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Abstract 

As whole-genome sequencing (WGS) becomes the gold standard tool for studying population 

genomics and medical applications, data on diverse non-European and admixed individuals are 

still scarce. Here, we present a high-coverage WGS dataset of 1,171 highly admixed elderly 

Brazilians from a census-based cohort, providing over 76 million variants, of which ~2 million 

are absent from large public databases. WGS enabled identifying ~2,000 novel mobile element 

insertions, nearly 5Mb of genomic segments absent from human genome reference, and over 140 

novel alleles from HLA genes. We reclassified and curated nearly four hundred variant's 

pathogenicity assertions in genes associated with dominantly inherited Mendelian disorders and 

calculated the incidence for selected recessive disorders, demonstrating the clinical usefulness of 

the present study. Finally, we observed that whole-genome and HLA imputation could be 

significantly improved compared to available datasets since rare variation represents the largest 

proportion of input from WGS. These results demonstrate that even smaller sample sizes of 

underrepresented populations bring relevant data for genomic studies, especially when exploring 

analyses allowed only by WGS. 
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INTRODUCTION  

Whole-genome sequencing (WGS) of a large number of individuals can reveal rare 

variants in known disease genes1-4, improve identification of novel genes and pathways 

associated with phenotypes5 and identify genomic regions not represented on reference 

genomes6. Most importantly, ancestry diversity is critical to elucidate differences in disease’s 

genomic architecture and improve signals detected by previous studies, since non-European and 

admixed populations harbor specific variants7-9, which are still vastly underrepresented in 

genomic studies10. The lack of diversity leads to a significant bias on the primary resource for 

precision medicine and consequently less accurate tests on non-European descent individuals, 

potentially increasing health disparities10-13. 

Knowledge about allelic frequencies from multiple populations is also crucial when 

prioritizing candidate clinical variants. For rare Mendelian disorders, the frequency in any given 

population cannot be higher than expected for disease incidence. Moreover, the penetrance of 

variants may vary across backgrounds14,15. For variants associated with monogenic late-onset 

disorders, unaffected elderly individuals serve as a proper control group to improve diagnosis 

accuracy. This rationale was previously explored by us using whole-exome sequencing of elderly 

Brazilians16, and by others using a European-descent whole-genome dataset of Australian 

elderly17. 

Here we present the first high-coverage WGS of a Latin American census-based cohort 

composed of 1,171 unrelated elderly from São Paulo, Brazil’s largest metropolis, which includes 

immigrant descendants from different continents and individuals from various Brazilian states18. 

These individuals aged 60 or older have been comprehensively phenotyped by the longitudinal 

Health, Well-Being, and Aging (SABE - Saúde, Bem-estar e Envelhecimento) study. By carrying 

out WGS on this population-based cohort, we identified genomic variation absent from public 

databases, including single nucleotide substitutions, insertion/deletion variants (indels), 

chromosomal haplotypes, accurate HLA variant calls, mobile element insertions, and non-

reference sequences (NRS). Additionally, we explored pathogenicity assertions in disease-related 

genes of clinical relevance and GWAS performance for selected phenotypes. We also created 

new reference imputation panels for the whole-genome and HLA alleles, which improved 
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imputation accuracy. Lastly, we provide variants and respective allelic frequencies in a public 

resource, ABraOM (http://abraom.ib.usp.br). 

 

COHORT DESCRIPTION 

SABE is a longitudinal study initiated in 2000, with a follow-up occurring every 5 years (see 

Supplementary Information and Supplementary Fig. 1 for details on study design). After quality 

control, 1,171 unrelated individuals composed the WGS dataset, with an average age of 71.86 

(±7.94) years and 1.74 female to male ratio (Supplementary Table 1). Data collection involves 

at-home interviews and functional measurements, summarized in Supplementary Table 2.  

High-coverage WGS data (average 38X) was generated and analyzed (Supplementary Fig. 2, 

Supplementary Table 3). Nearly 76 million single nucleotide variants (SNVs) and indels were 

identified with their predicted consequences, including over 22 thousand potential loss of 

function (pLOF) variants annotated by LOFTEE3 (Supplementary Table 4). After filtering out 

low confidence variants (Methods, Supplementary Fig. 3), we obtained a dataset of over 61 

million variants, among which approximately 2 million are not described in gnomAD, dbSNP, or 

1000 Genomes (Extended Data Fig. 1).  

The average global ancestries for SABE are 0.726 ± 0.263 European, 0.178 ± 0.209 African, 

0.067 ± 0.066 Native American, and 0.028 ± 0.162 East Asian (Fig.1A, Supplementary Table 5). 

There is considerable variation in individual ancestries, ranging from a single ancestry to 

admixture involving two or more ancestries (~75% of the cohort). Individuals with East Asian 

ancestry have virtually 100% of this parental component, consistent with the historical 

information as first generation of Japanese immigrants (Figure 1A and 1B). The proportions of 

ancestry differ among self-reported ethnoracial groups (p <0.001; Extended Data Fig. 2), which 

partially accounts for the ancestry variation (r2=0.63; p-value < 2.2e-16). 
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Figure 1. Global ancestry of SABE cohort. A. Individual ancestry bar plots of SABE cohort (N = 1,168) using 

Europeans (EUR), Africans (AFR), East Asians (EAS), and Native Americans (NAM) as parental populations and 

distributed by self-reported ethnoracial groups (Supplementary Figure 5). NA = Not available. B Principal 

component analysis of SABE individuals and parental populations. Analyses were performed with 372,527 SNPs 

(after overlapping- and LD-pruning). 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.298026doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.298026
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

6 
 

CLINICALLY RELEVANT FINDINGS  

 Although SABE participants are not affected by severe monogenic disorders, they might 

carry pathogenic variants related to recessively inherited disorders, mild phenotypes, or with 

incomplete penetrance. Moreover, it is known that many pathogenic assertions are 

misclassified19, and cohorts with individual genotypes and phenotypes can aid reclassification. 

We analyzed ‘Pathogenic’ or ‘Likely Pathogenic’ (P/LP) ClinVar asserted variants 

carried by SABE individuals across 4,250 genes associated with monogenic disorders (Online 

Mendelian Inheritance in Man - OMIM disease genes, Supplementary Table 6) and manually 

curated using ACMG guidelines20 (Supplementary Fig. 4). In total, out of 394 variants asserted 

as either P/LP in genes annotated to have at least one phenotype with a dominant inheritance, 

curation resulted in the reclassification of pathogenicity (31% of variants), by inheritance 

mechanism (52%) or penetrance (13%), with only 3% of variants associated with a matching 

detectable phenotype (Extended Data Tab. 1).  

Manual curation promotes the downgrading of pathogenic assertions when diverse 

ancestries are added to databases. Reclassification of variants is improved when based on 

standardized criteria and reports of reduced penetrance19,21. Moreover, variants' penetrance may 

differ according to different genetic or environmental backgrounds15, observable in well-

established monogenic mutations that segregate in families22 that can be modified by rare 

variants23 or a polygenic profile24. This explains why population-specific genomic architecture 

reduces GWAS replication25 and affects distribution of polygenic risk scores13. Therefore, 

pathogenicity assertions must be interpreted based on specific population datasets. Also, 

regarding P/LP asserted variants in the 59 ACMG actionable genes list (Supplementary Table 

11), 14 were found in 1.2% of individuals26 comparable to the Australian elderly cohort17. 

Common pathogenic variants in genes associated with selected recessively inherited 

Mendelian disorders were manually curated using locus-specific databases and ACMG. 

Common and rare P/LP variants in CFTR, HBB, GJB2, MEFV, and HFE were accounted for 

incidence estimates (Supplementary Table 12). We showed that cystic fibrosis and 

hemoglobinopathies have similar expected incidences when compared to gnomAD. Other 

diseases appear more frequently in Brazilians (GJB2-related deafness and MEFV Familial 
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Mediterranean fever) after calculating the expected offspring number of homozygotes and 

compound heterozygotes. 

These disparities observed for GJB2 and MEFV between Brazilians and global gnomAD, 

but similar to gnomAD Latinos and PAGE Study samples of Cubans, Puerto Ricans, and Central 

Americans are probably due to the Iberian, Mediterranean, and Middle Eastern contributions27-29 

in Brazil.  

Finally, regarding potential loss of function variants (pLOFs) within the OMIM disease 

genes, we identified 3,704 non-benign variants (Supplementary Fig. 5), most absent from 

ClinVar with frequencies comparable to gnomAD. The few but very discrepant frequencies are 

mostly false positives due to calling or annotation from either dataset (Supplementary Fig. 6-7).  

 

 

MOBILE ELEMENTS INSERTIONS (MEIs) 

We investigated structural variations caused by insertions of mobile elements (MEIs), 

which constitute a rich and underexplored source of genetic variation. MEIs here identified are 

insertions to the human reference genome (GRCh38) occurring in at least one out of 1,171 SABE 

genomes. First, we found a set of 7,490 nonredundant MEIs, including 5,971, 1,131, 375, and 13 

events of Alu, L1, SVA (SINE-R, VNTR, and Alu composite), and Human Endogenous 

Retrovirus K (HERV), respectively (Fig. 2A, variants deposited in http://abraom.ib.usp.br). As 

expected30, Alu, and L1 insertions are the prevalent events (94.7%). Next, we classified these 

MEIs into (i) Shared (i.e., MEIs present in two or more unrelated SABE individuals and also in 

individuals from gnomAD); (ii) SABE-privative events (present in two or more SABE genomes, 

but absent in other genomes from Database of Genomic Variation - DGV31, which include 

gnomAD data); and (iii) Singletons (present in only one SABE individual and absent from DGV. 

Shared is the most frequent class, corresponding to 5,571 (74.3%) MEIs (Fig. 2B). SABE-

privative MEIs constitute 1,501 (20.1%) events (Fig. 2B) and comprise approximately 0.97 kbp 

potentially polymorphic and still unreported events in other databases. We also found 418 

insertions classified as Singletons (5.6%; Fig. 2B), which are either somatic or lineage-specific 

germinative MEIs. On average, each individual carries 869 MEIs (Fig. 2C), among which the 

vast majority (97.0%) are Alu (758 events, on average) and L1 (85 events, on average), Fig. 2C. 
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As expected, most MEIs per individual are Shared (774 (89.0%); Fig. 2C). Furthermore, 

individuals from our cohort carry 10.9% of events classified as SABE-privative (Fig. 2C), which 

presented a lower allele frequency in comparison to the class of common events (Fig. 2D; p-

value = 1.4e-0.7; Mann-Whitney test). Even though we expected Shared MEIs to have a higher 

allele frequency, 103 (7.3%) of SABE-privative events presented an unexpected high allele 

frequency (>20%). Further validations are required to confirm if these MEIs are enriched events 

in our cohort (and absent in other populations) or calling artifacts. 

Next, we examined the insertion profile of MEIs regarding their genomic locations. We 

observed: i) a positive correlation between the number of MEIs and the chromosome length (p-

value = 2.74x-6; rho = 0.95; Spearman's rank correlation), Extended Data Fig. 3; ii) that L1 and 

Alu insertions are skewed to AT-rich regions, while HERVs are biased to GC-rich regions 

(Extended Data Fig. 4); iii) an enrichment of MEIs into intergenic regions (Fig. 2F; p-value < 

0.00001; chi-square = 72.608; d.f. = 1). Out of the 2,836 MEIs within genic regions, intronic 

regions have significantly more (2,743) MEIs than untranslated (UTRs: 86) and protein-coding 

(CDS: 7) regions (p-value < 0.00001; chi-square = 62.3; d.f. = 1), indicating selection against 

insertions in coding (CDS) or regulatory (UTR) regions.  
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Figure 2. A landscape of mobile element insertions (MEIs) into SABE genomes. A. Total of MEIs in SABE 

genomes. As expected, Alu and L1 elements are predominant elements. B. Proportion MEIs in Shared (present in 

DGV genomes), in two or more genomes from SABE cohort (SABE-privative) and present in only one SABE 

genome (Singletons) C. Number of MEIs per individual. D. Distribution of allele frequencies of Shared and SABE-

privative MEIs. E. Number of MEIs into genes and in intergenic regions. F. Number of MEIs in the coding region 

(CDS), untranslated regions (UTR), or intronic and flank (2 kbp near genes).  
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NON-REFERENCE SEQUENCES (NRS) 

WGS data from diverse human populations can contribute with genomic insertions that 

are not part of the current reference genome, so-called non-reference segments6,32. These mostly 

uncharacterized sequences contain gene exons and full genes, and may modulate susceptibility 

and prevalence of different diseases. We characterized these ‘missing’ segments by performing 

de novo assembly of high-quality reads that do not map to current reference. 

The total lengths of NRS per individual ranged between 11.3-23.4Mbps, with an average 

of 15.4Mbps (Extended Data Fig. 5A). The nonredundant non-reference segments library of the 

SABE dataset contains 192,183 sequences (67.4Mbps), from which 428 NRS (0.43Mbps) were 

observed in all individuals (Extended Data Fig. 5B). Although most NRS (92.5%, totaling 

56.4Mbps) are shorter than 500bps, we observed 40 contigs larger than 10 kbps, up to a 

maximum length of 34.5Kbps (Extended Data Fig. 5C). 

Comparison with NRS from the Chinese HAN population32, African Pangenome6, 

Genome of the Netherlands33, and NCBI nonredundant database revealed that a sizable fraction 

of 28,264 NR-contigs (totaling 9Mbps) is unique to the SABE dataset. Simultaneously, as much 

as 15Mbps of NR-contigs are shared with the HAN and African Pangenome data (Fig. 3A). 

In total, we were able to localize 78,831 contigs (28.2Mbps) to the most recent reference 

assembly GRCh38, from which 12,617 of localized contigs (4.9Mbp) are unique to our dataset 

(Fig. 3B). The reported population frequency and genomic location of these non-reference 

segments will assist future functional studies that characterize their contribution to protein 

isoforms, gene regulation, and their potential link to human diseases. 
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Figure 3. Non-reference genome sequences (NRS) in the SABE dataset. A. UpSet plot showing the presence of 

the SABE NRS in other public databases: NCBI nonredundant database (NCBI_NR), Genome of the Netherlands 

(GoNL), NAH Chinese (HAN) and African (APG) pan-genomes. B. Distribution of NRS across chromosomes. The 

black bars mark centromeres, bands on the left of each chromosome show density of NRS contigs, orange bands on 

the right side of each chromosome indicate positions of SABE-private NRS. 

 

 

 

AN IMPROVED LATIN AMERICAN IMPUTATION PANEL 

Previous studies have shown that using a reference panel composed of individuals with a 

similar genetic background to the target sample improves imputation accuracy, especially for 

rare variants34. We created a new imputation panel by merging SABE and the public 1000 

Genomes Project Phase 3 dataset (1KGP3)35, hereafter called the SABE+1KGP3 reference panel. 

Data from chromosomes 15, 17, 20, and 22 were used to test the usefulness of the 

SABE+1KGP3 reference panel compared to the 1KGP3 alone. We imputed a dataset of Omni 

2.5M Illumina array genotyped on 6,487 Brazilians from the EPIGEN initiative, which is 
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composed of three different cohorts across the country (Salvador, Bambuí, and Pelotas), that 

vary in admixture levels and demographic histories36. When using the SABE+1KGP3 reference 

panel, we imputed the largest number of variants, ~20% of which were added exclusively by the 

SABE dataset (Fig. 4A). There was a gain of ~8% of high confidence imputed variants (info 

score > 0.8) by the SABE+1KGP3 reference panel compared to 1KGP3 alone (Fig. 4B), driven 

mainly by very rare variants (Fig. 4B), which also mainly contributed in improving imputation 

accuracy measured by r2 increase (Fig. 4C). The SABE+1KGP3 reference panel improved 

imputation independent of the target cohort and its level of admixture, suggesting that our panel 

can improve imputation for other Latin American populations. This improvement was also 

observed regardless of the chromosome tested (Supplementary Fig. 8-22; Supplementary Tables 

13-17). 

 

 

 

 

 

Figure 4. Comparison of imputation performance of SABE, 1KGP3, and SABE+1KGP3 reference panels 

using the Omni 2.5M array data for 6,487 Brazilians from EPIGEN as target panel (chromosome 15). A. The 

total number of imputed variants across different classes of info score quality metric. B. The total number of 

imputed variants with info score ≥ 0.8 across the allele frequency spectrum. C. Improvement in imputation accuracy 

as a function of minor allele frequency (MAF) for the target dataset after imputation (MAF from 0 to 0.2, bin sizes 

of 0.005). Similar results were reached for the other chromosomes tested and for each cohort (Supplementary Fig. 8-

22; Supplementary Tables 13-17).  
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DIVERSITY OF HLA GENES  

We previously developed hla-mapper37 to optimize mappings for HLA genes, providing 

high-confidence genotype and haplotype calls for this unusually polymorphic region38, with 

complex structure involving duplications. We applied hla-mapper in the SABE dataset, detecting 

2.4X more variants in the HLA class I genes than with the computational workflow for genotype 

calling used in the entire genome. We identified an abundance of new rare variants (Fig. 5B) and 

haplotypes (Extended Data Fig. 6), defining 143 novel HLA alleles, mostly rare. 

While only 1% of the SABE individuals carry sequences that code for previously 

undescribed HLA proteins for at least one HLA class I locus, 33% have at least one new 

sequence comprising introns, exons, and UTRs. Moreover, 2.9% of variants detected in the HLA 

class I loci are novel with respect to dbSNP, concentrated in introns and regulatory sequences. 

The list of HLA variants and their frequencies are available in the ABraOM database 

(http://abraom.ib.usp.br).  

To contextualize our findings, we compared polymorphism for the full sequence of HLA-

A, HLA-B, HLA-C, HLA-E, HLA-F, and HLA-G in the SABE to 26 populations from the 1000 

Genomes Project (1KG3P), processed through the hla-mapper pipeline. A highly admixed subset 

of SABE individuals (with at least 30% of both European and African global ancestry, n=207, 

SABE-ADM, Fig. 5A) presented the third-highest worldwide gene diversity, and second-highest 

allele richness and mean number of observed haplotypes. The subset of individuals with 100% 

European global ancestry (n=152, SABE-EUR, Figure 5A) had the lowest diversity among 

subsets we explored within SABE, although still higher than that of individual European 

populations from 1KGP3. These results highlight not only the contribution of non-European 

admixture to HLA polymorphism in Brazilians, but also the presence of European ancestries 

(such as Iberic and Mediterranean) that are likely to be underrepresented in major databases. 

Finally, we used SABE as part of a reference panel to impute HLA alleles in a sample of 

146 highly admixed Brazilians from another study39. As for the whole-genome imputation, the 

SABE+1KG3P combined reference panel provided higher accuracy than 1KGP3 panel alone 

(Figure 5C), particularly for HLA-B (an increase of 5.87%).  

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.298026doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.298026
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

14 
 

 
Figure 5. HLA polymorphism in the SABE cohort. SABE and 1KGP3 samples were processed with the same 

HLA workflow, as described in the Supplementary Information. A. Average gene diversity across SABE and the 

1KGP3 populations considering haplotypes of all SNPs, i.e., the 2065 SNPs from six HLA class I genes, HLA-A, 

HLA-B, HLA-C, HLA-E, HLA-F, and HLA-G. SABE: all samples from SABA dataset; SABE-ADM: samples with at 

least 30% of both European and African global ancestry; SABE-EUR: samples with 100% European global 

ancestry. B. The proportion of SABE SNPs found at different minor allele frequency classes. C. HLA imputation 

accuracy when using the 1KGP3 (blue), SABE (green), and combining both (orange). Imputation was performed on 

146 highly admixed Brazilians previously genotyped on Axiom Human Origins array and HLA genotyping by 

sequence-based typing methods.  

 

 

 

GWAS  

We performed genome-wide association analyses for BMI, LDL, triglycerides, positive 

history of cancer, cognitive decline, diabetes, frailty, and hypertension (Supplementary Table 

19). We identified 14 hits (p-value ≤ 10-9) associated with cancer, BMI, LDL, and triglycerides 

(Supplementary Tables 20-23, Supplementary Figs. 24-27). Of those, 12 hits are within or near 

genes that were not previously associated with the respective phenotype40. Except for two hits 

associated with BMI, all significant alleles are rare in our cohort and very rare among Europeans 

(frequency < 0.005, Supplementary Tables 20-23), and two of them are also very rare among 

Africans. Comparing the performance of this WGS-based association with an SNP-set 

mimicking an array-based (Illumina Omni2.5M) GWAS (Supplementary Tables 20-23, 
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Supplementary Figs. 24-31), we observed only two hits (p-value≤5x10-8) associated with BMI 

(from the total of six hits) and two hits associated with LDL (from the total of five hits). 

 

DISCUSSION 

São Paulo is the largest city in Latin America, with over 12 million individuals, and 

captures the Brazilian population's main structure. Since WGS will become the standard genomic 

tool for research purposes and the future of precision medicine, providing a reference for 

admixed populations is critical. Genomic datasets such as gnomAD and TOPMed have recently 

included Latin American samples, but this is the first study to include more than 1,000 high-

coverage WGS in any Latin American census-based cohort. Moreover, Brazil is not represented 

in these databases, although it is the only Latin American country colonized by Portugal and the 

destination of the largest contingency of individuals brought by the slave trade from the East, 

Central, and West regions of Africa41, and homeland of hundreds of Native American groups. 

During the 19th and 20th centuries, São Paulo was the destination of other Europeans (Italian, 

German, Dutch, Polish, Spanish), Middle Eastern (Syrians and Lebanese), and East Asian 

(Japanese) immigrants18. 

Even though the SABE sample size is modest compared to other initiatives, we have 

identified over 76 million short variants (SNVs and indels), of which ~2 million are absent from 

major public databases. We highlight that those elderly individuals unaffected by rare genetic 

disorders are useful controls and support pathogenicity classification. Regarding structural 

variation, we found a large set of approximately 2,000 novel mobile element insertions and 

nearly 5Mb of genomic segments absent from human genome reference (version GRCh38). 

Additionally, over 140 novel HLA alleles were inferred in our sample. Whole-genome and HLA 

imputation were improved by the dataset when combined with 1KG3P, pointing that sample size 

can be, to some extent, compensated by diversity and representativeness. All results emphasize 

how WGS of admixed populations contribute as resourceful assets for population genomic 

studies and medical applications, as well as for improving the human reference genome.  
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METHODS 

Samples 

SABE is a census-based longitudinal study of elderly individuals that reside in the city of 

São Paulo, Brazil. Details on sampling and study design can be found in Supplementary 

Information and Supplementary Fig. 1. All subjects in the genomic dataset have agreed on 

participating in this study on written consent forms approved by CEP/CONEP (Brazilian local 

and national ethical committee boards). 

 

Sequencing and quality control 

Whole-genome sequencing was performed at Human Longevity Inc. following protocols 

previously described1. Library preparation was carried out using the TruSeq Nano DNA HT kit, 

and whole-genome sequencing was targeted at 30X and performed in Illumina HiSeqX 

sequencers using a 150 base paired-end single index read format. Reads were mapped to human 

reference GRCh38 using ISIS analysis software1. The sex of the samples was checked against 

proportions of read pairs concordantly mapped to the X chromosome and male-specific part of Y 
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chromosomes (MSY) related to those mapped to autosomes. As expected, females showed 

around 55,000 CPM X chromosomal reads and below 200 CPM, while genomic data from males 

showed these values being around 27,500 CPM and above 550 CPM, respectively.  

Following GATK's Best Practices for germline short variant discovery (single nucleotide 

substitutions and insertion/deletions) and using GATK software (3.7 release)2, we first generated 

individual GVCF (HaplotypeCaller) and then combined the GVCFs of all individuals 

(CombineGVCFs) to jointly call variants (GenotypeGVCFs) and perform Variant Quality Score 

Recalibration (VQSR-AS). Further, we used an in-house script to split the multiallelic variants 

into multiple lines and BCFtools3 to standardize variants by left alignment. Annovar4 and an in-

house script were used to cross-reference the variants with dbSNP, 1000 Genomes Project, and 

gnomAD. The VEP-plugin LOFTEE (v0.3-beta, https://github.com/konradjk/loftee) was used to 

identify putative loss of function (pLOF) variants in at least one transcript irrespectively of 

confidence labeling.  

We have previously developed an in-house two-step algorithm, CEGH-Filter, to evaluate 

the quality of called variants and genotypes5, by directly flagging genotypes based on the depth 

of coverage and allele balance using hard cutoffs. Variants are flagged based on proportions of 

flagged genotypes, to provide insight in site-context batch effects (Supplementary Fig. 3). All 

analyses involving SNVs and indels resulted from filtering out GATK VQSR-AS non-PASS 

variants and lower confidence flags from the in-house CEGH-Filter (Supplementary 

Information). A summarized table of computational steps, software, versions, packages, and 

datasets used throughout this article can be found in Supplementary Table 3.  

Initial related analysis using KING6 identified 28 pairs of relatives (sibships and duos), 

and only one individual from the pair was selected as proband by the following order of criteria: 

having brain MRI, oldest age, and being male. We used PC-Relate implemented in the GENESIS 

software7 and the same dataset used for Admixture (see topic below) to confirm that no first 

degree relatives remained in the sample. verifyBAMID8 identified one sample with over 3% of 

contamination, leading to its exclusion. A final dataset of 1,171 unrelated participants was used 

in downstream analyses (Supplementary Figure 1). Samples reached a minimum mean depth of 

coverage of 31.3X up to 64.8X, with an average depth of coverage of 38.65X and a median of 

36.6X (Supplementary Fig. 2). 
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Ancestry analyses 

We used ADMIXTURE v.1.3.09 to perform global ancestry inference through supervised 

analysis (K = 4). African (N=504), European (N=503), and East Asian (N=400) samples from 

1KGP3, and Native Americans (N=221) from recently published datasets10, were used as 

parental populations (Supplementary Table 5). The Native American samples were genotyped on 

the Illumina Omni 2.5M array; thus the genetic variants of the 1KGP3 and SABE samples 

(dataset of PASS (GATK) and vSR (CEGH Filter, Supplementary Fig. 3) variants with 

genotypes flagged by CEGH-Filter as FD or FB set as missing) were filtered to overlap with this 

array, totaling 1,842,125 SNPs. LD-pruning on this subset of markers was performed with 

PLINK v.1.911, with an r2 threshold of 0.1 within a sliding window of 50Kb and a shift step of 

10Kb, resulting in 372,527 SNPs. We used the same dataset to perform PCA analysis with 

SNPRelate12. The PCs obtained were further used for ancestry adjustment in GWAS analysis.  

 

Clinical analyses 

 To evaluate the occurrence and clinical significance of pathogenic variants in genes 

associated to Mendelian disorders, a comprehensive panel containing 4,250 OMIM disease genes 

(Supplementary Table 6) was retrieved and used for filtering SNVs and indels annotated with 

ClinVar pathogenic assertions (Pathogenic, Likely Pathogenic and Conflicting containing 

Pathogenic) and/or pLOFs identified by LOFTEE13. Classification of modes of inheritance was 

based initially by OMIM references, and upon manual curation with ClinGen 

(https://clinicalgenome.org/) and PanelApp (https://panelapp.genomicsengland.co.uk/). Manual 

curation was performed using ACMG recommendations14, with current literature and evaluation 

of the most recent phenotypes collected in SABE follow-up, when available. Summary of steps 

and workflows can be found in Supplementary Fig. 4-5. 

 

Mobile Elements Insertions  

Mobile Elements Insertions (MEIs) were detected using Mobile Element Locator Tool15 

(MELT; ver. 2.1.4). Specifically, MEIs (Alu, LINE-1, HERVs, and SVA) absent from the 

reference genome (GRCh38) were called with the MELT-SPLIT program and reference MEIs 

were genotyped using the MELT-Deletion program using the recommended standard calling 

procedures (https://melt.igs.umaryland.edu/manual.php). Next, additional filters were used to 
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obtain a high-quality call and genotyping of MEIs. We filtered out i) candidates not classified as 

"PASS" by MELT; ii) candidates inserted in a low complexity genomic region; iii) candidates 

presenting more than the expected number of discordant read pairs at the insertion site. For 

SABE-privative and singletons events, we also applied additional filters. We selected only MEIs 

with MELT ASSESS score equal five, with a defined Target Site Duplication (TSD) domain and 

with minimal support (>2) split reads defining the insertion point. The assignment of LINE-1, 

Alu, and HERVs events to families and subfamilies was also performed using MELT. SVAs 

insertions were not subclassified in families.  

MEIs (Alu, LINE-1, HERVs, and SVA) discovered among SABE samples were 

compared to MEIs present in the Database of Genomic Variation (DGV16), which includes 

Genome Aggregation Database (gnomAD) WGS samples. SABE events found in DGV were 

classified as Shared MEIs. Only the same mobile element (e.g., Alu-Alu, L1-L1, HERV-HERV, 

or SVA-SVA) in the same genomic region was considered to be the same event, considering a ± 

20 bp window of positional tolerance. Different classes of mobile elements falling in the same 

position are considered separate events. This overlap tolerance was based on the following 

possibilities: if there was a single ancestral event in the parental population followed by lineage-

specific rearrangements, or calling discrepancies, or if there were independent events; regarding 

functional consequences and context interpretation, the overlapping events could be treated 

similarly. Manual examinations of the MEIs coordinate differences between our and public data 

revealed that the differences could be the result of variation in the TSD length or alignment 

adjustments.  

To classify the genomic locations of MEI identified in the SABE genomes into genic 

(CDS, UTR, Intronic+flank) or intergenic, we matched the event coordinates against the 

GENCODE database. GENCODE (version 32) was used to define the set of transcribed regions. 

Exonic (CDS and UTR) and intronic regions (including 2k bp up and downstream the 

transcription start/end site) were defined as genic regions; all other genomic locations were 

defined as intergenic. In-house scripts were used to match MEIs coordinated to these regions 

aforementioned. In order to investigate the GC or AT composition of mobile elements insertion 

region, first, we randomly selected 10,000 windows of length 100 bp from the human reference 

genome (GRCh38) and calculated their GC content (control). Second, we made the same for all 

mobile element insertion regions, discriminating by Alu, L1, SVA and HERV. Finally, we tested 
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with Kolmogorov-Smirnov test (KS test) the random windows distribution (control) against 

distribution of mobile element insertion point. 

 

Non-reference nonredundant DNA segments library 

Unmapped (to GRCh38) paired reads from each individual were filtered for low-quality 

reads (average base quality below 20) and assembled using Megahit de novo assembler23. Non-

reference sequence contigs (NRS) from the 1,171 individuals were cross-assembled again with 

Megahit, and sequences longer than 200bp were retained as nonredundant DNA segments. We 

aligned nonredundant segments against GRCh38 (including alternative haplotypes and decoy 

segments), using minimap224, and we filtered out sequences with an identity of 95% or higher. 

We checked for bacterial and viral contaminations by blasting NRS against NCBI nonredundant 

database25. 

To determine the presence/absence of NRS in each individual, we aligned unmapped 

reads from each individual to GRCh38 extended with NRS, using bowtie226. We discarded NRS 

for which none of the individuals showed read coverage in the range of 7.5x – 100x as potential 

contaminants or misassembled contigs. For coverage calculation, we considered only reads with 

mapping quality above 20. 

Three sources of data were used for determining genomic positions of NRS. i) For 

contigs where the only part of it mapped to GRCh38, and the remaining portion (at least 200bp) 

did not, the mapping coordinate of the former was used for anchoring the non-reference part of 

the contig to chromosomal location. ii) Discordantly aligned read pairs (when mapped against 

GRCh38+NRS) in which one read is aligned to NRS and its pair mate aligned to a chromosomal 

location. iii) We used publicly available 10x Chromium linked-reads data27 from 26 Human 

Genome Diversity Project individuals (HGDP)28 and nine Human Genome Structural Variation 

Consortium individuals (HGSVC)29 to find overlap between barcodes mapped to NRS and 

chromosomal regions. Using bowtie2, we aligned 10X Chromium Genomes Linked Reads data 

to extended GRCh38+NRS reference and extracted barcodes for reads uniquely mapped to NRS. 

The best target location for each NRS was defined as a location with the highest cross-sample 

number of linked reads with matching barcodes (per 1kb window). NRS was considered as 

reliably localized if the best target location was discovered by at least two chromium barcodes 
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(in the same or different individuals). Mapping positions of NRS anchored to mitochondrial 

DNA or decoy sequences were not reported. In cases when multiple mapping information was 

available, the preference was given to coordinates obtained by partial mapping or discordant 

paired reads giving more precise genomic coordinates. 

 

Whole-genome imputation 

To create the SABE reference panel, we used only variants flagged as PASS (GATK) and 

vSR (CEGH filter), we set genotypes flagged as FD or FB (by CEGH-filter) as missing and 

removed variants with > 5% of missing genotypes. We used SHAPEIT230 to infer the 

chromosome phase using the extractPIRs tool, which incorporates the phase information 

contained in sequencing reads, improving phasing quality, particularly at rare variants31. We 

used the public 1000 Genomes Project Phase 3 haplotypes (1KGP3), version 27022019, 

including phased biallelic variants for 5,248 unrelated samples, that were directly aligned against 

GRCh3832. The SABE+1KGP3 reference panel was obtained by the merge of the SABE and 

1KGP3 reference panels using the IMPUTE2 program33  

To evaluate imputation performance, we used the EPIGEN-2.5M dataset comprising 

6,487 Brazilians from three population-based cohorts from Brazil genotyped on the Illumina 

Omni 2.5M array34: (i) 1,309 children from Salvador with 51% of African, 43% of European, 

and 6% of Native American ancestry; (ii) 1,442 elderly from Bambuí with 16% of African, 76% 

of European, and 8% of Native American ancestry; and (iii) 3,736 young adults from Pelotas 

with 14% of African, 79% of European, and 7% of Native American ancestry. We used 

CrossMap35 to convert genome coordinates from hg19 to GRCh38 assembly, and removed SNPs 

with more than 5% missing. 

We checked the consistency of the SNP’s strand of the target and each reference panel 

with SHAPEIT2 using the human genome reference sequence GRCh38, and we used PLINK 

software36 to flip the strands in case of inconsistencies. We phased the target EPIGEN-2.5M data 

set using (1) the SABE haplotypes as phasing references, for the imputation with the SABE 

reference panel; (2) the 1KGP3 haplotypes as phasing references, for the imputation with the 

1KGP3 reference panel; and (3) the 1KGP3 haplotypes as phasing references, for the imputation 

with the SABE+1KGP3 reference panel. 
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We used IMPUTE2 to perform the imputation for chromosomes 15, 17, 20, and 22, on 

chromosome chunks of 7 Mb, with an additional 250 kb of buffer on both sides (these were used 

for imputation inference but omitted from the results) and set the effective size parameter (Ne) to 

20,000. We used IMPUTE2 info score as a metric of imputation quality, in which a value of 0 

indicates that there is complete uncertainty about the imputed genotypes, and 1 indicates 

certainty about the genotypes. 

To test imputation accuracy, we used the squared correlation (r2) obtained by internal 

cross-validation performed by IMPUTE2. To this, IMPUTE2 masks the genotypes in the target 

panel, one by one, imputes the masked genotypes, and then compares the original genotypes with 

the imputed genotypes for each masked variant. 

  

HLA variants and haplotypes processing  

WGS reads from the SABE cohort were processed as described earlier. For the 1000 

Genomes dataset, we obtained high coverage BAM files using the ASPERA protocol. We 

processed these BAM files using hla-mapper version 417 (www.castelli-lab.net/apps/hla-

mapper), as described elsewhere18,19.  

We used GATK HaplotypeCaller version 4.1.7 to call genotypes in the genome 

confidence model (GVCF), concatenating all samples together in a VCF file using 

GenotypeGVCFs. We processed each HLA locus separately. For variant refinement and 

selection, we used the vcfx checkpl, checkad, and evidence algorithms to introduce missing 

alleles in genotypes with low likelihood and annotate each variant with a series of quantitative 

parameters19 (www.castelli-lab.net/apps/vcfx). Each variant that has not been approved by the 

vcfx evidence algorithm was evaluated manually. The hla-mapper/GATK/vcfx workflow 

allowed the detection of 2,257 high-quality variants considering 6 HLA class I loci, HLA-A, 

HLA-B, HLA-C, HLA-G, HLA-E, and HLA-F, against only 910 (40%) when using the regular 

workflow applied to the entire genome. We also calculated gene diversity, allele richness, and 

the mean number of different haplotypes across the 1000Genomes populations and SABE using 

a local Perl script, resampling 50 samples in 5,000 batches. This dataset was used in the analysis 

presented here.  

For haplotype inference, we combined both physical phasing using GATK 

ReadBackedPhasing (RBP) and probabilistic models, as described in the supplementary material. 
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After, we exported the phased data to complete sequences (exons+introns) and CDS sequences 

(only exons), comparing them with the ones described in the IPD-IMGT/HLA Database version 

3.4.020. Allele, genotype, and haplotype frequencies were calculated by direct counting. Please 

refer to the supplementary material for other details regarding the HLA workflow. 

 

HLA imputation 

Multi-ethnic imputation models for each of the class I classical HLA genes (HLA-A, -B 

and C) were fitted using as reference panel: (a) SABE (1171 sample); (b) 1KGP3 (2503 

samples); and (c) SABE + 1KGP3 (3674 samples). The imputation models were built on HIBAG 

v.1.421, based on overlapping SNPs with the Axiom Human Origins array (Affymetrix), with 

HLA allelic resolution at the protein level (HLA - 2 fields), 100 classifiers, and other default 

settings (Supplementary Table 18). To assess the accuracy of the models, imputation was 

performed on a sample of 146 highly admixed Brazilian individuals (43% AFR, 41% EUR, and 

16% NAM) previously genotyped on Axiom Human Origins array and had HLA genotyped by 

standard methods (see details in Nunes et al., 201622). To verify the accuracy of the imputation in 

each locus, the number of chromosomes with the correct HLA call was quantified over the total 

number of imputed chromosomes. The empirical cumulative distribution (ECD) was performed 

to access the posterior probability distribution associated with the different reference panels 

(Supplementary Fig. 23) 

 

GWAS 

We selected the following phenotypes to perform genome-wide association analyses: (i) 

body mass index (BMI) calculated as weight (kg) divided by squared height (meters); (ii) low-

density lipoprotein (LDL, mg/dL); (iii) log(10) transformed triglycerides (mg/dL); (iv) cancer 

(self-reported and checked in healthcare registry); (v) cognitive decline (decline: mini-MMSE < 

13, no decline: mini-MMSE >=13); (vi) diabetes (self-reported); (vii) frailty (≥1 component); 

and (viii) hypertension (self-reported and cross-checked with medication). Distributions are 

shown in Supplementary Table 19. We used plink2 (www.cog-genomics.org/plink/2.0/)11 to run 

linear regressions for quantitative traits and logistic regressions for categorical variables. We 

excluded variants with minor allele frequency < 0.005 for the analyses. Regressions were 

adjusted for age, sex, classes of income, schooling, and 10 first PCs obtained with PCrelate37, 
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and we used the --covar-variance-standardize flag to standardize covariates. We only used 

biallelic variants, flagged as PASS (by GATK), and we set genotypes flagged as FD or FB (by 

CEGH-filter) as missing. The final input was obtained by removing variants with MAF > 5% 

with more than 5% of missing data, and variants with MAF <5% with more than 1% of missing 

data. We also performed the analyses for an array-filtered input, obtained by including only the 

variants present in the Illumina (San Diego, CA, US) Omni2.5M array. Genomic inflation for all 

traits was below 1.05. A significance threshold of 10-9 and 5x10-8 was used for the whole 

genome and array-filtered data, respectively. We used the qqman package for R38 to build 

Manhattan plots and qq plots, and we estimated the linkage disequilibrium statistics using the 

software Haploview39. 
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