 578 

relative to the other children taking the test this particular year.  579 

Genotype quality control 580 

UK Biobank 581 

SNPs from HapMap3 CEU (1,345,801 SNPs) were filtered out of the imputed UK Biobank 582 

dataset. We then did a pre-PCA QC on unrelated individuals, and filtered out SNPs with MAF < 583 

.01 and missingness > .05, leaving 1,252,123 SNPs. After removing individuals with non-584 

European ancestry, we repeated the SNP QC on unrelated Europeans (N = 312,927), excluding 585 

SNPs with MAF < .01, missingness >.05 and HWE p < 10-10, leaving 1,246,531 SNPs. The 586 

HWE p-value threshold of 10-10 was based on: 587 

http://www.nealelab.is/blog/2019/9/17/genotyped-snps-in-uk-biobank-failing-hardy-weinberg-588 

equilibrium-test. We then created a dataset of 1,246,531 QC-ed SNPs for 456,064 UKB subjects 589 

of European ancestry. Principal components were derived from a subset of 131,426 genotyped 590 

SNPs, pruned for LD (r2 > 0.2) and long-range LD regions removed53. PCA was conducted on 591 

unrelated individuals using flashPCA v254.  592 

TEDS 593 

Two different genotyping platforms were used because genotyping was undertaken in two 594 

separate waves. AffymetrixGeneChip 6.0 SNP arrays were used to genotype 3,665 individuals. 595 

Additionally, 8,122 individuals (including 3,607 DZ co-twin samples) were genotyped on 596 

Illumina HumanOmniExpressExome-8v1.2 arrays. After quality control, 635,269 SNPs 597 
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remained for AffymetrixGeneChip 6.0 genotypes, and 559,772 SNPs for 598 

HumanOmniExpressExome genotypes.  599 

Genotypes from the two platforms were separately phased and imputed into the Haplotype 600 

Reference Consortium (release 1.1) through the Sanger Imputation Service before merging. 601 

Genotypes from a total of 10,346 samples (including 3,320 DZ twin pairs and 7,026 unrelated 602 

individuals) passed quality control, including 3,057 individuals genotyped on Affymetrix and 603 

7,289 individuals genotyped on Illumina. The identity-by-descent (IBD) between individuals was 604 

< 0.05 for 99.5% in the merged sample excluding the DZ co-twins (range = 0.00 – 0.12) and 605 

ranged between 0.36 and 0.62 for the DZ twin pairs (mean = 0.49). There were 7,363,646 606 

genotyped or well-imputed SNPs (for full genotype processing and quality control details, see55).  607 

To ease high computational demands for the current study, we excluded SNPs with MAF <1% 608 

and info < 1. Following this, 619216 SNPs were included in polygenic score construction. 609 

Principal components were derived from a subset of 39,353 common (MAF > 5%), perfectly 610 

imputed (info = 1) autosomal SNPs, after stringent pruning to remove markers in linkage 611 

disequilibrium (r2 > 0.1) and excluding high linkage disequilibrium genomic regions to ensure 612 

that only genome-wide effects were detected. 613 

NTR 614 

Genotyping was done on multiple platforms, following manufacturers protocols: Perlegen-615 

Affymetrix, Affymetrix 6.0, Affymetrix Axiom, Illumina Human Quad Bead 660, Illumina Omni 616 

1M and Illumina GSA. For each genotype platform, samples were removed if DNA sex did not 617 

match the expected phenotype, if the PLINK heterozygosity F statistic was < -0.10 or > 0.10, or 618 
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if the genotyping call rate was < 0.90. SNPs were excluded if the MAF < 1×10-6, if the Hardy-619 

Weinberg equilibrium p-value was < 1×10-6, and/or if the call rate was < 0.95. The genotype 620 

data was then aligned with the 1000 Genomes reference panel using the HRC and 1000 Genomes 621 

checking tool, testing and filtering for SNPs with allele frequency differences larger than 0.20 as 622 

compared to the CEU population, palindromic SNPs and DNA strand issues. The data of the 623 

different platforms was then merged into a single dataset, and one platform was chosen for each 624 

individual. Based on the ~10.8k SNPs that all platforms have in common, DNA identity-by-625 

descent state was estimated for all individual pairs using the Plink and King programs. Samples 626 

were excluded if these estimates did not correspond to expected familial relationships. CEU 627 

population outliers, based on per platform 1000 Genomes PC projection with the Smartpca 628 

software, were removed from the data. Then, per platform, the data was phased using Eagle and 629 

then imputed to 1000 Genomes and Topmed using Minimac following the Michigan imputation 630 

server protocols. Post-imputation, the resulting separate platform VCF files were merged with 631 

Bcftools into a single file per chromosome for each reference, for SNPs present on all platforms. 632 

For the polygenic scoring and parental re-phasing, the imputed data were converted to best guess 633 

data and were filtered to include only ACGT SNPs, SNPs with MAF > 0.01, HWE p > 10 -5 and 634 

a genotype call rate > 0.98, and to exclude SNPs with more than 2 alleles. All mendelian errors 635 

were set to missing. The remaining SNPs represent the transmitted alleles dataset. 20 PCs were 636 

calculated with Smartpca using LD-pruned 1000 Genomes–imputed SNPs genotyped on at least 637 

one platform, having MAF > 0.05 and not present in the long-range LD regions. Using the --tucc 638 

option of the Plink 1.07 software pseudo-controls for each offspring were created, given the 639 

genotype data of their parents. This resulted in the non-transmitted alleles dataset, as these 640 

pseudo-controls correspond to the child’s non-transmitted alleles. To determine the parental 641 
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origin of each allele, the transmitted and non-transmitted datasets were phased using the 642 

duoHMM option of the ShapeIT software. The phased datasets were then split based on parental 643 

origin, resulting in a paternal and maternal haploid dataset for the transmitted and non-644 

transmitted alleles. 645 

Statistical analyses 646 

All statistical tests are two-sided, unless otherwise stated. 647 

NonCog GWAS-by-subtraction 648 

To generate NonCog summary statistics, we implemented a GWAS-by-subtraction using 649 

Genomic SEM following Demange et al. 2020 using summary statistics of EA and cognitive 650 

performance obtained in samples independent from our polygenic score samples.  651 

We ran a GWAS of Educational Attainment and Cognitive Performance in UK Biobank 652 

(polygenic score sample left-out). We meta-analysed them with the EA GWAS by Lee et al. 653 

excluding 23andMe, UK Biobank and NTR cohorts, and with the CP GWAS by Trampush et al. 654 

respectively (EA total N=707,112 and CP N=238,113). More information on these methods and 655 

intermediate GWAS are found in Supplementary Note and Supplementary Table 1.   656 

Following Demange et al. 2020, we used EA and CP meta-analysed summary statistics to create 657 

two independent latent variables: Cog, representing the genetic variance shared between EA and 658 

CP, and NonCog representing the residual genetic variance of EA when regressing out CP 659 

(Supplementary Figure 1). These two latent factors were regressed on each SNP: we obtained 660 
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association for 1,071,804 SNPs (HapMap3 SNPs, as recommended when comparing PGS 661 

analyses across cohorts). We calculate the effective sample size of these GWAS to be 458,211 662 

for NonCog and 223,819 for Cog.  663 

Polygenic Score construction in UK Biobank, TEDS and NTR 664 

Polygenic scores of NonCog and Cog were computed with Plink software (version 1.9 for NTR, 665 

2 for UKB and TEDS) 56,57 based on weighted betas obtained using the LD-pred v1.0.0 software 666 

using infinitesimal prior, a LD pruning window of 250kb and 1000Genomes phase 3 CEU 667 

population as LD reference. Weighted betas were computed in a shared pipeline. In NTR, scores 668 

for non-transmitted and transmitted genotypes were obtained for fathers and mothers separately 669 

so we average them to obtain the mid-parent score. 670 

Polygenic score model fitting  671 

Each model included cognitive and non-cognitive polygenic scores simultaneously and 672 

controlled for: 10 ancestry principal components (PCs), sex and age, interaction between sex and 673 

age, and cohort-specific platform covariate (NTR: genotyping platform, UKB: array, TEDS: 674 

batch). Polygenic scores and outcome variables were scaled. Age was estimated by year of birth, 675 

age at recruitment or age at testing depending on the cohorts, see Supplementary Table 2. 676 

Correlations between NonCog and Cog PGS, as well as between and within-family PGS are 677 

reported Supplementary Table 10.  678 

All regressions were linear models with lm() in R rather than mixed models as in previous 679 

analyses16,17 and our pre-registered methods. See Supplementary Note: Deviation from pre-680 

registered methods for the justification based on simulated data. We obtained bootstrapped 681 
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standard errors and bias-corrected confidence intervals (normal approximation) for the 682 

population, indirect and direct effects, as well as the ratios of indirect/direct and 683 

indirect/population effect. We ran ordinary non-parametric bootstraps using 10,000 replications 684 

with boot() in R.  For the sibling design, where two independent regressions are used, we use the 685 

same bootstrap samples for both (both regressions were run within the same boot object). For the 686 

adoption design, the bootstrapped samples are drawn from the adopted and non-adopted samples 687 

separately. The bootstrap estimates were used to test for the difference between the direct and 688 

indirect effect in both Cog and NonCog and the difference between the ratio indirect/population 689 

for Cog and NonCog, using Z-tests. 690 

Additional analyses (not pre-registered) 691 

Meta-analyses  692 

To estimate the overall indirect and direct effects of NonCog and Cog polygenic scores, we 693 

meta-analysed estimates across cohorts, designs and phenotypic outcomes.  694 

To compare results obtained across the three different designs, we meta-analysed effect sizes 695 

obtained from each design across cohorts, but holding the outcome constant (educational 696 

attainment). The adoption design was only applied to EA in UKB, hence no meta-analysis was 697 

necessary.  698 

Meta-analyses were conducted using the command rma.mv() in the R package metafor. Design 699 

was specified as a random intercept factor, except when results were meta-analysed within-700 

design. 701 
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Investigation of the presence of biases 702 

Population stratification 703 

Population stratification refers to the presence of systematic difference in allele frequencies 704 

across subpopulations, arising from ancestry difference due to non-random mating and genetic 705 

drift. This leads to confounding in genetic association studies. In a PGS analysis, bias due to 706 

population stratification can arise from both the GWAS used to create the scores and the target 707 

sample. We corrected for population stratification in the target sample by adjusting analyses for 708 

PCs (although this may not remove fine-scale stratification). For the GWAS summary statistics, 709 

the ratio statistics LDSC output is a standard measure of population stratification58. As a rule of 710 

thumb a LDSC intercept higher than 1 (inflated) indicates presence of population stratification. 711 

Because we corrected the standard errors of the EA GWAS for inflation and GenomicSEM 712 

corrects for inflation as well, the ratio statistics of the Cog and NonCog GWAS are not a valid 713 

indication of population stratification (ratio <0 following GC correction). We therefore use the 714 

ratio statistics of uncorrected EA and CP GWAS as proxies. Ratio and LDscore intercept was 715 

assessed with the ldsc software58.  716 

Assortative mating 717 

Assortative mating refers to the non-random mate choice, with a preference for spouses with 718 

similar phenotypes. If these preferred phenotypes have a genetic component, assortative mating 719 

leads to an increased genetic correlation between spouses, as well as between relatives 28. 720 

Assortative mating can therefore be inferred from elevated correlations between polygenic scores 721 

in siblings (correlations would be 0.5 without assortative mating) and between parents 722 
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(correlations would be 0 without assortative mating). We estimated sibling intraclass correlations 723 

of Cog and NonCog PGS in UKB, TEDS and NTR, and Pearson’s correlations of paternal and 724 

maternal Cog and NonCog PGS in NTR. Notably, these observed correlations cannot distinguish 725 

assortative mating from population stratification.  726 

Sibling effects 727 

We performed three additional analyses to investigate indirect genetic effects of siblings on 728 

educational outcomes.  729 

First, we ran a linear mixed model extending our main non-transmitted alleles design to include 730 

polygenic scores of siblings (equation (4)). To this end, we used data from NTR on DZ pairs and 731 

both of their parents. Sample sizes of genotyped ‘quads’ with offspring CITO or EA phenotypes 732 

were 657 and 788, respectively.  733 

 EA =  α00 +  βTCog
(PGS(Cog)T) + βTNonCog

(PGS(NonCog)T)

+  βNTCog
(PGS(Cog)NT) +  βNTNonCog

(PGS(NonCog)NT)

+   βSiblingCog
(PGS(Cog)Sibling)

+  βSiblingNonCog
(PGS(NonCog)Sibling)  +  sex +  age +  sex

∗ age +  10PCs +  genotyping platform 

(4) 

 734 

Second, we can also assess the presence of sibling genetic effects using monozygotic and 735 

dizygotic twins. Because monozygotic twins have the same genotypes, the genetically-mediated 736 

environment provided by the cotwin is more correlated to the twin genotype in MZ twins than in 737 
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DZ twins. The sibling genetic effect is more strongly reflected in the polygenic score prediction 738 

of the educational outcome for MZ twins than for DZ twins. If the sibling genetic effect is 739 

negative, the polygenic score effect (betas) on the outcome in people that have an MZ twin will 740 

be lower than in people that have a DZ twin, it will be higher in those with an MZ twin then 741 

those with an DZ twin if the sibling genetic effect is positive. We therefore compare Betas from 742 

equation (2) in a subset of MZ twins and in a subset of DZ twins (one individual per pair) in both 743 

NTR (NMZ=818 & NDZ=865 for CITO and NMZ=1,600 & NDZ=1,369 for EA) and TEDS 744 

(NMZ=546 & NDZ=2,709)  745 

Third, the presence of sibling genetic effects can be assessed using data on the number of 746 

siblings participants have. If an individual has more siblings we expect their polygenic scores to 747 

be more correlated to sibling effects. As the number of siblings increases (if we assume linear 748 

increase) so does the degree to which a PGS captures sibling effects. If the sibling genetic effect 749 

is positive, the effect of the Cog and NonCog PGS on the educational outcome should increase 750 

with the number of siblings. However, family characteristics and environment might differ 751 

across families depending on the number of children. Therefore, changes in the effect of the PGS 752 

on our outcome with the number of siblings could be due to factors other than sibling genetic 753 

effects (for example, there is a known negative genetic association between number of children 754 

and EA59 which could result in confounding). By also looking at changes in the effect of the Cog 755 

and NonCog PGS on the educational outcome in adopted (unrelated) sibships, we break the 756 

correlation between PGS and any sibling effects. If there is a change in PGS effect on the 757 

educational outcome in adopted children dependent on the number of (non-biological) siblings, 758 

we can assume this effect to be caused by mechanisms other than a sibling effect. We finally 759 

contrast the change in PGS depending on family size in biological and adopted siblings to get an 760 
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idea of the sibling effect minus any other confounding effects of family size. We use the total 761 

number of reported siblings (full siblings for non-adopted and adopted siblings for adopted 762 

individuals, data-fields: 1873, 1883, 3972 & 3982).  763 

Data availability  764 

Summary Statistics of Cog and NonCog used in this paper are available upon request. Summary 765 

Statistics of cognitive performance from the COGENT cohort, of EA excluding NTR and UK 766 

Biobank cohorts are available upon request to the communicating author of these papers.  767 

For UK Biobank dataset access, see: https://www.ukbiobank.ac.uk/using-the-resource/.  768 

Netherlands Twin Register data may be accessed, upon approval of the data access committee, 769 

email: ntr.datamanagement.fgb@vu.nl 770 

Researchers can apply for access to TEDS data:  https://www.teds.ac.uk/researchers/teds‐data‐771 

access‐policyhttps://www.teds.ac.uk/researchers/teds‐data‐access‐policy 772 

Code availability  773 

All scripts used to run the analyses (empirical and simulated) are available at: 774 

https://github.com/PerlineDemange/GeneticNurtureNonCog  775 

All additional software used to perform the analyses are available online.  776 

The pre-registration of the study is available on OSF: https://osf.io/mk938/   777 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2020.09.15.296236doi: bioRxiv preprint 

https://www.ukbiobank.ac.uk/using-the-resource/
https://www.teds.ac.uk/researchers/teds%E2%80%90data%E2%80%90access%E2%80%90policy
https://www.teds.ac.uk/researchers/teds%E2%80%90data%E2%80%90access%E2%80%90policy
https://www.teds.ac.uk/researchers/teds%E2%80%90data%E2%80%90access%E2%80%90policy
https://github.com/PerlineDemange/GeneticNurtureNonCog
https://osf.io/mk938/
https://doi.org/10.1101/2020.09.15.296236
http://creativecommons.org/licenses/by-nc/4.0/


41 

References  778 

1. Deary, I. J. et al. Intergenerational social mobility and mid-life status attainment: Influences 779 

of childhood intelligence, childhood social factors, and education. Intelligence 33, 455–472 780 

(2005). 781 

2. Oreopoulos, P. & Salvanes, K. G. Priceless: the nonpecuniary benefits of schooling. Journal 782 

of Economic Perspectives 25, 159–184 (2011). 783 

3. Heckman, J., Stixrud, J. & Urzua, S. The effects of cognitive and noncognitive abilities on 784 

labor market outcomes and social behavior. (National Bureau of Economic Research, 785 

2006). doi:10.3386/w12006 786 

4. Grönqvist, E., Öckert, B. & Vlachos, J. The intergenerational transmission of cognitive and 787 

noncognitive abilities. J. Human Resources 52, 887–918 (2017). 788 

5. Doren, C. & Grodsky, E. What Skills Can Buy: Transmission of advantage through 789 

cognitive and noncognitive skills. Sociol Educ 89, 321–342 (2016). 790 

6. Crawford, Goodman, Joyce. Explaining the socio-economic gradient in child outcomes: the 791 

inter-generational transmission of cognitive skills. Longit. Life Course Stud. 2, (2011). 792 

7. Morris, T. T., Davey Smith, G., Van den Berg, G. & Davies, N. M. Investigating the 793 

phenotypic consistency and genetic architecture of noncognitive skills. BioRxiv (2018). 794 

doi:10.1101/470682 795 

8. Gutman and Schoon. The impact of non-cognitive skills on outcomes for young people. (The 796 

Education Endowment Foundation (EEF) and the UK Cabinet Office, 2013). 797 

9. Heckman, J. J. & Rubinstein, Y. The Importance of Noncognitive Skills: Lessons from the 798 

GED Testing Program. American Economic Review 91, 145–149 (2001). 799 

10. Tucker-Drob, E. M., Briley, D. A., Engelhardt, L. E., Mann, F. D. & Harden, K. P. 800 

Genetically-mediated associations between measures of childhood character and academic 801 

achievement. J. Pers. Soc. Psychol. 111, 790–815 (2016). 802 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2020.09.15.296236doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.296236
http://creativecommons.org/licenses/by-nc/4.0/


42 

11. Kovas, Y. et al. Why children differ in motivation to learn: Insights from over 13,000 twins 803 

from 6 countries. Pers. Individ. Dif. 80, 51–63 (2015). 804 

12. Demange, P. A. et al. Investigating the genetic architecture of noncognitive skills using 805 

GWAS-by-subtraction. Nat. Genet. 53, 35–44 (2021). 806 

13. Hart, S. A., Little, C. & van Bergen, E. Nurture might be nature: cautionary tales and 807 

proposed solutions. NPJ Sci. Learn. 6, 2 (2021). 808 

14. Bates, T. C. et al. The Nature of Nurture: Using a Virtual-Parent Design to Test Parenting 809 

Effects on Children’s Educational Attainment in Genotyped Families. Twin Res Hum Genet 810 

21, 73–83 (2018). 811 

15. Kong, A. et al. The nature of nurture: Effects of parental genotypes. Science 359, 424–428 812 

(2018). 813 

16. de Zeeuw, E. L. et al. Intergenerational transmission of education and ADHD: effects of 814 

parental genotypes. Behav Genet 50, 221–232 (2020). 815 

17. Selzam, S. et al. Comparing Within- and Between-Family Polygenic Score Prediction. Am. 816 

J. Hum. Genet. 105, 351–363 (2019). 817 

18. Cheesman, R. et al. Comparison of Adopted and Nonadopted Individuals Reveals Gene-818 

Environment Interplay for Education in the UK Biobank. Psychol. Sci. 31, 582–591 (2020). 819 

19. Morris, T. T., Davies, N. M., Hemani, G. & Smith, G. D. Population phenomena inflate 820 

genetic associations of complex social traits. Sci. Adv. 6, eaay0328 (2020). 821 

20. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–822 

753 (2009). 823 

21. Young, A. I. Solving the missing heritability problem. PLoS Genet. 15, e1008222 (2019). 824 

22. Kovas, Y. et al. Literacy and numeracy are more heritable than intelligence in primary 825 

school. Psychol. Sci. 24, 2048–2056 (2013). 826 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2020.09.15.296236doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.296236
http://creativecommons.org/licenses/by-nc/4.0/


43 

23. Silventoinen, K. et al. Genetic and environmental variation in educational attainment: an 827 

individual-based analysis of 28 twin cohorts. Sci. Rep. 10, 12681 (2020). 828 

24. OECD. Equity in education: breaking down barriers to social mobility. (OECD, 2018). 829 

doi:10.1787/9789264073234-en 830 

25. van Spijker, F., van der Houwen, K. & van Gaalen, R. Invloed ouderlijk opleidingsniveau 831 

reikt tot ver in het voortgezet onderwijs. Economisch-Statistische Berichten (2017). 832 

26. Young, A. I. et al. Mendelian imputation of parental genotypes for genome-wide estimation 833 

of direct and indirect genetic effects. BioRxiv (2020). doi:10.1101/2020.07.02.185199 834 

27. Kong, A., Benonisdottir, S. & Young, A. I. Family Analysis with Mendelian Imputations. 835 

BioRxiv (2020). doi:10.1101/2020.07.02.185181 836 

28. Yengo, L. et al. Imprint of assortative mating on the human genome. Nat. Hum. Behav. 2, 837 

948–954 (2018). 838 

29. Keller, M. C. et al. Modeling extended twin family data I: description of the Cascade model. 839 

Twin Res Hum Genet 12, 8–18 (2009). 840 

30. Fletcher, J. M., Wu, Y., Zhao, Z. & Lu, Q. The production of within-family inequality: 841 

Insights and implications of integrating genetic data. BioRxiv (2020). 842 

doi:10.1101/2020.06.06.137778 843 

31. Lyngstad, T. H., Ystrøm, E. & Zambrana, I. M. An Anatomy of Intergenerational 844 

Transmission: Learning from the educational attainments of Norwegian twins and their 845 

parents. (2017). doi:10.31235/osf.io/fby2t 846 

32. Armstrong-Carter, E. et al. The earliest origins of genetic nurture: prenatal environment 847 

mediates the association between maternal genetics and child development. (2019). 848 

doi:10.31234/osf.io/2usk8 849 

33. Trejo, S. Exploring genetic influences on birth weight. (2020). doi:10.31235/osf.io/7j59q 850 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2020.09.15.296236doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.296236
http://creativecommons.org/licenses/by-nc/4.0/


44 

34. McGue, M. et al. The environments of adopted and non-adopted youth: evidence on range 851 

restriction from the Sibling Interaction and Behavior Study (SIBS). Behav Genet 37, 449–852 

462 (2007). 853 

35. Ho, H., Plomin, R. & DeFries, J. C. Selective placement in adoption. Soc Biol 26, 1–6 854 

(1979). 855 

36. Demange, P. A. et al. Investigating the Genetic Architecture of Non-Cognitive Skills Using 856 

GWAS-by-Subtraction. BioRxiv (2020). doi:10.1101/2020.01.14.905794 857 

37. Pirastu, N. et al. Genetic analyses identify widespread sex-differential participation bias. 858 

BioRxiv (2020). doi:10.1101/2020.03.22.001453 859 

38. Rimfeld, K., Kovas, Y., Dale, P. S. & Plomin, R. True grit and genetics: Predicting 860 

academic achievement from personality. J. Pers. Soc. Psychol. 111, 780–789 (2016). 861 

39. Willems, Y. E., Boesen, N., Li, J., Finkenauer, C. & Bartels, M. The heritability of self-862 

control: A meta-analysis. Neurosci. Biobehav. Rev. 100, 324–334 (2019). 863 

40. Malanchini, M., Engelhardt, L. E., Grotzinger, A. D., Harden, K. P. & Tucker-Drob, E. M. 864 

“Same but different”: Associations between multiple aspects of self-regulation, cognition, 865 

and academic abilities. J. Pers. Soc. Psychol. (2018). doi:10.1037/pspp0000224 866 

41. Eilertsen, E. M. et al. Direct and indirect effects of maternal, paternal, and offspring 867 

genotypes: Trio-GCTA. BioRxiv (2020). doi:10.1101/2020.05.15.097840 868 

42. Lareau, A. Unequal Childhoods. (University of California Press, 2011). 869 

43. van Bergen, E., van Zuijen, T., Bishop, D. & de Jong, P. F. Why are home literacy 870 

environment and children’s reading skills associated? what parental skills reveal. Read Res 871 

Q 52, 147–160 (2017). 872 

44. Cooper, K. Are Poor Parents Poor Parents? The Relationship between Poverty and 873 

Parenting among Mothers in the UK. Sociology 003803852093939 (2020). 874 

doi:10.1177/0038038520939397 875 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2020.09.15.296236doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.296236
http://creativecommons.org/licenses/by-nc/4.0/


45 

45. Allen, N. E., Sudlow, C., Peakman, T., Collins, R. & UK Biobank. UK biobank data: come 876 

and get it. Sci. Transl. Med. 6, 224ed4 (2014). 877 

46. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 878 

Nature 562, 203–209 (2018). 879 

47. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. 880 

Bioinformatics 26, 2867–2873 (2010). 881 

48. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association 882 

study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 883 

(2018). 884 

49. Rimfeld, K. et al. Twins Early Development Study: A Genetically Sensitive Investigation 885 

into Behavioral and Cognitive Development from Infancy to Emerging Adulthood. Twin Res 886 

Hum Genet 22, 508–513 (2019). 887 

50. Ligthart, L. et al. The Netherlands Twin Register: Longitudinal Research Based on Twin 888 

and Twin-Family Designs. Twin Res Hum Genet 22, 623–636 (2019). 889 

51. Abdellaoui, A. et al. Educational attainment influences levels of homozygosity through 890 

migration and assortative mating. PLoS One 10, e0118935 (2015). 891 

52. Okbay, A. et al. Genome-wide association study identifies 74 loci associated with 892 

educational attainment. Nature 533, 539–542 (2016). 893 

53. Abdellaoui, A. et al. Population structure, migration, and diversifying selection in the 894 

Netherlands. Eur. J. Hum. Genet. 21, 1277–1285 (2013). 895 

54. Abraham, G., Qiu, Y. & Inouye, M. FlashPCA2: principal component analysis of Biobank-896 

scale genotype datasets. Bioinformatics 33, 2776–2778 (2017). 897 

55. Selzam, S. et al. Evidence for gene-environment correlation in child feeding: Links between 898 

common genetic variation for BMI in children and parental feeding practices. PLoS Genet. 899 

14, e1007757 (2018). 900 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2020.09.15.296236doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.296236
http://creativecommons.org/licenses/by-nc/4.0/


46 

56. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based 901 

linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). 902 

57. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer 903 

datasets. Gigascience 4, 7 (2015). 904 

58. Bulik-Sullivan, B. et al. LD Score regression distinguishes confounding from polygenicity 905 

in genome-wide association studies. Nat. Genet. 47, 291–295 (2015). 906 

59. Barban, N. et al. Genome-wide analysis identifies 12 loci influencing human reproductive 907 

behavior. Nat. Genet. 48, 1462–1472 (2016). 908 

 909 

Acknowledgments 910 

We thank Dr. Aysu Okbay, the SSGAC and COGENT consortiums for sharing their summary 911 

statistics for GWAS of educational attainment and cognitive performance excluding specific 912 

cohorts. PAD is supported by the grant 531003014 from The Netherlands Organisation for 913 

Health Research and Development (ZonMW). RC is supported by an ESRC studentship. AA is 914 

supported by the Foundation Volksbond Rotterdam and by ZonMw grant 849200011 from The 915 

Netherlands Organisation for Health Research and Development. KR is supported by a Sir Henry 916 

Wellcome Postdoctoral Fellowship. DIB is supported by the Royal Netherlands Academy of 917 

Science (KNAW) Professor Award (PAH/6635). EvB is supported by ZonMW grant 531003014 918 

and VENI grant 451-15-017. MGN is supported by R01MH120219, ZonMW grants 849200011 919 

and 531003014 from The Netherlands Organisation for Health Research and Development, a 920 

VENI grant awarded by NWO (VI.Veni.191G.030) and is a Jacobs Foundation Research Fellow. 921 

This research has been conducted using the UK Biobank Resource under Application Number 922 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2020.09.15.296236doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.296236
http://creativecommons.org/licenses/by-nc/4.0/


47 

40310. The Netherlands Twin Register is supported by NWO Groot (480-15-001/674): 923 

Netherlands Twin Register Repository: researching the interplay between genome and 924 

environment and the Avera Institute for Human Genetics, Sioux Falls, South Dakota (USA) for 925 

genotyping. We gratefully acknowledge the research program ‘Consortium on Individual 926 

Development (CID)’ which is funded through the Gravitation program of the Dutch Ministry of 927 

Education, Culture and Science and the Netherlands Organization for Scientific Research (NWO: 928 

0240-001-003). We gratefully acknowledge ‘Open Data Infrastructure for Social Science and 929 

Economic Innovations (ODISSEI) (NWO: NRGWI.obrug.2018.008)’. The authors gratefully 930 

acknowledge the ongoing contribution of the participants in the Twins Early Development Study 931 

(TEDS) and their families. TEDS is supported by a programme grant to Thalia Eley from the UK 932 

Medical Research Council (MR/V012878/1 and previously to Robert Plomin MR/M021475/1 933 

and G0901245), with additional support from the US National Institutes of Health (AG046938). 934 

The funders had no role in study design, data collection and analysis, decision to publish or 935 

preparation of the manuscript. 936 

Author Contributions 937 

RC & PAD conceived and designed the study, with helpful contributions from MGN. PAD & 938 

RC analysed the data, with help from JJH to obtain polygenic score weights and AA to perform 939 

GWAS in UK Biobank. PAD, MGN, RC, and EME performed the simulation study. RC & PAD 940 

wrote the manuscript. JJH, AA, EME, MM, BWD, ELdZ, KR, TCE, DIB, EvB, and GB 941 

contributed to the interpretation of data, provided feedback on manuscript drafts and approved 942 

the final draft. 943 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2020.09.15.296236doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.296236
http://creativecommons.org/licenses/by-nc/4.0/


48 

Competing Interests  944 

The authors declare no competing interests. 945 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2020.09.15.296236doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.296236
http://creativecommons.org/licenses/by-nc/4.0/

