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Abstract 23 

The brain’s functional architecture changes considerably across multiple timescales. While the 24 

role of variations over long timescales (e.g., years) is widely documented, the functional 25 

relevance of microtemporal (i.e., second-level) fluctuations is still debated. Using fMRI data 26 

collected during movie watching from two independent samples, we demonstrate that the 27 

adaptiveness of variability in functional brain architecture fluctuates across the adult lifespan 28 

(18-88 years) due to age-related differences in the associated profiles of network communication.  29 

Greater coupling between changes in brain architecture and concrete environmental features is 30 

stronger at younger ages and linked to poorer cognitive-affective outcomes. Whole-brain 31 

communication pathways anchored in regions key to episodic and semantic context creation 32 

contribute to greater brain reconfiguration in response to abstract contextual changes and 33 

stronger coupling between changes in brain architecture and concrete environmental features. 34 

Our results provide new insights into age-related differences in brain-environment alignment and 35 

their relevance to cognitive adaptability and psychopathology. 36 

Keywords: Event Cognition, Functional Networks, Dynamic Connectivity, Fluid Intelligence, 37 

Ageing, Anxiety38 
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Brain-Environment Alignment 3 

Brain-Environment Alignment during Movie Watching Predicts Cognitive-Affective Function in 40 

Adulthood 41 

The human brain demonstrates significant fluctuations in functional connectivity across 42 

multiple spatial (i.e., voxels to regions) and temporal (i.e., seconds to years) scales (Poldrack & 43 

Shine, 2018). While the role of connectivity changes across long timescales (e.g., years) is 44 

widely documented, the functional relevance of micro-temporal (i.e., second-level) fluctuations 45 

is still debated, with some studies underscoring their role in maturation and learning, whereas 46 

others point to their association with accelerated cognitive aging in later life (Bassett et al., 2011, 47 

2013; Chan et al., 2014; Gonzalez-Castillo & Bandettini, 2018; Hutchison & Morton, 2015; 48 

Mujica-Parodi et al., 2020).  49 

To reconcile these findings, here, we probe the functional relevance of dynamic brain 50 

reconfiguration in response to naturalistic, dynamic stimuli (Sonkusare, Breakspear, & Guo, 51 

2019; Sporns, 2013). We thus capitalise on evidence that the human mind readily breaks down 52 

the continuous influx of environmental information into meaningful units, which it uses to 53 

predict and encode ongoing experiences (Baldwin & Kosie, 2020; Kurby & Zacks, 2008). Such 54 

segmentation processes unfold at multiple timescales and give rise to a nested event hierarchy, 55 

which spans relatively frequent and readily processed low-level featural fluctuations (e.g., object 56 

presence/absence) to more sporadic and abstract, slower processed, high-level changes to the 57 

“working event model” underlying an ongoing experience (Baldassano et al., 2018; Hasson, 58 

Chen, & Honey, 2015; Zacks, 2020).  59 

To probe the neural dynamics underlying real-life information processing, we used fMRI 60 

data collected during naturalistic movie watching paradigms, because they provide an 61 

ecologically valid framework for investigating individual and ageing-related differences in event 62 
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cognition and associated patterns of functional brain reconfiguration (Bottenhorn et al., 2019; 63 

Demirtas et al., 2019; Geerligs, Cam-Can, & Campbell, 2018; Gilson et al., 2018; Simony et al., 64 

2016). To index the adaptiveness of functional brain reconfiguration during movie watching, we 65 

used a measure of fluid intelligence, a cognitive capacity reliant on mental segmentation 66 

proficiency, which underpins updating of event representations and is associated with greater 67 

flexibility in functional brain architecture (Barbey, 2018; Colzato, van Wouwe, Lavender, & 68 

Hommel, 2006; Duncan, Assem, & Shashidhara, 2020; Duncan, Chylinskia, Mitchell, & 69 

Bhandaric, 2017). Depression and anxiety scales gauged complementary affectively-driven 70 

biases in attention (i.e., towards abstract, schematic vs. concrete, perceptually rich information), 71 

which reportedly impact event segmentation processes (Belzung, Wilner, & Philippot, 2015; 72 

Brewin, Gregory, Lipton, & Burgess, 2010; Hermans, Henckens, Joels, & Fernandez, 2014; 73 

Petrican, Saverino, Rosenbaum, & Grady, 2015; Sherrill, Kurby, Lilly, & Magliano, 2019; 74 

Sylverster et al., 2012).  75 

To characterise the underpinnings of functional brain reconfiguration, we draw on 76 

evidence that the human brain is organised into dissociable anatomical networks, which provide 77 

a blueprint for the brain’s functional architecture (Fox & Raichle, 2007; Mesulam, 1998). 78 

Functional brain reconfiguration across multiple timescales (i.e., seconds to weeks) underlies 79 

learning and adjustment to unpredictable surroundings, while overall stability in patterns of 80 

large-scale functional network integration/separation predicts superior cognitive functioning 81 

(Alderson et al., 2020; Finc et al., 2020; Hilger, Fukushima, Sporns, & Fiebach, 2019; Kao et al., 82 

2020). Based on this literature, we pursued several lines of inquiry regarding the relationship 83 

between global profiles of functional network interaction and dynamic brain reconfiguration 84 

during naturalistic event cognition. 85 
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There is compelling evidence that ageing impacts some of the mental processes and brain 86 

activity patterns underlying event segmentation, partly because it leads to increased reliance on 87 

conceptual, rather than perceptual, information (Kurby & Zacks, 2011, 2018; Radvansky & 88 

Dijkstra, 2007; Reagh, Delarazan, Garber, & Ranganath, 2020; Spreng & Turner, 2015). 89 

Capitalising on this, we examined whether dynamic neural reconfiguration during movie 90 

watching is linked to distinguishable profiles of functional network communication across the 91 

adult lifespan, indicative of a shift from perceptually to conceptually-bound processing, and 92 

whether any such age-specific profiles are differentially associated with fluid IQ (Objective 1). 93 

We further tested the adaptiveness of brain-environment alignment by probing its relevance for 94 

individual differences in fluid IQ and affectively-driven attentional processing biases (Objective 95 

2). Finally, we investigated whether overlapping patterns of functional network integration 96 

underlie dynamic brain reconfiguration in response to both high-level narrative context changes 97 

and low-level featural fluctuations (e.g., presence/absence of objects, people), thereby linking 98 

event segmentation processes unfolding at multiple time scales (Objective 3). 99 

This report is organized as follows. Part 1 targets objective 1 in a healthy adult lifespan 100 

sample collected by the Cambridge Centre for Ageing and Neuroscience (Cam-Can). Part 2 101 

addresses objectives 2 and 3 in a separate sample of healthy young adults from the Human 102 

Connectome Project (HCP).  103 

Part 1: Cam-Can Sample  104 

Results 105 

 Window-to-window and narrative context-based brain reorganization increase with 106 

age; neither is linked to intelligence beyond age. We ran ten discovery CCAs to characterise 107 

the relationship of window-to-window and narrative-based functional reconfiguration with age, 108 
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as well as fluid and crystallised intelligence. The discovery CCAs identified one significant 109 

mode, which was validated across all test sets (r of .15, p = 7 * 10-5 ). This mode indicated that 110 

greater functional brain reconfiguration (i.e., reduced similarity in community structure between 111 

temporally adjacent windows, as well as neighbouring windows from distinct narrative 112 

segments) typifies older individuals with lower fluid intelligence scores (see Figure 3-a, d). An 113 

inspection of the standardized coefficients revealed that the link between greater architectural 114 

variability and intelligence is mostly due to age (i.e., older individuals tend to have lower fluid 115 

intelligence scores relative to younger individuals, see Figure 3-b, e). 116 

Window-to-window and narrative context-based brain reorganization are linked to 117 

distinct patterns of network participation as a function of age. Ten discovery CCAs were 118 

conducted to probe the relationship between diversity in the functional interactions of the ten 119 

networks from the Power atlas (i.e., the average participation coefficient across all the ROIs 120 

within each network) and age-linked patterns of window-to-window versus narrative context-121 

based brain reorganization. The discovery CCAs detected two significant modes, which were 122 

validated across all test sets (rs of .50 and .31, respectively, both ps of 10-5 ). The first mode 123 

indicated that, at older ages, functional brain reorganization is associated with greater 124 

participation of networks involved in self-guided cognition and creation of situation models 125 

during event perception (DMN), as well as top-down control (FPC) and attention (DAN), but 126 

reduced participation of networks implicated in environmentally driven processing (CON, AUD, 127 

SAL and VAN, see Figure 4). The second mode suggested that, at younger ages, stronger brain 128 

reconfiguration was linked to greater global participation, but particularly for the network 129 

involved in environmental vigilance and control maintenance (CON, cf. Figure 5).  130 
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The network participation profile linked to brain reconfiguration at younger ages, 131 

predicts fluid IQ independent of age and beyond levels of window-to-window /context -132 

based reconfiguration; neither network participation profile predicts crystallised IQ. A 133 

robust regression analysis, conducted in Matlab with default settings (bisquare robust fitting 134 

weight function with a tuning constant of 4.685) and using fluid IQ as the outcome, revealed its 135 

significant positive association with the network participation profile linked to brain 136 

reconfiguration during, younger (b = .083, SE = .031, t(602) = 2.643, p =.008), but not older (b = 137 

-.053, SE = .037, t(602) = -1.433, p =.153), ages (covariates included window-to-window and 138 

context-based brain reconfiguration, respectively, age, sex, handedness, crystallised IQ, the 139 

summary motion metric and the summary ROI homogeneity metric) (see Figure 6). The 140 

corresponding robust regression analysis using crystallised IQ as the outcome unveiled no 141 

significant associations with either participation profile (both ps > .66). In neither robust 142 

regression analysis did levels of window-to-window or context-based functional reconfiguration 143 

made a significant contribution to either fluid or crystallised intelligence (all ps > .25). 144 

A subset of DMN ROIs predicts reconfiguration linked to narrative context 145 

boundaries, independent of age and window-to-window reconfiguration level. The 146 

behavioral PLS analysis identified one ROI participation LV (p = .0005) which was significantly 147 

linked to reorganization in response to movie event boundaries, independent of age and window-148 

to-window brain reconfiguration levels (r = .25, 99% CI= [.25; .45]). Ten ROIs, all but one in the 149 

DMN, made a reliable contribution (absolute value BSR > 3) to this LV (insula, angular gyrus 150 

[AG], middle temporal gyrus [MTG], posterior cingulate cortex [PCC], superior frontal gyrus 151 

[SFG], dorsomedial and ventromedial prefrontal cortex [dmPFC, vmPFC], see Figure 7-a). 152 
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Subsequently, we conducted a decoding analysis in Neurosynth (Yarkoni et al., 2011), 153 

focused on the central voxel within each of the ROIs robustly linked by PLS to brain 154 

reconfiguration in response to event boundaries, in order to shed some light on their previously 155 

documented functional associations. As can be seen in Figure 7-b, the analysis revealed that the 156 

strongest z-score-based (Neurosynth z-scores > 4) associations were with “memory”, 157 

“autobiographical”, “episodic”, “retrieval”, “mind” and “remembering”. These decoding results 158 

are compatible with the interpretation that brain sensitivity to narrative context boundaries is 159 

uniquely associated with greater functional integration of ROIs that are relevant to the formation 160 

of ongoing event representations and play a key role in internally guided mnemonic processes 161 

(Honey, Newman, & Schapiro, 2017; Stawarczyk, Bezdek, & Zacks, 2019). 162 

A subset of DMN, VIS and FPC ROIs predicts window-to-window reconfiguration, 163 

independent of age and event boundary-based reconfiguration level. This second 164 

behavioural PLS analysis identified one ROI participation LV (p = .0002) which was 165 

significantly linked to window-to-window reorganization, independent of age and narrative 166 

context-based brain reconfiguration levels (r = .26, 99% CI= [.26; .46]). Nine ROIs, 167 

encompassing the DMN (dmPFC, SFG), VIS (fusiform gyrus [FG], inferior occipital gyrus 168 

[IOG]), and FPC (inferior parietal lobule [IPL], medial frontal gyrus [MFG]) made a reliable 169 

contribution (absolute value BSR > 3) to this LV (see Figure 8-a). 170 

A decoding analysis in Neurosynth, similar to the one conducted for narrative context-171 

based reconfiguration, revealed that the ROIs linked to window-to-window brain reconfiguration 172 

showed strongest functional associations with “visual”, “memory”, “objects”, “language”, 173 

“social”, “mind”, and “retrieval” (see Figure 8-b). This functional web was quite distinct from 174 

the one observed for the ROIs uniquely associated with context-based reconfiguration. 175 
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Part 2: HCP Sample 176 

Results 177 

Anxious younger adults with lower fluid IQ show greater brain sensitivity to object-178 

based, but not action-based changes in the external environment. Ten discovery CCAs were 179 

conducted to probe the relationship between age, fluid IQ, anxiety and depression, on one hand, 180 

and coupling of functional brain reconfiguration with semantic feature (noun vs. verb-based) 181 

changes across all 14 movies. The discovery CCAs detected one significant mode, which was 182 

validated across all test sets (r of .20, p = .004). This mode indicated that greater functional brain 183 

reconfiguration as a function of object-based, but not action-based changes, typifies anxious 184 

younger adults with lower fluid IQ scores (see Figure 9).  185 

Greater brain sensitivity to object-based environmental changes is linked to greater 186 

whole-brain participation of parietal and medial temporal areas involved in 187 

autobiographical and episodic memory. We conducted ten discovery CCAs, probing the link 188 

between brain-environment coupling based on object-based variations and participation of the 189 

eleven ROIs uniquely linked in the Cam-Can to brain reconfiguration evoked by high-level, 190 

narrative context changes. Because we were interested specifically in brain-environment 191 

coupling with respect to object-related variations (due to its relevance to cognitive-affective 192 

adaptation, as shown in the previous set of CCAs), we regressed out from the brain-index not 193 

only global window-to-window brain reconfiguration (as in the prior analysis), but also brain-194 

environment coupling based on narrative action changes. Age was introduced in this analysis to 195 

probe whether its link to brain-environment coupling is independent of the narrative ROI 196 

participation patterns (in the Cam-Can, the ROI participation profiles were shown to contribute 197 
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to high-level context-based reconfiguration irrespective of age, but it was unclear whether the 198 

same would be true with to lower-level featural fluctuations). 199 

One significant mode emerged from the discovery CCAs, which was replicated across all 200 

test sets (r of .19, p = .005). This mode indicated that stronger brain-environment coupling (with 201 

respect to object-based fluctuations) was associated with greater participation across most of the 202 

Cam-Can ROIs at younger ages, but particularly the medial temporal and parietal ROIs, which, 203 

based on Neurosynth decoding, were most relevant to “memory”, “autographical”, “episodic” 204 

and “retrieval” (see Figure 10-a,b, d).  205 

Discussion 206 

 Extending prior literature on the role of variability in task-evoked brain activation levels 207 

(Garrett et al., 2013, 2015, 2020; Grady & Garrett, 2018), we provide novel evidence that the 208 

adaptiveness of both spontaneous (i.e., stimulus-independent) and task-related fluctuations in 209 

whole-brain functional architecture varies across the lifespan as a function of the underlying 210 

network communication profiles. We further demonstrate that in young adulthood, enhanced 211 

brain-environment alignment with respect to lower level featural fluctuations, a potential marker 212 

of preferential reliance on sensory-bound, rather than more abstract mental representations (cf. 213 

Brewin et al., 2010), carries adverse implications for both cognitive and affective adaptation (i.e., 214 

fluid intelligence, depression/anxiety). Finally, we offer suggestive evidence on the network 215 

integration profiles that link functional brain reconfiguration at multiple timescales and are, thus, 216 

likely to be key to understanding the dynamics behind typical and atypical variations in event 217 

processing. 218 

Using a naturalistic, dynamic cognition paradigm (i.e., movie watching) in an adult 219 

lifespan sample, we demonstrate that the adaptiveness of functional brain reconfiguration hinges 220 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.298125doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.298125


Brain-Environment Alignment 11 

on the associated patterns of whole-brain network participation. Specifically, superior cognitive 221 

adaptability (i.e., higher fluid intelligence, Cattell, 1971) was not linked to variability in 222 

functional neural architecture per se, but rather to a network participation profile implicated in 223 

dynamic brain reconfiguration in younger adulthood. This profile reflects a pattern of whole-224 

brain functional integration anchored in networks implicated in vigilance and control 225 

maintenance (CON), as well as environmentally driven attention (VAN) and behavioural 226 

regulation (SAL) (see Figure 5-a, Corbetta & Shulman, 2002; Sadaghiani & D’Esposito, 2015; 227 

Seeley et al., 2007; Sridharan, Levitin, & Menon, 2008). These results thus dovetail nicely with 228 

extant theory which suggests that flexibility in the interactions of cognitive control networks, 229 

particularly CON, are a key contributor to fluid intelligence (Barbey, 2018; Duncan et al., 2020). 230 

They are also compatible with the interpretation that adaptive patterns of dynamic brain 231 

reconfiguration during movie watching are linked to greater whole-brain informational flow 232 

through a system implicated in maintaining current task demands (i.e., CON, Dosenbach et al., 233 

2006, 2008) and which is thus very well-positioned to support the “working event model” of an 234 

ongoing experience (Radvansky & Zacks, 2017). 235 

In contrast to the participation profile associated with functional reconfiguration in 236 

younger adulthood, the one linked to variability in functional architecture during older adulthood 237 

was typified by reduced CON, VAN, and SAL participation and, instead, reflected most strongly 238 

the diverse interactions of the networks involved in self-guided cognition (DMN) and top-down 239 

control (FPC), in particular, but also of those implicated in goal-directed attention (DAN) and 240 

visual processing (Andrews-Hanna, Saxe & Yarkoni, 2014; Corbetta et al., 2000; Spreng et al., 241 

2010) (see Figure 4-a). Our finding that functional brain reconfiguration in older adulthood 242 

depends on neural communication pathways grounded in the DMN and  FPC complements 243 
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current theories of cognitive ageing, which posit that age-related  declines in the ability to engage 244 

strategically with the external environment in the here-and-now are compensated by drawing on 245 

accumulated world knowledge (Spreng & Turner, 2019). This age-related semanticisation, which 246 

is presumably supported through progressively stronger functional coupling between the DMN 247 

and the FPC (Turner & Spreng, 2015), helps preserve task performance in contexts where prior 248 

knowledge is relevant (Umanath & Marsh, 2014). One such context may be event segmentation, 249 

where it has been suggested that performance preservation with ageing may be partly due to 250 

increasing reliance on semantic knowledge (rather than perceptual representations) during event 251 

perception (Radvansky & Dijkstra 2007). This conjecture is compatible with recent 252 

neuroimaging findings that, with ageing, narrative event boundaries evoke weaker activation in 253 

canonical episodic memory areas (but not in areas relevant to more abstract, schematic 254 

processing), an effect that emerges despite the lack of age-related differences in behavioural 255 

event segmentation (Reagh et al., 2020).  256 

Our present findings thus raise the possibility that the patterns of DMN/FPC participation 257 

observed in older adulthood reflect the greater influence of conceptual, rather than perceptual, 258 

processes on naturalistic neurocognitive dynamics. Nonetheless, future research incorporating 259 

longer movies and behavioural measures of event segmentation is warranted to shed light on how 260 

DMN/FPC network communication pathways may contribute to the dynamics of event 261 

perception and memory across the lifespan. Further characterisation of the interactions among 262 

the internally versus externally oriented DMN and FPC subsystems, respectively (Chiou, 263 

Humphreys, & Lambon Ralph, 2020; Dixon et al., 2018), may also provide unique insights into 264 

the processes through which rich percepts are translated into transient or more durable mental 265 

representations. 266 
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Our study also provided novel insights into the adverse functional implications linked to 267 

brain-environment entrainment with respect to momentary featural fluctuations. Prior evidence 268 

indicates that anxiety and depression are associated with divergent processing biases (i.e., 269 

preferential reliance on perceptual versus abstract information), which impact event perception 270 

and segmentation (Belzung et al., 2015; Brewin et al., 2010; Petrican et al., 2015; Sherrill et al., 271 

2019). Accordingly, we find that subclinical anxiety is linked to increased brain-environment 272 

alignment, compatible with an attentional bias towards lower level featural information (Figure 273 

9-a, b), while an opposite tendency, consistent with attentional disengagement from concrete 274 

object representations in the here-and-now, is observed for subclinical depression (Figure 9-e). 275 

Brain sensitivity to low-level featural fluctuations was also associated with poorer fluid 276 

intelligence. This implies that environmental entrainment, a plausible marker of preferential 277 

reliance on sensory-bound, rather than more abstract mental representations, which is linked to 278 

high levels of both state and trait anxiety, may prevent successful strategic processing (Hermans 279 

et al., 2014; Matthews, Yiend, & Lawrence, 2006; Sylverster et al., 2012).  280 

It is worth pointing out that while brain sensitivity to object/spatial layout fluctuations 281 

was associated with adverse outcomes (cf. Brewin et al., 2010), the opposite pattern of results 282 

emerged with respect to brain sensitivity to action-based changes (Figure 9-b). This pattern of 283 

results is compatible with prior findings that action-related changes make a substantial 284 

contribution to behavioural event segmentation, an effect that can be observed from childhood 285 

and that is attenuated in anxiety-related disorders (Belayachi & & Van der Linder, 2015; Levine, 286 

Buchsbaum, Hirsh-Pasek, & Golinkoff, 2019; Magliano & Zacks, 2011; Swallow, Kemp, & 287 

Simsek, 2018). If action-related changes are more informative than object or spatial layout-288 

related changes for understanding story flow, then the greater sensititivity to object-based 289 
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changes observed in our study may reflect poor tuning to the current task demands. Although this 290 

is a possibility that warrants further investigation, we would like to point out that roughly half of 291 

the HCP movies did not have a very strong narrative thread and, in many instances, movie flow 292 

depended as much on narrative action as it did on object- and spatial layout-related changes 293 

(which rendered both types of changes “task-relevant”). Similarly, as pointed out elsewhere 294 

(Reagh et al., 2020), most of the narrative event boundaries in the Cam-Can movie data involved 295 

changes in spatial context. Thus, it seems likely that in both datasets, object/spatial layout-related 296 

fluctuations were relevant to event segmentation processes. Nonetheless, future studies are 297 

needed to further explore the distinct roles that brain sensitivity to changes in object and/or 298 

spatial layout versus action flow may play in encoding and subsequently retrieving perceptually 299 

rich event representations. 300 

Our study also contributed novel evidence on the overlapping network communication 301 

profiles underlying brain-environment alignment with respect to both higher-level contextual and 302 

lower-level featural fluctuations (as outlined above though, note that in the present data featural 303 

fluctuations relevant to spatial layout were relevant to higher level event boundaries, cf. Reagh et 304 

al., 2020). In both cases, brain-environment coupling was associated with greater whole-brain 305 

informational flow (i.e., participation) in a subset of canonical DMN ROIs, including the left 306 

AG, left MTG, PCC and left SFG, the majority of which had been implicated in event memory 307 

reactivation (Chen et al., 2017), a finding that resonates with our Neurosynth decoding results 308 

(Figure 10-d). The AG and PCC play key roles in recollection (Ranganath & Ritchey, 2012; 309 

Ritchey & Cooper, 2020; Rugg & Vilberg, 2013) and have been widely implicated in the 310 

integration of multimodal information at longer timescales, thereby supporting the creation of the 311 

so-called “situation/event models”(Bonnici, Richter, Yazar, & Simmons, 2016; Chen et al., 312 
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2016; Hasson, Chen, & Honey, 2015; Radvansky & Zacks, 2017; Stawarcyzk et al., 2019; Yazar, 313 

Bergstrom, & Simmons, 2017). The left AG, in particular, has been posited to play a causal role 314 

in episodic context creation during perception by acting as an online buffer for combining past 315 

and currently presented information (Branzi, Pobric, Jung, & Lambon Ralph, 2019; Humphreys 316 

& Lambon Ralph, 2015). Our study expands the literature on AG by documenting its role in 317 

integrating information across the whole brain during event perception in order to align the 318 

external environmental and internal neural dynamics. It also raises the possibility that, through 319 

its contribution to unifying information processing across multiple levels (i.e., from featural to 320 

contextual), the AG may play a critical role in setting attentional focus, thereby shifting from a 321 

featural, sensory-bound to a more abstract processing mode in a context-specific manner. It thus 322 

seems likely that the AG would contribute to cognitive adaptability (i.e., fluid IQ), together with 323 

“multiple demand” cognitive control areas (Barbey, 2018; Duncan et al., 2020), a proposal that 324 

awaits actual testing. 325 

Together with the AG, the left MTG demonstrated a similarly robust association with 326 

functional brain reconfiguration triggered by both high and low-level environmental changes.  327 

Like AG, this region has been previously implicated in updating semantic features related to the 328 

present context (Branzi, Humphreys, Hoffman, & Lambon Ralph, 2020), while uniquely 329 

partaking into the controlled retrieval of semantic information (Hoffman, McClelland, & 330 

Lambon-Ralph, 2018).  Here, it is plausible that the MTG and AG make complementary 331 

contributions during online context creation and updating, as pertinent to real-life cognition and 332 

our movie watching paradigm (Kurby & Zacks, 2008). Specifically, the whole-brain 333 

participation profile associated with AG may provide the low-level, episodic perceptual  detail 334 

from which a strong sense of perceptual vividness and grounding in the here-and-now stem 335 
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(Ramanan, Piguet, & Irish, 2018). Complementarily, during event perception, the MTG-linked 336 

participation profile may support continual updating of the underlying semantic structure based 337 

on the influx of environmental information and controlled retrieval of already stored world 338 

knowledge, thereby playing a critical role in keeping the “working event model” in sync with the 339 

ongoing experience (Hoffmann et al., 2018; Zacks, 2020). Following this train of thought, an 340 

interesting future research venue would be to probe whether relative expression of the AG- 341 

versus the MTG-, linked network communication profile may predict individual differences in 342 

preferential reliance on sensory-bound versus more abstract mental representations (cf. Brewin et 343 

al., 2010) and, thus, differential vulnerability to anxious versus depressive symptomatology 344 

(Belzung et al., 2015; Sherrill et al., 2019). 345 

Future studies are warranted to address limitations of our present research. First, use of a 346 

larger battery of movies (as in HCP), covering diverse artistic interests and production dates, 347 

with a strong narrative plot that allows reliable extraction of narrative event boundaries (as in 348 

Cam-Can), is needed to characterise event perception dynamics at multiple levels of meaning 349 

within a single process model. Second, inclusion of a full lifespan sample, as well as 350 

complementary cross-sectional/longitudinal designs may elucidate the role of brain-environment 351 

entrainment during developmental stages characterised by distinct learning needs (Baldwin & 352 

Kosie, 2020). Third, although behavioural event segmentation is largely preserved in healthy 353 

ageing (Kurby & Zacks, 2018; Reagh et al., 2020; Sargent et al., 2013), future studies probing 354 

the link between event segmentation performance and its neural substrates across the lifespan 355 

would be critical in furthering our understanding of developmental differences in information 356 

processing. Fourth, research employing alternate methods for estimating dynamic brain 357 
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reconfiguration, including data-driven approaches, would shed light on the boundary conditions 358 

of the effects herein documented (Gonzalez-Castillo & Bandettini, 2018; Iraji et al., 2020). 359 

In sum, we demonstrate that the adaptiveness of dynamic brain reconfiguration varies 360 

across the lifespan based on the associated patterns of network interaction. We also show that 361 

brain-environment alignment at the level of momentary featural fluctuations, a potential indicator 362 

of the predisposition to rely on lower-level, sensory, rather than higher-level, more abstract 363 

mental representations (cf. Brewin et al., 2010), carries adverse implications not only for 364 

affective adjustment, but also for the capacity to cognitively adapt to novel environments. 365 

Finally, we provide evidence that brain sensitivity to lower level featural fluctuations is higher in 366 

younger adulthood and is associated with some of the network interaction profiles that typify 367 

sensitivity to higher level narrative event boundaries across the lifespan. These network 368 

communication profiles, which link event segmentation at multiple levels during earlier life, are 369 

relevant to the provision of perceptual and semantic scaffolding to context formation during 370 

perception, as well as during the subsequent episodic retrieval of these event representations.371 
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Methods 372 

Part 1: Cam-Can Sample 373 

Participants. We included the largest number of participants from Stage II of the 374 

Cambridge Ageing and Neuroscience (Cam-Can) study with available fMRI data in the movie 375 

watching condition (N = 642, age range: 18-88 yrs [M = 54 yrs, SD = 19 yrs]).  376 

The majority of participants (N = 589) were predominantly right-handed (handedness 377 

measure > 0). The sample included 316 men (32 between 18 and 29, 49 between 30 and 39, 48 378 

between 40 and 49, 48 between 50 and 59, 57 between 60 and 69 , 50 between 70 and 79, 32 379 

between 80 and 88 years of age) and 326 women (42 between 18 and 29, 46 between 30 and 39, 380 

57 between 40 and 49, 45 between 50 and 59, 48 between 60 and 69 , 58 between 70 and 79, 30 381 

between 80 and 88 years of age).  382 

All participants were cognitively healthy (MMSE > 24) and met the hearing, vision, and 383 

English language ability criteria necessary for the completing experimental tasks (Taylor et al., 384 

2017). They were also screened for any neurological and serious psychiatric conditions, as well 385 

as for physical conditions or bodily implants that may render their participation unsafe (Taylor et 386 

al., 2017). Participants provided informed consent in accordance with the Cambridgeshire 387 

research ethics board (Shafto et al., 2014).  388 

Out-of-scanner measures.  389 

Fluid intelligence. Participants completed the pen-and-paper version of the Cattell 390 

Culture Fair Test, Scale 2 Form A (Cattell, 1971; Cattell & Cattell, 1973) in which they had to 391 

select the correct answer from multiple alternatives and record it on an answer sheet. The test 392 

contains four subtests with distinct non-verbal “puzzles”: series completion, classification, 393 

matrices and conditions. Unbeknownst to the participants, each subtest is timed, such that 3, 4, 3 394 
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and 2.5 minutes are allocated for subtest 1, 2, 3 and 4, respectively. Correct responses receive a 395 

score of 1 for a maximum score of 46. 396 

Crystallized intelligence. The proverb comprehension test was used as an index of 397 

crystalized intelligence (Crawford & Stankov, 1996). In this task, participants provide the 398 

meaning of three common proverbs in English, which are presented on a computer screen 399 

(Shafto et al., 2014). Their responses are recorded digitally and scored by experimenters as 400 

incorrect or a “don’t know” response (0), partly correct but literal rather than abstract (1), or fully 401 

correct and abstract (2). The highest possible score is 6. 402 

In-scanner task. Participants watched a shortened version of Alfred Hitchcock’s black-403 

and-white television drama “Bang! You’re Dead” (Hitchcock, 1961; Hasson et al., 2008, 2010) 404 

edited from 30 min to 8 min while maintaining the plot (Shafto et al., 2014). The movie was 405 

selected to be engaging and unfamiliar to the participants. 406 

 fMRI data acquisition. Images were acquired with a 3T Siemens TIM Trio 407 

System (32-channel coil). T1-weighted anatomical scans were acquired with a MPRAGE 408 

sequence (TR = 2250 ms, TE = 2.99 ms, flip angle=9°, FOV = 256 mm x 240 mm x 192 mm, 1 409 

mm isotropic voxels, GRAPPA acceleration factor = 2). Functional images were acquired with a 410 

multi-echo EPI sequence (TR=2470 ms, [TE=9.4 ms, 21.2 ms, 33 ms, 45 ms, 57 ms], flip 411 

angle=78°, FOV = 192 x 192 mm, 32 axial slices of 3.7 mm thickness, acquired in descending 412 

order with 20% gap, voxel size of 3 mm × 3 mm x 4.4 mm). 413 

 fMRI data preprocessing. The main preprocessing and analysis steps for both samples 414 

are presented in Figure 1. For the Cam-Can data, preprocessing began with the averaging of the 415 

corresponding images from the multiple echos. We opted for a simple average, rather than a 416 

weighted sum, in order to maximize comparability with the HCP data, which did not contain 417 
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multiple echos. We reasoned that our strategy was defensible in light of evidence that simple 418 

averaging yields similar improvements in 3T image quality as weighted summing (Kettinger et 419 

al., 2016; Poser, Versluis, Hoogduin, & Norris, 2006). Subsequently, we performed image 420 

processing in SPM12 (Wellcome Department of Imaging Neuroscience, London, UK). 421 

Specifically, we corrected for slice timing differences and rigid body motion (which included 422 

unwarping), spatially normalized the images to the standard Montreal Neurological Institute 423 

(MNI)-152 template, and smoothed them (full-width half-maximum, 6 mm). 424 

Additional denoising. Because motion can significantly impact functional connectivity 425 

measures (Power et al., 2012; Van Dijk et al., 2012), we implemented several additional 426 

preprocessing steps to address this potential confound. First, after extracting the BOLD time 427 

series from our regions-of-interest (ROIs, see below), but prior to computing the ROI-to-ROI 428 

correlations, we used the Denoising step in the CONN toolbox (version 17c; Whitfield-Gabrieli 429 

& Nieto-Castanon, 2012) to apply further physiological and rigid motion corrections. 430 

Specifically, linear regression was used to remove from the BOLD time series of each ROI the 431 

BOLD time series of the voxels within the MNI-152 white matter and CSF masks, respectively 432 

(i.e., the default CONN option of five CompCor-extracted principal components for each, 433 

Behzadi, Restom, Liau, & Liu, 2007), the 6 realignment parameters, their first-order temporal 434 

derivatives and their associated quadratic terms (24 regressors in total, cf. Bolt et al., 2017). The 435 

residual BOLD time series were bandpass filtered (0.008 Hz< f < 0.09 Hz), linearly detrended 436 

and despiked (all three are default CONN denoising steps). Following these corrections (which 437 

did not include global signal regression) (Murphy & Fox, 2017), an inspection of each subject’s 438 

histogram of voxel-to-voxel connectivity values revealed a normal distribution, approximately 439 

centered around zero, which would suggest reduced contamination from physiological and 440 
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motion-related confounds (cf. Whietfield-Gabrieli & Castanon, 2012). Nonetheless, in all 441 

hypothesis testing analyses, we controlled for the average relative (i.e., volume-to-volume) 442 

displacement per participant, a widely used motion metric (Power et al., 2012, 2015; 443 

Satterthwaite et al., 2013).  444 

 fMRI data analysis.  445 

ROI time series. 229 nodes for 10 core large-scale functional brain networks (i.e., 446 

default-mode [DMN], frontoparietal [FPC], cingulo-opercular [CON], salience [SAL], dorsal 447 

attention [DAN], ventral attention [VAN], somatomotor [SM], subcortical [SUB], auditory 448 

[AUD] and visual [VIS]) were defined for each participant as spherical ROIs (radius 5 mm) 449 

centered on the coordinates of the regions reported in Power et al. (2011) and assigned network 450 

labels corresponding to the graph analyses from this earlier article. We selected the Power et al. 451 

atlas because it was created by taking into account both the task-related activation (derived meta-452 

analytically) and the resting state connectivity patterns of the component voxels for each ROI. 453 

Thus, this atlas provided an optimal parcellation scheme for charactering functional brain 454 

reorganization during a naturalistic cognition condition that, due to the lack of an explicit task, 455 

was likely to share significant similarities with a resting state condition (Vanderwal et al., 2017). 456 

The ROIs were created in FSL (Smith et al., 2004), using its standard 2 mm isotropic 457 

space, with each ROI containing 81 voxels. These template space dimensions were selected 458 

because they yielded the most adequate spatial representation of the Power atlas. The 229 ROIs 459 

represent a subset of the 264 putative functional areas proposed by Power et al. (2011). The 229 460 

ROIs were selected because, based on Power et al.’s analyses, they showed relatively 461 

unambiguous membership to one of the ten large-scale functional networks outlined above. 462 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.15.298125doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.298125


Brain-Environment Alignment 22 

Fit of the Power atlas to the present dataset. To evaluate the homogeneity of the Power 463 

ROIs across the Cam-Can adult lifespan sample (cf. Iraji et al., 2020), we used an approach that 464 

is conceptually similar to those recently used in the literature (Gordon et al., 2016; Siegel et al., 465 

2016). Specifically, we used the CONN toolbox to compute the radial similarity contrast (RSC) 466 

for each voxel in the Power atlas. As implemented in CONN, the RSC reflects the amount of 467 

similarity in whole brain connectivity patterns between a voxel and its neighbours in each of the 468 

three space directions (x,y,z), and is thus a 3 dimensional construct (see also Kim et al., 2010). If 469 

a node is functionally homogenous, then the RSC of its voxels should be relatively similar (i.e., 470 

across the entire ROI, there should be a consistent degree of similarity among the component 471 

voxels’ whole brain connectivity patterns). To test this hypothesis, for each participant, we 472 

conducted a principal components analysis of the RSC of the 81 voxels within each ROI (i.e., for 473 

each participant, one ROI constituted one case, whereas the RSC of one voxel within a given 474 

ROI constituted a variable). As a measure of similarity among the RSC of all voxels within a 475 

node across all nodes, we took the percent of variance explained by the first component extracted 476 

through the analysis just described (see also Gordon et al., 2016; Siegel et al., 2016).  Because, 477 

as previously mentioned, RSC is a three-dimensional vector, this set of analyses yielded, for each 478 

participant, three indices of average similarity in global functional connectivity patterns among 479 

all voxels within a given ROI. The three indices were significantly positively correlated across 480 

participants (Spearman’s rhos from .17 to .24, all ps < .0001), which is why we averaged them to 481 

create a summary measure of ROI functional homogeneity. A correlational analysis, based on 482 

100,000 permutation samples, revealed a modest, but significant negative relationship between 483 

age and the average similarity in global functional connectivity patterns among the component 484 

voxels of the Power ROIs (Spearman’s rho of -.21, p = 10-5). As expected, given that the Power 485 
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ROIs were validated on a sample corresponding in age to the first decade of the Cam-Can 486 

sample, a second robust regression analysis revealed no evidence of significant quadratic age 487 

effects on the functional homogeneity of the Power ROIs (p > 0.56). Based on these results, the 488 

summary measure of ROI functional homogeneity was introduced as a covariate in all hypothesis 489 

testing analyses. 490 

Fit of the Power network assignment to the present dataset. To estimate the fit of Power 491 

et al.’s (2011) network assignments to the present data, we used the same algorithm utilized by 492 

these authors for community detection, i.e., Infomap (Lancichinetti & Fortunato, 2009; Rosvall 493 

& Berstrom, 2008). We ran our analyses using Infomap Online (D. Edler & M. Rosvall) 494 

available at www.mapequation.org/infomap. 495 

 Following Power et al. (2011), we conducted all our community detection analyses on 496 

group-averaged ROI-to-ROI correlation matrices. To test whether Power et al.’s (2011) network 497 

assignments provide an equally adequate fit to the present connectivity data across the lifespan, 498 

we first averaged the individuals’ ROI-to-ROI correlation matrices, obtained from CONN, 499 

separately within each of the seven decades. Next, we used the Brain Connectivity Toolbox 500 

(BCT, Rubinov & Sporns, 2010) to threshold each of the seven matrices at the same tie densities 501 

used by Power et al. (2011) for the areal graph (i.e., 2% to 10% tie density in increments of 1%). 502 

BCT was subsequently utilized to write the thresholded matrices into a Pajek *.net format and 503 

the resulting files were inputted into Infomap. Infomap was run with the option of extracting a 504 

one-level structure (i.e., no nested modules), which is the format of Power et al.’s (2011) atlas as 505 

is publicly available. Finally, we used again the BCT to compute the normalized mutual 506 

information index (NMI; range: 1 [perfect similarity] to 0 [no similarity at all]) as a measure of 507 

similarity between Power et al.’s network assignments and those outputted by Infomap for the 508 
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connectivity data from each of the Cam-Can’s seven decades (Fornito, Zalesky & Bullmore, 509 

2016). As can be seen in Figure 2, across all tie densities, the network structure from each of the 510 

seven age groups exhibited equivalent levels of similarity with that proposed by Power et al. 511 

(2011). These results thus suggest that Power et al.’s network structure provide an adequate fit to 512 

the present connectivity data across the lifespan (i.e., the NMI values were similar to those 513 

documented by Power et al. when comparing network structure across cohorts). 514 

Functional connectivity analyses. Pairwise coupling among the 229 ROIs was estimated 515 

in CONN. Pairwise correlations among all the ROIs were expressed as Fisher's z-scores. 516 

Consistent with existing practices aimed at maximizing interpretability of results in network 517 

neuroscience studies of individual or group differences (e.g., sex or age, Betzel et al., 2014; 518 

Satterthwaite et al., 2015), we used both positive and negative z-scores to compute the indices of 519 

interest for all connectivity analyses. We reasoned that such an approach would be particularly 520 

well-justified in our present case since global signal regression, an artefact removal technique 521 

that generates negative correlations whose interpretation is still controversial, was not part of our 522 

preprocessing pipeline (for further discussion on the validity of the negative correlations 523 

obtained with the CONN toolbox, see Whitfield-Gabrieli & Nieto-Castanon, 2012).  524 

To characterize individual differences in dynamic network structure, we used a combined 525 

window and clustering based approach (Iraji et al., 2020; Lurie et al., 2020). Thus, we broke 526 

down the movie into partially overlapping 40 s long windows for a total of 177 windows. This 527 

window length was selected in light of prior evidence that it both maximizes detection of 528 

individual differences in dynamic network reconfiguration and enables identification of a stable 529 

functional core (Leonardi & Van De Ville, 2015; Preti, Bolton, de Ville, 2017; Telesford et al., 530 

2016; for similar window sizes in dynamic connectivity analyses of HCP data, see also Chen et 531 
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al., 2016). Thus, pairwise coupling among the 229 ROIs was estimated in CONN using a sliding 532 

window of 40 s in length (~ 16 volumes), with one TR (2.47 s) gap and a "hanning weighting" 533 

(i.e., greater weight to the scans in the middle of the window relative to the ones at the periphery) 534 

applied to all the time points within a window. The use of a hanning weighting was intended to 535 

reduce the autocorrelation in the fMRI data series and, thus, maximize the opportunity to detect 536 

differences in functional brain organization between adjacent windows.  537 

Network-level analyses. All the network-level metrics were computed using the Brain 538 

Connectivity Toolbox (BCT, Rubinov & Sporns, 2010) and the Network Community Toolbox 539 

(Bassett, D.S. [2017, November]. Network Community Toolbox. Retrieved from 540 

http://commdetect.weebly.com/), as described below.  541 

Community detection. Rather than being computed directly, the degree to which a 542 

network can be fragmented into well-delineated and non-overlapping communities or modules is 543 

estimated using optimization algorithms, which sacrifice some degree of accuracy for processing 544 

speed (Fornito et al., 2016; Rubinov & Sporns, 2010). Here, the optimal whole-brain division 545 

into constituent communities was estimated using a Louvain community detection algorithm 546 

implemented in the BCT. This algorithm partitions a network into non-overlapping groups of 547 

nodes with the goal of maximizing an objective modularity quality function, Q (Betzel & 548 

Bassett, 2017; Rubinov & Sporns, 2011; Sporns & Betzel, 2016). There are multiple strategies 549 

for estimating community structure based on sliding window data, as was the case of our movie 550 

viewing data. Specifically, multilayer modularity algorithms (Bassett et al., 2011; Braun et al., 551 

2015; Mucha et al., 2010) can provide important insights into community dynamics at multiple 552 

time scales. Nonetheless, such algorithms require estimation of additional free parameters (e.g., 553 

the temporal coupling parameter between two adjacent temporal windows). Since we feared that 554 
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estimation of the temporal coupling parameter could act as a potential confound when comparing 555 

connectivity results across the multiple samples included in the analysis, we used the same 556 

procedure to estimate community structure independently in each sliding window (see also Chen 557 

et al., 2016), as described below.  558 

For signed networks, such as the ones investigated in our study, optimization of the Q 559 

function can be achieved by either placing equal weight on maximizing positive within-module 560 

connections and minimizing negative within-module connections or by putting a premium on 561 

maximizing positive connections, which have been argued to be of greater biological 562 

significance (Fornito et al., 2016; Rubinov & Sporns, 2011). Although we verified that all the 563 

reported results emerge with either formula, for the sake of simplicity and because we agree with 564 

their argument regarding the greater importance of positive weights in determining node 565 

grouping into communities, we report here the results based on Rubinov and Sporns’s modularity 566 

formula (cf. Chen et al., 2016; Rubinov & Sporns, 2011). In this formulation, the contribution of 567 

positive weights to Q is not affected by the presence of negative weights in the network, whereas 568 

the contribution of negative weights to Q decreases with an increase in positive weights. 569 

The adapted modularity function Q*, proposed by Rubinov and Sporns (2011) is written 570 

as 571 

Q* = , 572 

where δMiMj = 1 if nodes i and j are in the same module and δMiMj = 0 otherwise; v+ and v- 573 

constitute the sum of all positive (w+) and all negative (w-) weights in the network, respectively; 574 

w±ij  represent the actual within-module positive or negative connection weights with w± ; 575 

γ is a resolution parameter determining the size of the identified modules; e±ij is the within-576 

module connection strength expected by chance and defined, for each node-to-node (i,j) 577 

]1,0(Î
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connection as e±ij = , with s±i and s±j being the sum of all positive or all negative 578 

connection weights of node i and j, respectively, while v± is the sum of all positive or all negative 579 

connection weights in the network. 580 

To account for the near degeneracy of the modularity landscape (i.e., many near-optimal 581 

ways of partitioning a network into non-overlapping communities, Good et al., 2010) and for 582 

changes in community structure due to variations in the estimation parameters, the community 583 

detection algorithm was each initiated 100 times for three values of the spatial resolution 584 

parameter, centered around the default value of 1 (cf. Betzel & Bassett, 2017; Braun et al., 2015; 585 

Chen et al., 2016). Based on the results of these analyses, run separately for each of the three 586 

spatial resolution values, a consensus partition (i.e., whole-brain division into constituent 587 

communities) was estimated for each participant in each movie window (cf. Bassett et al., 2013; 588 

Lancichinetti & Fortunato, 2012).  589 

Functional brain reorganization: Window-to-window versus context-based. Using the 590 

Network Community Toolbox, we estimated similarity in functional brain organization (i.e., 591 

community structure derived with the Louvain algorithm, as described above) between 592 

consecutive windows based on the adjusted normalized mutual information index [AMI], 593 

corrected for chance (Vinh, Epps, & Bailey, 2010). An index of window-to-window functional 594 

brain reorganization was computed by subtracting from 1 the average AMI across all pairs of 595 

temporally adjacent windows. This index combines spontaneous (i.e., stimulus-independent) 596 

window-to-window functional reconfiguration with reconfiguration driven by low-level, 597 

window-to-window perceptual fluctuations (e.g., presence/absence of objects, people). 598 

Employing the event boundaries identified by independent raters in Ben-Yakov and 599 

Henson (2018) with a keypress when they felt that “one event [meaningful unit] ended and 600 

±

±±

v
ss ji
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another began”, we selected pairs of non-overlapping 40 s windows, separated by ~ 5 to 7 s, 601 

which belonged to adjacent narrative segments (12 windows in total). Functional brain 602 

reorganization in response to high-level narrative context boundaries was estimated by 603 

subtracting from 1 the average AMI across all such pairs of temporally adjacent windows. This 604 

index reflects functional reconfiguration related to event boundaries, as well as stimulus-605 

independent and lower-level reconfiguration indicative of featural changes (e.g., 606 

presence/absence of objects, people). 607 

Network-based diversity in functional interactions. The participation coefficient 608 

assesses the diversity of a node’s intermodular connections (i.e., the extent to which a node 609 

interacts with nodes outside its native community) (Chen et al., 2016; Rubinov & Sporns, 2010). 610 

Here, a node’s native community was the one to which it was assigned in Power et al. (2011), the 611 

study that validated the functional atlas. It is worth pointing out that because our participation 612 

coefficient is based on a static community structure, it is not subject to the drawbacks associated 613 

with the participation coefficients derived from temporally varying communities (Thompson et 614 

al., 2020).  615 

A node’s participation coefficient was based on the consensus partitions corresponding to 616 

each of the 177 sliding windows and was given by the formula 617 

Pi = 1- ∑m ( )2, where 618 

Pi is the participation coefficient of node i, M is the set of communities from a given 619 

partition (in our case, the whole-brain partition into communities, as described by Power et al. 620 

[2011]), ki(m) corresponds to the number of times that node i and all the nodes in community m 621 

have been assigned to the same community across all time windows, and ki is the number of 622 

times that node i and the remaining 228 nodes have been assigned to the same community across 623 

MÎ
i

i

k
mk )(
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all time windows. In our case, higher participation coefficients characterised nodes that tended to 624 

show an equal number of interactions (where interaction means assignment to the same 625 

community within a sliding window) with nodes from all the functional networks identified by 626 

Power et al. 627 

Brain-behavior analyses 628 

Canonical correlation analysis (CCA). To characterize the relationship between 629 

functional brain reorganization (i.e., changes in community structure) and network-level 630 

diversity in functional interactions, we used canonical correlation analysis (CCA, Hotelling, 631 

1936) with cross-validation procedures (cf. Hair et al., 2008). CCA is a multivariate technique, 632 

which seeks maximal correlations between two sets of variables by creating linear combinations 633 

(i.e., canonical variates) from the variables within each set. Recently, CCA has been successfully 634 

used to investigate brain-behavior relationships in large datasets (see Smith et al., 2015; 635 

Tsvetanov et al., 2016; Wang et al. 2020). CCA was implemented in Matlab using the canoncorr 636 

module. In order to obtain reliable estimates of correlations between the brain or behavioral 637 

variables and their corresponding variates, it is generally recommended that CCA be performed 638 

on a sample size at least ten times the number of variables in the analysis (Hair, Anderson, 639 

Tatham, & Black, 1998), a criterion which was exceeded in all analyses reported below.  640 

The performance of our CCA-derived models was tested by using a 10-fold cross 641 

validation procedure. Specifically, in the CCAs involving age, network participation and 642 

functional brain reconfiguration, the data were broken down into ten folds, all but two containing 643 

64 participants for a total of 642 participants. For the CCAs involving fluid and crystallised 644 

intelligence, all but three of the ten folds of testing data contained 61 participants for a total of 645 

613 participants. For both sets of CCAs, discovery analyses were conducted on nine folds of data 646 
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and the resulting CCA weights were employed to derive predicted values of the brain and 647 

behavioral variate in the left-out (“test”) fold. This procedure was repeated until each of the ten 648 

folds served as “test” data once. The correlation between the predicted brain and behavioral 649 

variates across all testing folds was evaluated using a permutation test with 100,000 samples (cf. 650 

Smith et al., 2015).  651 

To describe the relationship between the behavioral or brain variables and their 652 

corresponding variates across all the testing folds, we include correlations between the observed 653 

value of a brain or behavioral variable and the predicted value of its corresponding variate, as 654 

well as standardized coefficients, analogous to multiple regression coefficients, which indicate 655 

the unique association between the observed value of a behavioral or brain variable and the 656 

predicted value of its corresponding variate. For each of the two sets of CCAs, when evaluating 657 

the relationship between the predicted values of the two variates or the relationship between the 658 

actual value of each variable and the predicted value of its corresponding variate, we controlled 659 

for gender, handedness, subject-specific motion and subject-specific ROI functional 660 

homogeneity (RSC). 95% confidence intervals (CI) for each correlation and standardized 661 

regression-like coefficient were obtained by using the bootci function in Matlab (with default 662 

settings and 100,000 bootstrap samples). 663 

The correlation and standardized regression-like coefficients described above are 664 

analogous to canonical loadings and canonical weights, respectively (see also Tsvetanov et al., 665 

2016; Vatansever et al., 2017), with the only difference being that they are computed in the test, 666 

rather than the discovery, folds and, thus, reflect more conservative effect estimates. 667 

Partial least squares analysis (PLS). To identify patterns of ROI community 668 

participation that are specific to functional brain reorganization related to low-level featural 669 
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versus high-level contextual changes/narrative event boundaries, we used partial least squares 670 

correlation often referred to as PLS (Krishnan et al., 2011), a multivariate technique that can 671 

identify in an unconstrained, data-driven manner, neural patterns (i.e., latent variables or LVs) 672 

related to individual differences variables (behavioral PLS). PLS was implemented using a series 673 

of Matlab scripts, which are available for download at https://www.rotman-674 

baycrest.on.ca/index.php?section=345. In the behavioral PLS analyses we conducted, one matrix 675 

comprised residual scores on functional brain reorganization linked to event boundaries (i.e., 676 

average [1- AMI] across all neighbouring windows from different narrative segments from 677 

which age and average window-to-window functional brain reorganization were partialled out) 678 

(PLS 1) or average window-to-window functional brain reorganization (i.e., average [1- AMI] 679 

across all temporally adjacent windows from which age and average functional brain 680 

reorganization linked to event boundaries were partialled out) (PLS 2), whereas the second 681 

matrix contained each participant’s ROI participation matrices (Krishnan et al., 2011). Each 682 

matrix entry corresponded to the participation coefficient of one ROI from one subject.  683 

In all the reported analyses, the significance of each LV was determined using a 684 

permutation test with 100000 permutations (in the permutation test, the rows of the ROI 685 

participation data are randomly reordered, Krishnan et al., 2011). In the case of our present 686 

analyses, PLS assigned to each ROI a weight, which reflected the respective ROI’s contribution 687 

to a specific LV.  The reliability of each ROI’s contribution to a particular LV was tested by 688 

submitting all weights to a bootstrap estimation (100000 bootstraps) of the standard errors (SEs, 689 

Efron, 1981) (the bootstrap samples were obtained by sampling with replacement from the 690 

participants, Krishnan et al., 2011). We opted to use 100000 permutations and 100000 bootstrap 691 

samples (the same value used for the other bootstrapping and permutation-based testing herein 692 
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reported) in order to increase the stability of the reported results, since these parameters are 693 

several orders greater than the standard ones (i.e., 500 permutations/100 bootstrap samples), 694 

recommended by McIntosh and Lobaugh (2004) for use in PLS analyses of neuroimaging data. 695 

A bootstrap ratio (BSR) (weight/SE) of at least 3 in absolute value was used as a threshold for 696 

identifying those ROIs that made a significant contribution to the identified LVs. The BSR is 697 

analogous to a z-score, so an absolute value greater than 2 is thought to make a reliable 698 

contribution to the LV (Krishnan et al., 2011), although for neuroimaging data BSR absolute 699 

values greater than 3 tend to be used (McIntosh & Lobaugh, 2004).  700 

Part 2: HCP Sample 701 

Participants. This sample included 176 unrelated participants, whose data had been 702 

released as part of the HCP 1200 subjects data package in March 2017. This sample represented 703 

the largest number of participants from the HCP 1200 subjects data release who were unrelated 704 

to one another and who had available data on all the demographic, behavioral and fMRI 705 

assessments of interest.  706 

The majority of participants (N = 163) were right-handed. The sample included 70 707 

younger men (21 between 22 and 25, 35 between 26 and 30, and 14 between 31 and 36 years of 708 

age) and 106 younger women (1 between 22 and 25, 49 between 26 and 30, and 56 between 31 709 

and 36 years of age). Although age is presented here in the range format, as advocated by the 710 

HCP team (see Van Essen et al., 2012 for the rationale behind this age reporting strategy in HCP 711 

data releases), all our brain-behavior analyses used participants’ actual age in years, as available 712 

in the HCP restricted data release. 713 

All participants were screened for a history of neurological and psychiatric conditions 714 

and use of psychotropic drugs, as well as for physical conditions or bodily implants that may 715 
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render their participation unsafe. Diagnosis with a mental health disorder and structural 716 

abnormalities, as revealed by the MRI structural scans, were also exclusion criteria. Participants 717 

provided informed consent in accordance with the HCP research ethics board.  718 

Out-of-scanner measures.  719 

Fluid IQ. Form A of an abbreviated measure of the Raven’s Progressive Matrices (RPM; 720 

Bilker et al., 2012), a non-NIH Toolbox measure, gauged participants’ abstract reasoning skills 721 

(i.e., nonverbal fluid IQ). This task features patterns made up of 2x2, 3x3 or 1x5 arrangements of 722 

squares, with one of the squares missing. Participants must select one of five response choices 723 

that best fits the missing square on the pattern. The task has 24 items and 3 bonus items, arranged 724 

in order of increasing difficulty. The task is stopped though if the participant makes 5 725 

consecutive incorrect responses. In line with existing guidelines (Bilker et al., 2012; Gray, 726 

Chabris, & Braver, 2003; Gray et al., 2005), total number of correct responses was used as a 727 

measure of abstract reasoning.  728 

Subclinical depression and anxiety. To assess relatively stable subclinical variations in 729 

depression and anxiety, we used participants' scores on the DSM-oriented depression and anxiety 730 

scales (see below for details). Both sets of scores were derived from participants’ responses to 731 

relevant items on the Achenbach Adult Self-Report (ASR) instrument for ages 18–59 732 

(Achenbach, 2009). The ASR contains a total of 123 statements relevant to psychological 733 

functioning and requires participants to rate on a 3-point scale (0 not true, 1 somewhat or 734 

sometimes true, 2 very true or often true) how well each item described them over the previous 735 

six months. The DSM-oriented depression scale includes items such as "I am unhappy, sad, or 736 

depressed”. The DSM-oriented anxiety scale includes items such as " I worry about my future”.  737 

Out-of-scanner control measures.  738 
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Current negative emotion experience. Participants completed the NIH Toolbox Negative 739 

Affect Survey, which assesses separately current levels of experienced sadness (e.g., “I felt sad.”, 740 

”I felt like a failure.”), anger (e.g., “I felt angry.”, “I felt bitter about things.”), and fear (e.g., “I 741 

felt frightened.’, “I had a racing or pounding heart.”), respectively. The measure requires 742 

participants to rate on a 5-point scale (1 never to 5 always) how often they experienced the 743 

relevant emotion within the past seven days. Scores on the sadness, anger and fear subscales 744 

were averaged to create an index of current negative emotional state, which was entered as a 745 

covariate in all the hypothesis testing analyses. 746 

In-scanner task. Participants completed four movie viewing runs over two scanning 747 

sessions on two separate days. Each run was about 15 minutes long and comprised 1 to 4.3 748 

minutes long excerpts from Hollywood movies, as prepared and published by Cutting, Brunick, 749 

and Candan (2012), and independent films, freely available under Creative Commons Licensing. 750 

All four movie runs include a Vimeo repeat clip at the end, which was not included in the 751 

analyses. In each run, 20 s of rest (i.e., black screen with “REST” in white text) precede the 752 

beginning and follow the end of each movie clip. 753 

Movie features. To quantify low-level featural fluctuations in the movie task, we used the 754 

output of the semantic feature coding conducted by Jack Gallant’s laboratory (cf. Huth, 755 

Nishimoto, Vu, & Gallant, 2012) and available as part of the HCP1200 Subjects Data Release. 756 

By using this semantic feature coding, we were able to characterise the extent to which window-757 

to-window reconfiguration in functional architecture is yoked to ongoing, meaningful 758 

fluctuations in the external environment. Each movie frame is coded for the presence/absence 759 

(0/1) of 859 semantic elements recorded as nouns (N = 629), verbs (N = 229) and adjective(s) (N 760 

=1). Our analyses focused on semantic features listed as nouns, which we took to reflect 761 
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environmental attributes (e.g., presence of objects, people, buildings) and semantic features listed 762 

as verbs, which reflected actions performed by the movie characters or natural phenomena. As 763 

we detail below, the brain data corresponding to each movie was broken down into 40 s second 764 

sliding windows, moved in increments of 2 s. The binary semantic feature matrices 765 

corresponding to each sliding window from the brain data were averaged. In these averaged 766 

matrices, the value in each cell signified the percentage of frames within a sliding window when 767 

an entitity or action was present. As in the brain data, window-to-window similarity in semantic 768 

features was indexed with the adjusted mutual information index (AMI) (Vinh et al., 2012), with 769 

each unique value in the averaged semantic features for each window acting as a community 770 

label.  771 

 fMRI data acquisition. Images were acquired with a customized Siemens 3T 772 

“Connectome Skyra” scanner housed at Washington University in St. Louis (32-channel coil). 773 

Pulse and respiration were measured during scanning. Functional images were acquired with a 774 

multiband EPI sequence (TR=1000 ms, TE=22.2 ms, flip angle=45°, FOV = 208 x 208 mm, 85 775 

slices of 1.6 × 1.6 mm in-plane resolution, 1.6 mm thick, no gap). Two of the movie runs were 776 

acquired with an anterior-to-posterior, while the other two with a posterior-to-anterior, phase 777 

encoding sequence (so that phase encoding sequence effects could cancel each other out over the 778 

all runs). 779 

 fMRI data preprocessing. The present report used the minimally preprocessed movie 780 

watching data from the HCP 1200 subjects data release. These data have been preprocessed with 781 

version 3 of the HCP spatial and temporal pipelines (Smith et al., 2013; for specification of 782 

preprocessing pipeline version, see http://www.humanconnectome.org/data). Spatial 783 

preprocessing involved removal of spatial and gradient distortions, correction for participant 784 
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movement, bias field removal, spatial normalization to the standard Montreal Neurological 785 

Institute (MNI)-152 template (2 mm isotropic voxels), intensity normalization to a global mean 786 

and masking out of non-brain voxels. Subsequent temporal preprocessing steps involved weak 787 

high-pass temporal filtering with the goal of removing linear trends in the data. 788 

Additional denoising. Because motion can significantly impact functional connectivity 789 

measures (Power et al., 2012; Van Dijk et al., 2012), we implemented the same additional 790 

preprocessing steps used to address this potential confound in the Cam-Can data. Specifically, in 791 

the CONN toolbox (version 17c; Whitfield-Gabrieli & Nieto-Castanon, 2012), linear regression 792 

was used to remove from the BOLD time series of each ROI the BOLD time series of the voxels 793 

within the MNI-152 white matter and CSF masks, respectively (i.e., the default CONN option of 794 

five CompCor-extracted principal components for each, Behzadi, Restom, Liau, & Liu, 2007), 795 

the 6 realignment parameters, their first-order temporal derivatives and their associated quadratic 796 

terms (24 regressors in total, cf. Bolt et al., 2017), as well as the main movie effects, obtained by 797 

convolving a boxcar task design function with the hemodynamic response function, and their 798 

first temporal order derivative (cf. Braun et al., 2015; Vatansever et al., 2015; Westphal, Wang, 799 

& Rissman, 2017). The last denoising step was implemented in order to isolate movie-related 800 

functional coupling from mere co-activation effects corresponding to the beginning and end of a 801 

movie clip (i.e., two regions that are both activated at the beginning of a movie clip and de-802 

activated at its end, although they do not “communicate” with one another throughout the movie 803 

clip). The residual BOLD time series were bandpass filtered (0.008 Hz< f < 0.09 Hz), linearly 804 

detrended and despiked (all three are default CONN denoising steps). Following these 805 

corrections (which again did not include global signal regression), an inspection of each subject’s 806 

histogram of voxel-to-voxel connectivity values revealed a normal distribution, approximately 807 
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centered around zero, which would suggest reduced contamination from physiological and 808 

motion-related confounds (cf. Whietfield-Gabrieli & Castanon, 2012). Nonetheless, in 809 

supplementary analyses, accompanying all the brain-behavior tests, we confirmed that all the 810 

reported effects were not driven by individual differences in motion, as they remained unchanged 811 

after controlling for the average relative (i.e., volume-to-volume) displacement per participant, a 812 

widely used motion metric (Power et al., 2012, 2015; Satterthwaite et al., 2013).  813 

fMRI data analysis.  814 

ROI time series. We followed the same steps as in the Cam-Can data in order to extract 815 

the timeseries from 229 ROIs from the Power et al. (2011) atlas.  816 

Functional connectivity analyses. Pairwise coupling among the 229 ROIs was estimated 817 

in CONN, separately for each of the 14 movies. Periods of rest between consecutive movie clips 818 

were eliminated from the analyses. As in the Cam-Can data, the pairwise correlations among all 819 

the ROIs were expressed as Fisher's z-scores, all of which (i.e., positive and negative alike) were 820 

subsequently used to compute the indices of interest for all connectivity analyses.  821 

To characterize individual differences in dynamic network structure, we broke down each 822 

movie clip into partially overlapping 40 s long windows for a total of 1152 windows. Similar to 823 

the Cam-Can analyses, pairwise coupling among the 229 ROIs was estimated in CONN using a 824 

sliding window of 40 s in length (40 volumes) with a two-TR gap in-between windows and a 825 

"hanning weighting" (i.e., greater weight to the scans in the middle of the window relative to the 826 

ones at the periphery) applied to all the time points within a window.  827 

Network-level analyses. We followed the same steps as in the Cam-Can data with the 828 

following exceptions. We only computed similarity in functional brain organization (i.e., 829 

community structure) between consecutive windows, since, due to the shorter duration and the 830 
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structure of the HCP movie clips, narrative event boundaries were less legible and, as such, did 831 

not constitute a point of inquiry. Instead, to index brain sensitivity to object- versus action-832 

related changes, we computed the Spearman’s rank correlation between window-to-window 833 

similarity in functional brain organisation (i.e., community structure) and window-to-window 834 

noun- versus verb-based semantic similarity. Because we were specifically interested in brain-835 

(noun/verb-based) movie coupling, overall window-to-window brain reconfiguration was 836 

regressed out from both indices. The two residual brain-movie (noun- vs. verb-based) couplings 837 

were used in all the reported analyses. Participation coefficients for each of the 229 ROIs were 838 

computed as in the Cam-Can dataset. 839 

Reliability analyses. To test whether a unitary construct can be extracted for each neural 840 

index of interest across all 14 movies, we conducted separate reliability analyses on the 42 values 841 

associated with each index (i.e., three values for each of the 14 movies, corresponding to the 842 

community detection estimates obtained with a spatial resolution parameter of .95, 1, 1.05). 843 

Since subject motion can impact such reliability estimates, we present the relevant Cronbach’s 844 

alpha values, both before and after regressing out subject level average frame-to-frame 845 

displacement (see Preprocessing above for the additional motion effect removal procedures 846 

already implemented). Additionally, to reflect the variables used in our analyses, for the brain- 847 

(noun/verb-based) movie coupling, we present reliability estimates based on data from which we 848 

regressed out both subject motion and spontaneous window-to-window functional brain 849 

reconfiguration. 850 

For the window-to-window brain organisation similarity index, we obtained Cronbach’s 851 

alphas of .87 and of .89 (with regression of the motion summary statistic). The brain-(noun) 852 

movie coupling index showed Cronbach’s alphas of .66  and of .68 (with regression of motion 853 
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and window-to-window brain reconfiguration). For the brain-(verb) movie coupling index, we 854 

observed Cronbach’s alphas of .65 and of .62 (with regression of motion and window-to-window 855 

brain reconfiguration). Across all 229 ROIs, the participation coefficients showed Cronbach’s 856 

alphas between .76 and .98 (both with and without regression of the summary motion statistic). 857 

Brain-behavior analyses 858 

Canonical correlation analysis (CCA). We used canonical correlation analysis (CCA, 859 

Hotelling, 1936) with cross-validation procedures (cf. Hair et al., 2008) in order to characterize 860 

the relationships between our neural indices of interest (coupling between movie features and 861 

functional brain reorganization; ROI-specific diversity in functional interactions), as well as 862 

between the relevant brain (coupling between window-to-window changes in movie features and 863 

functional brain reorganization [dissimilarity in community structure]) and behavioral (fluid IQ, 864 

subclinical depression, subclinical anxiety) variables. Age was introduced in the CCAs in order 865 

to probe potential developmentally specific effects (Ofen et al., 2012; Petrican & Grady, 2017). 866 

As recommended in the literature (Hair et al., 1998), all CCAs were based on sample sizes more 867 

than ten times the number of variables in the analysis (Hair, Anderson, Tatham, & Black, 1998).  868 

As in the Cam-Can data, the performance of our CCA-derived models was tested by 869 

using a 10-fold cross validation procedure. Specifically, the data were broken down into ten 870 

folds, six of which contained 18 participants (the remaining folds contained 17 participants 871 

each). The cross-validation procedure and relevant model descriptors were identical to those in 872 

the Cam-Can data. In both sets of CCAs, when evaluating the relationship between the predicted 873 

values of the two variates or the relationship between the actual value of each variable and the 874 

predicted value of its corresponding variate, we controlled for gender, handedness, subject-875 

specific motion, years of education. In CCA 1 (see Figure 9) we additionally controlled for 876 
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current negative emotional experience to ensure that the observed associations are not due to 877 

global negative mood around the time of testing. 878 

879 
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Materials & Correspondence. Correspondence and material requests should be addressed to 880 

R.P. (petricanr@cardiff.ac.uk). 881 

Data statement. The raw data are available from https://camcan-archive.mrc-882 

cbu.cam.ac.uk/dataaccess/ (Cam-Can) and 883 

https://db.humanconnectome.org/app/template/Login.vm;jsessionid=90091F006B15D5FA1D1D884 

9C3ED2D465DD (HCP) upon completion of the relevant data use agreements.  885 

Code  availability. We used already existing code, as specified in the main text. 886 
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Figure Captions 1297 

Figure 1. Schematic representation of the main preprocessing and analysis steps across both 1298 

samples. 1299 

Figure 2. Network structure in each of the seven age groups of the Cam-Can adult lifespan 1300 

sample at 2-10% tie densities shows very similar levels of similarity to that of Power et al.’s 1301 

(2011). The coloured lines show the normalized mutual information index (NMI),  1302 

a highly used metric of similarity in community assignment, for each age group and tie density 1303 

scrutinized.  1304 

Figure 3. Age, intelligence and functional brain reconfiguration. The correlation coefficients 1305 

(panels [a],[d]) and the standardized coefficients  (panels [b],[e]) of the brain and behavioural 1306 

variables on their corresponding canonical variate across all test CCAs, as well as the scatter 1307 

plot describing the linear association between the two canonical variates across all the “test” 1308 

folds (panel [c]). The scatter plot in panel (c) is based on standardized variables. In panels (a), 1309 

(b),(d), and (e), white boxes correspond to coefficients that were not robust across all the 1310 

bootstrapping samples, as described in the text. In all these analyses, gender, handedness, ROI 1311 

homogeneity and the summary motion metric were introduced as covariates. 1312 

Figure 4. Functional brain reconfiguration and network participation in older adulthood. The 1313 

correlation coefficients (panels [a],[d]) and the standardized coefficients  (panels [b],[e]) of the 1314 

brain and behavioural variables on their corresponding canonical variate across all test CCAs, 1315 

as well as the scatter plot describing the linear association between the two canonical variates 1316 

across all the “test” folds (panel [c]). The scatter plot in panel (c) is based on standardized 1317 

variables. In panels (a), (b),(d), and (e), white boxes correspond to coefficients that were not 1318 

robust across all the bootstrapping samples, as described in the text. In all these analyses, 1319 
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gender, handedness, ROI homogeneity and the summary motion metric were introduced as 1320 

covariates. 1321 

Figure 5. Functional brain reconfiguration and network participation in younger adulthood. The 1322 

correlation coefficients (panels [a],[d]) and the standardized coefficients  (panels [b],[e]) of the 1323 

brain and behavioural variables on their corresponding canonical variate across all test CCAs, 1324 

as well as the scatter plot describing the linear association between the two canonical variates 1325 

across all the “test” folds (panel [c]). The scatter plot in panel (c) is based on standardized 1326 

variables. In panels (a), (b),(d), and (e), white boxes correspond to coefficients that were not 1327 

robust across all the bootstrapping samples, as described in the text. In all these analyses, 1328 

gender, handedness, ROI homogeneity and the summary motion metric were introduced as 1329 

covariates. 1330 

Figure 6. Scatterplot describing the association between the fluid intelligence score and the 1331 

network participation profile linked to functional reconfiguration in younger adulthood, after 1332 

controlling for all the covariates described in the text. 1333 

Figure 7. Panel (a). Results of the PLS analysis, showing the ROIs that demonstrated robust 1334 

associations with context-based functional brain reconfiguration across the lifespan. The brain 1335 

regions were visualized with the BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia et al., 1336 

2013). ROI colours reflect Power et al.’s network assignments (orange, DMN; pink, AUD). 1337 

Panel (b) Results of the Neurosynth decoding analysis based on the ROIs in panel (a). 1338 

Figure 8. Panel (a). Results of the PLS analysis, showing the ROIs that demonstrated robust 1339 

associations with window-to-window functional brain reconfiguration across the lifespan. The 1340 

brain regions were visualized with the BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia 1341 

et al., 2013). ROI colours reflect Power et al.’s network assignments (orange, DMN; blue, VIS; 1342 
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yellow, FPC). Panel (b) Results of the Neurosynth decoding analysis based on the ROIs in panel 1343 

(a). 1344 

Figure 9. Brain-movie coupling and cognitive-affective function in the HCP sample. The 1345 

correlation coefficients (panels [a],[d]) and the standardized coefficients  (panels [b],[e]) of the 1346 

brain and behavioural variables on their corresponding canonical variate across all test CCAs, 1347 

as well as the scatter plot describing the linear association between the two canonical variates 1348 

across all the “test” folds (panel [c]). The scatter plot in panel (c) is based on standardized 1349 

variables. In panels (a), (b),(d), and (e), white boxes correspond to coefficients that were not 1350 

robust across all the bootstrapping samples, as described in the text. In all these analyses, 1351 

gender, handedness, years of education and the summary motion metric were introduced as 1352 

covariates. 1353 

Figure 10. The ROI participation profile linked to brain-object-based movie coupling. The 1354 

correlation coefficients (panel [a]) and the standardized coefficients (panel [b]) of the ROI 1355 

participation variables on their corresponding canonical variate across all test CCAs, as well as 1356 

the scatter plot describing the linear association between the ROI participation variate and  1357 

brain-object-based movie coupling across all the “test” folds (panel [c]). The scatter plot in 1358 

panel (c) is based on standardized variables. In panels (a) and (b), white boxes correspond to 1359 

coefficients that were not robust across all the bootstrapping samples, as described in the text. In 1360 

all these analyses, gender, handedness, years of education and the summary motion metric were 1361 

introduced as covariates. Panel (d) Results of the Neurosynth decoding analysis constrained to 1362 

the ROIs that showed robust correlations with the extracted covariate in panel (a). 1363 

 1364 

 1365 
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Figure 1. Schematic representation of the main preprocessing and analysis steps across both samples.
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Figure 3. Age, intelligence and functional brain reconfiguration. 
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Figure 4. Functional brain reconfiguration and network participation in older adulthood.
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Figure 5. Functional brain reconfiguration and network participation in younger adulthood.
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Figure 6. Scatterplot describing the association between the fluid intelligence score and the network participation profile linked to functional reconfiguration in younger 
adulthood, after controlling for all the covariates described in the text.
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Figure 7. Panel (a). Results of the PLS analysis, showing the ROIs that demonstrated robust associations with context-based functional brain reconfiguration 
across the lifespan. Panel (b) Results of the Neurosynth decoding analysis based on the ROIs in panel (a).
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Figure 8. Panel (a). Results of the PLS analysis, showing the ROIs that demonstrated robust associations with window-to-window functional brain reconfiguration 
across the lifespan. Panel (b) Results of the Neurosynth decoding analysis based on the ROIs in panel (a).
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Figure 9. Brain-movie coupling and cognitive-affective function in the HCP sample.
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Figure 10. The ROI participation profile linked to brain-object-based movie coupling.
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