
 
 
 

1 

Robustness of individualized inferences from longitudinal resting state dynamics  1 

 2 

 3 

Maximilian HOMMELSEN1, Shivakumar VISWANATHAN1, Silvia DAUN1,2* 4 

 5 

* Corresponding author 6 

 7 

Running title:  Individualized inference for longitudinal RS 8 

 9 

Affiliations: 10 

1. Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum 11 

Jülich, Jülich, Germany 12 

2. Institute of Zoology, University of Cologne, Cologne, Germany 13 

 14 

Corresponding author:  15 

Silvia Daun, PhD 16 

Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum 17 

Jülich, 52425, Jülich, Germany  18 

Email: s.daun@fz-juelich.de, Tel: +49-2461-61 8638, Fax: +49-2461-61 1518 19 

 20 

 21 

  22 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.297572doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.297572


 
 
 

2 

ABSTRACT  1 

Individual human brains plastically reorganize over extended timescales ranging from days 2 

to years, which makes these changes difficult to track. One promising tracking indicator is the 3 

neural activity at rest. However, the rest state (RS) is vulnerable to incidental inter-day cognitive 4 

variability that can confound the detection of changes to underlying neurophysiology. Here we 5 

show that this confounding is minimized by tracking changes to the distinctiveness of an 6 

individual’s RS activity, which is shaped by individual neurophysiology. Using longitudinal (5-day) 7 

RS acquired with EEG, we devised empirical simulations of distinctiveness changes confounded by 8 

cognitive variation. These inter-day changes were correctly classified with over 96% accuracy from 9 

2-second snapshots of instantaneous oscillatory power from RS and confounded-RS. Surprisingly, 10 

the individual indicators of distinctiveness were concentrated at characteristic fronto-central and 11 

occipital zones. These findings support the suitability of longitudinal RS for individualized 12 

inferences about neurophysiological change in health and disease. 13 

 14 
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INTRODUCTION  1 

Tracking how individual human brains change over extended time-scales (e.g., days to 2 

years) is crucial to identify the mechanisms of neural plasticity in scenarios ranging from healthy 3 

aging (Boersma et al. 2011; Cabeza et al. 2018; Cassani et al. 2018) to stroke recovery (Giaquinto et 4 

al. 1994; Rehme et al. 2011; Wu et al. 2016; Bonkhoff et al. 2020; Saes et al. 2020; van der Vliet et 5 

al. 2020). Given the many practical challenges that long-term tracking entails, one promising 6 

strategy to sample an individual’s neural state repeatedly over time is with measures of resting state 7 

(RS) activity (Vecchio et al. 2013; Carino-Escobar et al. 2019; Newbold et al. 2020; Pritschet et al. 8 

2020; Saes et al. 2020). RS activity refers to the ongoing neural activity while individuals maintain 9 

a minimally instructed state of “rest” over several minutes. Despite being an ill-defined state, 10 

oscillatory neural dynamics at rest have been shown to be reliable indicators of neurophysiological 11 

organization and integrity (Biswal et al. 1995; Damoiseaux and Greicius 2009; Van Den Heuvel et 12 

al. 2009; Hermundstad et al. 2013; Miŝic et al. 2016; Hoenig et al. 2018; Buckner and DiNicola 13 

2019). However, the suitability of longitudinal RS to enable individual-specific inferences is poorly 14 

understood. Specifically, can inter-day differences in an individual’s RS activity be translated into 15 

unambiguous inferences about that individual’s changing brain? One important potential confound 16 

in drawing such inferences with RS activity is the ill-defined rest task itself. 17 

The rest task has two dimensions: (i) a behavioral state typically specified by instructions to 18 

stay still and keep eyes open (or closed) (Barry et al. 2007); and (ii) a cognitive state typically 19 

specified by instructions to relax and avoiding thinking of anything specific. Although the 20 

behavioral state can be objectively verified, the criteria to verify the cognitive state are ill defined 21 

(Benjamin et al. 2010; Duncan and Northoff 2013; Kawagoe et al. 2018). Consequently, a person’s 22 

RS activity on multiple days could theoretically be associated with different neural states depending 23 

on the person’s incidental cognitive state on each day (e.g., session 1: free mind-wandering, session 24 

2: struggling to stay awake, session 3: replaying emotional memories) (Diaz et al. 2013). This 25 

potential for true (i.e., non-artifactual) inter-day RS activity differences without changes to 26 
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underlying neurophysiology is a serious confounding factor when the objective is to detect and 1 

track individual-specific neurophysiological change. As this confound originates from the rest task 2 

itself, rather than a particular brain imaging modality or quantitative measure of RS activity (e.g., 3 

related to connectivity), the conundrum is whether this confound can be addressed without changing 4 

the rest task given its many other merits.  5 

Here, we investigated whether RS activity inherently has properties that can help resolve 6 

this inferential confound. To identify these hypothesized properties, we devised empirical 7 

simulations of confounding inter-day RS activity changes. Then, using a machine-learning 8 

approach, we evaluated the robustness of RS-based inferences in the presence of these simulated 9 

confounds.  10 

The problem of disambiguating the neural origin of longitudinal RS differences can be 11 

formulated as a classification problem. Suppose a person has the RS activity patterns Ap and Aq on 12 

days p and q respectively. If Ap and Aq differ from each other, the problem is to decide whether this 13 

difference is attributable to (i) a possible neurophysiological change (abbreviated as NP+), rather 14 

than (ii) an incidental difference in cognitive state (i.e., NP-). Hypothetically, if these two categories 15 

of activity differences were to have distinctive signatures, then a procedure to detect these 16 

signatures would enable an accurate categorization of an activity difference as either NP+ or NP- 17 

and thus resolve the confound.  18 

The plausibility of such signatures is suggested by two differing kinds of constraints on RS 19 

activity. The RS activity evoked by the rest task can be formulated in terms of the task’s unique 20 

information processing demands that differentiate it from other tasks, for example, memorizing a 21 

stimulus or executing a physical action. Alternatively, RS activity can be formulated as an activity 22 

pattern that is structured by each person’s unique neurophysiological phenotype in a characteristic 23 

form that is also shared by other tasks. As these constraints, i.e., information processing demands 24 

versus individual-specific neurophysiology, emphasize different aspects of RS activity, we reasoned 25 
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that longitudinal changes to these constraints might have distinctive signatures in RS activity. We 1 

tested this hypothesis by empirically simulating longitudinal changes to these constraints.  2 

Scalp-EEG at rest was longitudinally acquired on five consecutive days from a group of 3 

healthy, young individuals who were assumed to be neurophysiologically stable over this period. 4 

We additionally acquired EEG while these individuals performed two additional tasks on each day 5 

that were designed to produce pseudo-rest states, that were matched to rest in behavior but not in 6 

cognitive state (Figure 1). These pseudo-rest states served to simulate the confounding role of 7 

incidental cognitive state variation on inter-day RS changes (NP-). To simulate RS activity changes 8 

due to verifiable neurophysiological changes (NP+), we used a “crowdsourcing” approach where 9 

RS activity from other individuals served to empirically simulate an individual’s changed 10 

neurophysiology across days.  11 

With the above formulation, the problem of distinguishing NP+ from NP- was equivalent to 12 

the machine-learning problem of person identification (Valizadeh et al. 2019). Adopting this 13 

approach, classifiers were trained to distinguish each person from all other individuals based on 14 

two-second samples of the instantaneous power spectrum at rest on a single day. We then tested 15 

whether each individual’s RS-based identity from one day was sufficient to re-identify that same 16 

individual from activity samples acquired on a different day. If NP-/NP+ have distinctive 17 

signatures, then an RS-based classifier for person P from one day should correctly re-identify P 18 

even from samples of pseudo-RS activity on a different day, namely, ignoring incidental inter-day 19 

variations in cognitive state (NP-). Conversely, P’s classifier should classify RS-activity samples 20 

from other individuals as not-P, namely, indicating a true change in individual-neurophysiology 21 

(i.e., NP+).   22 

 23 

 24 
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 1 
 2 
 3 
 4 
Figure 1: Experimental paradigm. Four tasks (RS1, Tap, RS2, Sequence) were performed daily in 5 
the same fixed order on five consecutive days. The details of each task on one day are schematically 6 
illustrated. A white fixation point was continuously displayed during the RS1 and RS2 task periods, 7 
and during extended “waiting” periods in the Tap and Sequence tasks (highlighted in blue). In the 8 
Tap task, a blank screen cued a 2s movement interval requiring left index-finger movements to 9 
repeatedly press a button (shown as red dots). In the Sequence task, the movement cue was an 10 
image depicting four numbers between two arrows (not drawn to scale). The number-to-finger 11 
mapping is shown with the cartoon (left) hand. The arrows indicate the required cyclical sequence 12 
of buttons to be pressed repeatedly, for example, 3-1-2-4-4-2-1-3-3-1-2-4, etc. 13 
 14 
  15 
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MATERIALS & METHODS  1 

Participants 2 

Twenty seven healthy volunteers (11 female, age (mean ± sd): 27.9 years ± 3.4, range: 22-34 3 

years) participated in the study and received monetary compensation. Participants had normal or 4 

corrected-to-normal vision; no history of neurological or psychiatric disease; were not under 5 

medication at that time; and had no cranial metallic implants (including cochlear implants). 6 

Handedness was not an inclusion criterion. Based on the Edinburgh Handedness Inventory 7 

(Oldfield 1971), 22 participants were right handed (score > 50), 2 were left handed (score < -50) 8 

and 3 had intermediate scores. The study was approved by the Ethics Commission of the Faculty of 9 

Medicine, University of Cologne (Zeichen: 14-006). All participants provided their written 10 

informed consent before the start of the experiment.  11 

Datasets from 24 (of the 27) participants were used for statistical analyses (see section: Data 12 

quality assessment). 13 

 14 

Apparatus and EEG data acquisition 15 

Stimuli were displayed using the software Presentation (v. 20.2 Build 07.25.18, 16 

Neurobehehavioral Systems, Inc.) on an LCD screen (Hanns-G HS233H3B, 23-inch, resolution: 17 

1920 x 1080 pixels). Movement responses were recorded with the fMRI Button Pad (1-Hand) 18 

System (LXPAD-1x5-10M, NAtA Technologies, Canada). 19 

Scalp-EEG was acquired with a 64-channel active Ag/AgCl electrode system (actiCap, 20 

Brain Products, Germany) having a standard 10-20 spherical array layout (ground electrode at AFz, 21 

reference electrode on the left mastoid). Three electrodes (FT9, FT10, TP10) were used to record 22 

electrooculographic (EOG) activity: one below the left eye to record vertical movements and the 23 

other two near the left and right lateral canthi to record horizontal movements. During acquisition, 24 

measured voltages (0.1µV resolution) were amplified by a BrainAmp DC amplifier (BrainProducts 25 

GmbH, Germany) at a sampling rate of 2.5 kHz and filtered (low cutoff: DC, high cutoff: 250 Hz). 26 
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To ensure reliable positioning of the EEG cap across sessions, a stereotactic neuronavigation 1 

system (Brainsight v. 2.3, Rogue Research Inc, Canada) was used on each session to co-register the 2 

spatial coordinates of five selected electrodes (AFz, Cz, POz, C5, C6) to their coordinates on the 3 

first session (see section: Procedure). 4 

 5 

Experiment protocol and paradigm 6 

Participant completed five sessions of approximately 40 minutes each (Figure 1, upper 7 

panel) where each session was scheduled at the same time on consecutive days (Monday to Friday). 8 

Sessions took place at three possible times: morning (6 x 9AM), noon (9 x 12PM) and afternoon 9 

(12 x 3PM). Due to technical problems during the scheduled recording, for one participant, the fifth 10 

session was re-acquired after a gap of three days.  11 

Each session (Figure 1, lower panel) consisted of two resting state recordings (RS1 and RS2) 12 

interleaved with two non-rest tasks (referred to as Tap and Sequence) that required participants to 13 

press buttons in response to visual cues. These four task periods had the same order (i.e., RS1, Tap, 14 

RS2, Sequence) for all participants on all days. Each task period began with an instruction screen 15 

describing the task to be performed. Following task completion, another instruction screen informed 16 

participants to take a short break and to press a button to initiate the next part when they were ready.  17 

As described in detail below, the Tap and Sequence tasks had relatively long and variable 18 

inter-stimulus-intervals (10-14s) where participants had to fixate on the screen as they “waited” for 19 

a visual cue to initiate a response. The cognitive states during these waiting periods (referred to as 20 

TapWait and SeqWait) were the primary focus of these tasks. The behavioral demands of the Tap 21 

and Sequence tasks was designed to modulate the cognitive states during these pre-movement wait 22 

periods, for example, related to movement preparation during TapWait and covert rehearsal of a 23 

movement sequence during SeqWait. With this covert modulation, the TapWait and SeqWait could 24 

be considered pseudo-rest states as they were matched to RS1 and RS2 in behavioral state but not in 25 

cognitive state. Furthermore, the Tap task was intended to produce cognitive states that were similar 26 
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within and between days while the Sequence task was designed to elicit cognitive states that could 1 

systematically change across days. This was implemented by inducing subjects to learn a difficult 2 

motor sequence where performance could improve with increasing practice across days. We now 3 

describe the different task periods in detail. 4 

 5 

1: Resting State (RS1). During this period lasting ~5minutes,  a small white dot was continuously 6 

displayed at the center of the screen. Participants were instructed to keep their eyes open, fixate on 7 

the displayed white dot, relax and avoid movements (also see section: Procedure).  8 

 9 

2: Tap task. In this task-period, a small white dot was centrally displayed on the screen (as in RS1). 10 

However, after variable intervals of 10-14 seconds, this dot disappeared for a 2 second period 11 

before reappearing. The offset of the dot was the cue for participants to repeatedly and rapidly press 12 

a button with their left index finger until the dot reappeared on the screen. The total task (duration 13 

~14 minutes) consisted of 60 movement periods (dot absent) interleaved with 60 waiting periods 14 

(dot present). These waiting periods are referred to as TapWait and the response execution periods 15 

are referred to as TapMov. 16 

 17 

3: Resting State (RS2). A second resting state recording was acquired with all task parameters being 18 

identical to RS1.  This recording is referred to as RS2. 19 

 20 

4: Sequence task. As with the Tap task, the sequence task consisted of 60 waiting periods of 10-14s 21 

each (i.e., SeqWait) where a small white dot was centrally displayed on the screen interleaved with 22 

60 movement periods of 2s duration (i.e., SeqMov). Unlike the Tap task, each movement period was 23 

cued by a centrally displayed visual stimulus consisting of four vertically displayed digits (3-1-2-4) 24 

between two vertical arrows. Each number was mapped to a different button on the response pad. 25 

The vertical ordering of the numbers indicated the sequence in which the indicated buttons had to 26 
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be pressed using fingers of the left hand. The arrows indicated that this sequence had to be executed 1 

rapidly and repeatedly in a cyclical manner starting from top to bottom and back. For example, 2 

following stimulus onset, the required sequence of button-presses was 3-1-2-4-4-2-1-3-3-1-2-4-… 3 

and so on. This continuing sequence had to be executed until the offset of the stimulus. No 4 

performance feedback was provided during the task. This particular sequence of digits was selected 5 

as it was challenging to execute rapidly. To promote learning of this sequence across trials and 6 

days, the same sequence of numbers and number-to-finger-mapping was used on all sessions. The 7 

same sequence and number-to-finger mapping was also used for all participants.  8 

Handedness was not an inclusion criterion in our experiment. To obtain a degree of 9 

homogeneity in the task-related neural activity, all participants used the fingers of their left hand to 10 

execute the button-press responses in the Tap and Sequence tasks.  11 

 12 

Procedure  13 

Prior to the start of the recordings on each of the five days, participants completed the 14 

Positive and Negative Affect Schedule (PANAS) (Watson et al. 1988) and completed brief 15 

questionnaires to report the caffeine consumption on that day and the amount and quality of sleep 16 

on the previous night. On the first day, participants received detailed instructions about the 17 

experiment. For the resting state periods, participants were instructed to keep their eyes open, fixate 18 

on the displayed white dot and to avoid movements. Additionally, they were also asked to relax, 19 

stay awake and not think of anything in particular. For the Tap task, participants were instructed to 20 

press the buttons as rapidly as possible without causing discomfort. For the Sequence task, 21 

participants were familiarized with the task and the mapping of the number to finger. They 22 

practiced performing the task using a different digit sequence from the one used in the main 23 

experiment. Furthermore, they were explicitly instructed to try to improve their performance 24 

(particularly the number of buttons pressed during each response period) on each session. Finally, 25 

on all sessions, we repeatedly emphasized the importance of minimizing eye-blinks, maintaining 26 
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fixation at all times during the recording, and the avoidance of all unnecessary movements of the 1 

fingers, head and body.  2 

As the study’s objective was to relate the spatio-temporal organization of neural activity 3 

across days, minimizing inter-day variation in the EEG cap’s position was an important priority. We 4 

therefore implemented an additional spatial registration procedure on each day after the EEG cap 5 

was secured to the participant’s head. Using a stereotactic neuronavigation system, the participant’s 6 

head was registered to the Montreal Neurological Institute (MNI) space using standard cranial 7 

landmarks. The positions of five selected electrodes along the midline and lateral axis (AFz, Cz, 8 

POz, C5, C6) were then localized using the neuronavigation software. The electrode locations 9 

obtained on the first day were used as the reference for the remaining sessions. On each subsequent 10 

session, the positioning of the cap was interactively adjusted so that each electrode’s coordinates 11 

closely matched its reference location. Due to scheduling constraints, this spatial registration 12 

procedure was not performed for 7 participants.   13 

The application of electrode gel followed after cap positioning. Skin-electrode impedance 14 

was brought below 10 kΩ before starting the recording. Recordings were acquired in a light-15 

dimmed and acoustically shielded EEG chamber. Participants were seated in a comfortable chair 16 

with their heads stabilized with a chinrest in front of the computer screen at a viewing distance of 17 

~65cm. The response pad was placed in a recess under the table so that participants could not see 18 

their hands during the task-periods (especially while pressing the buttons). During the recording, 19 

participants were monitored via a video camera to ensure that they maintained fixation, minimized 20 

eye-blinks, and stayed awake.  21 

 22 

EEG preprocessing 23 

The EEG data were preprocessed using the EEGLAB software (Delorme and Makeig 2004) 24 

and custom scripts in a MATLAB environment (R2016b, MathWorks, Inc., Natick, MA).   25 

The continuous recordings were down-sampled to 128Hz, and then band-pass filtered to the 26 
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range 1Hz-40Hz with a Hamming windowed sinc FIR filter (high pass followed by low pass). The 1 

continuous recordings then underwent an artifact correction process to remove oculomotor activity 2 

related to eye-blinks and saccades.  3 

Eye blink removal was performed separately for each day’s dataset (including all task 4 

periods) using the procedure described by Winkler et al. (2015). Following this procedure, a copy of 5 

a dataset was first created which was then filtered with a high-pass 2 Hz filter.  This duplicate 6 

dataset was visually inspected to remove data segments and EEG channels with artifacts related to 7 

repeated paroxysmal amplitudes changes (> 50µV), electromyographic contamination, electrical 8 

noise and signal loss. Next, the artifact-free data from all task-periods were segmented into 2s 9 

epochs. These epochs were then submitted to an Independence Components Analysis (ICA) 10 

decomposition using the infomax-ICA algorithm (implemented as runica in EEGLAB). To 11 

minimize inter-condition biases, ICA was performed on a balanced mixture of epochs from RS1, 12 

TapWait, RS2 and SeqWait. Epochs from the TapMov and SeqMov periods were excluded from this 13 

step to avoid movement-specific biases. The ICA weights obtained with the duplicate dataset were 14 

then transferred and applied to the original, non-filtered dataset. ICA components related to eye-15 

blinks and saccades were then identified and removed using an automatic detection algorithm 16 

ADJUST (Mognon et al. 2011). 17 

Following eye-blink correction, the original dataset was then again visually inspected to 18 

remove time periods and channels with artifacts. The signals in rejected channels were replaced 19 

with signals interpolated from other channels using spherical spline interpolation. All channels were 20 

then re-referenced to the Common Average Reference. Finally, the visually inspected continuous 21 

data were segmented into 2s epochs according to the six different experimental states: RS1, RS2, 22 

TapWait, TapMov, SeqWait and SeqMov. For the two movement-related states (TapMov and 23 

SeqMov), epochs were defined from +0.25s to +2.25s following the visual cue to exclude initial 24 

transients and response-time delays following cue onset and to include residual movements in the 25 

period immediately following the cue offset. To avoid any carry-over effects from movement into 26 
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the TapWait and SeqWait epochs, a time interval of 500ms immediately prior to cue onset and 1 

1000ms immediately following cue offset were excluded before segmenting the TapWait and 2 

SeqWait epochs. Furthermore, TapWait and SeqWait epochs that contained any button presses were 3 

excluded. 4 

To establish face-validity of the task states based on their time-courses, we created a 5 

separate set of epochs from -1 to +3s relative to the onset of the visual cue. The signals were band-6 

pass filtered in the β frequency band (14-30Hz) and the signal amplitude was extracted using the 7 

Hilbert transform. After removing edge artifacts, the signal was normalized by calculating the 8 

percentage change in the signal relative to the mean amplitude in the pre-stimulus period [-898ms, 9 

0ms]. After normalization, the signals were averaged across epochs, days and subjects.  10 

 11 

Data quality assessment 12 

Preprocessing resulted in 135 datasets (27 subjects x 5 days). To be included in our analysis, 13 

each subject had to have completed the first three of the four tasks on all sessions and have at least 4 14 

(out of 5) session-datasets that met the following data-quality criteria. For analysis, we required a 15 

preprocessed dataset to have (i) less than seven rejected channels, (ii) ≥ 90 artifact-free epochs from 16 

both resting state periods (i.e., RS1 and RS2), and (iii) ≥ 90 artifact-free epochs from the available 17 

resting-matched conditions (i.e., TapWait, SeqWait). Note that the number of epochs for TapMov 18 

and SeqMov were necessarily ≤ 60 as each task only had 60 response periods of 2s duration.  19 

Datasets from 24 out of 27 subjects met these data-quality criteria: 18 (of 24) had completed 20 

all 4 task-periods on each session and the remaining 6 (of the 24) subjects had completed only the 21 

first 3 (of the 4 parts). To maintain uniformity in the statistical analyses, final analyses were 22 

performed only on the best 4 of the 5 session-datasets. For participants where all 5 datasets were of 23 

high quality, we excluded the first day’s dataset as it might involve effects of initial familiarization. 24 

To maximize the use of the available data after these exclusions, analyses involving only RS1 and 25 

RS2 included data from 24 participants, while analyses involving any of the non-rest tasks used data 26 
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from 18 participants. For these 18 participants, the mean number of epochs per day in TapMov was 1 

52.7 (min: 45.3, max: 57.7; SD = 2.9; minimum/day = 36) and in SeqMov was 53.4 (min: 49.2, 2 

max: 57.7; SD = 2.5; minimum/day = 42). 3 

 4 

Feature specification: Oscillatory power spectrum 5 

All classification analyses were based on a description of the oscillatory power spectrum on 6 

each 2-second epoch. Each epoch’s power spectrum was described using 305 features that specified 7 

the power in five canonical frequency bands (δ: 1-3.5 Hz; θ: 4-7.5 Hz; α: 8-13.5 Hz; β1 (low β): 14-8 

22.5; β2 (high β): 23-30 Hz) at each of the 61 channels. 9 

These features were extracted with the procedure schematically displayed in Figure 2A.  For 10 

each 2s epoch of EEG activity, the oscillatory power spectrum at each channel over the range of 1 11 

to 30 Hz (0.5Hz resolution) was computed using the Fast Fourier Transform (FFT). The power at all 12 

frequencies within each band’s frequency range was averaged to obtain the mean power per 13 

frequency band. The mean power per band was then logarithmically transformed (base 10) so that 14 

the resulting distribution across epochs had an approximate normal distribution. These five features 15 

(one per band) provided a minimal description of each channel’s power spectrum. Finally, these 16 

five features from each channel were concatenated to obtain a single vector with 305 feature values 17 

(5 frequency bands x 61 channels). This extended feature set describing an epoch’s power spectrum 18 

across the scalp was used for the classification analyses. 19 

For detailed analyses, we defined subsets of the full feature set referred to here as the (i) 20 

mono-band and (ii) mono-location feature sets. Each mono-band feature set (Bf) consisted of 21 

features belonging to only one frequency band f. The five mono-band feature sets (each with 61 22 

features) were Bδ, Bθ, Bα, Bβ1 and Bβ2. Each mono-location feature set (Lz) (Figure 2A, top panel) 23 

consisted of features from 10 bilaterally symmetric channels in the spatial zone z on the scalp along 24 

the anterior-posterior axis. The four mono-location sets were defined at the frontal (LF); fronto-25 

central (LFC), centro-parietal (LCP) and parieto-occipital (LPO) zones respectively.  26 
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 1 

 2 
Figure 2: Classification procedure. (A) Feature definition pipeline. Channels in each mono-location subset are 3 
identified by color (green: LF, yellow: LFC, blue: LCP, red: LPO). The continuous signal from each channel was segmented 4 
into 2s epochs followed by an estimation of the frequency spectrum with the Fast Fourier Transform (FFT). The mean 5 
power within each of the five bands was log transformed (base 10) and concatenated with corresponding values from all 6 
other channels to obtain a feature vector. (B) Schematic of a multiclass decision with an ensemble of individual-specific 7 
binary classifiers. Each classifier evaluates the sample (Sx or not-Sx) to output a decision-value (red bars > 0, black bars 8 
< 0) and the classifier with the maximum decision value was the predicted label (here, S2). (C) Classification schemes 9 
AIDx → AIDy (rows) were defined by the configuration of training (left column) and test sets (right column) (where Di 10 
denotes samples from day i). The sample distribution (IDx) had samples from all individuals (multi-colored boxes). 11 
Percentages indicate the proportion of each day’s samples used for training/testing. Same-day identification was 12 
estimated with 5-fold cross-validation (CV). The training set for cross-day aggregation had an equal proportion of 13 
samples from each day and the total number of training samples was the same across aggregation levels.   14 
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Multi-class classification: Definition and accuracy   1 

All classification models were numerically estimated using a soft-margin linear Support 2 

Vector Machine (SVM) algorithm as implemented by the LinearSVC package in the scikit-learn 3 

library (Pedregosa et al. 2011) implemented in Python 3.6. SVM learning was initialized with 4 

parameters (tolerance = 10-5, max iterations =104, hinge loss, balanced class weighting, C = 1).  5 

As defined above, each epoch was a 2-second sample of the ongoing oscillatory activity 6 

from one person (of 24) on one specific day (of 4) engaged in a particular task state (of 6 possible 7 

states: true rest {RS1, RS2}, pseudo-rest {TapWait, SeqWait}, non-rest {TapMov, SeqMov}). The 8 

classification analyses involved predicting an epoch’s origin either by (i) a person’s identity or (ii) 9 

task-state. Multi-class classifiers (using an ensemble of binary classifiers) were used for person 10 

identification as described below. Standalone binary classifiers were used to identify alternative 11 

task-states of the same person.  12 

The input to a multi-class classifier (see Figure 2B) was a single sample (i.e., epoch) from an 13 

unspecified person Sx in the studied group and the required output was the predicted identity of that 14 

person (e.g., S2). The multi-class classifiers used here employed a one-vs-all scheme (as 15 

implemented by scikit-learn). Specifically, an N-class classifier (N ≥ 2) consisted of an ensemble of 16 

N binary-classifiers where each was independently trained to distinguish whether a sample was 17 

from one specific person (e.g., S2) or from any of the other N-1 persons (i.e., not S2). With such an 18 

ensemble, each sample was separately evaluated by each of the N binary-classifiers to obtain a 19 

decision value from each classifier (i.e., the signed distance to the separation hyperplane (Rifkin 20 

and Klautau 2004)). These decision values were compared and the final classification was assigned 21 

to the binary classifier with the maximum decision value. 22 

To obtain a measure of classification accuracy of each individual classifier from the 23 

ensemble classification accuracy, we defined the accuracy ai of the classifier for person Si as 24 

!" = 	
1
2	((" +	*+")	 25 
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where Hi denotes the hit rate (i.e., positive identification rate) of the classifier and CRi denotes the 1 

correct rejection rate. The hit rate Hi was the proportion of instances where samples from Si were 2 

correctly predicted as being from Si by the ensemble (i.e., the classifier Si had a larger decision 3 

value than the competing classifiers). Correct rejection was defined based on the pair-wise 4 

relationship of Si to each of the other classifiers Sj. If the ensemble (incorrectly) predicts Si for a 5 

sample from a different person Sj then it implies that the classifier Si (incorrectly) had a larger 6 

decision value than the competing classifiers, i.e., a false positive. The false positive rate FPi,j 7 

denotes the proportion of instances where samples from Sj were incorrectly predicted as being from 8 

Si by the ensemble. The correct rejection CRi,j was defined as CRi,j  = 1 - FPi,j. Based on this 9 

rationale, the overall correct rejection CRi for Si was defined as the mean of the pair-wise correct 10 

rejection  rates 11 

*+" =
1

- − 1/*+",1
2

134
	where	j ≠ ;	 12 

With this formulation, random chance for each classifier was 50% even though random 13 

chance for the entire ensemble was (100/N)%.  14 

 15 

Multi-class classification: Training and testing schemes 16 

Classification was defined by the samples used for training and testing. Irrespective of 17 

classifier type (multi-class or standalone binary classifier), the training data were always balanced, 18 

i.e., having an equal number of samples per class, to avoid biases arising from imbalanced classes 19 

(Abraham and Elrahman 2013).  20 

Person (multi-class) identification was organized into two schemes based on whether the 21 

training and test samples belonged to the (i) same day (namely, same-day vs cross-day 22 

identification) and the (ii) same task (namely, same-task vs cross-task identification). A schematic 23 

of the same-day/cross-day schemes are shown in (Figure 2C). For convenience, we use the 24 

following notational convention to describe these classification schemes. As multi-class 25 
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classification involves an ensemble decision, it involves the conjoint influence of the sample 1 

distributions from multiple persons. This combined distribution on a particular state (e.g., RS1) on 2 

day d is denoted as RS1Id. A classification scheme where a decision-rule is trained on samples from 3 

AIp (i.e., from task state A on day p) and tested on samples from BIq (i.e., from state B on day q) is 4 

denoted as AIp → BIq. Similarly, a classification scheme where a decision-rule was trained on 5 

samples aggregated from different days (e.g., AIp and AIq) and tested on BIr. is denoted as  AIp ∘ AIq  6 

→ AIr. (see below).  7 

Same-day/same-task identification: The accuracy of same-day person identification in task 8 

state A (AIp → AIp) was estimated using a 5-fold cross-validation (CV) procedure (Blum et al. 9 

1999). Specifically, the set of samples from state A on one day (for example, day D1 in Figure 2C, 10 

upper row), were partitioned into 5 equal folds. Training was performed on four folds (80% of the 11 

sample set) and tested on the left-out fifth fold (the remaining 20%). This training-testing procedure 12 

was repeated so that each fold was used as a test-set once. The mean classification accuracy across 13 

folds was defined as the same-day identification accuracy for that day. In this manner, the CV 14 

accuracy was estimated separately for each of the four days and the mean CV accuracy across days 15 

was denoted as the same-day accuracy for task state A.  16 

Cross-day/same-task identification: For cross-day identification in task state A (AIp → AIq), 17 

samples in the test set were from a different day than the samples in the training set. We modulated 18 

the training set’s day-specificity by aggregating samples from different days in a stratified manner. 19 

In an n-day training set, the k training samples per person consisted of k/n samples from each of n 20 

different days. Here, n could take three possible values, namely, 1,2 or 3 (see Figure 2C, first 21 

column). The number of samples per person, k, was held constant to enable comparison of 22 

classification accuracy across all values of n. Unlike the training set, samples in the test-set were 23 

always from the same day. Mean identification accuracy for a particular n-day aggregation scheme 24 

(e.g., AId1 ∘ AId2 … AIdn → AIr.) was obtained by (i) independently estimating the accuracy for each 25 
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possible training/test-set combinations that satisfied the day constraints (e.g., day p ≠ day q ≠ day r) 1 

and then (ii) averaging these accuracy values.  2 

Cross-task identification: This was treated as a special instance of cross-day identification. 3 

For example, the accuracy for the configuration AIp → BIq was estimated by replacing the test set 4 

with samples from state B while retaining all other day-related constraints as in cross-day/same-task 5 

identification. Unless specified otherwise, cross-task identification was always tested across days, 6 

that is, the training and test sets were always from different days. This was done to exclude 7 

potential inter-state similarities that might be present due to the conjoint preprocessing of data from 8 

all states within the same day (see section: EEG preprocessing). 9 

 10 

Classification schemes: Interpretation of accuracy relationships 11 

The same-day accuracy for a particular state was treated as a pre-condition to estimate the 12 

cross-day identification accuracy for that state. If same-day accuracy was greater than random 13 

chance, it would confirm that the distribution from which the training set was drawn contained 14 

sufficient information to allow identification in the absence of potential inter-day changes. Cross-15 

day accuracy is reported and interpreted here only if this pre-condition was satisfied.  16 

Based on this pre-condition, a reduction in cross-day (1-day) accuracy (e.g., AIp → AIq) 17 

relative to same-day accuracy (e.g., AIp → AIp) can be attributed to a systematic difference in the 18 

distributions AIp and AIq between days (red arrow, Figure 3A). Aggregation was used to evaluate the 19 

source of this cross-day accuracy reduction by varying the statistical properties of the training set 20 

(i.e., by aggregating samples across days) while holding the properties of the test set constant. 21 

Specifically, we assumed aggregation would lead to decision-rules that discount day-specific 22 

properties in favor of day-general properties. Therefore, depending on the relative roles of day-23 

specific/general properties in the classification decision, the cross-day accuracy might stay constant, 24 

increase or decrease with increasing aggregation (Figure 3A).  25 

 26 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.297572doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.297572


 
 
 

20 

 1 
 2 
 3 

 4 
 5 
Figure 3: Effect of aggregation. (A) Schematic of relationship between same-day and cross-day 6 
identification accuracy. Cross-day (1-day) accuracy can be lower than same-day accuracy (red-7 
arrow) due to day-specificity of the decision-rule. Training decision-rules on aggregated samples 8 
(y-axis) can change cross-day accuracy, which could increase (blue, see panel B), or stay constant 9 
(dark green), or even decrease (light green, see panel C). (B) Idealized example of how cross-day 10 
accuracy (column 1) can increase with aggregation (column 2) due to day-general information. 11 
Samples from two classes (stars, circles) are shown along two features (day-general: X, day-12 
specific: Y) with each day’s samples shown in different colors (p: blue, q: orange, r: purple). The 1-13 
day decision-rule (Ip) (top left panel) is depicted with thick black line and shaded areas. This 14 
decision-rule can successfully classify samples from days q and r but with some errors. However, a 15 
decision-rule trained on data from days p and q (Ip ∘ Iq) (thick red line, red shaded area) reduces 16 
cross-day classification errors (lower right). (C) Idealized example of high day-specificity. Even 17 
though the classes are separable within each day, the 1-day decision-rule (Ip) has a poor cross-day 18 
accuracy  (column 1). 2-day training (column 2) produces a decision-rule with worse classification 19 
both on the training set itself (dotted red line) as well as across days (lower right). 20 
  21 
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 1 

Figures 3B and 3C show idealized examples of how aggregation could both increase as well 2 

as decrease cross-day accuracy. In the example shown in Figure 3B, the two classes systematically 3 

differ on feature X (x-axis) but with an inconsistent role for feature Y (y-axis). Due to incidental 4 

day-specific variation, feature Y has a role in distinguishing the classes on day p but not on other 5 

days. Consequently, a decision-rule trained on day p does not effectively separate the classes on 6 

other days (column 1).  However, training on aggregation samples from day p and q (column 2) 7 

reduces Y’s role in the aggregated decision-rule leading to an improved separation of the classes 8 

across days. Figure 3C illustrates an extreme example of day-specificity where the two features 9 

have a conjoint relationship allowing classification within each day but with low generality across 10 

days. Therefore, training on samples aggregated from day p and q leads to an overall reduction in 11 

accuracy on the training set itself as well across days. 12 

 13 

Multi-class classification: Weights and normalized weights 14 

The characteristic weights for a particular classification scheme (e.g., AIp → AIq) were 15 

obtained by averaging the weights across all training sets. In a multiclass classifier, the decision-16 

rules are organized in a winner-take-all competition to label each sample (Figure 2B). Therefore, for 17 

each sample to be uniquely assigned to only one person, the person-specific classifiers in the 18 

ensemble necessarily require different decision-rules. This difference in decision-rules might only 19 

be in the sign (positive/negative) assigned to the weights. Therefore, for all weight-related analyses, 20 

the absolute values of the weights were used in order to allow inter-individual comparisons.  21 

The distribution of high-valued weights in the mono-band/location subsets was estimated as 22 

follows. For each subject, the absolute weights of all features were first sorted. The weights in the 23 

kth percentile of the sorted weights were then identified and the relative proportion of these selected 24 

high-valued weights contained in each of the mono-band sets was then calculated. This procedure 25 

was repeated for different values of k. These proportions were separately calculated for the mono-26 
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location sets. Since the temporal channels were not included in any of the mono-location subsets, 1 

these channels were excluded for the proportion calculations. 2 

To identify the high-consistency weights, the absolute weights were z-scored across all 3 

features for each subject to retain information about inter-feature weight differences in the statistical 4 

tests. 5 

 For features i and j, the weight |wi| might be greater than |wj| while the power |Pi| might be 6 

less than |Pj.|. Consequently, neither the relationship between the weights nor the power are reliable 7 

indicators of the relative influence of i and j on the eventual classification decision. Therefore, we 8 

defined a feature i’s unit weight =>" as the idealized weight value such that =>"?" = 1. The 9 

normalized weight was thus defined as the ratio ="/=>", which was effectively equal to wiPi. Due to 10 

the large differences in power between bands, for statistical comparisons, the absolute normalized 11 

weights (i.e., |w*P|) were z-scored within each band for each subject. 12 

 13 

Statistical Analysis  14 

The relative differences in the accuracy of different classification schemes were assessed by 15 

performing paired t-tests, repeated measures one-way or two-way analysis of variance (ANOVA) 16 

implemented by the pingouin python package (version 0.3.2) (Vallat 2018). 17 

The random chance accuracy for the multi-class and standalone binary classifier was 50% 18 

and accuracy deviations from random chance were evaluated with one-sample t-tests. The 19 

Bonferroni threshold was used to correct for multiple comparisons. Due to the sequential 20 

relationship between the different multiclass classification schemes, following Figure 3A, the tests 21 

for same-day accuracy (CV) and cross-day accuracy were planned tests that were considered 22 

significant at a threshold of p < 0.05. The tests for 2-day and 3-day aggregation were evaluated at a 23 

threshold of p < (0.05/2). For tests for the mono-band and mono-location sets, the thresholds were 24 

further corrected for the number of feature sets. 25 

Two kinds of error-bars are used in the plots. For plots depicting variable changes due to a 26 
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single-factor, error bars indicate the standard deviation (SD). Plots depicting multi-factor changes 1 

use error bars displaying the within-subject standard error (s.e.m.) (O’Brien and Cousineau 2014). 2 

The type of error-bar is explicitly noted in the figure caption. 3 

 4 

 5 

RESULTS 6 

Face-validity of individual power spectra  7 

The individual-identification approach assumes that (i) there are likely to be inter-day 8 

differences in an individual’s power spectrum at rest, (ii) there are systematic inter-individual 9 

differences in the power spectra at rest. Qualitatively, these assumptions were readily evident in the 10 

full spectrum (Figure 4A) before its reduction into the minimal description used for the 11 

classification analyses. The power spectrum at channel Oz is shown for all individuals on all days 12 

and task-states (Figure 4B). The power spectrum in RS1 showed a typical shape with high power in 13 

the delta and alpha frequency bands, with a prominent peak at the alpha band for several 14 

individuals. There were qualitative differences in the power spectra between days (vertical) and 15 

between states (horizontal). For example, the prominent peak in the alpha frequency band was 16 

greatly reduced for SeqMov relative to all other states. Figure 4C shows the mean power spectrum 17 

(averaged across days) in RS1 across channels for a few selected individuals (diagonal). Each 18 

individual’s spectra showed a characteristic form across channels with a characteristic higher power 19 

in the delta and alpha bands and a higher overall power in the posterior and anterior channels 20 

relative to the central channels. This pattern was evident in the systematic inter-individual 21 

differences in the power spectra.  22 

However, what was less obvious was whether an inter-day change in person Si‘s power 23 

spectrum could lead Si being mis-identified as Sj. Here we sought a quantitative answer to this 24 

question.  25 

 26 
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 4 
 5 
 6 
 7 
Figure 4: Inter-day and inter-individual differences. (A) Representative example of individual 8 
oscillatory power spectrum in RS1 (averaged across days) at all channels across the scalp (posterior-9 
to-anterior ordering). Dark black lines indicate frequency band boundaries. At all channels, power 10 
was higher in the δ and α bands, and higher in posterior and anterior channels while being lower at 11 
the central channels. (B) Frequency spectra at channel Oz for all subjects (gray lines) by day and 12 
task-state (blue, orange, green lines indicate three representative subjects). Individual frequency 13 
spectra have a characteristic shape across task-states but with modulations in power across days and 14 
task-states, especially in TapMov and SeqMov. (C) Mean cross-day oscillatory power in RS1 for 8 15 
selected subjects (diagonal, red boundary) and their pair-wise inter-individual differences. For each 16 
pair of individual Si and Sk, the difference in power Si - Sk is shown at row i, column k (example 17 
shown with dotted red line). Inter-individual power differences are confined to narrow frequency 18 
bands (e.g. α-band in S2-S3) while being broadly distributed for others (e.g. S4-S7).  19 
 20 
  21 
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Robust identification of individuals from RS activity within and across days 1 

To identify a person from a 2s sample of RS activity with an ensemble classifier, a decision-2 

rule was numerically estimated to represent each person’s unique RS characteristics. The decision-3 

rules estimated for each day could identify each person (of 24) from a sample acquired on the same 4 

day (i.e., according to the scheme RS1Ip → RS1Ip) with a mean cross-validated (CV) accuracy of 5 

99.98 ± 0.04% (mean ± sd) that was significantly larger than the theoretically expected accuracy for 6 

random guessing [> 50%: t23 = 5596.13, p < 0.00001]. However, for longitudinal RS, the key issue 7 

was whether decision-rules from one day could identify a person from a sample acquired on a 8 

different day (i.e., RS1Ip → RS1Iq). The same-day decision-rules identified individuals across days 9 

with a mean accuracy of 92.10% ± 6.8% that was higher than random chance [t23 = 30.14, p < 10 

0.00001] but less accurate than same-day identification by ~8% [paired t23 = 5.64, p = 0.00001]. 11 

This reduction in identification accuracy across days illustrated the challenge of longitudinal RS. 12 

Errors in identifying a person P across days seemingly suggest that P’s unique activity 13 

characteristics had changed across days. However, such inter-day neurophysiological changes were 14 

unlikely to have occurred in the individuals studied here. 15 

In numerical terms, the cross-day loss in accuracy implies that certain properties of each 16 

day’s decision-rules were of predictive relevance to same-day samples but of limited generality to 17 

other days. To discount the role of these day-specific properties in favor of day-general properties, 18 

the decision-rules were trained using samples aggregated from multiple days (i.e., RS1Ip ∘ RS1Iq … → 19 

RS1Is)(see Methods). The mean cross-day accuracy increased from 92.10% ± 6.8% without 20 

aggregation (1-day) to 95.92 ± 3.63% with 2-day aggregation, with an additional increase to 21 

97.39% ± 2.65% with 3-day aggregation [one-way ANOVA, F2,46 = 28.83, p < 0.00001] (Figure 5, 22 

Table 1). Following aggregation, the cross-day accuracy was a mere ~2% lower than the same-day 23 

accuracy consistent with the absence of large-scale neurophysiological changes between days. 24 

 25 

 26 
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 1 
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 4 
 5 
 6 
 7 
Figure 5: Identification accuracy at rest. Mean identification accuracy with RS1 (blue) on same-8 
day (CV), across days (1-day, 2-day, 3-day), and schemes relating RS1 and RS2 (orange). Light 9 
colored dots/lines depict individual accuracies (N=24). Horizontal dotted line depicts random 10 
chance accuracy (50%). Error bars: SD (** = 0.00001 ≤ p < 0.001). 11 
 12 
 13 
  14 
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 1 

 2 
Table 1: Identification accuracies in different experimental states reported as Mean % (SD) 

 All values were significantly above random chance (50%) (see Suppl. Table 1). 

States 
Type  

CV 1-day 2-day 3-day 

RS1 

(N=24) 

99.98  

(0.04) 

92.10  

 (6.84) 

95.92  

 (3.63) 

97.39  

 (2.65) 

RS1 

(N=18) 

99.98  

 (0.06) 

92.79  

 (6.76) 

96.61  

 (3.29) 

97.53  

 (2.51) 

RS2 

(N=24) 

99.99  

 (0.04) 

91.59  

 (7.49) 

95.86  

 (4.18) 

96.99  

 (3.50) 

TapWait 

(N=18) 

99.99  

 (0.02) 

92.58  

 (6.38) 

96.36  

 (3.42) 

97.61  

 (2.77) 

SeqWait 

(N=18) 

99.99  

 (0.02) 

93.67  

 (7.35) 

97.12  

 (4.36) 

98.03  

 (3.80) 

TapMov 

(N=18) 

99.94  

 (0.12) 

92.39  

 (6.72) 

96.12  

 (3.34) 

97.29  

 (2.41) 

SeqMov 

(N=18) 

99.97  

 (0.10) 

93.47  

 (8.41) 

96.67  

 (4.64) 

97.94  

 (2.99) 
 3 

The effects of aggregation with RS1 were replicated with samples from RS2, which was the 4 

second RS measurement on each day (Table 1) [two-way ANOVA, Condition {RS1, RS2} x Type 5 

{1-day, 2-day, 3-day}, Type*Condition: F2, 46 = 0.56, p = 0.57; Type: F2, 46 = 31.29, p < 0.00001; 6 

Condition: F1, 23 = 0.38, p = 0.54]. RS2 also confirmed the role of day-specific properties of the 7 

decision-rules (Figure 5). Same-day decision-rules from RS1 classified samples of RS2 from the 8 

same day (RS1Ip → RS2Ip) with a mean accuracy of 99.54 ± 1.17% that was significantly greater than 9 

the accuracy in classifying RS1 across days (RS1Ip → RS1Iq) (92.10 ± 6.84%) [paired t23 = 5.19, p = 10 

0.00003]. Furthermore, RS2 validated the relevance of aggregating samples from different days 11 

(rather than different measurements) to reduce day-specificity. Decision-rules trained on aggregated 12 
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same-day samples from RS1 and RS2 (RS1Ip ∘ RS2Ip → RS1Ir) had a lower cross-day accuracy (92.38 1 

± 6.92%) than decision-rules trained on aggregated RS1 samples from two days (RS1Ip ∘ RS1Iq → 2 

RS1Ir) (95.92 ± 3.63 %) [paired t23=-4.83, p = 0.00007].  3 

In summary, the cross-day loss in accuracy without aggregation was indicative of inter-day 4 

variations in RS activity. However, the high cross-day accuracy (with aggregation) was evidence 5 

for an individual-specific neural pattern that was stable across days despite inter-day variations in 6 

RS activity. A possible (but unverified) source of this inter-day variation was the person’s 7 

incidental cognitive state on each day. Before testing the stability of the hypothesized neural 8 

signature to experimentally verified perturbation in cognitive state, we assessed the information 9 

sources that contribute to this stable neural pattern.  10 

 11 

Low cross-day identification with information from only one frequency or one location  12 

Each sample was a snapshot of RS activity described by 305 informational features (5 bands 13 

x 61 channels). To assess the informational role of these different features, we evaluated whether 14 

identification comparable to the full feature-set was possible with subsets of features that were 15 

defined either by frequency band (i.e., mono-band sets) or spatial location (i.e., mono-location sets).  16 

Each mono-band feature set (Bf) consisted of features from one frequency band f at all 61 17 

channels. For all five mono-band sets (Figure 6A, Table 2), same-day identification had a mean 18 

accuracy greater than 95%. However, the size of the cross-day loss in accuracy was band-dependent 19 

and ranged from ~14% for Bα to nearly ~32% for Bδ [ANOVA, Type {CV, 1-day} x Band {Bδ, Bθ, 20 

Bα, Bβ1, Bβ2}, Type*Band: F4,92 = 24.77, p < 0.00001; Type: F1,23 = 231.51, p < 0.00001,; Band: F4, 21 

92 = 40.40, p < 0.00001]. The divergence in cross-day losses for Bα and Bδ was striking as these two 22 

bands had a characteristically higher power relative to the other bands (Figure 4). Training with 23 

multi-day aggregation (Figure 6B) increased cross-day accuracy by differing amounts for each band 24 

by, for example, +10% for Bβ2 but only +6% for Bδ [ANOVA, Band {Bδ, Bθ, Bα, Bβ1, Bβ2}x Type 25 

{1-day, 2-day, 3-day}, Type*Band: F8, 184 = 9.19, p < 0.00001; Type: F2, 46 = 146.28, p < 0.00001,; 26 
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Band: F4, 92 = 43.20, p < 0.00001]. However, even with 3-day aggregation, the residual difference 1 

between cross-day and same-day accuracy (minimum: ~7% for Bα, maximum: ~26% for Bδ) was 2 

larger than the ~2% difference with the full feature-set. 3 

 4 

Table 2: Identification accuracies for RS1 with mono-band and mono-location feature 

subsets reported as Mean % (SD). All values were significantly above random chance 

(50%) (see Suppl. Table 2). 

Subset 

(N=24) 

Type 

CV 1-day 2-day 3-day 

Bδ 
96.09  

 (2.55) 

64.67  

 (7.92) 

67.88  

 (8.11) 

70.11  

 (8.02) 

Bθ 
97.57  

 (1.53) 

76.99  

 (7.69) 

81.76  

 (7.11) 

83.70  

 (6.94) 

Bα 
98.51  

 (1.18) 

84.19  

 (7.74) 

88.38  

 (6.33) 

89.59  

 (5.67) 

Bβ1 
99.64  

 (0.59) 

81.40  

 (10.44) 

87.04  

 (9.03) 

88.92  

 (8.14) 

Bβ2 
99.72  

 (0.35) 

76.37  

 (9.98) 

83.21  

 (8.99) 

86.67  

 (7.95) 

LF 
98.04 

(1.79) 

82.68 

(8.90) 

87.29 

(7.46) 

88.88 

(6.57) 

LFC 
98.57 

(1.54) 

86.92 

(9.38) 

90.39 

(7.45) 

91.77 

(6.12) 

LCP 
98.00 

(1.78) 

85.28 

(8.58) 

89.44 

(7.30) 

90.37 

(6.53) 

LPO 
97.92 

(2.02) 

81.02 

(8.32) 

86.47 

(7.35) 

87.97 

(7.06) 

 5 

 6 

 7 

 8 
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 1 
 2 
 3 

 4 
 5 
 6 
 7 
Figure 6: Identification at rest with mono-band/location feature subsets. (A) Mean 8 
identification accuracy for RS1 with mono-band feature sets of increasing frequency (x-axis) on the 9 
same-day (blue, CV) and across-days (orange, 1-day). Light-colored dots/lines depict individual 10 
accuracies (N=24). Error bars: SD. (B) Change in cross-day identification with increasing 11 
aggregation (x-axis) for different mono-band feature subsets (colored lines). Error bars: Within-12 
subject s.e.m. (C) Mean identification accuracy for mono-location feature sets (x-axis, from anterior 13 
to posterior) with graphical representation and error bars as in panel A. (D) Change in cross-day 14 
identification with increasing aggregation (x-axis) for different mono-location feature subsets 15 
(colored lines). Error bars: Within-subject s.e.m.  Horizontal dotted line depicts the random chance 16 
accuracy (50%) in all panels.  17 
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Each mono-location feature set (LA) consisted of 50 features (5 bands x 10 channels) at 1 

location A (Figure 2A). The mean same-day accuracy was greater than 95% for all mono-location 2 

feature sets (Figure 6C, Table 2). However, the mean cross-day (1-day) accuracy showed reductions 3 

of ~12%-16% for all locations [ANOVA, Type {CV, 1-day} x Location {LF, LFC, LCP, LPO}, 4 

Type*Location: F3,69 = 3.65, p = 0.016; Type: F1,23 = 109.36, p < 0.00001,; Location: F3, 69 = 5.56, p 5 

= 0.0018]. The mean cross-day accuracy for the fronto-central (LFC) and centro-parietal (LCP) sets 6 

were marginally higher than for the parieto-occipital (LPO) and frontal (LF) sets. This zonal accuracy 7 

difference was notable as the mean power for all bands was typically higher over the posterior and 8 

anterior channels than the centrally located channels (Figure 4C). Aggregation increased cross-day 9 

accuracy by ~6% for all four location sets (Figure 6D) [ANOVA, Location: {LF, LFC, LCP, LPO} x 10 

Type {1-day, 2-day, 3-day} [Type*Location: F6, 138 = 2.07, p = 0.06; Type: F2, 46 = 115.45, p < 11 

0.00001; Location: F3, 69 = 4.78, p = 0.0043]. Nevertheless, the residual ~7%-10% cross-day loss in 12 

accuracy was larger than with the full feature-set.  13 

In summary, all the mono-band and mono-location sets enabled same-day identification with 14 

nearly error-free accuracy. However, this information content did not confer robustness to the inter-15 

day variation in RS activity. Even with aggregation, these feature sets had a much lower cross-day 16 

accuracy than the full feature-set that combined these feature sets together. This divergence 17 

suggests that the high cross-day robustness with the full feature-set might involve a crucial role for 18 

relationships between different frequency bands (i.e., unlike the mono-band subsets) at spatially 19 

distributed channels (i.e., unlike the mono-location subsets). To assess how multi-feature 20 

relationships might confer cross-day robustness, we evaluated the pattern of weights associated with 21 

the different features. 22 

 23 

 24 

 25 

 26 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.297572doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.297572


 
 
 

32 

 1 
 2 
 3 

 4 
 5 
 6 
 7 
Figure 7: Decision-rule consistency at rest. (A) Mean proportions of high-valued (absolute) 8 
weights in the mono-band subsets (upper panel) and mono-location subsets (lower panel) at 9 
increasing percentiles (x-axis). Proportions (y-axis) are shown as deviations from an equal 10 
distribution across subsets (1/5 = 0.2, upper panel; and 1/4  = 0.25; lower panel). Insets show weight 11 
distribution in the 90th percentile (vertical dotted line). Error bars: Within-subject s.e.m. (B) Spatial 12 
distribution of high-valued weights (absolute) per frequency band. Upper two rows show the mean 13 
raw weights (z-scored across all features) and their changes with aggregation (1-day, 3-day). Lower 14 
two rows show the corresponding distributions for the mean normalized weights (z-scored per band 15 
due to the large power differences between bands). Weights in each scalp map that were 16 
significantly greater than zero are indicated with a white asterisk (p < 0.05/61, see Suppl. Figure 1).  17 
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Concentration of high-relevance features in Bα and LFC 1 

Each individual’s linear decision-rule in the ensemble classifier was defined by the 2 

configuration of weights assigned to the different features, where weights with a larger magnitude 3 

(irrespective of sign) have a larger role in the classification decision even if in an indirect manner 4 

(Haufe et al. 2014). With an ensemble classifier, for a sample to be uniquely associated with a 5 

single person with high accuracy, the decision-rules in the ensemble need to have non-identical 6 

weight configurations. Therefore, a key consideration was whether the individual weight 7 

configurations differ from each other in an idiosyncratic manner with little consistency between 8 

individuals.  9 

As a first test of consistency, we assessed whether differences in cross-day accuracies 10 

between the mono-band and mono-location subsets were an indicator of their relevance in the full 11 

feature set. For example, if subset Sx in isolation had a higher cross-day accuracy than Sy then Sx 12 

might have a larger concentration of high-weighted features than Sy as part of the full feature-set. To 13 

test this simplistic prediction, we evaluated the relative concentration of features with large weights 14 

(specified by percentile) in the different mono-band (Figure 7A, upper panel) and mono-location 15 

subsets (Figure 7A, lower panel). 16 

The relative proportion of high-weighted features in the different mono-band subsets 17 

diverged at higher percentiles [ANOVA, Band {Bδ, Bθ, Bα, Bβ1, Bβ2} x Percentile {5%, 18 

10%…95%}, Band*Perc: F72, 1656 = 5.08, p < 0.00001; Band: F4, 92 = 7.26, p = 0.00003; Perc: F18, 414 19 

< 0.001, p =1]. Bα contained the largest proportion of high-valued weights in the 90th percentile 20 

(inset Figure 7A, upper panel). This ordering was qualitatively similar to the cross-day accuracies 21 

for the mono-band feature sets (Figure 6A), where Bα had the highest mean cross-day accuracy. 22 

However, the proportion of high weights in Bδ was comparable to the other subsets despite having a 23 

lower cross-day accuracy than the other subsets. The relative proportion of high-weighted features 24 

in the mono-location subsets also diverged at higher percentiles [ANOVA, Location: {LF, LFC, LCP, 25 

LPO} x Percentile {5%, 10%…95%}, Location*Perc: F54, 1242 = 2.00, p = 0.00003; Location: F3, 69 = 26 
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3.71, p = 0.015; Type: F18, 414 < 0.001, p = 1]. The fronto-central LFC subset contained a higher 1 

proportion of high-valued weights in the 90th percentile than LCP that was immediately posterior to 2 

LFC (inset Figure 7A, lower panel). By contrast, the mean cross-day accuracies for LFC and LCP in 3 

isolation were comparably similar (Figure 6C). 4 

The concentration of high-valued weights in the different feature subsets was not a simple 5 

indicator of how these feature sets might contribute to high cross-day accuracy. However, it 6 

revealed consistencies in the distribution of relevant features across individuals, notably in Bα and 7 

LFC. We therefore evaluated whether there were any specific features in each of the feature subsets 8 

that were consistently assigned a high relevance across individuals.  9 

 10 

Distinct spatial concentrations of band-specific features 11 

Figure 7B shows the spatial distribution of high-consistency features i.e., with mean z-12 

scored weight significantly greater than zero (also see Suppl. Figure 1). Since the classification 13 

decision is based on summing the weighted power at each of the features, the influence of a feature 14 

on the decision is linked to the power at that feature. Therefore, we evaluated the high-consistency 15 

“raw” weights (Figure 7B, upper panels) as well as weights after normalization for power 16 

magnitude (Figure 7B, lower panels).  17 

The distribution of weights was not idiosyncratic as might have been expected for predictors 18 

of inter-individual differences. Instead there were concentrations of high-consistency weights at 19 

distinct zones in each frequency band set. For both raw and normalized weights, the weights 20 

obtained with 3-day aggregation were similar to 1-day (without aggregation) with small changes in 21 

the relative weighting of the features.  22 

With the exception of Bδ, all the other sets (Bθ, Bα, Bβ1, Bβ2) contained at least one high-23 

consistency feature. For Bθ, the raw weights revealed a high-consistency feature at FC1 (and at CP1 24 

at uncorrected thresholds (Suppl. Figure 1)). When normalized with power, there was a 25 

concentration at a slightly posterior zone at CP1 and C3, with the addition of CP3 with aggregation. 26 
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There was a corresponding but weaker concentration observable over the right hemisphere at 1 

uncorrected thresholds. Unlike the central concentration of features in Bθ, the consistent features in 2 

Bα were broadly distributed across the scalp at channels P03, TP7, AF3, FT8. However, with 3 

aggregation, the raw and normalized weights revealed a single, strongly consistent feature at PO3.  4 

The high-consistency features in Bβ1 showed a striking bilaterally symmetric configuration 5 

along the transverse midline at channels C3, Cz, C4 with the aggregation-dependent roles for T7, 6 

T8 and CP6. Unlike Bβ1, the high-frequency range of the β band (Bβ2) only had a single consistent 7 

feature at P1 with a more diffuse configuration of weights at uncorrected thresholds. 8 

In summary, the distribution of the high-consistency features over the sensorimotor cortex 9 

and the occipital cortex was prima facie support for the neurophysiological basis of the signals 10 

being used to distinguish between individuals. To assess the relevance of these distributed high-11 

consistency zones to cross-day accuracy and the specificity of these zones to resting activity, we 12 

next turned to the relationship of RS1 to the non-rest task states (evaluated in a subgroup of N=18 13 

subjects (see section: Material and methods)). 14 

 15 

Neural activity during Tap and Sequence verifiably deviate from RS1  16 

A potential, but unverifiable, source of inter-day variation in RS1 was the person’s cognitive 17 

state during this period on each day. Therefore, before testing the effect of cognitive state variation 18 

on RS-based identification, we sought to explicitly verify the relationship of RS1 to the non-rest 19 

cognitive states during the Tap and Sequence tasks. The behavioral demands during TapMov and 20 

SeqMov were designed to modulate the cognitive states during the TapWait and SeqWait periods 21 

and produce neural activity deviations from RS1 in the absence of behavioral differences. 22 

Furthermore, the Tap and Sequence tasks were designed to elicit neural states that varied between 23 

days for Sequence (low cross-day similarity) but remained constant for Tap (high cross-day 24 

similarity).  25 

 26 
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 4 
 5 
 6 
 7 
Figure 8: Difference between RS1 and task-states. (A) Change in behavior indexed by mean 8 
number of button-presses across days (x-axis) during TapMov (blue) and SeqMov (orange). Error 9 
bars: Within-subject s.e.m. (B) Movement-related power dynamics in the β band (14-30 Hz) in 10 
TapMov (blue) and SeqMov (orange) at channels C4 (upper right) and Oz (lower right) averaged 11 
across participants and days.  Intervals marked in gray were discarded from the TapWait and 12 
SeqWait samples used for classification to avoid movement-related carry over effects into the 13 
waiting periods. Scalp plots (left panel) show the mean power distribution over the period [+1s, 14 
+1.5s] following onset of the movement cue. (C) Same-day/cross-day accuracy in distinguishing 15 
RS1 vs pseudo-rest states (green) and RS1 vs movement states (orange) using within-subject binary 16 
classifiers. Cross-day differences to RS1 were lowest for TapWait (far left) and highest for SeqMov 17 
(far right). Error bars: SD. (D) Person identification accuracy (multiclass) when the training/test sets 18 
were from the same task state (green: pseudo-rest states, orange: movement states). Error bars: SD. 19 
  20 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.297572doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.297572


 
 
 

37 

The inter-day changes in behavior during the TapMov and SeqMov periods were consistent 1 

with the experimental assumptions (Figure 8A). During TapMov, the mean number of button 2 

presses per trial (~12-13) remained effectively constant across days [one-way ANOVA, F4, 68 = 3 

0.55, p = 0.70]. In contrast, during SeqMov, the mean number of button-presses increased from ~8 4 

on the first day to ~13 on the fifth day [one-way ANOVA, F4, 68 = 21.35, p < 0.00001]. This inter-5 

day change in motor performance in SeqMov was systematically different from TapMov as 6 

confirmed by the statistically significant interaction in an ANOVA with factors Condition 7 

{TapMov, SeqMov} x Days {D1,..,D5} [Condition*Days: F4, 68 = 12.38, p < 0.00001; Condition: F1, 8 

17 = 3.13, p = 0.09472; Days: F4, 68 = 10.71, p < 0.00001].  9 

The neural state during the movement-period (TapMov, SeqMov) showed typically expected 10 

dynamic states (Figure 8B). Changes in the mean β power at channel C4 (contralateral to the moved 11 

fingers) were in line with the Event-Related De-synchronization/Synchronization (ERD/ERS) 12 

phenomenon for repetitive movements (Pfurtscheller and Lopes da Silva 1999; Cassim et al. 2000; 13 

Alegre et al. 2004; Erbil and Ungan 2007), namely, a power reduction at the onset of movement 14 

execution (i.e., ERD) with an increase after the termination of all movements (i.e., ERS). 15 

Furthermore, the β power changes at Oz showed a task-dependent neural response consistent with 16 

differing visual stimulation, that is, an increase for TapMov (blank screen) but a decrease for 17 

SeqMov (image depicting the sequence). These movement-vs-wait differences were validated in the 18 

samples used for classification. A within-subject binary classification of TapWait vs TapMov had a 19 

mean cross-validated accuracy of 85.91 ± 7.23% [> 50%: t17 = 21.06, p < 0.00001]; and SeqWait vs 20 

SeqMov had a mean CV accuracy of 94.58 ± 3.20%  [> 50%: t17 = 59.02, p < 0.00001]  21 

The critical verification for our study was the relationship between RS1 and the pseudo-rest 22 

states (TapWait, SeqWait). Samples from TapWait and SeqWait were distinguishable from RS1 on 23 

the same day with high cross-validated accuracy (RS1 vs TapWait: 88.35 ± 5.66%; RS1 vs SeqWait: 24 

95.13 ± 3.77%) (Figure 8C left panels, Table 3). However, the cross-day accuracy (without 25 

aggregation) for both RS1 vs TapWait  (62.91 ± 6.44%) and RS1 vs SeqWait  (67.79 ± 8.53%) was 26 
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substantially lower than the same-day accuracy by more than ~25%. Nevertheless, the cross-day 1 

accuracy for RS1 vs SeqWait was marginally higher than for RS1 vs TapWait with increasing 2 

aggregation [ANOVA: Condition {RS1 vs TapWait, RS1 vs SeqWait} x Type {1-day, 2-day, 3-3 

day}, Condition*Type: F2, 34 = 6.21, p = 0.00585; Condition: F1, 17  = 8.37, p = 0.01009; Type: F2, 34 4 

= 38.88, p < 0.00001].  5 

TapMov and SeqMov were also distinguishable from RS1 on the same-day with high (cross-6 

validated) accuracy (RS1 vs TapMov: 93.62 ± 4.09%; RS1 vs SeqMov: 97.84 ± 1.70%) (Figure 8C, 7 

right panel, Table 3). Similar to the wait periods, the cross-day accuracy for RS1 vs SeqMov was 8 

higher than for RS1 vs TapMov across aggregation levels [ANOVA: Condition {RS vs TapMov, 9 

RS1 vs SeqMov} x Type {1-day, 2-day, 3-day}, Condition*Type: F2, 34 = 0.61, p = 0.55; Condition: 10 

F1, 17  = 30.91, p = 0.00003; Type: F2, 34 = 69.47, p < 0.00001].  11 

Unlike the unverified inter-day cognitive state differences during rest, the above findings 12 

verified the neural activity differences in the task-states in Tap and Sequence to each other and to 13 

RS1. We next turned to the key issue of cross-task person identification.  14 

 15 

Table 3: Classification accuracy of RS1 vs task state (binary, within-subject)  

reported as Mean % (SD). All values were significantly above random chance (50%) 

(see Suppl. Table 3). 

RS1 vs  

(N=18) 

Type 

CV 1-day 2-day 3-day 

 TapWait 
88.35  

 (5.66) 

62.91  

 (6.44) 

66.26  

 (8.69) 

67.28  

 (9.11) 

 SeqWait 
95.13  

 (3.77) 

67.79  

 (8.53) 

73.05  

 (11.01) 

74.86  

 (11.37) 

 TapMov 
93.62  

 (4.09) 

79.05  

 (7.17) 

82.75  

 (5.99) 

84.18  

 (5.92) 

SeqMov 
97.84  

 (1.70) 

88.77  

 (5.21) 

92.81  

 (3.43) 

93.32  

 (3.77) 

 16 
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Robust identification of individuals from Tap and Sequence activity within and across days 1 

A key measure of day-specificity was the loss in accuracy between cross-day and same-day 2 

identification. By analogy, we evaluated the relationship of RS1 to the task-states by the difference 3 

in accuracy between same-task (i.e., with the scheme XIp → XIq) and cross-task identification (i.e., 4 

XIp → YIq). Before evaluating cross-task identification with RS1, we evaluated whether the different 5 

Tap and Sequence task-states contained sufficient information for person identification in a same-6 

task classification scheme (Figure 8D). 7 

The same-day accuracy for both TapWait and SeqWait was ~99% (Figure 8D left panels, 8 

Table 1). The mean cross-day accuracy (without aggregation) for TapWait (92.58 ± 6.38%) was 9 

lower than its corresponding same-day accuracy by only ~7%  [t17 = 4.92, p = 0.00013]. Similarly, 10 

for SeqWait, the mean cross-day (1-day) (93.67 ± 7.35%) accuracy was lower than the same-day 11 

accuracy by ~6% [t17 = 3.65, p = 0.00197]. Furthermore, the effect of aggregation on mean cross-12 

day accuracy for TapWait and for SeqWait were statistically indistinguishable [ANOVA: Condition 13 

{TapWait, SeqWait} x Type {1-day, 2-day, 3-day} [Condition*Type: F2, 34 = 0.88, p = 0.42; 14 

Condition: F1,17 = 1.35, p = 0.26; Type: F2, 34 = 21.30, p < 0.00001].  15 

Despite the deviations of TapMov and SeqMov along both the behavioral and cognitive 16 

dimensions of rest and their differences with each other, the accuracies of individual identification 17 

across days for TapMov and SeqMov were greater than 90% for all levels of aggregation and were 18 

not statistically distinguishable from each other (Table 1, Figure 8D right panels) [ANOVA: 19 

Condition {TapMov, SeqMov} x Type {1-day, 2-day, 3-day} [Condition*Type: F2, 34 = 0.86, p = 20 

0.43; Condition: F1, 17  = 1.26, p = 0.27; Type: F2, 34 = 14.50, p = 0.00003].  21 

Remarkably, despite the extensive differences between TapWait. SeqWait, TapMov and 22 

SeqMov, the consistency in weight patterns and weighted power for these states were qualitatively 23 

similar to each other (Figure 9, Suppl. Figure 2). Importantly, these weight patterns also showed 24 

similarities with the corresponding patterns for RS1 (Figure 7) thus suggesting the a priori 25 

plausibility of cross-task generalization.  26 
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 1 
 2 

 3 
 4 
 5 
 6 
 7 
Figure 9: Spatial distribution of weights in different task-states. Mean high-valued weights 8 
(absolute, z-scored) for the different frequency bands (raw: left panel, normalized: right panel) 9 
without aggregation. Weights in each scalp map that were significantly greater than zero are 10 
indicated with a white asterisk (p < 0.05/61, see Suppl. Figure 2). For both raw and normalized 11 
weights, each frequency band (column) had a characteristic spatial distribution of high weighted 12 
channels that was qualitatively similar across task-states and also to RS1 (Figure 7B).   13 
  14 
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Robust cross-task identification with RS1 with full feature-set 1 

If person identification with RS1 was based on a neural signature related to an individual’s 2 

neurophysiological state then identification should be possible despite cognitive state variations. 3 

Therefore, decision-rules trained on RS1 should be capable of accurate person identification with 4 

samples acquired from the pseudo-rest states (TapWait and SeqWait) and the movement states 5 

(TapMov and SeqMov).  6 

We used the cross-task scheme RS1Ip → XIq to test the invariance of RS1-based identification 7 

to inter-day cognitive state variations (i.e., task states X) (Figure 10A, Table 4). Increasing 8 

deviations from RS1 solely due to cognitive state differences (X = {RS1, TapWait, SeqWait}) did 9 

not produce comparable, statistically distinguishable reductions in mean identification accuracy 10 

(RS1: 92.79 ± 6.76%, TapWait: 91.90 ± 6.46%; SeqWait: 90.81 ± 7.09%) [one-way ANOVA, F2, 34 11 

= 2.06, p = 0.14]. However, increasing deviations from RS1 due to cognitive and behavioral state 12 

differences (X = {RS1, TapMov, SeqMov}) produced significant reductions in identification 13 

accuracy most notably for SeqMov (TapMov: 88.79 ± 7.57%; SeqMov: 83.85 ± 10.35%)[one-way 14 

ANOVA, F2, 34 = 14.07, p = 0.00003].  15 

To disentangle the role of cross-task from cross-day effects, we compared cross-task (RS1Ip 16 

→ XIq) and same-task identification (XIp → XIq) across days (Table 1,4). For the pseudo-rest states 17 

(X = {TapWait, SeqWait}), cross-task accuracy with RS1 decision-rules produced a small but 18 

statistically significant reduction relative to same-task identification [ANOVA, Train {RS1, Same} 19 

x Condition {TapWait, SeqWait}, Train*Condition: F1,17 = 4.14, p = 0.06; Train: F1,17  = 10.01, p = 20 

0.00566; Condition: F1, 17 = 0.00001, p = 0.99]. The cross-task accuracy reduction was significantly 21 

larger for the movement-states (X = {TapMov, SeqMov}) with a larger loss for SeqMov [ANOVA, 22 

Train{RS,Same} x Condition {TapMov, SeqMov}, Train*Condition: F1,17 = 9.15, p = 0.00764; 23 

Train: F1,17  = 43.94, p < 0.00001; Condition: F1, 17 = 2.51, p = 0.13].  24 

 25 

 26 
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 1 
 2 

 3 
 4 
 5 
 6 
Figure 10: Cross-task identification with RS1. (A) Mean accuracy of decision-rules trained on 7 
RS1 (1-day) and tested across days on RS1 (blue), pseudo-rest states (green) and movement states 8 
(orange). Light colored dots/lines indicate individual accuracies. Error bars: SD. Accuracy 9 
differences between RS1 and pseudo-rest states were not statistically significant (n.s.), but were 10 
between RS1 and movement states (** = 0.001 ≤ p < 0.00001). (B) Decision-rules trained on RS1 11 
with different levels with aggregation (dotted lines) increased cross-day accuracy for all task-states. 12 
Error bars: Within-subject s.e.m. (C) Cross-task/day accuracy of RS1 with mono-band subsets. 13 
Deviations from cross-day accuracy for RS1 were larger for the movement states (orange) than the 14 
pseudo-rest states (green) and deviations increased with the frequency (lowest for Bδ, highest for 15 
Bβ2). Error bars: Within-subject s.e.m. (D) Cross-task/day accuracy of RS1 with mono-location 16 
subsets. Deviations from RS1 were larger for movement states (orange) than pseudo-rest states 17 
(green). Error bars: Within-subject s.e.m. 18 
  19 
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 1 

Table 4: Accuracy of cross-task RS1Ip → XIq   identification reported 

as Mean % (SD). All values were significantly above random chance 

(50%) (see Suppl. Table 4). 

Test states 

(N = 18) 

Type 

1-day 2-day 3-day 

 TapWait 
91.90  

 (6.46) 

95.84  

 (3.30) 

96.90  

 (2.44) 

 SeqWait 
90.81  

 (7.09) 

94.95  

 (4.39) 

96.09  

 (3.40) 

TapMov 
88.79  

 (7.57) 

93.02  

 (5.49) 

94.01  

 (4.51) 

 SeqMov 
83.85  

 (10.35) 

88.39  

 (9.28) 

90.03  

 (8.87) 

 2 

To disentangle the role of day-specificity in RS1Ip → XIq, we used multi-day aggregation 3 

(RS1Ip ∘	RS1Iq  … → XIr). Although aggregation reduced day-specificity with RS1 (Figure 5), it could 4 

nevertheless increase specificity to the properties of RS1. If so, aggregation might lower the 5 

accuracy of cross-task identification. Contrary to this possibility, aggregation increased cross-task 6 

accuracy to the pseudo-rest states (TapWait, SeqWait) in a comparable manner to same-task 7 

accuracy (Figure 10B) [ANOVA: Condition {RS1, TapWait, SeqWait} x Type {1-day, 2-day, 3-8 

day} [Condition*Type: F4, 68 = 0.52, p = 0.72; Condition: F2, 34  = 2.44, p = 0.10; Type: F2, 34 = 9 

21.63, p < 0.00001]. This was particularly striking because aggregation (i.e., related to day-10 

specificity) produced a relatively larger increase in cross-task accuracy than a change in task-11 

specificity. Following aggregation, the mean residual cross-task/day accuracy loss relative to same-12 

task/day identification with RS1 was only ~3%. Aggregation also increased cross-task accuracy to 13 

the movement states (TapMov, SeqMov) [ANOVA: Condition {RS1, TapMov, SeqMov} x Type {1-14 

day, 2-day, 3-day} [Condition*Type: F4, 68 = 1.35, p = 0.26; Condition: F2, 34  = 13.04, p = 0.00006; 15 
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Type: F2, 34 = 29.33, p < 0.00001]. Following aggregation, the mean residual cross-task/day 1 

difference was less than ~10% for the movement states. 2 

The full-feature set has a crucial role in limiting the cross-day loss in accuracy (Figure 6). 3 

Appling the cross-task scheme RS1Ip → XIq to the mono-band (Figure 10C) and mono-location 4 

(Figure 10D) feature sets provided further evidence of the importance of the full feature-set to 5 

enable robust cross-task identification.  6 

For the mono-band feature sets (Figure 10C), increasing deviations from RS1 in cognitive 7 

state (X = {RS1, TapWait, SeqWait}) lead to state-related accuracy reductions that were also larger 8 

for the higher frequency bands [ANOVA: Condition {RS1, TapWait, SeqWait} x Band {Bδ, Bθ, Bα, 9 

Bβ1, Bβ2}  [Condition*Band: F8, 136 = 2.58, p = 0.01181; Condition: F2, 34  = 6.41, p = 0.00434; Band: 10 

F4, 68 = 18.37, p < 0.00001]. In a similar manner, increasing deviations from RS1 for the movement 11 

states (X = {RS1, TapMov, SeqMov}) produced state-related accuracy reductions that were greater 12 

for SeqMov than for TapMov particularly at the higher frequencies [ANOVA: Condition {RS1, 13 

TapMov, SeqMov} x Band {Bδ, Bθ, Bα, Bβ1, Bβ2} [Condition*Band: F8, 136 = 8.97, p < 0.00001; 14 

Condition: F2, 34  = 20.60, p < 0.00001; Band: F4, 68 = 12.18, p < 0.00001]. These task-linked 15 

accuracy reductions were notably absent at Bδ. 16 

The pattern of cross-task accuracy deviation from RS1 took a different form for the mono-17 

location feature sets (Figure 10D). For the pseudo-rest states (X = {RS1, TapWait, SeqWait}), 18 

increasing deviations from RS1 lead to increasing accuracy reductions (largest for SeqWait) that 19 

were relatively uniform at all the locations [ANOVA: Condition {RS1, TapWait, SeqWait} x 20 

Location {LF, LFC, LCP, LPO} [Condition*Location: F6, 102 = 0.98, p = 0.44; Condition: F2, 34  = 9.00, 21 

p = 0.00073; Location: F3, 51 = 4.34, p = 0.0084]. This pattern of reduction was similar for the 22 

movement states (X = {RS1, TapMov, SeqMov}), where deviations from RS1 lead to accuracy 23 

reductions that were largest for SeqMov and relatively uniform at all locations [ANOVA: Condition 24 

{RS1, TapMov, SeqMov} x Location {LF, LFC, LCP, LPO} [Condition*Location: F6, 102 = 0.99, p = 25 

0.43; Condition: F2, 34  = 32.90, p < 0.00001; Location: F3, 51 = 4.95, p = 0.00433].  26 
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In summary, decision-rules trained on RS1 on a single day could identify individuals from 1 

samples from states that verifiably differed from RS1 to differing extents. Identification was almost 2 

indistinguishable from RS1 when the task-states did not involve explicit movement. Surprisingly, a 3 

significant portion of the cross-task/day accuracy reduction was accounted for by inter-day 4 

variations in RS1. The full feature-set was crucial to this high identification accuracy as suggested 5 

by the large accuracy reductions with band/location-defined feature subsets.  The high accuracy of 6 

person identification in the presence of explicit cognitive variation was direct evidence of 7 

individual-specific neural patterns with high specificity to detect an individual’s neurophysiological 8 

organization. 9 

 10 

DISCUSSION 11 

The main question was whether the confounding role of the ill-defined rest task when 12 

making inferences about longitudinal RS could be resolved without changing the rest task itself.  To 13 

this end, we evaluated whether RS activity might have intrinsic properties that allow an analysis-14 

based resolution of this confound. Individual identification across days of both NP+ and NP- was 15 

possible with high accuracy in the presence of simulated confounding inter-day differences. These 16 

properties of the longitudinal dynamics of EEG oscillatory power spectrum at rest provide an 17 

existence proof for distinctive measurable signatures of neurophysiological difference that are 18 

robust to fluctuations in cognitive state. Consistent with a signature based in whole-brain 19 

neurophysiology, identification was contingent on a full feature-set that allowed inter-band 20 

relationships distributed across the scalp with a reduced specificity with band- and location-specific 21 

features. 22 

 23 

 24 

 25 

 26 
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Empirical simulations of cognitive and neurophysiological variation 1 

A methodological novelty here was our use of empirical “simulations”. Although ad hoc, 2 

these simulations provided a valuable means to obtain verifiable true instances of cognitive state 3 

variation and neurophysiological change relative to RS. 4 

The potential for arbitrary cognitive state variation during the rest task is related to 5 

experimental context. As previous studies have demonstrated, instructions can influence variability 6 

(Duncan and Northoff 2013; Kawagoe et al. 2018). However, beyond the assumption that 7 

participants were awake, we did not explicitly model the participant’s cognitive state, for example, 8 

using participant’s self-reported subjective assessments of their cognitive state during RS 9 

measurement (Diaz et al. 2013). Since the cognitive state and the extent of its fluctuation during rest 10 

are difficult to establish for each individual, it could have been the case that the high identification 11 

accuracy with RS1 was more indicative of having a group of highly motivated and instruction-12 

compliant participants rather than the neural characteristics in the resting state. Therefore, the Tap 13 

and Sequence tasks provided verifiable within-subject examples of deviations from rest to assess the 14 

generality of RS-based inferences.  15 

In a longitudinal setting, the classification problem of interest requires a decision between 16 

NP+ and NP- within the same individual. However, here NP+ was defined based on samples of RS 17 

activity from other individuals. This use of inter-individual differences provided a pragmatic means 18 

to simulate a diverse range of possible changes to an individual’s neurophysiology, with the 19 

assumption that detecting true within-subject neurophysiological change would possibly be far 20 

more challenging. For example, in the Sequence task, the motor learning across the five days in our 21 

experiment involved neuroplastic changes (Wymbs et al. 2012; Wymbs and Grafton 2014; Bassett 22 

et al. 2015) and the accompanying changes in SeqWait and SeqMov over the duration of the 23 

experiment (Figure 8) could be considered as consequence of this learning-induced neuroplasticity. 24 

However, due to the unclear carryover effects of these plastic changes on RS1 over this five day 25 

period, we instead used the SeqWait and SeqMov to simulate incidental cognitive-state variations 26 
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(NP-) with high inter-day variance, where the neural dynamics on each day was a poor model of the 1 

dynamics on other days.  2 

By using individual-differences in this manner, the problem of distinguishing between NP+ 3 

and NP- was equivalent to the problem of individual identification with similarities to numerous 4 

studies that have sought to use RS-EEG as an individual-specific signature for biometric 5 

identification (Campisi and Rocca 2014; Gui et al. 2015; Valizadeh et al. 2019). Although our focus 6 

was not on biometric identification, our findings are consistent with these prior studies in 7 

demonstrating the high distinctiveness of individual differences and its robust detectability even in 8 

two-second snapshots of oscillatory power spectra at rest. However, the inter-individual differences 9 

in cross-day identification with RS1 both with and without aggregation (Figure 5,6A, 6C) also 10 

demonstrated that resting activity was not the equivalent of a fingerprint, in being immune to 11 

cognitive state or even whether a person is alive (Campisi and Rocca 2014). Even though individual 12 

identification was possible across tasks with high accuracy, the RS-based individual signatures were 13 

not completely independent of cognitive state. Large deviations from rest during TapMov and 14 

SeqMov did reduce cross-task identification accuracy even though identification was above random 15 

chance. These accuracy reductions were due to cognitive state differences with RS1 and not merely 16 

because TapMov and SeqMov conditions lacked identifiable signatures or had more movement-17 

related artifacts (Figure 8D).  18 

 19 

Reliability of inference versus reliability of features 20 

Numerous prior studies have investigated the inter-day similarity in RS activity within a 21 

test-retest framework (Bijsterbosch et al. 2017; Cox et al. 2018; Noble et al. 2019; Postema et al. 22 

2019). In that framework, the focus is on evaluating whether a particular measure of RS activity on 23 

day p was reliably reproduced for RS activity on day q in the assumed absence of a true change. 24 

However, our focus is on the reliability of inferences in the assumed presence of true inter-day 25 
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activity changes. This focus required differing considerations about how an individual’s unique 1 

identity was defined and represented as illustrated with an analogy to object recognition.  2 

Consider images of the same object X from day 1 (test) and day 2 (retest) (Figure 11) 3 

represented by a list of filled pixel locations (i.e., features). With this representation, a simple 4 

measure of test-retest reliability is whether a pixel’s filled state on day 1 is a reliable predictor of its 5 

state on day 2. The scenario in Figure 11A is consistent with a high feature-level reliability as the 6 

majority of filled pixels on day 1 are also filled on day 2. However, this high reliability is 7 

misleading about the object’s unique identity. On day 1, object X can be readily distinguished from 8 

object Y based on a few critical pixels (circled). These critical pixels on object X are, however, 9 

unfilled on day 2. Thus, object X is not uniquely identifiable on day 2 as it is now confusable with 10 

object Y. Conversely, in the scenario shown in Figure 11B, a pixel-based test of reliability would 11 

indicate a low reliability due to the large number of filled pixels from day 1 that are unfilled on day 12 

2. However, this low reliability is a limitation of how the object was represented (i.e., as a list of 13 

filled pixel locations relative to the main axes). If this representation included information about the 14 

relationships between the filled locations, then the object’s defining characteristics would be 15 

deemed as being reliably conserved on day 2, e.g., a rotation of the object X on day 2 would bring it 16 

into correspondence with its form on day 1.  17 

As demonstrated by this analogy, high test-rest reliability of individual features does not 18 

imply high individual identification.  Furthermore, it illustrates the crucial relationship between 19 

reliability and assumptions about how identity is defined and represented. The demands for a 20 

flexible representation an individual’s identity in a flexible manner were an important motivation to 21 

use a multivariate classification approach. 22 

 23 

 24 

 25 

 26 
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 1 
 2 

 3 
 4 
Figure 11: Test-retest reliability versus individual re-identification. (A) Objects X (red) and Y 5 
(blue) are uniquely defined by the configuration of filled and unfilled pixels. On day 1, (top row), 6 
the dotted circles indicates the critical pixels that distinguish X and Y. Most pixels of object X from 7 
day 1 are also filled on day 2 (lower row). However, pixels in the left dotted circle on day 2 differ in 8 
their state from day 1. Due to this difference on day 2, object X cannot be uniquely re-identified as 9 
being object X day based on its form as it is now confusable with object Y. High inter-day reliability 10 
in pixel state does not imply the same for object identity. (B) The orientation of objects X on day 2 11 
is rotated relative to its orientations on day 1. If this orientation is accounted for, then object X can 12 
be uniquely re-identified on day 2. However, when considering individual pixels, most of the filled 13 
pixels on day 1 are not on day 2. Low inter-day reliability in pixel state does not imply the same for 14 
object identity. 15 
  16 
  17 
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With this approach, an individual’s identity is defined relative to others. Therefore a tradeoff 1 

is that each individual’s decision-rule could be defined differently with changes to the other 2 

individuals in the population. For a support vector machine, the decision boundary depends on the 3 

most similar samples in the distribution rather than overall characteristics of the distributions 4 

(Guyon and Elisseeff 2003). Therefore, the number of individuals is less of a concern than the 5 

characteristics of the most-similar individual. Finally, the approach here was to evaluate inferences 6 

rather than be a general test of differences. The multi-class approach involves finding features that 7 

differ between individuals to the exclusion of shared features. Therefore, an inter-day change in an 8 

individual on these shared features would not be detected.  9 

 10 

What makes an individual signature robust to changes in cognitive state?  11 

Our primary findings are based on black-box statistical inferences, namely, the pattern of 12 

classification accuracies obtained with different training/test sets that were selected based on 13 

experimental variables (primarily, the effect of day, conditions defining cognitive state and feature 14 

set). Therefore, an important issue is whether these statistical regularities are consistent with a 15 

neurophysiological signature in RS activity rather than a byproduct of other factors specific to our 16 

implementation. 17 

The shape of the power spectrum in the frequency domain at rest has long been suggested as 18 

an important individual characteristic (Näpflin et al. 2007; Chiang et al. 2011; Bazanova and 19 

Vernon 2014). This shape has multiple peaks over a background of 1/f noise. The specific 20 

frequencies at which these peaks occur, particularly in the α band and in the β band have been the 21 

topic of considerable investigation (van Albada and Robinson 2013; Voytek et al. 2015). 22 

Importantly, in different cognitive states, the changes to this spectrum are not arbitrary and 23 

primarily involve changes to the power at the peaks (as well as small shifts in the peak frequency) 24 

but without considerable changes to the 1/f background (Buzsáki et al. 2012; Cole and Voytek 25 

2017).  26 
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Therefore one possibility is that an individual’s decision-rule represents the shape of their 1 

unique power spectrum. If this were the case then it would provide a plausible explanation for the 2 

observed high specificity despite cognitive state variation. In our feature representation, the power 3 

was averaged into five canonical bands rather than a more detailed frequency spectrum. Therefore, 4 

capturing the individual shape of the spectrum and approximate location of the α power peak would 5 

require a role for features representing the power in the θ, α and β1 bands. Indeed, it was these three 6 

bands that also showed the main consistencies in term of a few, high valued weights. The classical 7 

depiction of the power spectrum is from a particular channel. Our finding suggests that 8 

representation of the individual-specific power in the different bands were distributed over the scalp 9 

with a concentration in the fronto-central and occipital zones. Although the power spectra are 10 

similar across channels, any one channel is an incomplete representation of that individual’s 11 

characteristic power distribution. Consequently, it might lack the robustness to represent individual 12 

variability across days. By contrast, a decision-rule that combines each band’s best representation 13 

might have a greater robustness.  14 

With a multi-class categorization approach, the weights defining each subject’s decision-rule 15 

have to be necessarily unequal. If not, a sample will be classified in the same way by different 16 

classifiers. Therefore, the presence of consistencies in the weight distribution and also in the 17 

normalized weights was noteworthy. One source of potential shared consistency was the use of a 18 

one-vs-all training procedure. Therefore, for any two persons in the group of M individuals, the 19 

“all” set would contain the same M-2 individuals (for P, all will be M-P, and for Q it would be M-20 

Q). However, another source of consistency is neuroanatomical organization, for example, the basic 21 

location and function of the cortical and sub-cortical networks.  22 

Even though we do not use an explicit model of functional connectivity, the multivariate 23 

representation suggests a coupling between power values at these distributed locations. A 24 

distinction is often drawn between static and dynamic connectivity (Hutchison et al. 2013; Calhoun 25 

et al. 2014). Typically, this is based on how the neural time-series over the resting task is used. 26 
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Static connectivity refers to the extraction of a single measure (e.g., a graph) from the time-series. 1 

However, dynamic connectivity is based on the view that resting state refers to a collection of states 2 

that dynamically vary at different time points. In our study, the core variance model involved an 3 

assumption about time-scales. Each same-day measurement was segmented into two-second non-4 

overlapping epochs where each epoch was treated as a sample drawn from an underlying 5 

individual-specific distribution. The dynamic variability between samples was assumed to be an 6 

important characteristic of this individual-specific distribution. Cross-day/cross-task identification 7 

was predicated on whether training classifiers based on the inter-sample variability on short time-8 

scales (i.e., between the samples acquired within seconds/minutes of each other on the same day) 9 

was a viable model for samples obtained on long time-scales, i.e., days apart (Figure 1). 10 

Nevertheless, our approach and findings are agnostic as to whether the inter-sample differences 11 

indicate variability around a characteristic mean value (i.e., static connectivity) or characteristic 12 

transitions between distinct states (i.e., dynamic connectivity).  13 

The implied multi-variable coupling is notable also with regard to the characteristic of 14 

general machine learning algorithms. Generalization accuracy is known to reduce with an increase 15 

in the number of features (the so called Hughes effect (Campenhout 1978; Sima and Dougherty 16 

2008)). However, here, a feature set of 305 features showed greater cross-day generalization than 17 

small feature-sets of 50/60 features that have comparable same-day cross-validated accuracy.  18 

 19 

Outlook 20 

In the current study, we assume that individuals do not undergo extensive plastic changes. If 21 

individual identification was not possible even with a group of healthy individuals over a period of 22 

five days, then the value of this approach would be in question for longer periods of time and, 23 

possibly, with populations where such neuroplastic changes would be expected. Prior studies, 24 

although mainly cross-sectional, have found changes to the power spectrum with aging (van Albada 25 

et al. 2010; Chiang et al. 2011; Voytek et al. 2015; Knyazeva et al. 2018). With increasing age, 26 
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there is a reduction in the frequencies at which the power peaks in the alpha and beta bands occur. 1 

Voytek et al. (2015) suggest that this is because of a change in the 1/f baseline that indicates 2 

increased physiological noise with aging.  Furthermore, systematic longitudinal changes in the 3 

power spectrum have been observed following stroke (Giaquinto et al. 1994; Saes et al. 2020). 4 

Thus, the application of this physiological signature to monitor longitudinal RS in clinical 5 

populations is an important future priority. 6 

  7 
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Supplementary Table 1: One-sample t-tests of mean identification accuracy in different 

states (see Table 1) vs random chance (50%) reported as t-value (p-value). 

States 
Type  

CV 1-day 2-day 3-day 

RS1 

(df =23) 

5596.13  

 (< 0.00001) 

30.14  

 (< 0.00001) 

61.95  

 (< 0.00001) 

87.59  

 (< 0.00001) 

RS1 

(df =17) 

3464.12  

 (< 0.00001) 

26.85  

 (< 0.00001) 

60.01  

 (< 0.00001) 

80.39  

 (< 0.00001) 

RS2 

(df  =23) 

6264.07  

 (< 0.00001) 

27.19  

 (< 0.00001) 

53.70  

 (< 0.00001) 

65.70  

 (< 0.00001) 

TapWait 

(df =17) 

9303.05  

 (< 0.00001) 

28.30  

 (< 0.00001) 

57.45  

 (< 0.00001) 

73.02  

 (< 0.00001) 

SeqWait 

(df =17) 

9303.05  

 (< 0.00001) 

25.21  

 (< 0.00001) 

45.89  

 (< 0.00001) 

53.57  

 (< 0.00001) 

TapMov 

(df =17) 

1739.06  

 (< 0.00001) 

26.75  

 (< 0.00001) 

58.60  

 (< 0.00001) 

83.32  

 (< 0.00001) 

SeqMov 

(df =17) 

2215.05  

 (< 0.00001) 

21.93  

 (< 0.00001) 

42.65  

 (< 0.00001) 

67.95  

 (< 0.00001) 
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Supplementary table 2:  One-sample t-tests of mean identification accuracy for RS1 

with mono-band and mono-location feature subsets (see Table 2) vs random chance 

(50%) reported as t-value (p-value). 

Subset 

(df =23) 

Type 

CV 1-day 2-day 3-day 

Bδ 
88.62  

 (< 0.00001) 

9.07  

 (< 0.00001) 

10.79  

 (< 0.00001) 

12.29  

 (< 0.00001) 

Bθ 
151.87  

 (< 0.00001) 

17.20  

 (< 0.00001) 

21.88  

 (< 0.00001) 

23.79  

 (< 0.00001) 

Bα 
202.00  

 (< 0.00001) 

21.64  

 (< 0.00001) 

29.69  

 (< 0.00001) 

34.22  

 (< 0.00001) 

Bβ1 
415.09  

 (< 0.00001) 

14.73  

 (< 0.00001) 

20.09  

 (< 0.00001) 

23.42  

 (< 0.00001) 

Bβ2 
703.68  

 (< 0.00001) 

12.95  

 (< 0.00001) 

18.10  

 (< 0.00001) 

22.61  

 (< 0.00001) 

LF 
131.76  

 (< 0.00001) 

18.00  

 (< 0.00001) 

24.50  

 (< 0.00001) 

29.01  

 (< 0.00001) 

LFC 
154.96  

 (< 0.00001) 

19.29  

 (< 0.00001) 

26.54  

 (< 0.00001) 

33.46  

 (< 0.00001) 

LCP 
132.33  

 (< 0.00001) 

20.15  

 (< 0.00001) 

26.47  

 (< 0.00001) 

30.29  

 (< 0.00001) 

LPO 
116.20  

 (< 0.00001) 

18.26  

 (< 0.00001) 

24.30  

 (< 0.00001) 

26.33  

 (< 0.00001) 
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Supplementary table 3: One-sample t-tests of classification accuracy of RS1 vs task 

state (see Table 3) against random chance (50%) reported as t-value (p-value). 

RS1 vs  

(df =17) 

Type 

CV 1-day 2-day 3-day 

 TapWait 
28.74  

 (< 0.00001) 

8.51  

 (< 0.00001) 

7.94  

 (< 0.00001) 

8.05  

 (< 0.00001) 

 SeqWait 
50.81  

 (< 0.00001) 

8.85  

 (< 0.00001) 

8.88  

 (< 0.00001) 

9.28  

 (< 0.00001) 

 TapMov 
45.23  

 (< 0.00001) 

17.19  

 (< 0.00001) 

23.18  

 (< 0.00001) 

24.49  

 (< 0.00001) 

SeqMov 
119.60  

 (< 0.00001) 

31.55  

 (< 0.00001) 

52.90  

 (< 0.00001) 

48.70  

 (< 0.00001) 

 

 
 

Supplementary table 4: One-sample t-tests of cross-task RS1Ip → XIq   

identification accuracy (see Table 4) against random chance (50%) 

reported as t-value (p-value).  

Test states 

(df = 17) 

Type 

1-day 2-day 3-day 

 TapWait 
27.52  

 (< 0.00001) 

58.90  

 (< 0.00001) 

81.63  

 (< 0.00001) 

 SeqWait 
24.43  

 (< 0.00001) 

43.39  

 (< 0.00001) 

57.55  

 (< 0.00001) 

TapMov 
21.73  

 (< 0.00001) 

33.23  

 (< 0.00001) 

41.42  

 (< 0.00001) 

 SeqMov 
13.88  

 (< 0.00001) 

17.55  

 (< 0.00001) 

19.14  

 (< 0.00001) 
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Supplementary Figure 1: Stem plot of t-values of high-valued weights in RS1 per frequency 
band from Figure 7. Upper two rows show t-values for mean raw weights (z-scored across all 
features) and their changes with aggregation (1-day, 3-day). Lower two rows show the 
corresponding t-values for the mean normalized weights (z-scored per band). Channels have 
an anterior-to-posterior ordering (x-axis). Red stems indicate channels with t-values higher 
than the corrected threshold (p < 0.05/61, horizontal black line) while blue stems show 
channels that only pass uncorrected thresholds (p <0.05, dotted horizontal line). Colored 
channel labels are grouped for visibility (top to bottom) correspond to stems (left to right). 
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Supplementary Figure 2: Stem plot of t-values of high-valued weights (1-day) in task-states 
per frequency band from Figure 9. All labeling conventions are as in Suppl. Figure 1. 
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