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Abstract 11 

The increased frequency and intensity of extreme events are recognized among the 12 

most worrisome aspects of climate change. However, despite increased attention from 13 

scientists and conservationists, developing and testing general theories and hypotheses on 14 

the effects of extreme events on natural populations remains intrinsically challenging. 15 

Using numerical simulations, I tested some of the hypotheses on risk of extinction and 16 

population and genetic dynamics in an environment in which both climate (e.g., 17 

temperature, rainfall) and point (e.g., fires, floods) extremes occur. A quantitative trait is 18 

selected for by a climate variable, but point extremes cause trait-independent massive 19 

mortalities. 20 

I found additive effects between age at first reproduction and fecundity on risk of 21 

extinction. The extent of population bottlenecks (operationally, the number of years in 22 

which a population was at low numbers) was a good predictor of allelic richness for the 23 

quantitative trait selected for by the climate. Simple models including basic demographic 24 

and vital rates information of the species, along with climate/environmental measures, 25 

provided excellent predictions of contemporary risk of population extinction. Mean and 26 

minimum population size measured in a 10-year “observation window” were largely the 27 

most important predictors of risk of population extinction in the following 10-year 28 

“prediction window”. 29 

 30 

 31 

 32 
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1 Introduction  34 

Extreme events are now recognized among the most worrisome aspects of climate 35 

change (IPCC 2007, 2012, Jentsch et al. 2007, One Earth editorial team 2020).  36 

How to define extreme events is challenging, since they may be defined in terms of 37 

extreme values of a continuous climate variable (e.g., daily or mean summer temperature, 38 

rainfall) on the basis of the available climate record (Gutschick and BassiriRad 2010), or 39 

in the form of a “point” or discrete perturbation, such as a hurricane or a storm. The latter 40 

category also includes environmental extremes such as fires and floods, which may have 41 

catastrophic effects on the affected species and ecosystems despite being relatively 42 

frequent in certain habitats. Following Vincenzi (2014), throughout this work I will use 43 

the term climate extreme for extreme values of a continuous climate or environmental 44 

variable and point extremes for discrete extreme perturbations. 45 

The genetic and demographic determinants of both adaptation to a more extreme 46 

environment and contemporary risk of extinction are receiving increasing interest from 47 

scientists and conservationists. However, despite the increased research and management 48 

focus on extremes, developing and testing general theories and hypotheses on the effects 49 

of extreme events remains more intrinsically challenging than for other aspects of climate 50 

and environmental change (van de Pol et al. 2017).  51 

First, since the effects of extreme events are largely context-specific right, developing 52 

an overarching causal and predictive framework may be overly ambitious (Bailey and 53 

van de Pol 2016). For instance, the emergence of adaptations may depend on both the life 54 

histories of the species and the recurrence interval, intensity, and nature of extreme 55 

events. In addition, the demographic and genetic effects of climate and point extremes 56 
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(e.g., population crashes, loss of genetic diversity, inbreeding and maladaptation, changes 57 

in population age and size structure, disruption in expression of quantitative traits) 58 

(Bryant and Meffert 1995, Kirkpatrick and Jarne 2000) are often the result of chance, and 59 

are thus not easily predictable or generalizable across species or habitats. Second, climate 60 

and point extremes that result in strong demographic and genetic responses are often rare 61 

events, whose occurrence may be also difficult to predict. Thus, when available, 62 

pre-disturbance empirical data is likely to have been collected by chance, and the studies 63 

on the effects of extreme events prone to be mostly opportunistic and anecdotal instead of 64 

planned and comprehensive. 65 

Despite the intrinsic difficulties of developing and testing general theories on the 66 

effects of climate and point extremes on natural populations, there are a few theory-based 67 

predictions on the demographic and genetic consequences of extreme events that may 68 

quite general across species and habitats, although with varying degrees of modeling and 69 

empirical validation.  70 

The first prediction is that by reducing population size, extreme events directly 71 

increase the risk of extinction of the affected populations (Willi et al. 2006, Frankham et 72 

al. 2014); common sense, mathematical modeling, and empirical observations suggest 73 

that smaller populations are more likely to go extinct than larger populations. After the 74 

occurrence extreme events, in some cases the extinction of the focal population is 75 

inevitable for numerical reasons (no individuals capable of reproducing survived), unless 76 

there is immigration from neighboring—either unaffected or less affected—populations 77 

(i.e., “demographic rescue”, Brown and Kodric-Brown 1977, Carlson et al. 2014).  78 
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Second, when the change in the environment is abrupt, but not causing mass 79 

mortalities, the evolution of fitness-determining traits might occur fast enough to stop 80 

population decline and allow population recovery before extinction (“evolutionary 81 

rescue”, Bell and Gonzalez 2009). However, population bottlenecks such as those caused 82 

by extreme events, especially when repeated over time, are predicted to decrease additive 83 

genetic variance and allelic diversity in the affected populations (Bouzat 2010). As 84 

adaptive potential tends to increase with genetic variability and genetic drift may 85 

overwhelm selection in small populations, the effects of extreme events on genetic 86 

variability are predicted to increase both short- and long-term risks of population 87 

extinction, with smaller chances of evolutionary rescue (Falconer and Mackay 1996, 88 

Willi and Hoffmann 2009).  89 

Third, species may exhibit various adaptations to extreme events, some more 90 

predictable and general than others. For instance, extreme, but predictable variations in 91 

the flow regime of streams can select for fish life histories, such as spawning and 92 

emergence time, that are synchronized either to avoid or exploit the direct and indirect 93 

effects of extreme flows (Lytle and Poff 2004). On the contrary, unpredictable flow 94 

events such as flash floods may have low direct selective consequences for the affected 95 

populations, even though they might induce massive mortalities (Lytle 2000). In these 96 

cases, natural selection after the extreme event is predicted to favor individuals with a 97 

high capacity for increase in population size (r selection, Reznick et al. 2002). Intuitively, 98 

when after an extreme event the population is reduced to a few individuals, faster 99 

reproduction may be more critically needed than high fecundity, since the latter depends 100 

on being able to reproduce. However, the interaction effects between age at first 101 
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reproduction and fecundity on risk of extinction in an extreme environment have been 102 

rarely investigated.   103 

In this work, I test using a simulation approach some of the hypotheses on risk of 104 

extinction and population and genetic dynamics in an environment in which both climate 105 

and point extremes occur. In previous work, Vincenzi (2014) found that the interaction 106 

among climate trend (e.g., increase over years of average summer temperatures), climate 107 

variability and probability of point extremes (e.g., fires) had a minor effect on risk of 108 

extinction, time to extinction, and distribution of a quantitative trait selected for by 109 

climate after accounting for their independent effects. The survival chances of a 110 

population were found to decrease with increasing strength of selection, as well as with 111 

increasing climate trend (e.g., increasing or decreasing n-year moving average 112 

temperature, rainfall) and variability.  113 

Here, I focus on prediction more than on inference: prediction of future observables 114 

has long been included as an aspect of biological and ecological studies, but as a 115 

methodological approach it has been much less prominent than description and statistical 116 

and causal inference. The work is also not purely theoretical in scope, but is motivated by 117 

the study of the population and genetic dynamics, and risk of extinction of marble trout 118 

Salmo marmoratus living in Slovenian streams (Vincenzi et al. 2016). Marble trout 119 

populations are affected by flash floods in autumn and droughts in summer, and the 120 

climate threat to the persistence of marble trout is likely to worsen with climate change; 121 

for instance, the increase in intra-annual variability in rainfall is predicted to increase the 122 

frequency of flash floods (Janža 2013). However, since there is a need for more general 123 

investigations of risk of population extinction and population and genetic dynamics in 124 
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presence of climate and point extremes, I developed a more widely applicable modeling 125 

and conceptual framework.  126 

I modeled an idealized situation of additive genes, a closed population of moderate 127 

size with random mating, and variable across simulations—but fixed within 128 

simulations—age at first reproduction and expected number of offspring per mating pair, 129 

climate trend and variability (i.e., the parameters of the distribution of climate variable 130 

that is selecting for a quantitative trait), selection strength, and frequency and severity of 131 

point extremes. I assume that point extremes cause massive mortalities, but no trait other 132 

than good fortune increases the survival chances of an individual when point extremes 133 

occur. 134 

First, I tested whether in an extreme environment the extent of population bottlenecks, 135 

which I operationally defined as the total number of years with a “depressed” population 136 

size (e.g., ~ 1/3 of the habitat carrying capacity), could help predict allelic richness at the 137 

end of simulation time for the quantitative trait selected for by the climate variable. 138 

Second, I tested whether quantitative trait adaptation was correlated with the increased 139 

frequency of theoretically advantageous alleles (i.e., their allelic values are in the same 140 

direction of the change in the environment) and whether the genetic dynamics of the 141 

populations could be predicted using information on the climate and on the population 142 

life histories. Third, I tested for positive interaction effects between age at reproduction 143 

and fecundity on risk of population extinction. Finally, I tested whether it is possible to 144 

predict the extinction or survival of a population in a 10-year “prediction window” (i.e., 145 

contemporary extinction) when measuring or observing some of the environmental 146 

characteristics of the habitat (e.g., occurrence of extreme events) and of the population 147 
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(e.g., population size, age at reproduction) during a 10-year “observation window” that 148 

immediately precedes the “prediction window”.  149 

2 Material and methods 150 

The model I use in this work is an extension of the model developed in Vincenzi 151 

(2014). The choice of parameter values for the present work was informed by the 152 

available literature and by the results of Vincenzi (2014). 153 

2.1 Overview of the model 154 

I consider a population of monoecious individuals living in a habitat whose population 155 

ceiling is K (Mangel and Tier 1993). The population is geographically isolated, with 156 

neither immigration nor emigration from or to neighboring populations. A single 157 

quantitative trait a corresponding to its breeding value for a phenotypic trait z 158 

characterizes the individuals. The population has discrete overlapping generations with 159 

N(t) total individuals, where t is time in years. The environment is described by an 160 

optimum phenotype Q (t) that changes over time as a result from variations in a climate 161 

driver such as rainfall or average summer temperature, which selects for the trait z. The 162 

distance between the optimum phenotype Q(t) and the trait zi, (Q(t) - zi ), of the 163 

individual i defines the maladaptation of the individual i with respect to the optimum 164 

phenotype (or, alternatively, it defines the “extremeness” of the climate event for the 165 

individual). Point extreme events such as floods or fires cause non-selective high 166 

mortality in the population, i.e. every phenotype has the same chances of surviving the 167 

event.  168 
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2.2 Optimum phenotype 169 

The expected optimum phenotype µQ(t) moves at a constant rate over time (i.e. 170 

trend), fluctuating randomly around its expected value . The optimum phenotype 171 

Q(t) is randomly drawn at each time step t from a normal distribution Q(t) ~ N 172 

(µQ(t),sQ(t)). It is equivalent to consider Q(t) as both the optimum phenotype and the 173 

value of a continuous climate variable (e.g., mean summer temperature or yearly rainfall), 174 

and I will use the two terms interchangeably throughout this work. 175 

Mean and variance of the climate variable at time t are thus:  176 

      (1) 177 

 where tch is the time at which there is a change (ch) in the climate, is and 178 

indicator function equal to 1 when is true  and 0 otherwise. Eq. (1) indicates that the 179 

directional climate trend steadily increases through time after tch years and that the 180 

increase in variability starts after tch years, but stops after tch+tinc years to avoid variability 181 

building up to unrealistic values over time. With the model formulation of Eq. (1), both 182 

the mean and variance of the distribution of the climate variable change over time so as to 183 

make the occurrence of events more likely after climate change (i.e., t > tch) than before, 184 

since after climate change, the realized (i.e., random draw from the statistical distribution 185 

of climate) climate is increasingly likely to be in the region of extremes (say, in the right 186 

5% or 2.5% of the Gaussian distribution of climate) of the statistical distribution of 187 

climate before climate change. 188 

,µ Qb

( t )Qµ

   

µΘ ( t ) = µΘ ,0 +  I(t > tch)βµ ,Θ tch

σΘ ( t ) =σΘ ,0 +  I(tch < t < tch + tinc)βσ ,Θ tch

I( )•

•
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Point extreme events E leading to trait-independent high mortalities occur with annual 189 

probability p(Eb) when t < tch (i.e. b - before climate change) and p(Ea) when t > tch. 190 

2.3 Quantitative trait and survival 191 

I model the phenotype z of an individual i, zi, as the sum of its genotypic value ai and a 192 

statistically-independent random environmental effect ei drawn from N(µE, ): 193 

zi = ai + ei         (2) 194 

The narrow sense heritability h2 = /  is the proportion of the phenotypic variance195 

 present in the population that is explained by the additive genetic variance   (i.e. 196 

the variance of a in the population). 197 

For an individual i, the genetic value ai is determined by nl freely recombining diploid 198 

loci, with additive allelic effects within- and among-loci, that is , where  199 

is the sum of the allelic values at locus j. For computational reasons, I chose nl = 10. 200 

Allelic values are randomly drawn from a Gaussian distribution with mean of 0 and 201 

variance equal to s2a. For simplicity, I did not model either dominance or epistatic 202 

variation or other complicating factors such as genotype-environment interaction and 203 

linkages. Likewise, I did not model mutation, since previous work has shown that 204 

mutation does not appear to have any effect short-term on extinction risk and the 205 

evolution of traits on contemporary temporal scales (Vincenzi 2014).  206 

Stabilizing selection is modeled with a Gaussian function (Bürger and Lynch 1995, 207 

Zhang 2012), with fitness W (Endler 1986) for an individual with phenotypic trait zi equal 208 

to: 209 

s 2
E

s 2
G

2
zs

2
zs   σ G

2

,
1

l

i i j
j

a n
=

=å ,i jn
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    (3) 210 

and equivalent in this model to the annual survival probability of individual i. The 211 

curvature of the fitness function near its optimum increases with decreasing ω2; it follows 212 

that that the smaller ω2, the stronger is selection. Stabilizing selection is usually measured 213 

by the standardized quadratic selection gradient g, which is defined as the regression of 214 

fitness W on the squared deviation of trait value from the mean (Lynch and Walsh 1998). 215 

An optimum phenotype in the tails of the distribution is likely to cause a large drop in 216 

population size and can be considered an extreme climate event (Fig. 1). 217 

The median g = -0.1 for stabilizing selection found by Kingsolver et al. (2001) 218 

corresponds to a value of , where is the variance of the 219 

environmental component of the phenotype defined in Eq. (2), when stabilizing selection 220 

is modeled using a Gaussian fitness function.   221 

Eq. (3) can be written:  222 

     (4) 223 

where . With g = -0.1, = 1, and h2 = 0.2, the strength of selection s is 224 

about 0.08.  225 

I assumed that both strength of selection s and environmental variance  remain 226 

constant through time. When a point extreme occurs, the probability of yearly survival of 227 

individuals i is , where is mortality caused by the point extreme event. 228 

  

W( t,zi )=W( t )i = exp −
zi −Θ ( t )( )2

2ω 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

]1[5 222 hE -=sw σ E
2

  
Wi = exp −s ⋅ zi −Θ ( t )( )2⎡

⎣⎢
⎤
⎦⎥

s = 1
2ω 2 σ E

2

σ E
2

1
Ii EW ( m )-

IE
m
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2.4 Simulations 229 

As this study focuses on the more immediate effects of climate change, the 230 

simulations last 250 years. Parents mate at time t-1, offspring are born at time t and 231 

become of age 1 at t+1. The sequence of operations is mortality of adults, mating and 232 

reproduction, mutation, mortality of offspring. At the start of each simulation, for each 233 

individual a value of a and e (Eq. 2) is randomly drawn from their initial distribution.  A 234 

population is considered extinct if at any time during the simulation there are fewer than 235 

2 individuals in the population. Parents form mating pairs starting at age af and produce a 236 

number of offspring randomly drawn from a Poisson distribution with intensity lo . I did 237 

not allow for genetic recombination. Offspring receive for the same locus one allele from 238 

each parent. 239 

2.4.1 Parameter values 240 

I reduced parameter space by fixing K = 500,  = 0, = 1, = 0, =1, 241 

 = 2 10-1, sa = 5 10-2, p(EI,b) = 0.05, and tinc = 25 years. For the other parameters, I 242 

chose range of values that are both realistic for natural populations and instrumental for 243 

the main goal of the study, e.g., testing hypotheses on the effects of extreme events on 244 

risk of extinction and population and genetic dynamics. 245 

I performed simulations with selection strength s equal to either 8 (average selection 246 

strength) or 1.1 10-2 (moderately strong selection). For the rate of increase in the mean of 247 

the climate variable, I used = 0 (base scenario) and 1.5 10-2. I used rates of the 248 

increase in the standard deviation of the climate variable from 0 (base scenario) to 249 

1.5 10-2. According to Bürger and Lynch (1995), when the standard deviation of the 250 

1,Qµ 1,Qs Eµ s 2
E

2
Gs

b µ ,Q

bs ,Q
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distribution of the optimum reaches the same order of magnitude as the width  of the 251 

fitness function, the population is at risk of going suddenly extinct, with little role played 252 

by genetics. Therefore, I chose values of  that strongly increase the probability of 253 

climate extremes, but did not inevitably make the population go extinct. 254 

I used frequency of point extreme events p(Ea) of either 5 (no variation before and 255 

after climate change, corresponding to a recurrence interval of 20 years), 10 (i.e., 256 

recurrence interval is 10 years) or 15 10-2 (Table 1). I used moderate mortalities caused 257 

by point extremes (simulations with  equal to either 0.3, 0.5, 0.7) and moderate p(Ea), 258 

since with higher mortality induced by point extremes and higher probability of their 259 

occurrence the system will be largely driven by the point extremes, with no or little role 260 

of genetics and demography in determining population dynamics and risk of extinction. 261 

For the Poisson distribution of the yearly number of offspring per mating pair, I used 262 

lo equal to either 1.0, 1.5, 2.0 or 2.5 and age at first reproduction from 1 to 4 years old 263 

with a step of 1. Parameter values are reported in Table 1.  264 

2.4.2 Initialization 265 

To reach mutation-selection-drift balance, I first let the population evolve for tch years 266 

in an environment in which mean and variance of the distribution of the optimal 267 

phenotype Q are constant. In preliminary simulations it was found that after tch ~ 100 268 

years both phenotypic mean and variance remained basically constant. Then, the mean of 269 

Q  increases for 150 years and variance of Q  for 25 years. The variance of Q  was then 270 

kept constant up to the end of the simulation.  271 

σθ ω

bs ,Q

Em
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I started every simulation replicate with 500 individuals. I modeled 10 alleles present 272 

in the population for each locus, which value was randomly drawn from a normal 273 

distribution N(0,  ). Since I set  = 1 and  = 0.2, the narrow sense heritability h2 274 

was around 0.2 at t = 1, close to what commonly observed for life-history traits (Lynch 275 

and Walsh 1998) and consistent with the Gaussian allelic approximation including only 276 

quasi-neutral and adaptive mutations, for which (Lande 1995).   277 

2.4.3 Characterization of simulations 278 

 At the level of single replicate, to characterize the behavior of the simulated 279 

populations I tracked or recorded (among other results): (a) whether the population was 280 

extinct or still persisting at the end of the simulation time (0 for persistence and 1 for 281 

extinction, in the latter case I also recorded the year of extinction). At each time t, I then 282 

recorded: (b) the distribution of the trait z in the population and individual maladaptation; 283 

(c) population size N after mortality of adults; (d) total number of alleles and allelic 284 

frequencies (the latter every 25 years). 285 

For an ensemble of realizations (10 replicates for a fixed set of parameters) I also 286 

computed the frequency of population extinction as the number of replicates in which the 287 

population went below two individuals during simulation time.  288 

2.5 Statistical analysis  289 

I used simulation results as pseudo-empirical data and analyzed them with standard 290 

statistical and machine learning modeling. The main focus of the statistical analyses and 291 

modeling was more on prediction than on inference or traditional p-value 292 

hypothesis-testing.  293 

2
As s 2

E
2
Gs

2 20 225G E.s s=
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I estimated parameters of Generalized Additive Models (GAMs,  Wood 2006), 294 

Generalized Linear Models (or Ordinary Least-Square regression models, McCullagh and 295 

Nelder 1989), and Random Forests (Breiman 2001a) using as response variable either (i) 296 

the total number of alleles (overall allelic richness) at the end of simulation time for the 297 

populations that persisted, (ii) the difference in mean allelic frequency of the top 10% and 298 

bottom 10% (according to their allelic value, top 10% were the alleles with the bigger 299 

allelic value and vice versa for the bottom 10%) of alleles. For (i), in particular I tested 300 

whether the number of consecutive years (n_low, the only variable in the GAM models 301 

for which I hypothesized a non-linear effect on the total number of alleles) under a low 302 

population size threshold (tr_low) contributed to predict the number of alleles at the end 303 

of simulation time, in addition to climate variables and vital rates such as expected 304 

intensity and frequency of extreme events, variance of the optimum, expected yearly 305 

number of offspring per mating pair and age at first reproduction. I calculated tr_low 306 

using either 150 or 100 individuals as threshold (results were very similar when using 307 

either 150 or 100 individuals). For (ii), when the climate is changing (i.e., > 0), 308 

alleles with positive allelic values are expected to be more adaptive than those with 309 

negative (or positive, but smaller) allelic values. I tested whether a model including 310 

climate variables and vital rates trained on data from 80% of the replicates that did not go 311 

extinct could predict the difference in mean allelic frequency at year 250 (end of 312 

simulation time) of the top and bottom 10% of alleles according to their allelic values in 313 

the test data set (20% replicates that did not go extinct). I chose the top and bottom 10% 314 

of the alleles (10 alleles in the top and bottom sets), since the fate of single alleles is more 315 

likely to be affected by chance than that of a group of advantageous alleles. 316 

,µ Qb
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Then, I investigated whether a combination of demographic and environmental factors 317 

measured or estimated in a short time window (“observation window”) can predict the 318 

risk the risk of extinction of the population in the following years (“prediction window”). 319 

First, I set aside a balanced test data set of simulation replicates (50% that went extinct 320 

and 50% that survived)—these simulations were not used in any phase of model 321 

development and training. Second, since the number of simulations that went extinct was 322 

approximately one third of the number of those that survived, I augmented the data set by 323 

replicating 3 times the simulations that went extinct and were not included in the test data 324 

set.  325 

Third, I fitted GLMs and GAMs with binomial error distribution (i.e., logistic 326 

regression), and classification Random Forests (RFs) with population extinction (1) or 327 

persistence (0) between (text  -  u) as response variable, where text is either (a) the time at 328 

extinction for the replicate that went extinct, or (b) a random deviate from a uniform 329 

distribution bounded between 20 and 240 for the replicates that survived. u is a random 330 

deviate from a uniform distribution bounded between 1 and 10 years. This way, I am 331 

trying to model extinction or persistence not at a specific time, but in a “prediction 332 

window” of 10 years. I used as candidate predictors, as measured in the 10 years 333 

(“observation window”) before the “prediction window”, minimum and mean population 334 

size N, the maximum value of the optimum phenotype, the expected yearly number of 335 

offspring per mating pair, age at first reproduction, and maximum and mean distance 336 

over the observation window between the mean phenotype and the optimum (i.e., 337 

maximum and mean population-level maladaptation, or maximum and mean 338 

“extremeness” of the climate). In other words, I wanted to test whether a model including 339 
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climate and population traits measured over a limited time frame could predict the 340 

extinction or persistence of the population in the years immediately following the end of 341 

the “observation window”.  342 

For the GAMs and GLMs, I estimated the optimal cutoff given equal weight to 343 

sensitivity (probability that the model predicts extinction when the replicate went extinct) 344 

and specificity (probability that the model predicts persistence when the replicate 345 

persisted). Then, I tested the model by predicting population extinction and persistence 346 

on the test dataset using the computed optimal cutoff. For the classification RF models, I 347 

directly used the binary prediction (population going extinct or surviving) from the 348 

models. I used different modeling approaches because I did not explicitly modeled any 349 

mechanism or process that can be hypothesized to lead to extinction (i.e., models are 350 

correlative and not mechanistic), and different modeling approaches can give different 351 

insights on how contemporary extinctions are predicted (e.g., tree-based models like RFs 352 

provide a measure of variable importance for predicting the target variable, Breiman 353 

2001a, and GAMs can model non-linear relationships between predictors and target 354 

variable using semi-parametric estimation). For the GAMs and GLMs, I centered and 355 

scaled the predictors in order to compare their importance (Schielzeth 2010). As I use 356 

realistic variable ranges representing the variability that may be observed in nature, some 357 

of the estimated parameters can be compared in terms of effect on a standardized scale. I 358 

also fitted the same models using non-standardized predictors to test for possible data 359 

leakage between training and testing data sets (results were directionally the same). As 360 

interactions among predictors did not improve model performance, I did not include them 361 
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in the models in order to improve the interpretability of results. I visually checked 362 

residuals for variation to model assumptions.  363 

3 Results 364 

Results are fully reproducible. Data and R code are at 365 

https://github.com/simonevincenzi/Contemporary_Extinction. 366 

After year 100, the directional trend, the increase in variability of climate, and the 367 

increased occurrence and severity of point extremes led to noticeable fluctuations in 368 

population size over time (Fig. 1). Twenty-one per cent of the 34 560 simulation 369 

replicates went extinct. As expected, risk of extinction increased with higher frequency 370 

and severity of point extreme events, older age at first reproduction, and fewer offspring 371 

produced per mating pair (Fig. 2). Given an expected yearly number of offspring per 372 

mating pair, the proportion of replicates that went extinct increased approximately 373 

linearly with age at first reproduction (Fig. 2a). When considering all replicates or only 374 

the most extreme scenario, for a fixed expected number of offspring produced per mating 375 

pair, increasing age at first reproduction by one year would increase the probability of 376 

going extinct by approximately 10% (Fig. 2a). The combination of relative high 377 

frequency and high severity of extreme events led to a noticeably higher proportion of 378 

replicates that went extinct (Fig. 2b). Among the replicates that went extinct, 16% (34%) 379 

of them were not affected by a point extreme in the 10 years before extinction and 34% in 380 

the 5 years preceding extinction. 381 

In populations that persisted until the end of simulation time, the GLM and GAM models 382 

that included n_low provided a good prediction of the total number of alleles at the end of 383 
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simulation time (Table 2). The total number of years with population size smaller than 384 

150 individuals had a strong, negative non-linear effect on the total number of alleles at 385 

the end of simulation time (Fig. 3). Models that did not include n_low had much lower 386 

predictive performance (Table 2).  387 

Models for differences in allelic frequency of more or less theoretically advantageous 388 

alleles were able to explain less than 5% of the variance of the target variable (Fig. 4). 389 

The average value of population-mean phenotype  in the last ten years of simulation 390 

time was negatively correlated with the difference in frequency of top and bottom 10% of 391 

alleles according to their allelic value at the end of simulation time (r = 0.71, p <  0.01). 392 

The GLM, GAM, and RF models fitted on the training data sets had similar high 393 

predictive accuracy and low false positive and negative rates when predicting extinction 394 

or survival in the 10-year “prediction window” (Table 3). For more than 98% of 395 

replicates included in the test data set, the GLM, GAM, and RF models provided the 396 

same prediction of either extinction or persistence (Fig. 5). In the GAM model, only 397 

minimum population size in the observation window had a strong non-linear (negative) 398 

effect on the log-odds of extinction. Likewise, minimum population size was the most 399 

important predictor in the RF model (Fig. 6a). The models without minimum and mean 400 

population size as predictors had fairly low accuracy (Table 3). The RF model without 401 

minimum and mean population size as predictors found age at reproduction and expected 402 

yearly number of offspring per mating pair as the most important predictors of 403 

contemporary extinction (Fig. 6b).   404 

z
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4 Discussion 405 

Understanding and predicting the effects of extreme events on risk of extinction and 406 

population and genetic dynamics of natural populations is critical for both population 407 

forecasting and managing human intervention in an increasingly more extreme world.  408 

I found additive effects—with largely no interaction effects—between age at first 409 

reproduction and fecundity on risk of extinction for the range of values I simulated. In the 410 

replicates that survived up to the end of simulation time, the total number of years in 411 

which the population was at a small size was a good predictor of allelic richness for the 412 

quantitative trait selected for. The population frequency of theoretically advantageous 413 

alleles was strongly correlated with the mean value of the phenotype under selection, but 414 

was otherwise largely unpredictable. Last, simple models including basic demographic 415 

and vital rates information, along with climate/environmental measures, provided 416 

excellent predictions of contemporary risk of population extinction. 417 

4.1 Life histories 418 

Life-history theory predicts a prevalence of fast life histories in environments in which 419 

extreme events occur (Winemiller 2005). Fast life histories, which are often defined as 420 

including a combination of faster body growth early in life, younger age at maturity, and 421 

higher reproductive effort early in the reproductive life of the individual, should allow for 422 

faster population growth rate after a drastic reduction in population size, an adaptive life-423 

history strategy when the population is at risk of extinction.  424 

For many animal species that commonly experience the often-catastrophic effects of 425 

extreme climate or point events—and have limited movement range for physiological and 426 
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behavioral reasons or for the environment they inhabit (e.g., freshwater fish in mountain 427 

streams, insects)—offspring production is typically very high compared to the habitat 428 

carrying capacity. Thus, offspring production is not usually what is limiting population 429 

recovery, i.e. the re-establishment of the pre-event population size. However, when after 430 

a climate or point extreme event the population is reduced to such low numbers that the 431 

population is at immediate risk of extinction, younger age at first reproduction for the 432 

surviving individuals could be what makes the difference between population persistence 433 

or extinction. Vincenzi et al. (2017a) found that fish born after flash floods had younger 434 

mean age at reproduction than fish born before flash floods, and hypothesized that 435 

younger age at reproduction after flash floods was due to a combination of faster growth 436 

due to lower population density and fewer older fish competing for mates. However, 437 

younger age at sexual maturity and higher energetic investment in offspring production 438 

often comes at the cost of shorter life expectancy (Fay et al. 2016), and life histories that 439 

are adaptive after population crashes can show lower fitness in steady-state conditions 440 

(Vincenzi et al. 2012, 2014). 441 

4.2 Prediction of genetic dynamics and of population extinction 442 

It is expected that persisting populations experiencing recurrent bottlenecks should 443 

have their genetic pool eroded over time. The erosion of the genetic pool should should 444 

be noticeable in particular in the loss of allelic richness, even after a single bottleneck 445 

event (Allendorf 1986). I found that the extent of population bottlenecks, which I 446 

operationalized as the number of years in which population size was relatively small with 447 

respect to the habitat carrying capacity and species numerical potential, was a strong 448 

predictor of allelic richness for the quantitative trait under selection. These results appear 449 
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to be at least partially consistent with recent empirical results. Vincenzi et al. (2017a) 450 

found an increase in the proportion of fixed alleles in year-classes of two trout 451 

populations born after flash floods that caused massive mortalities. Poff et al. (2018) 452 

tested predictions about population genomic change in aquatic insects living in Colorado, 453 

US, mountain streams after a one in 500-year rainfall event. They found that allelic 454 

richness at presumably neutral loci declined after the event only in two out of six species 455 

analyzed. Moderate reduction of allelic diversity after strong bottlenecks might be 456 

attributable to the particular demographic history of the populations that are investigated;  457 

according to Bouzat (2010), one can expect that populations experiencing recurrent 458 

bottlenecks might have had their genetic pool already eroded over time, which would 459 

decrease the effectiveness of both purifying selection and random allele loss. In addition, 460 

the loss of alleles could be greater in species—like salmonids——with high variance in 461 

reproductive success among adults (i.e., greater than Poisson variance in reproductive 462 

success), although variance in reproductive success has been found to bias (i.e., make 463 

false positives more likely) empirical investigations of genetic bottlenecks (Hoban et al. 464 

2013). Moreover, in our simulations, we started from 10 unique alleles for each of the 10 465 

loci, and the high initial allelic diversity may explain the strong relationship that was 466 

found between the temporal extent of bottlenecks and allelic richness. 467 

On the other hand, a model including age at first reproduction and fecundity of the 468 

species and some traits of the environment was not able to predict the dynamics of the 469 

population frequencies of more advantageous alleles for the quantitative trait under 470 

selection. However, a strong correlation was found between the frequencies of more or 471 

less advantageous alleles at the end of simulation time and the average value of the 472 
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phenotype under selection. This result seems to at least suggest that, although the fate of 473 

alleles is difficult to predict from just the coarse-grain description of the environment and 474 

of the species, even in an extreme environment that also causes trait-independent mass 475 

mortalities, a shift in the phenotype is likely to be caused by the increased prevalence of 476 

the most advantageous alleles. 477 

One of the foundational tenets of conservation biology is that small, fragmented 478 

populations should be considered locally vulnerable to extinction—even more critically 479 

so when affected by highly variable climatic conditions and other environmental 480 

disturbances. The conditions that led to the extinction of a population or species can 481 

almost always be understood retrospectively, but forecasting extinction, especially over 482 

contemporary time horizons, is much more challenging. In this work, I found that the 483 

most important predictors of contemporary extinctions were mean and minimum 484 

population size measured in the few years before the “prediction window”. However, it 485 

was not uncommon for populations to swiftly rebound after collapses in numbers, and 486 

age at reproduction and yearly fecundity were the most important predictors of extinction 487 

when measures of population size were not included in the model. This result highlights 488 

the importance of age at first reproduction and yearly fecundity for population persistence 489 

in highly stochastic environments, as also suggested by theoretical (Bürger and Lynch 490 

1995) and experimental (Griffen and Drake 2008) studies. However, other genetic 491 

challenges not accounted for in my simulation model are likely to be encountered by 492 

populations that decline to very small numbers, such as a reduction of viability and/or 493 

fecundity due to either inbreeding or the expression of deleterious alleles (Willi et al. 494 

2006). 495 
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Although it may appear from the simulation results that vital rates and environmental 496 

conditions play a small role in models that predict contemporary risk of extinction, those 497 

rates and conditions heavily contribute to determining population size in the “observation 498 

window”; for example, populations with higher fecundity and younger age at first 499 

reproduction are less likely to remain at low population sizes than populations with lower 500 

fecundity and delayed sexual maturity. Likewise, a more extreme environment (e.g., 501 

greater selection strength and more frequent and/or severe climate and point extremes) 502 

tends to decrease average population size, either due to acute events that kill individuals 503 

or constant recovery from population crashes.  504 

Luck plays also plays a major role in determining whether a population will recover 505 

after a population crash. Vincenzi et al. (2017a) found that the almost-complete recovery 506 

of a trout populations that was reduced to a handful of individuals after a flash flood was 507 

due the large production of offspring by a single mating pair. Considering the high 508 

variance in adult reproductive success in trout population—which is at least partially due 509 

to differences in individual “quality” (Auld et al. 2019)—had the mating pair been killed 510 

or displaced during the flash flood, population recovery would have suddenly become 511 

much less likely. 512 

4.3 Modeling considerations 513 

Modeling and simulation approaches can help understand the effects of multiple 514 

extreme stressors on the contemporary risk of extinction of species, and can be used to 515 

guide or support both the set-up of ecologically relevant experimental designs and the 516 

interpretation of biological responses to multiple stressors. 517 
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However, models of population and genetic dynamics are limited in their scope of 518 

prediction by both the understanding of the biology and ecology of the species and the 519 

availability of data to parametrize, train, and test models. Although often intuitive, it is 520 

nevertheless important to remind ourselves that the simulation results of modeling 521 

exercises depend on, first, our biological and ecological understanding, and, second, the 522 

simplified modeling of the species and the environment they inhabit. For instance, 523 

general trade-offs between allocation of resources to competing physiological functions 524 

are not only often intrinsically challenging to model, but they may also vary over time 525 

and space for the same species or population. That is, even when there is qualitative 526 

understanding of some biological or ecological process, the parameterization and choice 527 

of parameter values for the model may be too uncertain too provide actionable 528 

predictions. 529 

Trade-offs between model accuracy and interpretability also need to be taken into 530 

account when developing models of population and genetic dynamics. Accuracy 531 

describes the ability of a model to explain observed data and make correct predictions, 532 

while interpretability concerns to what degree the model allows for understanding 533 

processes. Often, a trade-off exists between accuracy and interpretability: more complex 534 

models are usually opaque, while more interpretable models often do not provide the 535 

same accuracy or predictive power of more complex models (Breiman 2001b). Then, 536 

although intuitively more complex models are expected to provide more accurate 537 

predictions of risk of extinction or population and genetic dynamics, this is not always 538 

the case. For instance, Ward et al. (2014) tested the predictive performance of short-term 539 

forecasting models of population abundance of varying complexity. They found that 540 
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more complex models often performed worse than simpler models, which simply treated 541 

the most recent observation as the forecast. In their case, the estimation of even a small 542 

number of parameters imposed a high cost while providing little benefit for short-term 543 

forecasting of species. However, when there was a clear signal of cyclic dynamics, more 544 

complex models were able to more accurately predict future population sizes.  545 

 As always, the purpose of a scientific investigation should drive model formulation, 546 

the type and amount of data collected, and the acceptable prediction uncertainty. 547 

  548 
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Tables 663 

 664 

Table 1. Values of parameters of the model of population and genetic dynamics. 665 

 666 

Parameters Values Description 

K 500 Population ceiling 

lo 1.0, 1.5, 2.0, 2.5 Intensity of the Poisson distribution of 
yearly number of offspring per mating 
pair 

af 1, 2, 3, ,4 Age at first reproduction 

tch 100 Years since the start of the simulation 
before climate change 

tinc 25 Time of increase of variability (variance 
of the normal distribution of the climate 
variable) after climate change 

nl 10 Number of diploid loci 

 6.25 10-3  Additive genetic variance per locus at the 
start of simulation  

s2a 2.5 103 Variance of the normal distribution of 
allelic values 

 0.2  Additive genetic variance of the 
quantitative trait at the start of simulation 

 0 Mean environmental effect  

2
As

2
Gs

Eµ
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 1 Environmental variance 

 0.3, 0.5, 07 Mortality caused by the point extreme 
event 

s 8, 11 10-2 Strength of selection 

p(Eb) 5 10-2 Probability of occurrence of point 
extreme events before climate change 

p(Ea) 5, 10,15 10-2 Probability of occurrence of point 
extreme events after climate change 

 0 Mean of the normal distribution of the 
phenotypic optimum from year 1 to tch 

 1 Standard deviation of the normal 
distribution of the phenotypic optimum 
from year 1 to tch 

 0, 1.5 10-2 Annual increase (directional trend) of the 
mean of the normal distribution of the 
climate variable from year tch to the end 
of simulation 

 0,1,1.5 10-2 Annual increase of the standard deviation 
of the normal distribution of the climate 
variable from year tch to tch + tinc 

 667 
  668 

s 2
E

Em

0,Qµ

0,Qs

,µ Qb

,s Qb
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Table 2. Performance of Ordinary Least-Squares regression models (OLS), 669 

generalized additive models (GAM) and Random Forest models (RF) when predicting 670 

the total number of alleles at the end of simulation time for the replicates that survived 671 

until the end (i.e., year 250). All populations started with 10 alleles for each of the 10 loci 672 

for a total of 100 unique alleles. Full models include as predictors n_low, , , 673 

p(Ea), , af, lo, and s. n_low is the number of years the population was below 150 674 

individuals and all other symbols are as in Table 1 (results were similar with tr_low = 675 

100 and reported in the computer code associated with this paper). The training data set 676 

had 21 523 replicates (80% of the replicates that survived up to the end of simulation 677 

time) and the test data set had 5 371 replicates. R2 was calculated with respect to the 1:1 678 

prediction-observed line; MAE is the mean absolute error calculated over the whole test 679 

data set. Over the entire data set (training and test), the number of alleles at the end of 680 

simulation time was [mean ± sd] 79.84 ± 21.11. 681 

 682 

 683 

 684 

 685 

 686 

   687 

,s Qb ,µ Qb

Em

Model R2 MAE 

RF_full 0.82 6.64 

RF_red 0.24 14.97 

GAM_full 0.78 7.82 

OLS_full 0.71 8.85 

OLS_red 0.22 15.23 
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Table 3. GLM with logit link function for prediction of extinction (1)/persistence (0) 688 

of a population over a 10-year period (“prediction window”) with predictors minimum 689 

population size min(N), mean population size , maximum value of the optimum 690 

phenotype max(Q), maximum and minimum mean population-level maladaptation (or 691 

“extremeness” of the climate extreme) max(Q(t) – z(t)) and mean(Q(t) – z(t)), and 692 

occurrence of a point extreme E, all measured in the 10 years before the start of the 693 

“extinction” window (i.e., in the “observation window”), along with selection strength s, 694 

age at first reproduction af and expected yearly number of offspring per pair l0 (full 695 

model). In the reduced model, I excluded min(N) and . All predictors were 696 

standardized (s and E are categorical variables with two levels each, so those were not 697 

standardized) and I report mean estimate and standard error of the regression coefficients 698 

for the GLM models (estimate, standard errors and significance where applicable for the 699 

GAM and RF models are in the computer code associated with this paper). The GLM, 700 

GAM, and RF models were trained on 39 547 replicates (36% went extinct) and tested on 701 

4 600 replicates (50% went extinct). For the full and reduced GLM models, when using 702 

the optimal cutoffs (full = 0.54, reduced = 0.35), accuracy when tested on the validation 703 

data set was 97% for the full model and 77% for the reduced model, false positive rate 704 

0.03 and 0.26, false negative rate 0.03 and 0.19. For the GAM models (details in 705 

computer code associated with this article), optimal cutoffs were 0.38 for the full model 706 

and 0.35 for the reduced model, accuracy 97% and 77%, false positive rate 0.03 and 0.25, 707 

false negative rate 0.03 and 0.20. For the RF models, accuracy when tested on the test 708 

data set was 97% for the full model and 72% for the reduced model, false positive rate 709 

0.02 and 0.16, false negative rate 0.04 and 0.38. 710 

N

N
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 711 
 712 

  713 

 full reduced 

Intercept -5.63(0.14) -2.39(0.03) 

min(N) 

 

 

 

-5.41(0.20) - 

 -1.34(0.10) - 

S 0.62(0.06) 1.02(0.03) 

max(Q) -0.14(0.04) -0.11(0.02) 

l0 -0.42(0.03) -0.89(0.01) 

af 0.42(0.03) 0.80(0.01) 

E   0.64(0.07) 1.50(0.03) 

max(Q(t) – z(t)) 0.06(0.05) 0.28(0.02) 

mean(Q(t) – z(t)) 0.13(0.04) 0.62(0.03) 

N
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Figure captions 714 

Figure 1. Examples of simulation replicates. The black solid line and black points 715 

represent population size, circles are point extremes, the gray dashed line is the value of 716 

the optimum phenotype Q, and the solid gray line is the mean phenotype in the 717 

population. Both Q and  are re-scaled for graphical purposes. Parameters for simulation 718 

in panel (a):  = 0,  = 15 10-2, p(Ea) = 10 10-2, mE = 0.7, af = 4, l0 = 2, s = 11 10-2. 719 

(b):  = 15 10-2,  = 15 10-2, p(Ea) = 15 10-2, mE = 0.3, af = 3, l0 = 2, s = 8 10-2. 720 

(c):  = 15 10-2,  = 0, p(Ea) = 15 10-2, mE = 0.5, af = 3, l0 = 1, s = 8 10-2. In (c), 721 

the population went extinct at year 184. Symbols are as in Table 1. 722 

Figure 2. Extinction probability (number of populations going extinct divided by the 723 

number of replicates run for a given set of parameter values) for scenarios of: (a) 724 

different ages at first reproduction and expected yearly number of offspring per mating 725 

pair (solid line: all replicates; dashed line = most extreme environment, i.e., p(Ea) = 15 726 

10-2, m(Ea) = 0.7, = 5 10-2, = 1.5 10-2); (b) different probability of point 727 

extremes and probability of dying from point extremes.   728 

Figure 3. Partial non-linear effect of the total number of years in which the population 729 

is below 150 individuals during simulation time (n_low) on the total number of alleles at 730 

the end of simulation time, as found from the Generalized Additive Model of Table 2. 731 

The GAM algorithm found k = 3 as the optimal number of degrees of freedom for the 732 

spline (i.e., a cubic). Model details and results are in the in the computer code associated 733 

with this paper. 734 

z

z

,s Qb ,µ Qb

,s Qb ,µ Qb

,s Qb ,µ Qb

,µ Qb ,s Qb
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Figure 4. Panels (a-b): population dynamics of two simulation replicates (details 735 

about the replicates are in the computer code associated with this paper). Lines and 736 

symbols are as in Figure 1. Panels (c-d) dynamics of allelic frequency for the populations 737 

in panels (a-b) (aàc, bàd). Thin dashed gray lines represent the allelic frequencies 738 

measured every 50 years for alleles in the bottom 10% of allelic values (for (c): n = 10, 739 

allelic value [mean ± sd] = -0.27	± 0.08; (d) n = 10, allelic value = -0.21 ± 0.04) and thin 740 

solid black lines represent the top 10% (for (c): n = 10, allelic value = 0.28 ± 0.08; (d) 741 

0.25 ± 0.06). Thick dashed gray lines represent the average frequency in the population 742 

of alleles in the bottom 10% of allelic values and thick solid black lines represent the 743 

average frequency of the top 10%. In (c), the alleles in the bottom 10% of allelic values 744 

were more frequent in the population at the end of simulation time than alleles in the top 745 

10%, and vice versa in panel (d).  746 

Figure 5. Examples of Generalized Linear Model (GLM), Generalized Additive 747 

Model (GAM), and Random Forest (RF) predictions of extinction in a “prediction 748 

window” based on climate and population traits observed in a “observation window”. 749 

Circles are point extremes, the black solid line and black points represent population size, 750 

the gray dashed line is the optimum phenotype re-scaled for graphical purposes. The 751 

letter O denotes the “observation window” and P the “prediction window”. For each 752 

model in the legend, 1 means the model predicted extinction (e.g., RF = 1 means that the 753 

RF model predicted extinction) and 0 otherwise; in panel (d), all models predicted 754 

extinction, but the replicate did not go extinct. In panel (a) only the RF model predicted 755 

extinction and the replicate went extinct, in (b) only the GLM model predicted extinction 756 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.15.298919doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.15.298919
http://creativecommons.org/licenses/by/4.0/


 40 

and the replicate went extinct, and in (c) only the GAM model predicted extinction and 757 

the replicate did not go extinct. 758 

Figure 6. Variable importance for the full (panel (a)) and reduced (i.e., without 759 

min(N) and , panel (b)) Random Forest models for prediction of extinction in the 10-760 

year “prediction window” based on climate/environmental and population traits measured 761 

in the 10-year “observation window”. To compute variable importance, for each tree, the 762 

prediction accuracy on the out-of-bag portion of the data is recorded, and the same is 763 

done after permuting each predictor. The difference between the two accuracies are then 764 

averaged over all trees and normalized by the standard error. The most important 765 

predictor is assigned the value of 100 and the other predictors are scaled accordingly.  766 

N
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