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Abstract 23 

Background 24 

Breeding has helped improve bread wheat yield significantly over the last century. 25 

Understanding the potential for future crop improvement depends on relating segregating 26 

genetic variation to agronomic traits. 27 

Results 28 

We bred NIAB Diverse MAGIC population, comprising over 500 recombinant inbred lines, 29 

descended from sixteen bread wheat varieties released between 1935-2004. We sequenced 30 

the founders’ exomes and promotors by capture. Despite being highly representative of 31 

North-West European wheat and capturing 73% of global polymorphism, we found 89% of 32 

genes contained no more than three haplotypes. We sequenced each line with 0.3x 33 

coverage whole-genome sequencing, and imputed 1.1M high-quality SNPs that were over 34 

99% concordant with array genotypes. Imputation accuracy remained high at coverage as 35 

low as 0.076x, with or without the use of founder genomes as reference panels. We created 36 

a genotype-phenotype map for 47 traits over two years. We found 136 genome-wide 37 

significant associations, concentrated at 42 genetic loci with large and often pleiotropic 38 

effects. Outside of these loci most traits are polygenic, as revealed by multi-locus shrinkage 39 

modelling. 40 

Conclusions 41 

Historically, wheat breeding has reshuffled a limited palette of haplotypes; continued 42 

improvement will require selection at dozens of loci of diminishing effect, as most of the 43 

major loci we mapped are known. Breeding to optimise one trait generates correlated trait 44 

changes, exemplified by the negative trade-off between yield and protein content, unless 45 
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selection and recombination can break critical unfavourable trait-trait associations. Finally, 46 

low coverage whole genome sequencing of bread wheat populations is an economical and 47 

accurate genotyping strategy. 48 

 49 

Introduction 50 

Bread wheat (Triticum aestivum L.) production is a critical component of worldwide food 51 

security. Demand for wheat is predicted to increase by 60% between 2014 and 2050[1], by 52 

which time the human population will have reached 9 billion. Breeding will be a key 53 

component of meeting this demand sustainably[2]. Over the past century, genetic gains have 54 

been responsible for between one third and two thirds of yield improvements in European 55 

wheats, amounting to a 12-120kg increase in yield (~1%) per hectare per year[3–6].  56 

 57 

Genomic data is expected to accelerate the rate of genetic gain in wheat[7,8]. Surveys of 58 

global standing genetic variation include, for example, whole genome resequencing (WGS) of 59 

93 accessions[9], exome capture for 870 accessions[10], genotyping by sequencing (~16k 60 

markers) for ~17k breeding programme lines[11], and genotyping array data for collections 61 

of 804[12] and 4,500[13] accessions (~15k and ~113k markers, respectively). Bread wheat’s 62 

large genome size (17Gb) inflates the cost of collecting sequencing data and its hexaploidy 63 

reduces the accuracy and cross-population consistency of genotyping array data[12]. The 64 

potential for genotyping by low-coverage WGS in polyploid wheat has yet to be established. 65 

 66 

To aid genetic gain through breeding, it is crucial to link genetic data with phenotypic 67 

information and thereby reveal genotype-phenotype associations[11,14]. Previous 68 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.15.296533doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.296533
http://creativecommons.org/licenses/by-nc/4.0/


 4 

genotypic/phenotypic datasets include five traits measured in two years for 870 global 69 

accessions with exome capture data[10], and 12 traits measured in two years, six locations, 70 

and three cropping intensities for 191 German varieties with genotyping array data (~9k 71 

markers)[15]. Genotype-trait and trait-trait associations may be confounded by population 72 

structure or hidden by low allele frequencies in studies of existing varieties or breeding lines. 73 

These problems can be controlled in experimental populations produced by crossing. 74 

However, mapping resolution and overall genetic diversity are typically low in experimental 75 

populations. Multiparent Advanced Generation Intercross (MAGIC) populations are designed 76 

to address these issues by accumulating recombination events through generations of 77 

intercrossing and capturing diversity across multiple founders[16–18].  78 

 79 

In this study we undertook a systematic approach to these challenges. We bred a new multi-80 

parental population, the ‘NIAB DIVERSE MAGIC’ population (hereafter ‘NDM’) through 81 

hundreds of structured inter-crosses between sixteen diverse founders. Our multi-funnel 82 

crossing design creates a greater number and more uniform genome-wide distribution of 83 

recombinant haplotypes than alternative multiparent populations[19] and the relatively large 84 

number of diverse founders samples more genetic variation. We sampled founders released 85 

between 1935-2004, aiming to determine the genetic basis for historical changes in 86 

agronomic traits and the potential for future improvement from within the existing pool of 87 

variants. We used a cost-effective genotyping strategy by low-coverage WGS, accurately 88 

imputing over 1M SNPs in over 500 recombinant inbred lines. We measured 47 phenotypes 89 

in the population, of which 25 were assessed across two growing seasons.  The power of NDM 90 

comes from the combination of carefully designed germplasm and dense genotypic and 91 

phenotypic information, all of which we make publicly available.  92 
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 93 

We address the following questions. First, what genetic variation exists among the exomes of 94 

the NDM founders, how does it reflect global wheat diversity, and specifically how many 95 

distinct haplotypes typically segregate at each locus? Second, how does this variation underlie 96 

agronomic traits, as revealed through genetic mapping and genomic prediction? And third, 97 

what do these models imply about the future potential for phenotypic change and to what 98 

extent should we expect selection to cause correlated trait changes due to the sharing of 99 

causal genetic variants between traits.  100 

 101 

Results 102 

NIAB DIVERSE MAGIC Founders 103 

The 16 founders were selected from a panel of 94 historical varieties released in the UK over 104 

a ~70 year period (and originating from the UK, France, Denmark, Sweden and the 105 

Netherlands, Supplementary Table 1) using 546 Diversity Array Technology (DArT) and 61 106 

Single Sequence Repeat (SSR) markers[20]. We sequenced 15 founders after enrichment for 107 

(a) genic regions and (b) putative promoters using a capture probe-set[21] at average 108 

coverage of 22.94x of the targets (Supplementary Table 1). The remaining founder, Holdfast, 109 

was sequenced by WGS, but to ensure consistency across founders, we restricted our 110 

attention to the capture targets, for which coverage in Holdfast was 15.8x. We sequenced 111 

using Illumina 150bp paired-end reads whose combined length often included sequence 112 

differences between homeologous loci on the A, B and D subgenomes of hexaploid wheat, 113 

thereby resolving otherwise ambiguous alignments. Furthermore, we only used high quality 114 

alignments (mapQ>30) for coverage calculations and variant calling, and subsequently 115 
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excluded variant sites with missing or heterozygous calls in any founder (e.g. from 116 

homeologous variation and misalignment). After quality control, we called 1.13M high-quality 117 

single nucleotide polymorphisms (SNPs) across the 110,790 promoter-gene pairs targeted by 118 

the capture probes (557Mb in total), summarised in Supplementary Figure 1. Only 97,727 119 

SNPs (8.7%) were on the D subgenome and almost half (17,289/35,021, 49.4%) of the 120 

promoter-gene pairs on the D subgenome had no SNPs passing quality control, compared to 121 

26.6% (9,656/36,302) and 21.7% (8,012/36,738) on the A and B subgenomes, respectively. A 122 

comparative lack of diversity is expected on the D subgenome as it was acquired in the most 123 

recent allo-polyploidisation event[22].  124 

 125 

We placed the 16 founders in the context of global wheat diversity by analysing 113,457 126 

genotyping array sites that vary among 4,506 diverse global wheat accessions[13], of which 127 

50,335 sites were callable across all founders. We classified global wheats into nested subsets 128 

representing the UK only (n=154), North-West (NW) Europe (n=1,343), Europe (n=2,331), and 129 

Global (n=4,506), to understand how allele frequencies across subsets relate to our founders 130 

(Figure 1). Most Global common variants are polymorphic in the founders whereas rare alleles 131 

are more likely to be fixed in the founders, particularly those scarce in NW Europe and the 132 

UK. For example, 79.7% of those SNPs polymorphic within the UK subset (which includes 133 

landraces) also segregate among the founders, falling to 73.4% Global sites across all 4,506 134 

accessions. We next asked whether we could have selected 16 founders that more 135 

comprehensively sampled the variation space. We simulated selections from the same nested 136 

subsets and compared the distribution of the fraction of segregating sites with that in the 137 

actual NDM founders, and found the latter capture more diversity than an average selection 138 

of UK wheats, about average diversity for NW European wheats, but less than average for 139 
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wider European and Global sets (Figure 1). As the Global dataset is highly diverse, with 140 

modern varieties (released 1960-2009, n=2,294), landraces (1800-1959, n=965), and 141 

uncategorised/landrace germplasm (n=1,247), we conclude that NDM is representative of 142 

NW European wheat germplasm.  143 

 144 

Figure 1 The NDM population is representative of NW European wheat. (a) SNPs segregating (green) or fixed 145 
(orange) in NDM at 50,335 sites in 4,506 global wheats, grouped into ‘Global’, ‘European’, ‘North-West 146 
European’ and ‘UK’ nested subpopulations and binned by the allele frequency in these subpopulations. (b) The 147 
fraction of sites that are polymorphic in 16 randomly chosen wheats from each subpopulation based on 1000 148 
random replications. The dashed vertical black line at x=0.734 is the fraction of SNPs segregating among NDM 149 
founders. 150 

We next estimated the haplotypic diversity in the founders at the 1.13M sites. First, we 151 

clustered the founders by their haplotypic similarity at the 73,982/110,790 (66.7%) promoter-152 

gene loci with at least two haplotypes. Assuming that founders carry the same haplotype 153 

when their genotypic similarity exceeds 95%, 38,535 loci (52% of loci with variants) had only 154 

two haplotypes, 61,438 loci (83%) had at most three haplotypes, and 70,602 loci (95%) had 155 

four haplotypes at most (Figure 2b). Second, we estimated haplotype diversity by a dynamic 156 

programming algorithm that adjusted locus/block boundaries (Figure 2c, Supplementary 157 

Figure 2) to minimise the number of distinct haplotypes within a locus, while balancing 158 
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transitions between calling identical versus non-identical haplotypes. Over a wide range of 159 

parameters, the average number of haplotypes present at any locus rarely exceeded two 160 

(Supplementary Figure 2: 81.2% of 1.13M sites inferred to have just two haplotypes). This 161 

analysis found slightly fewer haplotypes than the gene-based analysis because it can infer one 162 

haplotype (4.1% of sites) when nearby variation is inconsistent, and split genes with high 163 

haplotypic diversity into multiple blocks. 164 

 165 

For comparison, the 19 natural accessions that founded the Arabidopsis thaliana MAGIC[23] 166 

display much greater haplotypic polymorphism[24]. In A. thaliana, genic haplotypes were 167 

determined at the level of protein sequence similarity (>95% similarity within 168 

haplotypes)[24]. On average there were 4.8 protein haplotypes per gene and 7,263/13,919 169 

(52.2%) of genes with two (n=4,825) or three (n=2,438) haplotypes (excluding genes with no 170 

variation). Our estimates for the NDM founders are 2.7 haplotypes per gene and 83% of 171 

variable genes having at most three haplotypes. Protein-level differences are lower than DNA 172 

level differences making this comparison conservative, and thus the true difference is even 173 

greater.  174 

 175 

The NIAB DIVERSE MAGIC Population 176 

We developed a total of 596 Recombinant Inbred Lines (RILs), each descended from all 16 177 

founders via a crossing funnel (Figure 2a). After 6 generations of inbreeding, all 596 RILs were 178 

initially genotyped using the Axiom 35k wheat breeders’ SNP genotyping array[12]. We called 179 

SNPs at 20,688 sites, of which 5,747 overlapped with the 1.13M SNP calls made in the 180 

founders. These overlapping sites suggested that only 59.8% of genotyping array probes could 181 

have been unambiguously placed using BLASTn[25], underlining the difficulty of using short 182 
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probes in polyploids (Supplementary Table 2). We used the overlapping sites as a truth 183 

genotype set to find sample misidentifications and estimate the accuracy of sequence-based 184 

genotyping in the RILs.  185 

 186 

We excluded 46 RILs excessively similar (>92%) to other RILs, indicating possible errors during 187 

population development. We sequenced the remaining 550 RILs after 7 generations of 188 

inbreeding by low coverage WGS (mean 0.304X) and called variants at the 1.13M founder SNP 189 

sites using sequence alignments. A further 46 RILs were excluded as their genotypic 190 

concordance with the initial 35k array data was below 95%, leaving 504 RILs in 141 families 191 

(RILs in the same ‘family’ are derived from the same 16-way cross), from which we based our 192 

main analyses.  193 

 194 

Figure 2 NDM population design and haplotypic diversity. (a) Pedigree showing the construction of 504 195 
Recombinant Inbred Lines (RILs). One exemplar pedigree is highlighted to show how all 16 founders are 196 
intercrossed into each RIL. (b) Founder haplotype groups at 73,982 promoter-gene loci with SNP variation, where 197 
founders with the same haplotype have genotypic similarity fractions that exceed the corresponding threshold. 198 
(c) Pairwise similarity/dissimilarity between founders on chromosome 1A, determined using a dynamic 199 
programming algorithm to infer founder similarity and breakpoint position. Founders that are inferred to have 200 
similar haplotypes for each region are the same colour. (d) The total length of genomic blocks in NDM lines 201 
inferred to come from each founder; uncertain ancestry blocks have a maximum founder dosage of <90%. (e) 202 
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Inferred founder dosage and ancestry mosaics across chromosome 1A for five example RILs, with founders 203 
coloured as in (a).  204 

We imputed RIL genotypes using STITCH[26]  by inferring the founder haplotype carried by 205 

each line at each location. Figure 2c shows the haplotypic similarity among founders on 206 

chromosome 1A, indicating that a small number of haplotypes have been heavily recombined 207 

during the 69 years of breeding history that separates the founders. Most recombination is 208 

located towards the distal ends of the chromosomes, as expected[27]. Only limited further 209 

recombination occurs during MAGIC population construction and the haplotype blocks 210 

inherited from each founder are relatively long (Supplementary Figure 2) and therefore 211 

distinguishable from one another. Thus, it was necessary to assume 16 unique haplotypes 212 

were segregating to obtain the highest imputation accuracy (Supplementary Figure 2). 213 

Founder haplotypes could be confidently assigned (i.e. with >90% dosage from a single 214 

founder) at over 92.2% of sites (Figure 2d). These haplotype assignments implied that an 215 

average of 4.8-13.7 recombination events occurred per RIL per chromosome (mean 8.7 sd 2), 216 

giving an average of 183 (sd 36.3) recombination events per RIL in total. Consistent with 217 

estimated genetic map lengths of 35-37.4M[12,28], 4.9-5.2 recombination events were 218 

observed per Morgan, in line with the predicted ~5-fold increase in 16-parent MAGIC 219 

populations compared to two-way crosses[29]. Example founder haplotype mosaics across 220 

chromosome 1A are shown in Figure 2e. 221 

 222 

The fraction of sites called directly (i.e. without imputation) for 501 RILs varied between 20.9-223 

42.7% (mean 27.8% sd 3.4%), as expected for 0.3x-coverage sequence data. A further three 224 

RILs were sequenced to higher depth (2.7x, 4.0x, and 4.3x) and had call rates of 79.9%, 90.0%, 225 

and 93.0%, respectively (Figure 3a).  After imputation, 94.2% of the 1.13M SNPs (i.e. 1.07M) 226 

were called across all 504 RILs and the effective call rate of imputed sites was 99.6%, with 227 
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5.8% of the SNP sites inaccessible or removed by quality control: 0.93% of sites are on the 228 

“Un” chromosome in the wheat reference (excluded from imputation), 1.36% were removed 229 

by imputation QC (info score <0.4) and 3.52% had imputed minor allele frequencies below 230 

2.5% and/or missingness above 90%. Figure 3b shows that the concordance between array 231 

and imputed genotypes (AI) and between array and directly called genotypes (AD) are 232 

strongly correlated, suggesting that instances of poorer concordance are unlikely to be caused 233 

by imputation. Overall, imputation marginally improved accuracy versus direct calls (mean AI 234 

99.1% versus mean AD 99.0%) but increased the call rate three-fold.  Downsampling read 235 

coverage showed the founder haplotype space and recombination mosaics could be 236 

accurately inferred from coverage as low as 0.076x per sample (Figure 3c); above this level 237 

imputation accuracy was independent of whether founder haplotypes were included as a 238 

reference panel (mean AI 98.7%) or ignored (mean AI 98.5%).  239 

 240 

Figure 3 Call rate and accuracy of genotypes after imputation and after downsampling. (a) Imputed call rate (y-241 
axis) vs direct call rate (x-axis. Only 28.1% of the 1,131,251 SNP sites can be genotyped directly from the low 242 
coverage sequence data, whereas 93.8% of sites had genotypes after imputation. 5.8% of sites (grey region and 243 
horizontal dashed line in a) were removed by quality control filters after imputation or on the unimputed ‘Un’ 244 
chromosome (0.93%). (b,c) Accuracy as evaluated at 5,747 sites that overlap with the Axiom 35k array. (c) 245 
Imputation before/after downsampling was performed with (green) and without (orange) using the genotypes 246 
of the founders as a reference panel. 247 
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Introgressions and Segregation Bias 249 

Several recent studies have used genomic data (e.g., SNP density[9]) to study the 250 

introgression of genetic material into hexaploid bread wheat from the secondary and tertiary 251 

gene pool[9,10,30]. We examined evidence for introgressions in previously reported 252 

locations[9,31–33] using founder coverage and non-reference allele frequency. Because we 253 

developed RILs, we were also able to examine segregation bias, which often accompanies 254 

wheat introgressions[34,35]. We found evidence for at least six introgressions covering 255 

~1.1Gb segregating in the population, five of which showed segregation bias (Supplementary 256 

Table 3). 257 

 258 
Phenotypic Characterisation and QTL Mapping 259 

We measured 47  phenotypes in replicated field trials over two years (Table 1, Supplementary 260 

Tables 4, 5, and 6), including the 10 time points at which Green Leaf Area (GLA) was measured. 261 

Of these, 25 phenotypes were collected in both years and two were also measured in smaller 262 

1x1m nursery plots (Yellow Rust infection, YR, and Juvenile Growth Habit, JGH) to give a total 263 

of 73 phenotypic measurements. Phenotype distributions are shown in Supplementary Figure 264 

3, showing that some RILs have more extreme phenotypes than any founder (transgressive 265 

segregation) for almost all phenotypes (RIL maximum ≥ founder maximum for 61/73 266 

phenotypes and RIL minimum ≤ founder minimum for 68/73 phenotypes). All phenotypes 267 

have significant (p<0.05, Pearson’s correlation test) correlations with at least one other 268 

phenotype (Supplementary Figure 4).  269 

Table 1 Phenotypes collected 270 

ABBREVIATION TRAIT ABBREVIATION TRAIT 
BIS Basal infertile spikelets GS55 Ear emergence date 
EL Ear length GS65 Anthesis date 
ETA Ear taper GW Grain width 
ETS Ear tip sterility GY Yield 
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EW Ear weight HEB Height to ear base 
FLA Flag leaf angle HET Height to ear tip 
FLED Flag leaf to ear distance HFLB Height to flag leaf base  
FLF Flag leaf floppiness JGH Juvenile growth habit 
FLL Flag leaf length LOD Lodging 
FLS Flag leaf senescence PHS Pre-harvest sprouting 
FLW Flag leaf width PIG General pigmentation 
GA Grain area SH Spring habit 
GL Grain length SPIG Stem pigmentation 
GLA# Green leaf area (10 time points, Nov–Mar) SW Specific weight 
GLAU Glaucousity TGW Thousand grain weight 
GPC Grain protein content TIS Tip infertile spikelets  
GR Germination rate TS Total spikelets 
GS39 Flag leaf emergence date YR Yellow rust infection  

 271 

From the 1.07M imputed SNPs, we selected a subset of 55,067 pruned by linkage 272 

disequilibrium (LD).  Using genome-wide association scans (GWAS) on both SNP and founder 273 

haplotype data, we mapped 136 Quantitative Trait Loci (QTLs) across the 73 phenotype/year 274 

combinations that were genome-wide significant at the 5% level. Many QTLs overlapped for 275 

different phenotypes, clustering into 42 distinct genome locations. For 25 phenotypes that 276 

were measured in both years, we found 48 QTLs in year 1 and 49 QTLs in year 2, of which 28 277 

were mapped to the same location and were genome-wide significant in both years. For 278 

example, in replicated trials lacking fungicide treatment  we mapped yellow rust (Puccinia 279 

striiformis) susceptibility to four QTLs in year 2 (on chromosomes 2A[31,36], 2B[37], 3B, and 280 

6A), of which three were also mapped in year 1 (2A, 3B, and 6A); only one (6A) was also 281 

mapped in trials treated with fungicide. 126/136 QTLs at 40/42 genomic locations were 282 

mapped using SNP-based associations, whereas 87/136 QTLs at 30/42 genomic locations 283 

were mapped using haplotype-based association tests. That is, 10 QTLs and two genomic 284 

locations were only identified from haplotype-based association whereas 49 QTLs and 12 285 

genomic locations were only identified from SNP-based association. This is consistent with 286 

the limited gene-level haplotypic diversity observed among the founders.  287 

 288 
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Figure 4b summarises the 40 loci with genome-wide significant SNP-based associations. We 289 

were able to assign 21 of these, including most of those with the strongest effects, to 290 

previously reported QTLs. In 11 high confidence cases, candidate genes have been reported 291 

and/or validated experimentally. In other cases, QTLs contained homeologs or paralogs of 292 

these high confidence candidates, or previous studies had reported associations to a genetic 293 

map using marker data, but not firmly anchored these locations on the reference genome 294 

assembly (low confidence co-localisation, n=10). We checked six high confidence candidate 295 

loci with annotated reference genome locations (RHT-1[38], RHT-2[39], WAPO-A1[40], ALI-296 

1[41], TaMyb10-B1[42], Yr7/Yr5/YrSP[37], PPD-D1[43]), all of which were within our mapping 297 

intervals. We created a genotype-phenotype map for community use by placing all QTLs on 298 

the physical map (Supplementary Table 7) to a median interval of 9.2Mb.    299 

 300 

Most loci with strong effect co-localise with previously reported QTLs. Some large effects are 301 

commonly associated with adaptation of the founders to the geographic and temporal range 302 

they sample. For example, the early flowering allele at the photoperiod locus PPD-D1 carried 303 

by the founder Soissons is favoured in southern Europe to avoid the summer drought[44]. 304 

The modern semi-dwarfing alleles at RHT-B1 or RHT-D1 that have been favoured globally 305 

since the Green Revolution[45] are absent from founders Banco, Bersee, Copain, Flamingo, 306 

Holdfast, Kloka, Spark, Steadfast and Stetson.  307 

 308 

To examine the pleiotropic effects of the relatively few genome-wide significant QTLs, we 309 

took the most strongly associated SNP at each locus and then tested for associations with all 310 

other phenotypes, requiring a lower threshold for evidence of association (p<0.05) than was 311 

initially used to establish genome-wide significance. The results are visualised in Figure 4d, 312 
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which shows that loci significant for one phenotype are also common to other phenotypes, 313 

consistent with extensive pleiotropy and the shared genetic control of correlated phenotypes. 314 

 315 

Gene Deletions 316 

Our analysis of SNP variation ignored sites that could not be called reliably in all 16 founders, 317 

possibly due to whole-gene deletions relative to the reference genome. We obtained no 318 

coverage from at least one founder at 8,019 (7.2%) of genic regions and 1,095 (1.1%) of 319 

promoter-gene pairs, suggesting possible structural variations (Supplementary Figure 1). 320 

Based on the deviation in gene coverage from that expected given the mean coverage for the 321 

founder, we computed a quantitative gene deletion score (GDS) for each gene and founder 322 

and imputed the scores into the RILs using the founder ancestry mosaics. We tested the 323 

association between each GDS and each phenotype in order to identify potential causal 324 

deletions. Across 27/73 phenotypes we found 30 GDS associations with p-values <10#$ 325 

(Supplementary Table 8). Significant associations almost always occurred within QTLs 326 

previously mapped by SNP association, so this analysis only identified candidate genes with 327 

deletion status consistent with the pattern of action across the founders of a QTL. Of these, 328 

at 10 loci the peak GDS logP association was at least 90% of the peak SNP logP. Thus most 329 

QTLs are not likely to be caused by gene deletions. However, the GDS is based on empirical 330 

read coverage, and so is likely to be affected by stochastic experimental variations hence it is 331 

possible that the association at a true causal GDS might appear weaker than that of a tagging 332 

SNP. A further caveat is that deletions are always inferred relative to the reference genome 333 

of Chinese Spring, such that insertions or functional genes missing from the reference genome 334 

annotation will not be captured.  335 

 336 
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Genomic Prediction 337 

We next performed phenotypic prediction all 55,067 tagging SNPs, to predict the potential 338 

for genetic improvement within the NDM. We trained genomic prediction models using three 339 

shrinkage methods: ridge regression (RR), least absolute shrinkage and selection operator 340 

(LASSO) and Elastic Nets (EN), using 50-fold cross-validation with randomly-selected training 341 

sets comprising 90% of RILs and test sets of the remaining 10%. LASSO and EN had almost 342 

identical prediction accuracies but EN included on average 26% more SNPs than LASSO 343 

(Supplementary Figure 5). Accordingly, we only report the LASSO results. LASSO prediction 344 

accuracies for all traits are shown in Figure 5b, alongside the proportion of heritable variation 345 

explained by QTLs (Figure 5a). Across traits, LASSO had higher average prediction accuracy 346 

than RR (Figure 5c), particularly for phenotypes where a larger fraction of variation can be 347 

explained by genome-wide significant QTLs (Figure 5d), as expected for a model selection 348 

method. LASSO prediction accuracies (correlation coefficients) varied from 0.13-1 (mean 349 

0.43) across phenotypes, using models with 1-465 SNPs (mean 155 SNPs). The number of 350 

SNPs in the LASSO model is higher for phenotypes where the overall heritability estimate 351 

greatly exceeds the fraction of variation that can be explained by genome-wide significant 352 

QTLs (Figure 5e).  353 

 354 

Out-of-sample test set prediction confirms that polygenic LASSO SNPs have predictive power 355 

and are therefore likely to be tagging genetic variants affecting phenotypic variation. Most 356 

phenotypes are polygenic; their prediction models exhibited a mixture of a few large effect 357 

and many smaller effect loci. A typical example (for height) of the 193 non-zero LASSO SNP 358 

effects is shown in Figure 4c. In contrast, the Mendelian AWN phenotype is fully explained 359 

and predicted using a single genome-wide significant QTL. 360 
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 361 

The reduced accuracy of RR compared to the LASSO is expected in the absence of significant 362 

population structure. There will be reduced variation in kinship among RILs compared to the 363 

wider germplasm from which the founders are usually selected. Much of the prediction 364 

accuracy of RR results from exploiting kinship rather than from tagging causative variants[46] 365 

so there is less opportunity for high prediction accuracy in MAGIC populations. In these 366 

circumstances, a feature selection method such as the LASSO can more accurately identify 367 

and tag haplotypes contributing to trait variation and give greater prediction accuracies. The 368 

LASSO also accurately predicts traits determined predominantly by a few QTL of large effects, 369 

in which circumstances RR performs poorly (Figure 5d). The LASSO is therefore better for 370 

genomic prediction in MAGIC. 371 
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 372 

Figure 4 Genotype-phenotype associations. (a) Exemplar Manhattan plot of the genome-wide -log10 p values of 373 
association (logP) between the height to ear tip phenotype from year 2 (HET_2) and 55,067 LD-pruned SNP 374 
dosages (dots) or founder haplotype dosages (line). The horizontal lines show the 5% genome-wide significance 375 
thresholds for SNPs (dotted) and haplotypes (dashed). (b) The 193 non-zero estimated LASSO SNP effects for 376 
HET_2. (c) The 40 genomic locations where genome-wide significant SNP associations were found for at least 377 
one phenotype, classified by effect size (logP; x-axis) and genomic interval width (Mb; y-axis). Each circle 378 
represents one locus, and its size shows the number overlapping QTLs; the smallest interval width and p value is 379 
shown where there are multiple overlapping phenotype associations. Labels indicate QTLs that colocalise with 380 
previously described QTLs or candidate genes; green indicates high-confidence colocalization (n=11) and purple 381 
low-confidence colocalization (n=10). (d) Pleiotropy across 40 loci: those loci without names are labelled by 382 
chromosome and position in Mb) and 73 phenotypes. Shades indicates the significant (p<0.05) locus phenotypic 383 
effects expressed as the number of standard deviations (Z-score). Genome-wide significant QTLs are highlighted 384 
with boxes.  385 
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 386 

Figure 5 Genetic architectures of 73 trait/year combinations (47 distinct traits) as revealed by QTL mapping and 387 
genomic prediction. (a) Phenotypic variation explained by all genome-wide significant QTLs (thick bars) and by 388 
the full SNP-based genetic relationship matrix (heritability, thin bars and dots). Phenotypes measured in year 1 389 
and year 2 are paired, shifted to the left and right, respectively. (b) LASSO prediction accuracy (correlation 390 
coefficients) across 50-fold cross validation; error bars show sds. (c) Prediction accuracy correlations (y-axis) and 391 
sqrt(heritability) (x-axis) and in the test and training sets under ridge regression (rr) and LASSO genomic 392 
prediction models. Prediction into the test set is generally higher with LASSO, especially for traits where more 393 
variation is explained by genome-wide significant QTLs (d). (e) LASSO models usually include more SNPs when 394 
more heritable variation is unaccounted by genome-wide significant QTLs (x-axis is difference between 395 
heritability and QTL R2).  396 

We used these genomic prediction models to explore the potential for selection in a much 397 

larger simulated population of 20,160 MAGIC RILs, 40 times larger than the real population. 398 

These were created by permuting the founder identities in the founder genome mosaics 399 

inferred in the real RILs, preserving linkage through the genetic map. Phenotypes were 400 

predicted for the test set of real RILs (10% of all lines) and in the simulated RILs for all 50 401 

prediction models (training/test set jackknife resamples). Figure 6a shows, for two example 402 
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phenotypes, that the distribution of predicted phenotypes is almost identical in the real (test 403 

set) and simulated RILs.  As expected, the most extreme predicted values (maximum and 404 

minimum) in the simulated RILs exceed than those in the real dataset because novel allelic 405 

combinations are generated in the larger simulated population. However, the average 406 

improvement in extrema between the test set and simulated phenotype predictions is only -407 

0.5 (for the minimum) and +0.68 standard deviations (for the maximum). This is in line with 408 

extreme-value distribution theory and shows that blind-breeding a very large population in 409 

the hope of generating novel combinations of beneficial alleles is inefficient.  410 

 411 

Next, we predicted the theoretical extreme phenotypic values that it is possible to create 412 

from segregating variation if unlimited recombination were possible. That is, we computed 413 

the phenotypic prediction in an imaginary line that carries all the alleles predicted to 414 

increase/decrease each phenotype. For this exercise, we trained the prediction models on 415 

the full set of 504 RILs so they differ slightly from those used to predict phenotypes in the test 416 

set. In the test set and simulated RILs, the predicted phenotypic extremes generally reflect 417 

the population size, which determines the probability that a single line happens to sample 418 

many alleles with positive/negative effects. However, Figure 6b shows that the theoretical 419 

maximum/minimum phenotypic prediction is linearly related to the complexity of the LASSO 420 

model (i.e. the number of non-zero SNP coefficients in the model). This suggests that 421 

hundreds of loci would need to be selected over multiple generations to generate any large 422 

phenotypic shifts, in line with the decades of breeding that has been required to produce 423 

genetic gain.  424 
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 425 

Figure 6 Predicted potential for phenotypic change. (a) We predicted the phenotypes of real MAGIC recombinant 426 
inbred lines, RILs (green distribution), and a large population of 20,160 simulated MAGIC RILs (orange 427 
distribution). These distributions largely overlap but more combinations are made in the simulated dataset such 428 
the the extreme values are more extreme. Nevertheless, the highest/lowest phenotypic prediction in the 429 
simulated population of 20,000 is generally only ~0.5 standard deviations higher/lower than the trait predictions 430 
in the real dataset of 504 lines. Upper graphs: predictions based on year 1 phenotype, lower graphs predictions 431 
based on year 2 phenotype (b). We also estimated the extemes of the phenotype predictions that are possible 432 
given the full lasso genomic prediction models (purple line in a). Large deviations from the current population 433 
mean are predicted to be possible but only through the fixation of a large number of loci, with less potential for 434 
change predicted at less-highly polygenic traits. 435 

For essentially all crops where yield and yield quality are high priority traits, a trade-off is 436 

evident between these two phenotypes and this is recognised as a longstanding problem in 437 

wheat. Thus, identifying opportunities to break this trade-off is important[47,48]. We 438 

estimate that yield has increased by 0.021 t ha-1 year-1 based on a regression of average yield 439 

on founder release year (p=0.006, n=16, R2=0.43). The highest yields measured in founders 440 

and RILs exceeds the maximum predicted yield from the genomic prediction models (Figure 441 

6) due to shrinkage in estimating SNP effects. However, high grain yield (GY) is correlated with 442 

low grain protein content (GPC) among the founders (Pearson’s correlation coefficient -0.94, 443 
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p<0.001, n=16), Figure 7. Founder genetic material is reshuffled without selection in the RILs, 444 

but the GY-GPC relationship continues (correlation -0.77, p<0.001, n=504), suggesting some 445 

pleiotropy in the underlying genetic effects. To investigate the segregating genetic variation 446 

that may be available to break this trade-off, we analysed the deviation from the trend (PYD: 447 

distance from symmetrical Thiel-Sen regression between GPC and GY, after Z-score 448 

normalisation). The heritability for PYD was 0.41 in year one and 0.25 in year two and could 449 

be predicted with accuracy 0.26 (sd 0.11) in year one and 0.13 (sd 0.11) in year two. These 450 

estimates are lower than those for GY and GPC analysed separately (GY heritability 0.54 and 451 

0.30, prediction accuracy 0.39 and 0.25; GPC heritability 0.55 and 0.55, prediction accuracy 452 

0.375 and 0.36, Figure 5. PYD of the founders did not correlate with release date, but these 453 

results suggest modest potential to break the yield-protein trade off, requiring strong and 454 

targeted breeding effort[47,48]. 455 

 456 
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 457 

Figure 7 Negative trade-off across two years between grain yield (GY; x-axis) and grain protein content (GPC; y-458 
axis) in 504 NIAB DIVERSE MAGIC RILs, 16 founders, and 3 more recently developed varieties (triangles, only 459 
one measured in year 1).  460 

Discussion 461 

We report five main findings. First, imputation from low coverage WGS is a cost-effective and 462 

straightforward genotyping strategy for crops, at least in multiparental populations. Despite 463 

its large, repetitive and hexaploid genome, wheat genotypes can be reliably imputed from 464 

WGS with average per-sample coverage in the range of 0.075x-0.3x and without the use of 465 

reference panels[26]. Thus there is no absolute requirement to even know the identities of, 466 

let alone sequence, the population founders, although this may be desirable for other 467 

purposes such as pan-genome assembly and re-annotation[18,49].  In this study, we were 468 

able to impute genotypes and founder haplotypes at >1M SNP sites in >500 NDM RILs, which 469 

proved ample for genetic mapping and genomic prediction.  470 

 471 
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Second, based on SNPs called from exome capture, no more than three haplotypes segregate 472 

at most genes in commercial NW European bread wheats released since 1935. There appears 473 

to be little or no variation at about a quarter of genes on the A and B subgenomes, and at 474 

about half on the D subgenome. Complete re-assembly and re-annotation of the 16 founders 475 

of the NDM would yield more complete insights into the extent and impact of coding 476 

variation. Limits on haplotypic variation are probably the result of historical selection and 477 

population bottlenecks that reduced the effective population size before the onset of 478 

intensive breeding programmes[12,50], as well as the close relatedness among breeding 479 

materials in more recent wheat pedigrees[51]. However, it appears that the low overall level 480 

of genetic diversity has not been further reduced during the 20th Century[52,53].  481 

 482 

Third, as a consequence, most QTLs are accounted for by bi-allelic SNPs rather than haplotype 483 

differences. For comparison, about 40% of QTLs identified in a multi-founder population of 484 

rats were attributed to multi-allelic/haplotypic effects[54]. Furthermore, most genome-wide 485 

significant QTLs had pleiotropic effects. Extensive pleiotropy suggests that naïve selection on 486 

one phenotype is likely to induce correlated responses in other phenotypes. In particular, we 487 

found improved yields in recent varieties has come at the cost of a decline in protein content 488 

(Figure 7; increasing yield by one t/ha reduces protein content by about 1%). Despite 489 

reshuffling haplotypes without selection, this trade-off continues in the NDM, which indicates 490 

directed selection would be required to break the yield-quality trade-off, potentially creating 491 

varieties with improved nitrogen use efficiency[55,56]. 492 

 493 

Fourth, across 47 phenotypes, we found a wide range of underlying genetic architectures. For 494 

traits such as awns, pigmentation, spring habit and yellow rust resistance, almost all of the 495 
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heritable phenotypic variance could be explained by one to four genome-wide significant 496 

QTLs (Figure 5). In other cases, a few loci with large phenotypic effects were accompanied by 497 

dozens of loci with smaller effects on traits such as flowering time and height (Figure 4a). The 498 

loci with very large effects have mostly been reported before (Figure 4b) because we 499 

recapitulate key historical steps such as the introduction of photoperiod sensitive and  semi-500 

dwarfing alleles from Japan[44,45]. Traits such as yield were polygenic with the majority of 501 

heritable variation coming from many loci of smaller effect (Figure 5).  502 

 503 

Fifth, our genomic prediction models suggest that hundreds of loci will need to be selected 504 

and fixed to achieve large phenotypic changes in polygenic traits in the future (Figure 6B). We 505 

achieved reasonable prediction accuracy with modest numbers of SNPs; the mean out-of-506 

sample prediction accuracy was 0.43, using on average only 155 SNPs per phenotype, out-507 

performing ridge-regression which considers all markers simultaneously. Other crop and 508 

livestock studies have also found very sparse markers can be sufficient for useful genomic 509 

prediction[11,57,58]. Here, rather than using low marker densities, we trained models that 510 

select a few hundreds of markers from ~55k tagging SNPs. In part, this sparsity is a 511 

consequence of the design and construction of MAGIC populations, eliminating rare alleles 512 

and creating blocks of markers that can be easily tagged in prediction models[15]. These 513 

factors may be responsible for the use of far fewer markers than used to generate polygenic 514 

prediction scores in humans[59], where there is a long tail of rare variation and less linkage 515 

disequilibrium. 516 

 517 

Our results suggest that dramatic genetic improvement over 70 years of breeding has largely 518 

been achieved through the fine shuffling of a low number of haplotypes to recombine 519 
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polygenic alleles of small effect, combined with the introduction of alien introgressions from 520 

wide crosses. The introgression of large genomic segments from related species has most 521 

commonly been for sources of resistance to specific diseases[9,33,34]. Breeders now have a 522 

choice whether to continue with the same strategy, i.e. selecting from within existing 523 

variation and introgressing selected exotic alleles, or to ambitiously expand the pool of 524 

available haplotype diversity genomewide.  525 

 526 

Methods 527 

NDM Population Creation 528 

The 16 NDM founders were chosen to capture the greatest genetic diversity using 529 

PowerMarker genetic analysis software[60]. They were chosen from 94 NW European wheats 530 

released in the UK that were genotyped with 546 DArT and 61 SSR markers; the full panel also 531 

included 96 US and 50 Australian varieties, which were excluded based on STRUCTURE 532 

analysis[61].  The founder selection process was run iteratively with the varieties ‘Robigus’ 533 

and ‘Soissons’ first fixed to be included to coincide with the founders of the 8-founder NIAB 534 

Elite MAGIC population[62]. Then the most frequently selected additional 4, then 9, and 12 535 

varieties were fixed in multiple iterative selection runs and finally the most frequently 536 

selected 16 were chosen. Seed for the founding varieties was sourced from the John Innes 537 

Centre Germplasm Resource Unit (GRU http://www.jic.ac.uk/germplasm/). 538 

 539 

These founders were inter-crossed in a balanced funnel crossing scheme, based on a Latin 540 

square field trial design, over four generations to create 16-way crosses with all the founders 541 

equally represented in their pedigree. First, all 120 possible 2-way crosses between founders 542 
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were made in a half diallel scheme. Two-way plants were then crossed in 60 4-way 543 

combinations. Multiple plants from each family were used in crossing from 2-way onwards, 544 

in order to maintain maximum founder allelic diversity within the population. 30 crossing 545 

combinations were made between 4-way plants to create 8-way crosses, making between 546 

five and eight replicate crosses per combination using different plants. These were 547 

intercrossed in 15 combinations to create balanced 16-way crosses, with each combination 548 

replicated between six and fifteen times using different 8-way plants. This resulted in 174 16-549 

way plants from which one to sixteen inbred lines per 16-way family were made through 550 

single seed descent (SSD). 596 RILs were advanced to the F7 stage when seed for phenotyping 551 

was multiplied in 1x1m nursery plots. Supplementary Table 9 gives details the number of 552 

plants involved in each cross and Figure 2a shows the pedigree for the 504 RILs used in our 553 

main analysis only. 554 

 555 

Phenotyping 556 

RILs from the population were phenotyped in field trials over multiple environments near 557 

Cambridge, UK. Yield trials were conducted in the growing seasons 2016-2017 and 2017-2018, 558 

hereafter year 1 and year 2 (phenotype suffix codes _1 and _2). Information on location, soil 559 

type, key dates and inputs for both years are given in Supplementary Table 4. Yield plot 560 

dimensions were 2m wide and 4m long and plots were sown at a density aiming to achieve 561 

300 plants m-2 . In year 1, 596 lines were included in two replicates, the sixteen founders in 562 

four replicates and the commercial control variety ‘KWS Santiago’ in 24 replicates in a 563 

randomised nested block design with 16 main blocks of 80 adjacent plots which comprised 564 

each row in the trial and eight sub-blocks of ten plots nested within each main block. In year 565 

2 trials, 596 lines and the 16 founders were included in two and four replicates respectively 566 
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but three control varieties (‘KWS Santiago’, ‘Skyfall’ and ‘Shabras’) were all included in four 567 

replicates. Plots were again randomised in a nested block design but including additional plots 568 

making a larger trial, consisting of 20 main blocks of 115 adjacent plots, which comprised each 569 

row, and 23 sub-blocks of five plots nested within each main block. 570 

Disease observation trials (DOTs) were conducted near Cambridge, UK in the same years as 571 

the yield trials to assess resistance to crop diseases. These plots consisted of two 1.2m length  572 

rows, treated with no fungicide but otherwise standard inputs. Due to local conditions, DOTs  573 

were considered to have natural high pressure of yellow rust (Puccinia striiformis f.sp. tritici). 574 

In both years, DOTs included two replicates of 596 RILs, four replicates of the 16 founders and 575 

68 additional replicates of the susceptible founder ‘Robigus’. Trial designs included two main 576 

blocks of 660 plots, with 11 sub-blocks of 60 plots nested within main blocks. All trial designs 577 

for both yield and disease observation trials were made using the package ‘blocksdesign’ in 578 

R. Phenotyping of some traits was also carried out in 1x1m seed nursery plots where lines 579 

were not replicated but the founders were in three replicates and randomised across the 580 

nurseries (phenotype code _N). 581 

 582 

A wide range of traits were phenotyped across the field trials, including traits for crop 583 

developmental morphology, phenology, plant stature and canopy architecture, yield and 584 

yield components such as spike and grain morphology, disease resistance, pigmentation, 585 

plant glaucosity, indications of stress response, lodging, grain protein content and 586 

vernalisation requirement. A summary of these traits and abbreviations are presented in 587 

Table 1 and details of phenotyping methods are listed in Supplementary Table 5.   588 

 589 
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Trials Analysis 590 

Adjusted phenotype values were calculated as Best Linear Unbiased Estimates (BLUEs) for 591 

each trait separately for each trial year using mixed effects models with ASRemL[63]. 592 

Genotype was considered a fixed effect whilst experimental blocking structure as well as 593 

other covariates such as harvesting day, where relevant, were included as random effects. 594 

Spatial models including first- and second-order auto-regressive spatial models were also 595 

used. Model simplification was carried out where models with all possible combinations of 596 

random effect terms and spatial terms for row and column were run and the best fitting 597 

model was chosen based on Akiake Index Criteria (AIC). Model residuals were visually checked 598 

for normality and equal variance to fitted values distribution. Best Linear Unbiased Estimates 599 

(BLUEs) for all phenotypes for the 16 founders and for the 504 RILs used in our main analysis 600 

(see below) are provided in Supplementary Table 6. We used symmetrical Thiel-Sen 601 

regression (implemented in the ‘deming’ R package) after phenotype normalisation to 602 

characterise the relationship between protein content (GPC) and yield (GY). The Protein-Yield 603 

Deviation (PYD) phenotype is calculated as the Euclidian distance from this regression line. 604 

 605 

Genotyping Array Data 606 

All DNA extraction was performed using the Qiagen DNeasy Plant Kit on leaf tissue samples 607 

taken from emerging leaves of seedlings. First, genotyping was performed at the Bristol 608 

Genomics Facility using the Axiom 35k wheat breeders’ array[12]. Initially, two 384-sample 609 

plates were genotyped. Seed from the plants used as founders were genotyped on each plate 610 

(32 samples) along with extra seed from the original varietal seed stock used (28 samples) 611 

and seed from founders propagated to 2017 (16 samples). In addition, 596 RILs were 612 

genotyped after 5 generations of selfing (F6). To account for genotyping failures and to ensure 613 
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the accuracy of sample labels, 150 RILs were re-genotyped in the F7 generation along with a 614 

further replicate of each founder.  615 

 616 

Genotype calling was performed using the Affymetrix Power Tools (v1.19) and SNPolisher R 617 

packages, following the recommended Axiom analysis pipeline. All samples except two-way 618 

crosses were given the standard inbreeding penalty, 4, which penalises calling heterozygous 619 

genotypes. Four samples failed the ‘dish quality control’ threshold (0.82) and a further 28 620 

samples with call rates were below 97% were excluded. Marker classifications were 621 

performed using “ps-classification”, and ps-classification-Supplementary” functions with 622 

options --species-type polyploid --hom-ro false. All calls were adjusted using the standard 623 

0.025 confidence threshold using the Ps_CallAdjust function.  624 

 625 

Samples were compared to one another using the 14,935 markers classified as 626 

‘PolyHighResolution’ only. Overall, 46 RIL pairs were found to be >92% similar (mean 98.5% 627 

genotype similarity), where all other comparisons between MAGIC lines were, at most, 84% 628 

similar (mean 67.8%). These apparently duplicated genotypes could indicate genotyping, 629 

labelling, or propagation errors so only one RIL from each pair was used for sequencing (550 630 

RILs). To ensure pedigree accuracy, we chose the RIL in each pair that was genotypically most 631 

similar to other RILs derived from the same 16-way cross (i.e. in the same family).  632 

 633 

Sequencing Data 634 

For whole genome sequencing, DNA was extracted from 550 RILs at the F7 generation. DNA 635 

for RILs that failed quality control were extracted again at the F8 generation (n=50). 636 

Sequencing and library preparation was performed at Novogene, where libraries were 637 
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generated from 1.0μg DNA per sample using the NEBNext DNA Library Prep Kit. Sequencing 638 

was performed on a NovaSeq 6000 instrument (Illumina) to get at least 6Gb of raw sequence 639 

data (2x150bp paired end reads) per sample. One founder (Holdfast) was sequenced to 15.8x 640 

coverage using the same method.  641 

 642 

The other founders were sequenced after capture using two recently designed probe sets 643 

targeting promoter and genic regions, respectively[21]. Capture was performed at the 644 

Earlham Institute following the SeqCap EZ Library SR v5.1 protocol (Roche NimbleGen Inc., 645 

Madison, WI, USA) with 1µg of genomic DNA sheared to 300bp[21]. Four captures were 646 

performed using 8 samples per set (2x promoter captures and 2x genic captures). Samples for 647 

the founder Stetson were included on all four capture experiments so roughly double the 648 

sequence data was obtained for this variety (Supplementary Table 1). Sequencing with 649 

2x150bp reads was performed at the Earlham Institute on a NovaSeq 6000 instrument 650 

(Illumina) with 16 promoter capture libraries on one lane and 16 genic capture libraries on 651 

another lane.  652 

 653 

Variant Calls and Imputation 654 

All reads were aligned to the bread wheat reference genome from cv. Chinese Spring (RefSeq 655 

v1.0)[27] using bwa-mem (version 0.7.12)[64] and sorted using samtools (version 1.3.1)[65], 656 

which was also used to calculate coverage. For compatibility with the bam file format, we split 657 

each chromosome in the reference genome at the halfway point before alignment. We called 658 

variants from the founder sequences within the high confidence gene, promoter and 5’ UTR 659 

regions targeted by the capture probes[21] using GATK (version 4.0.8.0)[66] HaplotypeCaller 660 

and GenotypeGVCFs (options --interval-padding 100 --minimum-mapping-quality 30). We 661 
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used vcftools (version 0.1.15) to include only bi-allelic single nucleotide polymorphisms 662 

(SNPs) with average coverage depth between 5 and 60 (all per sample coverages between 2 663 

and 120) and no missing calls. We also filtered with bcftools (version 1.2)[67] using standard 664 

quality control options --exclude 'QD<2 || FS>60.0 || MQRankSum<-12.5 || 665 

ReadPosRankSum<-8.0 || SOR>3.0 || MQ<40'. This left 1.78M SNPs, of which we only use 666 

the 1.13M sites with no heterozygous calls (--genotype ^het option) for our main analyses. 667 

 668 

We first called genotypes in the RILs at these 1.13M SNP sites directly using GATK 669 

HaplotypeCaller in GENOTYPE-GIVEN-ALLELES mode, using the same options as above. We 670 

assessed the concordance between array genotypes and these direct calls (AD) at overlapping 671 

sites (see below). For 10 RILs, the directly called sequencing variants most closely matched 672 

genotyping array data for a different line than expected. These were excluded because the 673 

source of the discrepancy (sequence data or array data) cannot be established. The 674 

concordance between our genotyping array data and direct calls (AD) was below 95% for a 675 

further 36 RILs, which were excluded (mean AD 84.7% for removed lines), leaving 504 RILs. 676 

We estimated heterozygosity in these 504 RILs using only genotypes called from at least four 677 

reads. Of 2.6M such genotype calls, only 0.67% were called as heterozygotes. 678 

 679 

We imputed genotypes at the 1.13M SNP sites using the alignments and STITCH software 680 

(version 1.5.7)[26]. Because alignments were to a reference genome with chromosomes split 681 

in half, we first ran STITCH with the generateInputOnly option, and then joined the input files 682 

for each chromosome half before imputation. For all runs, we used the parameters nGen=3, 683 

minRate=0.001, bqFilter=30, method=‘diploid-inbred’ and then filtered all sites with an info 684 

score below 0.4, minor allele frequency below 2.5%, or missingness above 10%. For our main 685 
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analysis, we used the genotype calls in the founders as a reference panel and outputted the 686 

estimated ancestry dosages of each founder at each position in each RIL using the 687 

outputHaplotypeProbabilities and output_haplotype_dosages options. When using the 688 

founders as a reference panel, we removed options that estimate and update the haplotypes 689 

in the population (shuffleHaplotypeIterations, reference_shuffleHaplotypeIterations, 690 

refillIterations). To test accuracy when reference panels aren’t available, we re-ran 691 

imputation without the founder haplotypes, using 40 iterations to estimate the haplotype 692 

space and recombination mosaics. We also used the downsampleFraction option to randomly 693 

sample a fraction of alignments with/without using the founder reference panel. Finally, we 694 

tested imputation accuracy (without a reference panel), when fewer than sixteen haplotypes 695 

were assumed to segregate in the population by varying the K parameter (Supplementary 696 

Figure 2).  697 

 698 

Genotype Comparisons 699 

For comparison against the sequencing dataset, we used all genotyping array markers. 700 

Replicates of founders and MAGIC RILs (where available) were used to make a consensus call 701 

where the most common genotype across replicates was taken as the consensus and only 702 

retained when more than 50% of the non-missing calls were in agreement. In addition, 703 

markers where one homozygous genotype was missing from all RILs were converted such that 704 

all heterozygous calls were assumed to be in the missing homozygous class. The failure to 705 

detect a homozygous class is likely to be a result of polyploidy, which can reduce 706 

differentiation between the three genotype classes and make them hard to distinguish. 707 

Finally, to get plausible physical positions for the genotyped markers, BLASTn v2.2.30[25] was 708 

used to compare the 75bp probe sequences (cerealsdb.uk.net)[12] against the reference 709 
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genome[27]. When matching the SNP array data with the sequenced SNPs, array sites were 710 

excluded if there had missing or heterozygous founder calls or if the genotypes and targeted 711 

SNP alleles did not match the founder sequence data. We found 5,877 sites that overlapped 712 

between the genotyping array data and the sequencing data (Supplementary Table 2). 713 

 714 

To compare against global wheat diversity, we called founder genotypes at 113,457 715 

genotyping array sites that were polymorphic among 4,506 diverse global wheat 716 

accessions[13]. We called genotypes from alignments with mapping quality scores of at least 717 

30 using GATK HaplotypeCaller in EMIT_ALL_SITES mode with the –emit-ref-confidence 718 

BP_RESOLUTION option, providing a bed file of the 113,139 genotyping array sites[13]. We 719 

only considered sites where genotypes could be called in all 16 founders (n=56,063). We used 720 

genotyping array calls for cv. Chinese Spring to determine reference/non-reference alleles on 721 

the genotyping array, ignoring sites called as heterozygous (n=109) or missing (n=306) in 722 

Chinese Spring. Seven of the MAGIC founders were also present in the global genotype set 723 

(Brigadier, Copain, Maris Fundin, Soissons, Spark, Steadfast, Stetson)7. The average 724 

concordance of the global genotype calls and our sequencing calls for these founders was 725 

94.3% (sd 0.63%). We excluded 5,491 (9.8%) sites that had mismatches across these founders, 726 

many of which are likely to reflect differences in the underlying genetic variation picked up 727 

by the different genotyping technologies. Two other founder variety names were in the 728 

genotyping array dataset7 (Banco and Holdfast) but the genotyping calls did not match 729 

(concordances 74.2% and 71.4%, respectively), which may reflect differences in the seed 730 

stock used.  731 
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 732 

Founder Haplotype Diversity 733 

First, we used the SNPs called within each promoter-gene pair to estimate haplotypic diversity 734 

of the founders. We calculated absolute (Manhattan) pairwise genetic distances between 735 

founders at each site and then used complete linkage clustering to define haplotypic groups 736 

using dist and hclust functions implemented in R statistical software (version 3.6.0)[68]. This 737 

was repeated using different similarity thresholds to define haplotypes. Second, we 738 

determined haplotype breakpoints using a dynamic programming algorithm. For each 739 

pairwise founder combination, our algorithm calculates a mosaic of genotypic 740 

similarity/dissimilarity akin to the Viterbi path from a hidden Markov model. Genotype 741 

matches and mismatches are allocated a score (1 by default). To prevent excessive switching 742 

between states, there is also a ‘transition penalty’ for inferring a change between matching 743 

and mismatching states. Based on their pairwise matching/mismatching states, we then infer 744 

the total number of haplotypes inferred at each site. We repeat this procedure with different 745 

parameter choices (Supplementary Figure 2).  746 

 747 

Genetic Mapping and Heritability 748 

For mapping, we used the full set of 1,065,185 high-quality SNP sites called in 504 RILs after 749 

imputation and quality control filters. We also selected a subset of 55,067 SNPs such that 750 

every other SNP was tagged at R2>0.99 by a member of the subset using PLINK (version 1.90) 751 

with option --indep-pairwise 500 10 0.99. These tagging SNPs were used to calculate the 752 

genetic relationship matrix 𝑲 = 𝑮𝑮’/𝑝. The phenotypic variance-covariance matrix for a 753 

given vector y of standardised phenotype values was modelled as 𝑽 = 𝑲𝜎-. + 𝑰𝜎1.	where 754 
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𝜎-., 𝜎1. are the additive genetic and environmental variance components, estimated by 755 

maximum-likelihood[69]. The heritability of a trait was defined as ℎ. = 𝜎-. (𝜎-. + 𝜎1.6 ). The 756 

matrix square root of the variance matrix was calculated by eigendecomposition of 𝑽 as 𝑨𝟐 =757 

𝑽, and the mixed model transformation of the data performed i.e. 𝒚 → 𝑨#𝟏𝒚, 𝑮 →758 

𝑨#𝟏𝑮, 𝑽 → 𝑰	to remove the inflationary effects of unequal relatedness on genetic 759 

associations before association mapping.  760 

 761 

We performed association tests at the level of both SNPs and founder haplotypes using R 762 

statistical software (version 3.6.0)[68]. Initially, we tested the null hypothesis of no 763 

association at each SNP site in the tagging set (~55k sites). We then determined genome-wide 764 

thresholds for statistical significance using 1,000 permutations on the transformed 765 

phenotypes. If any association exceeded the 0.05 threshold (smaller p value than found across 766 

at least 950 phenotypic permutations), then we repeated the association test at all of the 767 

~1.1M SNPs on the chromosome with the strongest association signal (lowest p value). 768 

Mapping intervals were defined to include SNPs surrounding the peak SNP, with log10(p) 769 

values within 𝑑 units of 𝑥 using 𝑑 = max	{2, 0.1𝑥} where 𝑥 is the peak log10(p) value. The 770 

interval for haplotype-based tests includes the range of sites that have log10(p) values within 771 

𝑑 units of 𝑥. SNP-based intervals were calculated using the same measure but then extended 772 

by the minimum of 5Mb or the distance to the next SNP in either direction that the same 773 

‘strain distribution pattern’[54] as any highly-associated SNPs (SNPs with log10(p) values 774 

within 𝑑 units of 𝑥). The ‘strain distribution pattern’ is the pattern of major/minor alleles 775 

across founders. This procedure is designed to capture the uncertainty in the positioning of 776 

relevant recombination events either side of the QTL peak. We fitted QTLs in a stepwise 777 

manor by fitting the phenotype against the most strongly associated SNP (or haplotype 778 
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dosage) whenever genomewide significant QTLs were detected. The above association test 779 

procedure was then repeated using the phenotype residuals after fitting all previously 780 

identified QTLs. This allows closely-linked QTLs to be detected when they have different 781 

patterns of causal variants among RILs. Where QTL associations were found for different 782 

genotypes, they were judged to be at the same locus if they had overlapping mapping 783 

intervals and at least one matching strain distribution pattern at highly-associated SNP sites.  784 

 785 

Genomic Prediction 786 

To evaluate the accuracy of trait prediction within our magic population and estimate the 787 

extent of polygenic variation beyond genomewide significant QTLs, we conducted genomic 788 

prediction across all phenotypes using three shrinkage-based methods: ridge regression (RR), 789 

Elastic Nets (EN) and least absolute shrinkage and selection operator (LASSO). We note that 790 

with appropriate choice of ridge parameter 𝜆 = 𝜎1./𝜎-., RR is equivalent to a mixed model in 791 

the sense that the RR estimated SNP effects are identical to the mixed-model Best Linear 792 

Unbiased Predictors (BLUPs)[70,71]. This explains the linear correlation between estimates of 793 

heritability and RR prediction accuracy (Figure 5c). For each method, we conducted 50 rounds 794 

of cross validation by randomly sampling 90% of the RILs (n=454) as a training set in each 795 

round to train the model, which was then used to predict the remaining 10% of RILs (n=50) - 796 

the test set. For the three methods, the model equation can be written generally as 𝑦 = 	𝜇 +797 

	𝛽𝐺 + 𝜀, where 𝑦  is the estimated trait value, 𝜇 is the model intercept,  𝛽 is the vector of SNP 798 

effects, 𝐺 is the genotype dosage matrix, and 𝜀 is the residual error. 799 

 800 

The genomic prediction models were trained using the R package glmnet[72], which 801 

estimates an optimal lambda shrinkage value for all three genomic prediction methods based 802 
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on the training set. We then predicted phenotypes in the test set by multiplying all SNP 803 

coefficients estimates by their corresponding genotypes in the test set (and adding the 804 

intercept term). We report the training and test set prediction accuracy as the mean Pearson 805 

correlation coefficient of the predicted trait values and the actual phenotype values over 50 806 

rounds of cross validation.  807 

  808 

We used these genomic prediction models to simulate the potential for phenotypic change. 809 

First, we permuted the population founder haplotypes identities 40 times across 504 RILs and 810 

then projected the permuted founder genotypes onto the new lines. This creates new genetic 811 

combinations while retaining the genetic map and linkage found in the real population.  We 812 

then used the three models trained as described above to predict phenotypes for the 813 

simulated MAGIC RILs. We further calculated the theoretical maximum and minimum 814 

phenotype values that are possible given the genomic prediction models and the variants 815 

segregating in the population. To estimate the maximum and minimum potentially achievable 816 

phenotype values, we trained new genomic prediction models using the full data set of 504 817 

RILs for all phenotypes. We then calculated the maximum/minimum predicted phenotypes 818 

by summing the estimated effects for all positive/negative SNP coefficients.  819 

 820 

Gene Deletion Analysis 821 

We examined the power of gene-level coverage variation among founders to explain 822 

phenotypic variation. In each founder 𝑓 and at each gene feature 𝑔, we computed a deletion 823 

index 𝐷-Obased on the number of reads aligning to the associated capture sequences, 824 

normalised by the overall coverage for that founder. The gene deletion score (GDS) for each 825 

MAGIC RIL 𝑖 and feature 𝑗 was computed as 𝑆ST = ∑ 𝐻STO𝐷TOO , where 𝐻STO is the haplotype 826 
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dosage for founder 𝑓	in RIL 𝑖 at gene 𝑗, as computed by STITCH. For each phenotype a mixed-827 

model GWAS was performed, using the GDS in place of SNP dosages and with a genetic 828 

relationship matrix computed from the GDS (Supplementary Table 8). We also repeated the 829 

genomic prediction analysis described above by replacing the SNP genotype dosage matrix 830 

with the GDS matrix (Supplementary Figure 5).  831 

 832 

Introgressions 833 

The presence of introgressions were determined using summary statistics (coverage, non-834 

reference allele frequency in founders and RILs) calculated in 10Mb windows moved in 5Mb 835 

steps. Within introgressions, carriers have a high proportion of non-reference alleles due to 836 

the alignment of inter-specific genetic material to the bread wheat reference genome. The 837 

introgression extent was determined as the extent of 10Mb windows where all introgression 838 

carriers had a higher proportion of non-reference alleles than all non-carriers. Within these 839 

regions, we then checked the relative coverage of carriers and the extent to which the alleles 840 

of carriers are over- or under-represented among the RILs. This evidence is summarised in 841 

Supplementary Table 3. For example, the founder Maris Fundin carries a large introgression 842 

(640Mb) from Triticum timopheevi on chromosome 2B that inflates the total number of SNPs 843 

called on chromosome 2B, relative to the other chromosomes (Supplementary Figure 1), this 844 

introgression is substantially over-represented among RILs, as expected[34].  845 

 846 
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