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Abstract 10 

The imaging of neuronal activity using calcium indicators has become a staple of modern 11 
neuroscience. However, without ground truths, there is a real risk of missing a significant portion of 12 
the real responses. Here, we show that a common assumption, the non-negativity of the neuronal 13 
responses as detected by calcium indicators, biases all levels of the frequently used analytical 14 
methods for these data. From the extraction of meaningful fluorescence changes to spike inference 15 
and the analysis of inferred spikes, each step risks missing real responses because of the assumption 16 
of non-negativity. We first show that negative deviations from baseline can exist in calcium imaging 17 
of neuronal activity. Then, we use simulated data to test three popular algorithms for image analysis, 18 
finding that suite2p may be the best suited to large datasets. Spike inference algorithms also showed 19 
their limitations in dealing with inhibited neurons, and new approaches may be needed to address this 20 
problem. We further suggest avoiding data analysis approaches that may ignore inhibited responses 21 
in favor of a first exploratory step to ensure that none are present. Taking these steps will ensure that 22 
inhibition, as well as excitation, is detected in calcium imaging datasets. 23 

1 Introduction 24 

The advent of Genetically Encoded Calcium Indicators (GECI) has revolutionized neurosciences by 25 
allowing the imaging of neuronal activity (Nakai, Ohkura et al. 2001, Pologruto, Yasuda et al. 2004, 26 
Tian, Hires et al. 2009), and they are now being integrated in other fields (Balaji, Bielmeier et al. 27 
2017, Shannon, Stevens et al. 2017, Stevenson, Vanwalleghem et al. 2020). A simultaneous boom in 28 
microscopy techniques has allowed scientists to image the activity of neurons from animals such as 29 
larval zebrafish (Wyart, Del Bene et al. 2009, Ahrens, Li et al. 2012, Constantin, Poulsen et al. 2020, 30 
Vanwalleghem, Schuster et al. 2020); flies (Wang, Wong et al. 2003, Suh, Wong et al. 2004), and 31 
rodents (Chen, Cichon et al. 2012, Cai, Aharoni et al. 2016, Klioutchnikov, Wallace et al. 2020) in-32 
vivo in real time thanks to GECIs. Computational tools are constantly being developed to process and 33 
extract the neuronal activity from the vast datasets that these imaging methods generate (Mukamel, 34 
Nimmerjahn et al. 2009, Freeman, Vladimirov et al. 2014, Pachitariu, Stringer et al. 2017, 35 
Giovannucci, Friedrich et al. 2019, Stringer and Pachitariu 2019). A common assumption in most of 36 
the modern computational tools is the non-negativity of the GECI’s signal. 37 
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However, negative deviations from the fluorescence baselines have been observed, and these 38 
assumptions of non-negativity may bias the results and observation by excluding relevant responses 39 
that do not show the expected peaks of activity above baseline (Favre-Bulle, Vanwalleghem et al. 40 
2018, Marquez-Legorreta, Constantin et al. 2019, Zimmerman, Huey et al. 2019). With the slow rise 41 
and decay of GECI probes, in the hundreds of milliseconds, a long-term average firing rate above 42 
0.1Hz would be convolved as a constant fluorescence increase above baseline. Such constant activity 43 
can be found in vestibular neurons, even at rest (Shimazu and Precht 1965, Cullen and McCrea 44 
1993), and in the primary visual cortex neurons (Baddeley, Abbott et al. 1997) among a great many 45 
others. 46 

Inhibition of tonically active neurons has been observed with electrophysiology in vestibular 47 
neurons(Shimazu and Precht 1966), Purkinje cells (Tian, Tep et al. 2013), or distributed across the 48 
brain in response to stimulus-driven decisions (Steinmetz, Zatka-Haas et al. 2019). Inhibition of tonic 49 
neurons, convolved by the slow GECI kernels, would translate to negative deviations from baseline 50 
as we and others have observed (Favre-Bulle, Vanwalleghem et al. 2018, Zimmerman, Huey et al. 51 
2019). 52 

Many tools for GECI analysis include methods for inferring the spike train that generated the 53 
observed fluorescence signal, and again most of these spike deconvolution algorithms assume non-54 
negativity (Vogelstein, Packer et al. 2010, Pachitariu, Stringer et al. 2018). The spikefinder online 55 
challenge had this implicit assumption in the datasets offered to the community (Theis, Berens et al. 56 
2016), meaning that the best performing algorithms were based on convolutional neural networks. 57 
This supervised approach, however, would miss response profiles that were absent in their training 58 
datasets as a result of the assumption of non-negativity. 59 

Finally, we can find this non-negative assumption present during the analysis of the neuronal 60 
responses extracted from the calcium datasets. For example, Non-negative Matrix Factorization 61 
(NMF) has been used as a dimensionality reduction or clustering tool (Freeman, Vladimirov et al. 62 
2014, Mu, Bennett et al. 2019, Torigoe, Islam et al. 2019). Another approach that we and others have 63 
used is the binarization of the data based on a threshold of activity to generate “bar codes” of the 64 
brain activity, which also has an intrinsic non-negative assumption (Kubo, Hablitzel et al. 2014, 65 
Naumann, Fitzgerald et al. 2016, Heap, Vanwalleghem et al. 2018, Daviu, Fuzesi et al. 2020, Etter, 66 
Manseau et al. 2020). Other threshold-based approaches, or even data cleaning steps, could also 67 
discard all the negative deviations from baseline, biasing conclusions drawn from the dataset to 68 
exclude inhibition from the modeled system. 69 

We find this non-negative assumption at all levels of calcium imaging analysis, from the 70 
fluorescence extraction, to spike inference and neuronal response analysis. Our goal here has been to 71 
assess how the most popular calcium imaging analysis toolboxes deal with negative deviations from 72 
the baseline, which we assume come from inhibited tonic neurons. We also hope to spark a 73 
discussion on how these assumptions may have biased past studies, and may continue to bias future 74 
studies using GECIs. 75 

2 Materials and Methods 76 

The imaging data came from (Favre-Bulle, Vanwalleghem et al. 2018). Briefly, experiments were 77 
carried on 6 day post-fertilization (dpf) nacre mutant zebrafish (Danio rerio) larvae of the Tuple 78 
Longfin strain carrying the transgene elavl3:H2B-GCaMP6s (Chen, Wardill et al. 2013). The larvae 79 
were immobilized in 2% low melting point agarose (Progen Biosciences, Australia) and imaged 80 
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using a diffuse digitally scanned light-sheet microscope (Taylor, Vanwalleghem et al. 2018) while an 81 
optical trap was applied to the otolith to simulate acceleration (Favre-Bulle, Stilgoe et al. 2017, 82 
Favre-Bulle, Vanwalleghem et al. 2018, Favre-Bulle, Stilgoe et al. 2019, Favre-Bulle, Taylor et al. 83 
2020). All procedures were performed with approval from the University of Queensland Animal 84 
Welfare Unit in accordance with approval SBMS/378/16/ARC.  85 

Artificial datasets were generated using the Neural Anatomy and Optical Microscopy simulation 86 
toolbox (Charles, Song et al. 2019). We used the parameters for nuclear simulation with GCaMP6f 87 
default (see table 1). To simulate inhibited neurons responses, we randomly attributed a spike number 88 
from a Poisson distribution (λ of 1, based on (Baddeley, Abbott et al. 1997)) to each 200ms time 89 
window of ten to twenty percent of all simulated neurons (since ~20% of neurons were inhibited 90 
when observed by (Steinmetz, Zatka-Haas et al. 2019)). We then set a time frame of 0.2 to 5 seconds 91 
of inhibition (0 spikes), which was used to simulate the neuronal activity and generate movies that 92 
were processed with the tools below. 93 

For fluorescence extraction and spike inference, we benchmarked the most cited calcium imaging 94 
toolboxes: suite2p (suite2p, version 0.8.0, RRID:SCR_016434) (Pachitariu, Stringer et al. 2017), 95 
CaImAn version 1.8 (Giovannucci, Friedrich et al. 2019), and the PCA/ICA approach CellSort 96 
(Mukamel, Nimmerjahn et al. 2009). We did not simulate motion, and as such did not use the 97 
registration algorithms included in either suite2p or CaImAn. The parameters used for each of these 98 
approaches can be found the github repository. Briefly, for suite2p we used the sourcery roi 99 
extraction, with a τ of 2, frame rate of 5, diameter of neurons (4,6), threshold scaling of 0.5 and a 100 
high pass of 50. For CaImAn, we used the CNMFE, a τ of 2, frame rate of 5, a gSig of 4 and 101 
autoregressive order of 2. For the deep-learning spike inference method CASCADE, we used the 102 
Universal_5Hz_smoothing200ms pretrained model to infer the spikes on our dataset (Rupprecht, 103 
Carta et al. 2020). 104 

For the analysis of the responses, we used MATLAB (R2018b, RRID: SCR_001622). ΔF/F0 was 105 
computed as in (Akerboom, Chen et al. 2012). We used the non-negative matrix factorization 106 
function nnmf with 15 factors to reanalyze the data from (Favre-Bulle, Vanwalleghem et al. 2018). 107 
We used the correlation coefficients tools from MATLAB to compute the 2-dimensional correlation 108 
between the ROIs and the ideal components, as well as between the traces or spikes and the ideal 109 
traces or spikes. 110 

Statistical tests and plotting were done in Graphpad Prism (8.4.3, RRID:SCR_002798), we used 111 
ordinary ANOVA with Tukey’s multiple comparison test. 112 

All the code used to generate and analyze the data can be found on github.com/Scott-Lab-113 
QBI/NegativeCalciumResponses.  114 

3 Results 115 

3.1 Real data 116 

First, we reanalyzed a zebrafish dataset from our previous study of vestibular processing in which we 117 
identified inhibited responses in hundreds of neurons across the thalamus and cerebellum (Favre-118 
Bulle, Vanwalleghem et al. 2018). For this analysis, we focus on two neurons from the cerebellum 119 
and hindbrain of a larval zebrafish (Fig.1A) as larvae were subjected to vestibular stimuli (Fig.1B, 120 
shaded areas).  As seen in the raw data (Fig.1B, arrows), we observe negative deviations from 121 
baseline during stimulation (Fig.1B, magenta traces), as well as positive responses (Fig.1B, green).  122 
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123 
Figure 1: Negative deviations from baseline in real data from the cerebellum of zebrafish, and 124 
performance of various analysis tools. 125 
(A) Mean fluorescence image of a 6 dpf zebrafish expressing nuclear-targeted GCaMP6s (Chen, 126 
Wardill et al. 2013). The cerebellum is outlined in red, and am inhibited neuron is indicated with a 127 
magenta circle. The green circle indicates an activated neuron in the hindbrain. (B) Time traces of the 128 
raw (top), ΔF/F0 (middle) or z-scored (bottom) fluorescence for these two neurons, in their respective 129 
colors. Arrows indicate artefactual positive deviations resulting from the cessation of inhibition on 130 
the inhibited neuron. (C)  Comparisons between the clusters identified using k-means (green for 131 
activated, magenta for inhibited) and those identified with NMF (black). No inhibited cluster was 132 
identified by NMF. Grey shaded areas indicate the time of vestibular stimulation (Favre-Bulle, 133 
Vanwalleghem et al. 2018), with a progression from strong to weak stimuli across the stimulus train.  134 
 135 
Our first observation is that the classical ΔF/F0 approach with a moving baseline window 136 
(Akerboom, Chen et al. 2012) creates positive artefacts following negative deviation from baseline as 137 
seen in Fig.1B (arrows). These positive artefacts could be construed as actual responses by some 138 
approaches, since they peak at the same level as the actual responses (magenta traces with arrows 139 
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versus adjacent green traces in Fig. 1B). In the ΔF/F0 trace, the results do not correlate as well for the 140 
(magenta) inhibited neuron (ρ=0.599) when compared to the (green) activated neuron (ρ=0.979). 141 
However, the z-scored trace is perfectly correlated to the raw trace (ρ=1) for both neurons. As such, 142 
we recommend the use of z-score as a normalization of calcium traces, and we will use this 143 
normalization in the following analysis. 144 

An additional hurdle when working with inhibited neurons in big datasets is the risk that the data 145 
analysis methods could miss inhibited response profiles. NMF has been used to analyze larval 146 
zebrafish calcium imaging data (Mu, Bennett et al. 2019, Torigoe, Islam et al. 2019), so we tested 147 
this method on our the same vestibular dataset from our group (Favre-Bulle, Vanwalleghem et al. 148 
2018). As can be seen (Sup.Fig.1) the NMF approach failed to identify responses resembling the 149 
inhibited cluster identified by k-means while the other (non-negative) clusters were found with a high 150 
correlation (ρ=0.92, ρ=0.94 respectively, Fig.1C). 151 

The major limitation of this analysis is that it lacks a ground truth, making it impossible to judge 152 
whether outputs from apparently successful approaches actually reflect physiology. To solve this 153 
problem, we turned to simulated data for which we know the ground truth. 154 

3.2 Simulated data 155 

 156 

Figure 2: Creating simulated calcium imaging datasets 157 
(A) An example simulated activity, showing spike numbers for one neuron (green) activated and one 158 
(magenta) inhibited by a hypothetical stimulus. (B) The spike trains are convolved with a GCaMP6f 159 
kernel and noise to generate fluorescence traces. (C) The simulated neuronal activity is used to create 160 
an artificial movie as captured by a microscope. 161 
 162 

We used the Neural Anatomy and Optical Microscopy (NAOMi) Simulation toolbox (Charles, Song 163 
et al. 2019) to generate 10 datasets of simulated nuclear-targeted GCaMP6f data, as described in the 164 
Materials and Methods. Briefly, each dataset contained about 90 neurons, and for each we randomly 165 
selected either 10% or 20% of the neurons to be inhibited. For each inhibited neuron, we simulated 166 
tonic firing, based on an observed Poisson distribution (Baddeley, Abbott et al. 1997), which was 167 
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randomly interrupted for 0.2 to 5s to simulate inhibition (Fig.2A). We chose a random inhibition as 168 
both suite2p and CaImAn depend on the correlation between pixels to generate the ROIs, and we 169 
wanted to make the inhibited neurons as easy to identify as possible, since most methods depend on 170 
local correlations to identify the neurons. The simulated spiking (Fig.2A) was then convolved with a 171 
GCaMP6f kernel to simulate neural activity (Fig.2B), which was then used to generate movies by 172 
NAOMi (Fig.2C). As most simulated neurons would be below the detection threshold, we used 173 
NAOMi to output the ideal responses corresponding to what would be detected with a microscope. 174 
While other algorithms occasionally identified additional neurons, the effect was marginal (<1%), so 175 
we decided to use the ideal responses as ground truth for the sake of simplicity (Charles, Song et al. 176 
2019). 177 

Each fluorescence dataset was processed through suite2p (Pachitariu, Stringer et al. 2017), CaImAn 178 
(Giovannucci, Friedrich et al. 2019), or CellSort (Mukamel, Nimmerjahn et al. 2009) and the outputs 179 
were analyzed in the exact same way. We did not investigate if either suite2p default classifier or 180 
CaImAn components evaluation would exclude inhibited neurons, as such we kept all the ROIs either 181 
algorithm identified. The raster plots of the ten datasets (Fig.3A) show that CaImAn identifies the 182 
highest number of ROIs, with CellSort and suite2p identifying a similar number of ROIs (Ideal = 183 
94.3 ± 4.7, CaImAn = 84.7± 14.4, CellSort = 55.5 ± 3.8, suite2p = 56.1 ± 4.7). 184 

The segmentation of the simulated fluorescent movies gave good results for all three algorithms with 185 
well-defined regions of interest that correlated well with the ideal ROIs (Fig.3B-C, ρ=0.74±0.06, 186 
ρ=0.80±0.02, ρ=0.79±0.03). We then correlated the ideal traces of activated or inhibited simulated 187 
neurons to the traces extracted by each algorithm, for each dataset, we averaged the maximum 188 
correlations to each ideal trace (Fig.3D). We can see that all three algorithms succeeded in extracting 189 
the relevant traces for the activated neurons (Fig.3D, left, indicated by green bar), but CellSort and 190 
suite2p outperformed CaImAn for the inhibited traces (ρ=0.82±0.07, ρ=0.83±0.08, ρ=0.43±0.09 191 
respectively, Fig.3D, right, magenta).  192 

To assess the proportion of true positives, we identified the ideal fluorescent trace to which each 193 
ROI’s fluorescent trace best correlated. We only counted the unique ROIs that passed a 0.5 194 
correlation cutoff, as all algorithms were shown to over-segment some of the sources in duplicated 195 
fluorescent traces (Charles, Song et al. 2019). When comparing the proportions of identified ideal 196 
activated neurons, CellSort outperformed suite2p slightly, followed by CaImAn (proportions of 197 
0.58±0.06, 0.54±0.04 and 0.38±0.05 respectively, Fig. 2E left). For inhibited neurons, CellSort 198 
outperformed suite2p slightly again, but the divide with CaImAn grew (proportions of 0.86±0.10, 199 
0.82±0.10 and 0.34±0.19 respectively, Fig.2E right). All algorithms seemed insensitive to the ratio of 200 
inhibited neurons present, as we saw no difference in those metrics between datasets with either 10 or 201 
20% of inhibited neurons.  202 

These results are lower than the results from (Charles, Song et al. 2019), who found that both 203 
CaImAn and suite2p outperformed CellSort (proportions of 0.71, 0.69 and 0.33 respectively). One 204 
possible explanation for the difference is that our use of nuclear-targeted GCaMP simulations, like 205 
our real datasets, may favor CellSort. 206 

 207 
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 208 

Figure 3: Various analyses’ performances on simulated data.  209 
(A) Raster plots of ideal responses from NAOMi, and extracted fluorescence traces from CaImAn, 210 
CellSort and suite2p. All the fluorescent traces were z-scored from -3 to 6 s.d. White horizontal lines 211 
separate the individual datasets. (B) Segmentation of the regions of interest (ROIs) by each algorithm 212 
for one representative dataset. (C) Quantification of the correlation between the ROIs identified by 213 
each of the three algorithms and the ideal ROIs. Symbol color indicate the percentage of inhibited 214 
neurons (n=5 datasets with 10% inhibited neurons in blue, and n=5 datasets with 20% inhibited 215 
neurons in yellow) (D) Average maximum correlations between the traces identified by each 216 
algorithm and the ideal responses for the activated neurons (left, green rectangle) and the inhibited 217 
neurons (right, magenta rectangle). (E) Fraction of the ideal responses identified with a correlation 218 
above 0.5 by the three algorithms for the activated neurons (left) and the inhibited neurons (right). 219 

 220 
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3.3 Spike inference from simulated calcium traces 221 

In theory, inferring the spike trains responsible for the calcium traces is one way to improve the 222 
temporal resolution, as you get rid of the convolved GCaMP kernel. But the frame rate of acquisition 223 
often makes such deconvolution impractical and unreliable. Each of the above algorithms offers 224 
some form of spike inference (Fig.4A), and multiple other approaches have been proposed during an 225 
online challenge (Berens, Freeman et al. 2018). CaImAn offers multiple options for spike inference, 226 
among which we selected their fast non-negative deconvolution (FOOPSI) method (Vogelstein, 227 
Packer et al. 2010). For suite2p, we used the Online Active Set method to Infer Spikes (OASIS) 228 
(Friedrich, Zhou et al. 2017).We also tested a recent spike inference method based on deep learning, 229 
CASCADE, which offers universal pre-trained models (Rupprecht, Carta et al. 2020). 230 

Using this approach, we tested how accurate each spike detection algorithm is on our datasets. To 231 
avoid any confounding issues from the detection algorithm, we used the ideal calcium responses as 232 
the basis for the spike detection. Based on our results with the moving baseline of ΔF/F0 (Fig.1B), we 233 
also did not pre-process the data for the spike inference with suite2p. The CellSort deconvolution 234 
approach had limited success with both activated and inhibited neurons (ρ=0.08±0.08, and 235 
ρ=0.003±0.013 respectively, Fig.4B, Sup.Fig.2). The more recent CaImAn and suite2p did well for 236 
the activated neurons, (ρ=0.53±0.04, ρ=0.55±0.03 respectively), but suite2p performance was less 237 
good for inhibited neurons (ρ=0.37±0.03) compared to CaImAn (ρ=0.60±0.05). The universal model 238 
of CASCADE performed better than the rest on the activated neurons (ρ=0.66±0.03), but worse on 239 
the inhibited neurons (ρ=0.03±0.03). 240 

 241 

Figure 4: Spike inference from simulated calcium traces 242 
(A) We used each of three methods to infer spikes from our simulated GECI fluorescence data, and 243 
compared these results to the ground truth of the actual simulated spikes used to produce our 244 
fluorescence data. (B) Correlation between the inferred spikes from the simulated calcium traces and 245 
the actual spikes for the activated neurons (left, green rectangle) and the inhibited neurons (right, 246 
magenta rectangle). Each datapoint represents the performance on one simulated dataset (n=5 247 
datasets with 10% inhibited neurons in blue, and n=5 datasets with 20% inhibited neurons in yellow). 248 

 249 
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4 Discussion 250 

In this study, we show that the often implicit assumption of non-negativity for calcium imaging data 251 
can lead to missing real responses from inhibited neurons. Current approaches run the risk of missing 252 
a significant fraction of responses at every step of the analysis pipeline, including cleaning the data, 253 
processing, feature extraction, dimensionality reduction, and clustering. 254 

We have shown these negative deviations exist in real data from zebrafish, as we previously observed 255 
(Fig.1), and as observed in mice (Favre-Bulle, Vanwalleghem et al. 2018, Steinmetz, Zatka-Haas et 256 
al. 2019). We detected inhibition of tonically active vestibular neurons in the cerebellum, which may 257 
correlate to Golgi interneurons (which are responsive to tonically inhibited granule neurons) or 258 
basket and stellate interneurons (which inhibit Purkinje neurons) (Leto, Arancillo et al. 2016). Based 259 
on the dorsal position of the cell in Figure 1, they are likely stellate or basket interneurons in the 260 
superficial-most molecular layer of the cerebellum that synapse onto Purkinje neurons. 261 

We have demonstrated that a moving baseline, such as for ΔF/F0, may create artefacts in inhibited 262 
neurons, which may lead to spurious generation of positive signals. Finally, inhibited responses can 263 
also be lost when using NMF or thresholding approaches to analyze and visualize the data (Fig.1C). 264 
It would be interesting to revisit the data from studies that used these approaches (Mu, Bennett et al. 265 
2019, Torigoe, Islam et al. 2019) to see whether inhibited neurons are present in the datasets. We 266 
suggest that an initial unbiased step of data exploration of the dataset should be performed to ensure 267 
that no inhibited responses are present before pursuing steps including the above methods that 268 
assume non-negativity. Principal component analysis, or other dimensionality reduction tools, could 269 
be used to explore the data in the case of spontaneous activity or complex stimuli. Alternatively, for 270 
stimuli-driven activity, a correlation or linear regression should reveal any neuronal activity that 271 
deviates negatively from baseline. 272 

By using simulated data (Fig.2), we tested how reliably CellSort, suite2p and CaImAn could detect 273 
inhibited neurons in a calcium imaging dataset. CellSort was the best algorithm in our specific 274 
analysis of nuclear-targeted GCaMP (Fig.3), which is at odds with other comparisons (Charles, Song 275 
et al. 2019). However, both CaImAn and suite2p are better suited to larger datasets of thousands of 276 
neurons. Between these two approaches, suite2p outperformed CaImAn for the detection of activated 277 
responses both in terms of the fidelity of the extracted response (Fig3.D, mean difference of 0.056 278 
and p-value=0.0006) and the fraction of responses identified (Fig3.E, mean difference of 0.16 and p-279 
value<0.0001). For inhibited responses, suite2p largely outperformed CaImAn with more than twice 280 
the fraction of ideal inhibited responses recovered (mean difference=0.47 and p-value<0.0001). 281 
Among the currently available approaches, we therefore favor suite2p, or CellSort for smaller 282 
datasets, in order to recover the most inhibited responses from calcium imaging of neuronal activity. 283 

As for the spike inference, the algorithm included with CellSort did poorly on both activated and 284 
inhibited neurons. The more recent suite2p and CaImAn performed similarly to one another with 285 
activated neurons, in line with published results (Pachitariu, Stringer et al. 2018). However, for 286 
inhibited responses, suite2p’s performance collapsed when using OASIS. CASCADE performed well 287 
on the activated neurons, but the lack of inhibited neurons in the training datasets mean it performed 288 
poorly when detecting our inhibited responses, as such the use of a more varied training dataset could 289 
improve its performance. Overall CaImAn presents the best approach to infer spikes from inhibited 290 
neurons. Several other methods of spike inference have been benchmarked (Berens, Freeman et al. 291 
2018), and it would be interesting to benchmark these with simulated inhibited neurons.  We saw no 292 
significant differences between simulated datasets with 10% or 20% inhibited neurons in any of the 293 
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above metrics, showing that the amount of inhibited neurons should not affect the detection of the 294 
activated neurons. 295 

Overall, we suggest that the PCA/ICA approach, such as implemented in CellSort should be favored 296 
when dealing with smaller datasets and nuclear-targeted GECIs. For larger datasets however, we 297 
suggest using suite2p, which has worked well both with nuclear-targeted simulations in this study, 298 
and with a cytoplasmic GECI simulation (Charles, Song et al. 2019). When attempting spike 299 
inference, we got the best results from the FOOPSI approach, so we would favor this method when 300 
inferring spikes. 301 

In summary, we have shown that assumptions of non-negativity can lead to the omission of real and 302 
simulated inhibited responses, and can produce spurious positive signals during the analysis of neural 303 
calcium imaging datasets. We have tested three popular and readily available approaches for 304 
analyzing such data, and provide recommendations for the best approaches to use when analyzing 305 
calcium imaging data that may contain inhibited signals.  306 

5 Tables 307 

Table 1: Parameters used for the simulation of calcium datasets 308 

Frame rate Simulated volume Radius nuclei τ of GECI Time points 

5Hz 90 x 90 x 50 5.9um 1.5 1000 
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12 Supplementary figures 486 

Supplementary figure 1: Clustering using Non-negative Matrix Factorization 487 

The data from (Favre-Bulle, Vanwalleghem et al. 2018) were clustered with an NMF approach, using 488 
the same number of clusters as the K-means used in the original paper. Of the 15 clusters, identified 489 
the low sensitivity cluster (Cluster #3) and high sensitivity cluster (#15), but no inhibited cluster.  490 

Supplementary figure 2: Inferred spike trains 491 

Binarized spike trains inferred using the above algorithms from the ideal fluorescent traces. 492 
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