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Abstract 25 

Genome-wide association studies (GWAS) have identified many variants robustly associated 26 

with complex traits but identifying the gene(s) mediating such associations is a major challenge. 27 

Here we present an open resource that provides systematic fine-mapping and protein-coding 28 

gene prioritization across 133,441 published GWAS loci. We integrate diverse data sources, 29 

including genetics (from GWAS Catalog and UK Biobank) as well as transcriptomic, proteomic 30 

and epigenomic data across many tissues and cell types. We also provide systematic disease-31 

disease and disease-molecular trait colocalization results across 92 cell types and tissues and 32 

identify 729 loci fine-mapped to a single coding causal variant and colocalized with a single 33 

gene. We trained a machine learning model using the fine mapped genetics and functional 34 

genomics data using 445 gold standard curated GWAS loci  to distinguish causal genes from 35 

background genes at the same loci, outperforming a naive distance based model.  Genes 36 

prioritized by our model are enriched for known approved drug targets (OR = 8.1, 95% CI: [5.7, 37 

11.5]). These results will be regularly updated and are publicly available through a web portal, 38 

Open Targets Genetics (OTG, http://genetics.opentargets.org), enabling users to easily 39 

prioritize genes at disease-associated loci and assess their potential as drug targets.  40 

Introduction  41 

Over 90% of GWAS-associated SNPs fall in non-coding regions, indicating that they affect 42 

expression of neighbouring genes through regulatory mechanisms 1,2, which can act over long 43 

distances and affect more than one gene. Hence, identification of the causal gene(s) and cell or 44 

tissue site of action is a major challenge requiring detailed low-throughput analysis of individual 45 

loci. One default approach has been to assign the top trait-associated SNP to the closest gene 46 

at each locus. However relying on physical proximity alone can be misleading since SNPs can 47 

influence gene expression over long genomic ranges 3, with studies based on eQTL data 48 

suggesting that two thirds of the causal genes at GWAS loci are not the closest 4,5. To add to 49 

the challenge, associated SNPs often span large regions due to linkage disequilibrium (LD), and 50 

pinning down the functional SNP and the tissue or cell type which mediates its effect can be 51 

complicated.  52 

  53 

Connecting causal variants with their likely causal gene is a laborious process which requires 54 

the integration of GWAS data with multi-omics datasets across a wide range of cell types and 55 
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tissues such as expression and protein quantitative traits (eQTL and pQTL), chromatin 56 

accessibility and chromatin interaction datasets. Subsequent  functional assessment (such as 57 

reporter assays and CRISPR/Cas9 genome editing) can then be used to confirm the 58 

relationship between a putative causal variant and the gene it regulates. Using these integrative 59 

approaches, systematic international efforts have been undertaken to translate GWAS 60 

associated signals into target genes focused on one or a small subset of phenotypes 6–9. 61 

However, there are currently no resources that systematically prioritize all genes beyond 62 

specific therapy areas 9. Therefore, there is a need for a comprehensive, unbiased, scalable and 63 

reproducible approach that leverages all the publicly available data and knowledge to assign 64 

genes systematically to published loci across the entire range of phenotypes and diseases.  65 

 66 

Drug development is hindered by a high attrition rate, with over 90% of the drugs that enter 67 

clinical trials failing, primarily due to lack of efficacy found in later, more costly stages of 68 

development 10. Retrospective analyses have estimated that drugs are twice as likely to be 69 

approved for clinical use if their target is supported by underlying GWAS evidence 11.  Hence 70 

there is a critical need to build strategies that incorporate novel genetic discoveries and 71 

mechanistic evidence from GWAS and post-GWAS studies to suggest novel therapeutic targets 72 

for which to develop medicines, and ultimately increase the success rate of  drug development.    73 

 74 

Here, we describe a universal solution to these challenges: a systematic and comprehensive 75 

analysis pipeline for integrating GWAS results with functional genomics data to prioritize the 76 

causal gene(s) at each published GWAS-associated locus. The pipeline performs fine-mapping 77 

and systematic disease-disease and disease-molecular trait colocalization analysis. We 78 

integrate information from GWAS, expression and protein quantitative trait loci (eQTL and 79 

pQTL) and epigenomics data (e.g. promoter capture Hi-C, DNase hypersensitivity sites). For 80 

gene prioritization we developed a machine learning model trained on a set of 445 curated gold-81 

standard GWAS loci for which we have moderate or strong confidence in the functionally 82 

implicated gene. The model integrates the fine-mapping with the functional genomics data, gene 83 

distance, and in silico functional predictions to link each locus to its target gene(s). This output 84 

of this pipeline feeds into Open Targets Genetics (https://genetics.opentargets.org), a user-85 

friendly, freely available, integrative web portal enabling users to easily prioritize likely causal 86 

variants and target genes at all loci and assess their potential as pharmaceutical targets through 87 

linking out to Open Targets Platform 12,13 and will be regularly updated as new data become 88 

available. 89 
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Results 90 

Pipeline Overview 91 

We harmonised and processed GWAS data from the GWAS Catalog and from UK Biobank, and 92 

conducted systematic fine mapping to generate sets of credibly causal variants across all 93 

133,441 study-lead variant associated loci. We also conducted cross-trait colocalization 94 

analyses for 3,621 GWAS studies with summary statistics available, which enabled us to 95 

identify traits and diseases that share common genetic etiology and mechanisms. To investigate 96 

whether changes in gene expression and protein abundance influence trait variation and 97 

disease susceptibility, we integrated 92 tissue- and cell type-specific molecular QTL datasets 98 

including GTEx 14, eQTLGen 15 , the eQTL Catalogue 16 and pQTLs 17  and conducted 99 

systematic disease-molecular trait colocalization tests. Finally, we used a machine learning 100 

framework based on fine mapping, colocalization, functional genomics data and distance to 101 

prioritize likely causal genes at all trait-associated loci (Figure 1). 102 

 103 
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 104 

Figure 1: Open Targets Genetics pipeline schematic. a) Data sources include all available 105 
GWAS, as well as variant effect predictions and functional genomic data. b) A number of 106 
pipelines are run to perform statistical fine-mapping of GWAS, colocalization with gene 107 
expression quantitative trait studies (QTLs) and also between distinct GWAS traits, and 108 
integrative “locus-to-gene” prioritization from both genetic and functional genomic input features. 109 
c) Outputs of the pipelines are available in a web portal, via programmatic API, and as bulk 110 
downloads. 111 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.299271doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299271
http://creativecommons.org/licenses/by-nd/4.0/


 

Fine mapping of all published genome-wide association studies 112 

To establish a comprehensive resource linking variants and traits or diseases, we integrate 113 

GWAS studies both with and without full summary statistics. Full summary statistics were 114 

obtained from three sources: the NHGRI-EBI GWAS Catalog summary statistics database 115 

(number of studies (nstudy) = 300)18;  binary phenotypes from UK Biobank as published by Zhou 116 

et al. (nstudy= 1,283) 19 and all other UK Biobank phenotypes from the Neale lab (nstudy= 2,139; 117 

downloaded 21/01/2019)20 Studies with full summary statistics were restricted to those of 118 

predominantly European ancestries due to the lack of suitable reference genotypes  required for 119 

conditional analysis from other populations. Studies without full summary statistics included all 120 

others in the NHGRI-EBI GWAS Catalog (nstudy= 14,013)18. To prioritize candidate causal 121 

variants at each GWAS association, we performed fine mapping of 10,494 GWAS Catalog and 122 

UK Biobank studies. Two fine-mapping methods were used to maximise coverage of GWAS 123 

studies, one using full summary statistics and a second using linkage disequilibrium (LD) 124 

information only (see methods). For studies with full summary statistics, we first identified 125 

independent signals using GCTA-COJO 21 and then conducted per-signal conditional analysis 126 

adjusting for other independent signals in a region ±2 Mb from the sentinel variant.  We then 127 

used the Approximate Bayes Factor approach 22 to fine-map each conditionally independent 128 

signal. For studies without summary statistics, we used the PICS method 23 with an LD 129 

reference from the most closely matched 1000 Genomes superpopulation to estimate the 130 

probability that each variant is causal. Both methods output a posterior probability (PP) for each 131 

variant to be causal for the given association. 132 

 133 

A total of 133,441 sentinel variants were detected, with 53% of these being shared by more than 134 

one study (70,860 distinct sentinel variants). To assess the concordance of the two methods we 135 

compared the 95% credible sets after applying both methods to all loci from studies with 136 

summary statistics available. We found a median absolute difference in credible set size of 7  137 

variants (Supplementary Figure 1a), whereas the median credible set contained 17 variants. On 138 

average across loci, 70% of the credible set posterior probability colocated to the same variants 139 

between the two methods (Supplementary Figure 1b). These results suggest that on average 140 

the methods produced have comparable results. For subsequent analyses, we therefore used 141 

the full summary statistics method where these data were available, and for studies without 142 

summary statistics we used the PICS method. 143 

 144 
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Out of 133,441 loci association signals, 12,500 (9%) could be resolved to a single variant having 145 

PP > 0.95 and a further 21,279 (16%) to between 2 and 5 likely causal variants. Single-variant 146 

credible sets were 8.5 times more likely to have a moderate or high impact on protein-coding 147 

transcripts as predicted by the Ensembl variant effect predictor (VEP) 24 compared to variants in 148 

credible sets with 2 or more variants (OR=8.51, p<2.2e-16, Fisher’s exact test). Outside coding 149 

regions, single-variant credible set variants were preferentially located in Ensembl Regulatory 150 

Build regulatory elements, including: promoters (OR=1.70, p<2.2e-16), enhancers (OR=1.09, 151 

p=4.08e-4), transcription factor binding motifs (OR=1.85, p=1.22e-15) or other open chromatin 152 

regions (OR=1.19, p=4.8e-5). 153 

 154 

In order to identify GWAS signals with high-confidence evidence linking the trait to variant and 155 

variant to gene, we took single-variant resolution loci and filtered these to retain variants with 156 

moderate or high-impact coding consequences in VEP . We identified 2,284 single coding 157 

variants linking 378 genes to 303 traits (Supplementary Table 1). Among these were several 158 

known disease-causal gene associations and targets of approved therapies ( Supplementary 159 

Table 2) as well as novel disease-causal gene associations that had no prior evidence in the 160 

Open Targets Platform. One example is rs35383942, associated with breast cancer 19,25, which 161 

is a predicted deleterious missense variant (Arg28Gln, CADD=24.3) in PHLDA3 (Pleckstrin 162 

Homology Like Domain Family A Member 3). PHLDA3 is the direct target of TP53 and acts as a 163 

tumor suppressor gene through inhibition of AKT1, an oncogene that plays a pivotal role in cell 164 

proliferation and survival 26.  165 

Colocalization of GWAS and molecular traits 166 

Since most associated variants are non-coding, it is expected that they influence disease risk  167 

through alteration in gene expression or splicing. One way to identify the target gene is to 168 

demonstrate that the statistical association of a GWAS locus and a gene expression QTL are 169 

colocalized -- that is, that the pattern of SNP associations is consistent with them sharing the 170 

same causal variant.  We conducted systematic colocalization analysis 27 of GWAS loci with 171 

molecular trait QTLs from 92 tissues or cell types. The QTL datasets (Supplementary Table 3) 172 

include pQTLs for 2,994 plasma proteins assessed in 3,301 individuals of European descent 17, 173 

eQTLs from 48 GTEx tissues (v7.0), blood eQTLGen 15, and 14 eQTL studies  from the newly 174 

established eQTL Catalogue, a resource of uniformly processed gene expression and splicing 175 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.16.299271doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299271
http://creativecommons.org/licenses/by-nd/4.0/


 

QTLs recomputed from previously published datasets 16. The results of the colocalization test 176 

are summarised by the probability, referred to as “H4”, that a causal variant is shared.  177 

 178 

GWAS-molecular QTL loci were tested if there was at least 1 variant overlapping in their 95% 179 

credible sets, suggesting prior evidence for colocalization (refer to methods). Of the 70,364 trait-180 

associated loci from studies with summary statistics available, 49.4% had no colocalizing gene 181 

at an H4 threshold >0.8, 25.5% had exactly 1 colocalizing gene and 25.2% had >1 colocalizing 182 

gene. For loci with evidence of colocalization between GWAS and molecular QTL traits, 29% 183 

were specific to a single tissue or cell type, whereas 71% were observed across multiple 184 

tissues. We also examined non-coding QTLs that were fine-mapped to a single-variant 185 

resolution, and which colocalized with binary traits GWAS  (H4>0.95). Results from this analysis 186 

are summarised in Supplementary Table 4. 187 

 188 

We also performed cross-trait colocalization across 3,621 GWAS to identify traits that are likely 189 

to be underpinned by the same molecular mechanism. A summary of the binary trait GWAS loci 190 

with the highest colocalization score (H4>0.95) is displayed in Supplementary Table 5. One 191 

example is a locus on chromosome 6 which colocalizes with asthma (6_90220794_T_C) and 192 

Crohn’s disease (6_90263440_C_A) suggesting that the two diseases may share common 193 

genetic etiology at this locus. 194 

 195 

To demonstrate the value of colocalization evidence, we examined coding variants that were 196 

fine-mapped to single-variant resolution, and which colocalized with a molecular QTL for the 197 

same gene (729 variants, Supplementary Table 6). Such cis-variants make good genetic 198 

instruments for testing the causal effect of the molecular phenotype on disease 28, and the ratio 199 

of coefficients for the cis-variants is an estimate of the effect size of the molecular phenotype on 200 

disease. Using this approach we identified several known gene-trait associations. For example,  201 

missense variant rs34324219 is causal of changes in TCN1 RNA and protein expression in 202 

whole blood 15,17 and also colocalizes (H4>0.99) with pernicious anemia, a disorder in which too 203 

few red blood cells are produced due to vitamin B12 deficiency. TCN1 encodes the protein 204 

haptocorrin (also known as Transcobalamin-1) which binds vitamin B12 and is involved in its 205 

uptake 29. Also , splice region variant rs1893592 causes increased expression of UBASH3A in 206 

most GTEx tissues, including thyroid. This signal colocalizes (H4>0.87) with self-reported 207 

treatment using the thyroid hormone sodium levothyroxine. Hypothyroidism is a common 208 

comorbidity with type 1 diabetes, for which there is strong evidence that UBASH3A is causal 30. 209 
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Finally, the synonymous variant rs2228079 is the only credibly causal variant for an eQTL 210 

associated with altered ADORA1 expression in whole blood (eQTLGen) and colocalizes with 211 

asthma in UK Biobank (H4>0.99). ADORA1 encodes a type of adenosine receptor, a class of 212 

proteins targeted by the approved drug (Theophylline) for the treatment of asthma. 213 

 214 

Colocalization also provided strong genetic evidence for some less well known gene-disease 215 

associations (Supplementary Table 7). One example is splice region variant rs11589479, which 216 

causes increase in ADAM15 expression in several monocytes states and also colocalizes 217 

(H4=0.99) with Crohn’s disease 31. ADAM15, a disintegrin and metalloproteinase, is strongly  218 

upregulated in colon tissues from inflammatory bowel disease patients compared to healthy 219 

controls and plays a role in leukocyte trans-migration across epithelial and endothelial barriers 220 

as well as the differentiation of regenerative colonic mucosa 32. 221 

A machine learning model prioritizes genes at gold-standard loci 222 

We next developed a “locus to gene” model (L2G) to prioritize causal protein-coding genes at 223 

GWAS loci by integrating our catalog of fine mapping associations with relevant functional 224 

genomics features. We first manually curated a set of 445 gold standard positive (GSP) genes 225 

at GWAS loci for which we are confident of the causal gene assignment (Supplementary Table 226 

8, see methods). The selected genes are based on (i) expert domain knowledge of strong 227 

orthogonal evidence or biological plausibility; (ii) known drug target-disease pairs; (iii) 228 

experimental alteration from literature reports (e.g. nucleotide editing); (iv) observational 229 

functional data (e.g. colocalizing molecular QTLs, colocalizing epigenetics marks, reporter 230 

assays) (Supplementary Table 9). Next, we defined locus-level predictive features from four 231 

evidence categories: in silico pathogenicity prediction from VEP and PolyPhen, colocalization of 232 

molecular QTLs, gene distance to credible set variants weighted by their fine-mapping 233 

probabilities, and chromatin interaction (Supplementary Table 10). The chromatin interaction 234 

data comprised promoter-capture Hi-C from 27 cell types 33, FANTOM enhancer-TSS pairwise 235 

cap analysis of gene expression correlation34; and DNase I hypersensitive site-gene promoter 236 

correlation35. Then, using a nested cross-validation strategy, we trained a gradient boosting 237 

model to distinguish GSP genes from other genes within 500 kb at the same loci (see methods). 238 

 239 

The L2G model produced a well calibrated score, ranging from 0 to 1, which reflects the 240 

approximate fraction of GSP genes among all genes above a given threshold (Figure 2). At a 241 
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classification threshold of ≥0.5, the full model correctly identified 238 out of 445 true positives 242 

with 86 false positives (average precision = 0.65; Table 1). We compared the full model against 243 

a naive nearest gene classifier (closest gene footprint and closest TSS), which selects the 244 

closest gene to each lead variant, and thus does not make use of other candidate variants from 245 

fine-mapping. The naive nearest gene classifier identified more true positives at the same 246 

threshold (268 out of  445) but at the cost of identifying 2.4 times more false positives (207) 247 

(Average precision=0.37). Hence the full L2G model has higher precision with a small reduction 248 

in recall. 249 

  250 
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 251 

Figure 2: Performance of the locus-to-gene (L2G) model. (a) Calibration curve, showing (top) 252 
the fraction of all GSP genes found as positives at different L2G score thresholds (mean 253 
predicted value), and (bottom) the count of genes in each L2G score bin. (b) The precision-254 
recall curve and (c) the receiver-operator characteristic curve for identifying GSP genes from 255 
among those within 500 kb at each locus. (d) The Relative Importance of each predictor in the 256 
L2G model. 257 
  258 
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To identify which features are most important in predicting GSP genes, we retrained the model 259 

to include features from only one of the four evidence categories at a time (leave-one-group-in 260 

analysis). No individual feature set gets a higher ‘Average Prediction’ score as the full model 261 

(Table 1). Our ‘mean distance’ feature which aggregates across all the variants in the credible 262 

set and weighs by their posterior probability was the most predictive (average precision=0.62) 263 

followed by in silico pathogenicity prediction evidence (average precision=0.48), molecular QTL 264 

colocalization (average precision=0.36) and chromatin interaction (average precision=0.26) 265 

(Table 1, Leave-one-group-in section). Note that the ‘mean distance’ feature is distinct from a 266 

‘naive closest gene distance’ feature because of the weighting across a credible set to the most 267 

likely SNPs, and thus manages to discard many false positives (FPmean distance = 98 vs FPnaive 268 

closest footprint gene = 207 and FPnaive closest TSS gene = 195). Within the mean distance features 269 

tested, whether the gene was the closest at the locus using a gene footprint distance metric 270 

averaged over the credible set and whether the gene was the closest at the locus using the 271 

minimum gene-TSS distance over the 95% credible set, had the highest relative feature 272 

importances (Figure 2d). Thus, when using distance as a predictor of causal genes, the 273 

distance relative to other genes is more important than the absolute distance. 274 

  275 
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Features 
Average 
precision AUC Precision Recall TP FP TN FN 

Sensitivit
y 

Specificit
y FDR 

GSP 
count

GSN 
count

Full model 0.65 0.93 0.73 0.53 236 86 6429 209 0.53 0.99 0.27 445 6515

              

Naïve closest gene classification                       

Closest footprint 0.37 0.79 0.56 0.6 268 207 6308 177 0.6 0.97 0.44 445 6515

Closest TSS 0.34 0.76 0.56 0.55 246 195 6320 199 0.55 0.97 0.44 445 6515

              

Leave-one-group-in                         

Mean Distance* 0.62 0.91 0.69 0.49 219 98 6417 226 0.49 0.98 0.31 445 6515

Interaction 0.26 0.79 0.55 0.05 23 19 6496 422 0.05 1 0.45 445 6515

Molecular QTL 0.36 0.85 0.62 0.18 79 49 6466 366 0.18 0.99 0.38 445 6515

Pathogenicity 
prediction 0.48 0.76 0.7 0.43 191 80 6435 254 0.43 0.99 0.3 445 6515

              

Leave-one-group-out                         

Mean Distance* 0.47 0.77 0.69 0.43 191 84 6431 254 0.43 0.99 0.31 445 6515

Interaction 0.65 0.93 0.73 0.53 234 85 6430 211 0.53 0.99 0.27 445 6515

Molecular QTL 0.65 0.93 0.74 0.54 239 86 6429 206 0.54 0.99 0.26 445 6515

Pathogenicity 
prediction 0.63 0.92 0.71 0.5 222 91 6424 223 0.5 0.99 0.29 445 6515

 276 

Table 1: Classification performance for feature groups. Performance characteristics of the full 277 
model are shown at the top, and analyses for individual groups of features are shown in 278 
sections below. Counts are shown for true positives (TP), false positives (FP), true negatives 279 
(TN), and false negatives (FN). * Mean Distance aggregates across all the variants in the 280 
credible set and weighs by their posterior probability. 281 
  282 
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We also assessed the unique contribution of each evidence type by leaving out one group of 283 

features at a time. Consistent with the leave-one-group-in analysis, dropping our mean distance 284 

features had the largest impact on prediction (average precision change from 0.65 to 0.47), 285 

followed by in silico pathogenicity prediction (average precision down to 0.63) (Table 1). 286 

Notably, when molecular QTL colocalization evidence was removed from the model we saw 287 

similar classification results, with 3 fewer true positives identified, and no net change in the Gold 288 

Standard Negatives (GSN)(Supplementary Table 11a). There are various possible reasons for 289 

this: the colocalization score may be redundant with some of our other features; we may lack the 290 

relevant tissue- or context-specific QTLs; or we may have obscured the utility of colocalization 291 

information by using a cross-tissue colocalization score. We also used a measure of continuous 292 

reclassification improvement to evaluate prediction changes across all possible classification 293 

thresholds. Here, adding molecular QTL colocalization evidence resulted in a net 4.7% GSPs 294 

having an increased prediction score and a net 42.2% GSNs having a decreased score 295 

(Supplementary Table 11b). This suggests that whilst our colocalization features do not provide 296 

sufficient evidence to support novel positives, lack of colocalization accurately identifies 297 

negative gene assignments. Removing chromatin interaction features resulted in a minor 298 

reduction in model performance (net 2 fewer GSPs) (Table 1). 299 

 300 

The low predictiveness of features apart from distance relates in part to their lower genome 301 

coverage. For distance features, most sentinel variants have at least 1 gene within 500 kb, but 302 

for pathogenicity, molecular QTL colocalization and chromatin interaction, coverage of variants 303 

was low (Supplementary Figure 2). Only a small proportion of studies had summary statistics 304 

available, limiting our ability to use coloc to perform a colocalization analysis (only 3% of all loci 305 

had coloc derived evidence). Our complimentary colocalization method, using a reference LD-306 

panel to approximate summary statistics (the PICS method), increased the total number of loci 307 

with colocalization evidence to 19%. Evidence from pQTLs was very sparse at <1% coverage, 308 

which may account for its very low feature importance (Supplementary Figure 2). 309 

Gene prioritization across all trait-associated loci 310 

We used the trained L2G model to prioritize causal genes across all 133,441 trait-associated 311 

GWAS loci in our repository. At a classification threshold of 0.5, 55.4% (n=74,096) of all loci had 312 

a single gene prioritized whereas only 1.4% (n=1,907) had 2 or more genes prioritized 313 

(Supplementary Figure 3). 43.2% of loci did not reach the classification threshold. Across all 314 
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diseases, genes prioritized by the model were 7.8 times more likely (95% CI: [6.5, 9.3]) to be 315 

supported by literature evidence identified by text mining (Supplementary Table 12). Genes 316 

prioritized by the naive classifier using the closest gene footprint from the sentinel variant were 317 

also enriched (5.6 times, 95% CI: [4.7, 6.6]) but not as highly as the full model (p-value=0.008 318 

against null-hypothesis logORFull model = logORNaive model, Welch t-test).  319 

 320 

In order to benchmark the L2G versus the distance based classifier, we tested whether 321 

prioritized gene-diseases were enriched for known drug target-indication pairs across different 322 

clinical phases according to the ChEMBL database. Genes prioritized by the model were 323 

enriched with OR 7.4, 8.5 and 8.1 (95% CI: [5.7, 9.4], [6.3, 11.3], [5.7, 11.5]) across clinical trial 324 

phases ≥2, ≥3 and 4, respectively (Supplementary Table 13). Using a naive classifier we saw 325 

lower odds ratio point estimates but with overlapping confidence intervals (OR 5.3 [4.2, 6.7], 6.4 326 

[4.8, 8.5] and 6.7 [4.8, 9.3]) (Supplementary Figure 4). Thus the prioritisation using the L2G 327 

model both recapitulates the established enrichment of GWAS loci for known drugs11 but also 328 

demonstrates that fine-mapping and colocalization combined with the L2G approach improves 329 

on their approach, and hence is likely to also improve success in identifying novel drug targets.    330 

Discussion 331 

To address the challenges of translating GWAS signals to biological insights, we developed a 332 

pipeline to format, harmonize, and aggregate human trait and disease GWAS, molecular QTLs 333 

and functional genomics data in a consistent way, providing statistical evidence for target 334 

prioritization across the entirety of GWAS traits and diseases. We then trained a machine 335 

learning model that integrates fine-mapping and functional genomics data to prioritize likely 336 

causal variants and genes at 133,441 trait-lead variant disease associations. The L2G score 337 

output by the model represents the likelihood that a gene is causal for that trait, subject to the 338 

limitations of our  gold standard positive training data, and thus allows genes at all trait-339 

associated loci to be ranked by the relative strength of their evidence. Under cross-validation, 340 

the model resulted in a 58% reduction in the number of false-positives detected (improved 341 

precision), at the cost of missing 11% of the gold-standard positives (reduction in recall). The 342 

top genes prioritized by the L2G score recover known relationships, including disease-gene 343 
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pairs with approved drugs, as well as novel disease-drug target associations that suggest 344 

potential novel therapeutic targets to pursue.   345 

 346 

The strength of our machine learning approach stems from the systematic application of fine-347 

mapping to obtain per-variant probabilities prior to gene assignment. Sentinel variants 348 

discovered by GWAS may not be the causal variant 36; by aggregating functional data across 349 

the credible set we incorporate information from all plausible causal variants at the locus. Using 350 

a supervised learning method allowed us to efficiently combine heterogeneous functional 351 

datasets into a single model. The L2G score output by our model is well calibrated, meaning 352 

that it can be interpreted as a probability and thus the evidence supporting a gene assignment 353 

can be compared both within and between loci.  354 

 355 

A limitation of our approach is that it requires a large number of high-quality gold standards to 356 

train the model, and each source of gold standards will have biases. For example, when we 357 

compared the dataset of drug targets from CHEMBL retrospectively mapped to GWAS loci to 358 

the manually curated datasets (mainly focused on the closest genes and those with known 359 

missense variants), we found that distance and VEP features performed much better in the 360 

manually curated datasets (Supplementary Figure 5), emphasizing the need to curate less-361 

biased datasets. Using varied sources may help mitigate some source-specific biases, but 362 

manually curated allele-gene pairs are intrinsically more likely to be close to each other. Future 363 

gold-standard training data should represent a range of possible molecular mechanisms. The 364 

reliance on large amounts of training data influenced the design of our model. To avoid 365 

stratifying gold-standards into smaller subgroups, we trained the model across all diseases at 366 

once and using functional data ascertained from different tissues/cell types aggregated into a 367 

single feature. This means that the model is not currently able to specifically leverage the 368 

tissues/cell types that are most relevant for a given disease. 369 

 370 

The outputs of our analyses can be viewed in the Open Targets Genetics portal 371 

(https://genetics.opentargets.org), a user-friendly web interface that supports visualisation of 372 

fine-mapping and L2G scores for individual variants and genes across 133,441 trait-lead variant 373 

GWAS associations. The portal also offers other features including disease-disease and 374 

disease-molecular traits colocalization analyses across ~3,600 GWAS summary statistics and 375 

92 tissue and cell type-specific molecular QTL summary statistics to identify traits and diseases 376 

that share common genetic susceptibility mechanisms.The portal will regularly be updated with 377 
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new GWAS summary statistics both from Europeans and non-European ancestries as well as 378 

QTLs and functional genomic data from a wider range of tissues and cell types. Planned 379 

enhancements include displaying tissue- and cell type-specific enrichments for each included 380 

trait, using methods such as CHEERS 37 that leverage functional annotations. These 381 

enrichments will also be used to improve the L2G model by using functional genomics data from 382 

tissues that are most relevant to each disease and trait. Our repository of gold-standard gene 383 

assignments will be expanded as more evidence arises. In particular, we encourage scientists 384 

from the genetics community to contribute to this repository, since having diverse evidence 385 

sources can partially address the bias that comes with manually curated sets. 386 

Methods 387 

Summary statistics based fine mapping 388 

We harmonised summary statistics to ensure alleles and effect directions were consistent 389 

across studies, and removed variants with low confidence estimates (minor allele count < 10). 390 

We identified independently associated loci for each study using Genome-wide Complex Trait 391 

Analysis Conditional and Joint Analysis (GCTA-COJO; v1.91.3) 21. UK Biobank genotypes 392 

down-sampled to 10k individuals were used as a linkage-disequilibrium (LD) reference for 393 

conditional analysis 38. We considered a locus to be independently associated if both marginal 394 

and conditional p-values were less than 5e-8. For each independent locus, we produced a set of 395 

summary statistics that are conditional on all other independent loci ±2Mb from the sentinel 396 

variant. Using the conditional set of summary statistics, we computed approximate Bayes 397 

factors 39 from the beta and standard error for each SNP, with a variance prior (W) of 0.15 for 398 

quantitative traits and 0.2 for binary traits, and determined variant posterior probabilities (PP) 399 

assuming a single causal variant as: PP = SNP BF / sum(all SNP BFs) for all SNPs within a 400 

±500Kb window. We considered any variant with a PP > 0.1% as being in the credible set. 401 

Linkage-disequilibrium based fine mapping 402 

In addition to the above fine mapping analysis, we conducted a complementary LD based 403 

approach which allowed us to leverage information from studies that lack full summary statistics. 404 

For each independent locus, we identified all variants in LD with the sentinel variant (R2>0.5 in 405 

±500Kb window). LD was calculated in 1000 Genomes phase 3 data 40 by mapping the GWAS 406 

study ancestries to the closest super population 41, taking a sample size weighted-mean of the 407 

Fisher Z-transformed correlations in the case of multi-ancestry studies. We then used the 408 
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Probabilistic Identification of Causal SNPs (PICS) method to estimate the PP that each variant 409 

is causal based on the LD structure at each locus 23. As above, we kept all variants with PP  > 410 

0.1%. 411 

Colocalization analysis 412 

Molecular QTL summary statistics were acquired from the EBI eQTL Catalogue 16, GTEx (v7) 14, 413 

eQTLGen 15  and Sun et al. protein QTLs 17. Summary statistics were restricted to be ±1Mb from 414 

the gene transcription start site (TSS). We pre-processed and fine mapped molecular QTL 415 

summary statistics using the same method described above for GWAS studies. However, we 416 

used less stringent criteria for the inclusion of QTL lead variants, requiring minor allele count ≥ 5 417 

and adjusted for multiple testing using a Bonferroni correction of p < 0.05 / number of variants 418 

tested per gene. 419 

 420 

For GWAS studies with summary statistics, we performed a colocalization analysis if there was 421 

at least 1 variant overlapping between the GWAS and molecular trait 95% credible sets (prior 422 

evidence for colocalization). We conducted colocalization of summary statistics using the coloc 423 

package (v.3.2-1) 27 with default priors. Given that there is prior evidence for colocalization, 424 

these parameters will give conservative estimates. As with the fine mapping pipeline, we used 425 

summary statistics conditional on all other independent loci within ±2Mb and restricted the coloc 426 

analysis to a ±500Kb window around each sentinel variant. A minimum of 250 intersecting 427 

variants were required for analysis. 428 

For GWAS studies without summary statistics, we performed an alternative colocalization 429 

analysis using the LD-based PICS fine mapping sets. Colocalization was approximated by 430 

taking variants that intersect at pairs of GWAS and molecular trait loci, and summing the 431 

product of the PPs. 432 

Pre-processing of functional genomics data for L2G prioritization 433 

We used 4 main classes of evidence to prioritize genes: (i) variant pathogenicity in silico 434 

predictions; (ii) colocalization with molecular trait quantitative trait loci (QTL); (iii) chromatin 435 

conformation; (iv) linear genomic distance from variant to gene. 436 

We used in silico pathogenicity predictions to estimate the effect of variants on gene transcripts 437 

and protein function. Firstly, we incorporated Variant Effect Predictor (VEP) 24 transcript 438 
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consequences. We mapped VEP’s impact ratings of High, Moderate, Low to scores of 1.0, 0.66, 439 

0.3 (respectively), and included an additional four consequences (intronic, 5’ UTR, 3’ UTR, 440 

nonsense-mediated mRNA decay transcript variants) with a score of 0.1 as we expected them 441 

to have predictive value through their functional consequences on mRNA transcription, 442 

secondary structure and translation. For each variant-gene pair we took the maximum score 443 

across transcripts. In addition to VEP we included PolyPhen-2 pathogenicity scores 444 

representing the probability that a non-synonymous substitution is damaging 42.  445 

 446 

Chromatin interaction data were from promoter-capture Hi-C, FANTOM enhancer-TSS 447 

correlation, and DNase-hypersensitivity enhancer-promoter correlation. Each of the data points 448 

in these datasets is represented as a pair of interacting genomic intervals and an association 449 

statistic. We retained interval pairs with one end encompassing an Ensembl gene Transcription 450 

Start Site (TSS)43 and the other end containing any variant in Gnomad 2.1 44, resulting in 451 

variant-gene pairs with a dataset-specific association statistic. 452 

 453 

We included two genomic distance metrics as it has been shown that, despite notable contrary 454 

exceptions, linear distance is a good predictor of candidate causal genes 45. First, the distance 455 

from each variant to all gene TSSs is included. Second, the distance from each variant to each 456 

gene’s footprint, where the footprint is any position between the start and end positions of the 457 

gene. For both metrics the canonical transcript is used, as defined by Ensembl for protein-458 

coding genes within a ±500Kb window around each variant. 459 

Derivation of locus-to-gene prioritization features 460 

We next combined our fine mapping and functional genomics data to create features to prioritize 461 

candidate causal genes at each trait-associated locus (locus-to-gene scoring) (Supplementary 462 

Table 10). 463 

 464 

Except for molecular trait colocalization evidence, each functional genomics dataset is variant-465 

centric, meaning they give variant-to-gene scores. We convert variant-centric scores into locus-466 

to-gene scores by aggregating over credible variants identified through fine mapping. For 467 

GWAS studies with summary statistics available we used ABF credible sets, otherwise we used 468 

LD-based PICS credible sets. We implemented two complementary methods for aggregating 469 

over credible sets. Firstly, we took a weighted sum of scores across all variants identified by fine 470 
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mapping (PP > 0.01%) using PP of causality as weights (Equation 1). Secondly, we took the 471 

maximum score for any variant in the 95% credible set (Equation 2). 472 

 473 

(௦௧௨ௗ௬,௟௢௖௨௦,௚௘௡௘,௦௢௨௥௖௘,௧௜௦௦௨௘)݁ݎ݋ܿܵ݀݁ݐℎ݃݅݁ݓ =෍௡௩ୀ௜ (௜,௚௘௡௘,௦௢௨௥௖௘,௧௜௦௦௨௘)݁ݎ݋ܿݏ) ⋅  (	(௦௧௨ௗ௬,௟௢௖௨௦,௜)݌݌
Equation 1 474 ݉ܽ݁ݎ݋ܿܵݔ(௦௧௨ௗ௬,௟௢௖௨௦,௚௘௡௘,௦௢௨௥௖௘,௧௜௦௦௨௘) =  ((௜,௚௘௡௘,௦௢௨௥௖௘,௧௜௦௦௨௘)݁ݎ݋ܿݏ)ݔܽ݉
Equation 2 475 

 476 

Molecular trait colocalization evidence is a locus-centric score. We included both summary 477 

statistic derived coloc evidence (Equation 3) and LD-derived colocalization evidence as 478 

features. Each GWAS signal may have colocalization estimates from multiple independent 479 

molecular trait signals (each conditional on the others), we therefore took the maximum score 480 

across estimates. Given that evidence against colocalization (h3) cannot be directly estimated 481 

without full summary statistics, this term was dropped for the LD-derived colocalization feature 482 

(Equation 4). 483 

(௦௧௨ௗ௬,௟௢௖௨௦,௤௧௟௧௬௣௘,௧௜௦௦௨௘,௚௘௡௘)݁ݎ݋ܿܵݏݐܽݐݏ݉ݑܵܿ݋݈݋ܿ 484  =  (ଶ(ℎ4ℎ3)݃݋݈)݅ܿ݋݈	ܮ݈ܶܳ݋݉	ݏݏ݋ݎܿܽ	ݔܽ݉
Equation 3 485 

(௦௧௨ௗ௬,௟௢௖௨௦,௤௧௟௧௬௣௘,௧௜௦௦௨௘,௚௘௡௘)݁ݎ݋ܿܵ݀ܮܿ݋݈݋ܿ 486  =  (ଶ(ℎ4)݃݋݈)݅ܿ݋݈	ܮ݈ܶܳ݋݉	ݏݏ݋ݎܿܽ	ݔܽ݉
Equation 4 487 

 488 

For functional genomics datasets with measurements in multiple tissues (or cell types), we 489 

calculated the locus-level feature for each tissue separately and took the maximum across 490 

tissues (Equation 5). 491 

(௦௧௨ௗ௬,௟௢௖௨௦,௚௘௡௘)݁ݎݑݐ݂ܽ݁ 492  =  ((௦௧௨ௗ௬,௟௢௖௨௦,௧௜௦௦௨௘,௚௘௡௘)݁ݎݑݐ݂ܽ݁)ݏ݁ݑݏݏ݅ݐ	ݏݏ݋ݎܿܽ	ݔܽ݉
Equation 5 493 

 494 

We next wanted to provide the model with information about other genes at each locus (termed 495 

the neighbourhood feature). This allows the model to learn whether a given gene has, for 496 
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example, the highest colocalization score compared to others at the locus. To do this we divided 497 

each feature by the maximum score across genes at that locus (Equation 6). 498 

 499 ݊݁݅݃ℎܾݎݑ݋ℎ݁ݎݑݐܽ݁ܨ݀݋݋(௦௧௨ௗ௬,௟௢௖௨௦,௚௘௡௘) =  ((௦௧௨ௗ௬,௟௢௖௨௦,௚௘௡௘௦)݁ݎݑݐ݂ܽ݁)ݏ݁݊݁݃	ݏݏ݋ݎܿܽ	ݔܽ݉(௦௧௨ௗ௬,௟௢௖௨௦,௚௘௡௘)݁ݎݑݐ݂ܽ݁
Equation 6 500 

Curation of a GWAS gold-standard training dataset 501 

We next assembled a repository of published GWAS loci 502 

(https://github.com/opentargets/genetics-gold-standards) for which we have high confidence 503 

that the gene mediating the association is known. Gold-standard evidence were grouped into 4 504 

classes: (i) expert curated loci with strong orthogonal evidence or biological plausibility; (ii) drug 505 

loci inferred from known drug target-disease pairs; (iii) loci inferred from experimental alteration 506 

(e.g. nucleotide editing); (iv) loci inferred from observational functional data (e.g. colocalizing 507 

molecular QTLs). We also assigned each gold-standard a confidence rating of high, medium or 508 

low depending on our assessment of the strength of supporting evidence. 509 

 510 

We started by compiling existing gold-standard examples from the literature. 227 curated 511 

metabolite QTLs were sourced from Stacey et al 45 and a further 136 loci were curated by Eric 512 

Fauman with strong biological plausibility (Supplementary Table 6). We then ascertained 57 513 

genes with “causal” or “strong” observational data from the Type 2 Diabetes Knowledge Portal 514 

Effector Genes table, this equates to genes with: a confirmed causal coding variant; or at least 515 

two of the following: (i) a likely causal coding variant, (ii) >1 piece of regulatory evidence, >1 516 

piece of perturbation evidence 46. We added a further 48 disease-causal genes curated from the 517 

literature. These were mainly GWAS associated loci that were fine-mapped and colocalized with 518 

eQTL and epigenomic features in disease-relevant tissues in order to prioritize likely functional 519 

variants and their causal genes. These results were then functionally validated using 520 

experiments such as reporter assays and CRISPR/Cas9 genome editing.  521 

 522 

In addition to literature sourced loci, gold-standard evidence was generated based on known 523 

drug-target-indication associations curated in ChEMBL  in clinical trial phase II, III or IV 47. Drugs 524 

that bind a protein complex, rather than a single protein, were removed unless the binding 525 

subunit was known.The ChEMBL evidence was combined with the genetics features to identify 526 

loci with known drug targets. Gold-standards derived from phase II, III and IV drug targets were 527 

assigned a confidence of low, medium and high, respectively. Additionally, confidences were 528 
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adjusted to indicate the distance of the sentinel variant to the drug target, variant-gene 529 

distances of < 500, 250, 100Kb kb were assigned confidences low, medium and high, 530 

respectively. 531 

 532 

Duplications were removed from the Gold-standard positives (GSP) list so that GWAS allele-533 

gene pairs never occurred more than once in the training data. The same gene could occur as a 534 

GSP more than once if the associated alleles were independent, i.e. if no variants overlapped 535 

between their credible sets (using all variants with PP > 0.1%). All non-GSP genes in the 536 

training data at the locus (±500kb) were set as gold-standard negatives (GSN). GSNs genes 537 

were subsequently removed if they had a stringDB score ≥ 0.7 with the GSP at the same locus, 538 

the aim being to remove alternative explanations for the association between trait-associated 539 

allele and gene. This resulted in a total of 229 GSNs being removed (out of a total of 9,171). A 540 

total of 445 GSP were included in the final training data. 541 

Supervised learning of locus-to-gene features 542 

We used all GWAS loci with high or medium confidence gold-standard evidence (445 loci) to 543 

train an XGBoost gradient boosting classifier 48 using a binary logistic learning objective 544 

function. Nested cross-validation (CV) as implemented in scikit-learn was used to maintain 545 

independence of the training and test data and to tune hyperparameters. The outer CV 546 

consisted of 5 folds split by chromosomes so that each group contained an approximately equal 547 

number of GSPs. Within each fold, we used a random parameter search to train 1000 models, 548 

which were assessed using a balanced accuracy metric averaged over 5 randomly split inner 549 

folds. 550 

 551 

For each group of features included in the main model, we conducted sub-analyzes whereby 552 

either only that feature group was included (leave-one-group-in), or everything except that 553 

feature group was included (leave-one-group-out). This allowed us to evaluate the relative 554 

performance of each feature group individually. Additionally, we output the Relative Importance 555 

of each feature as implemented in the XGBoost model 49. 556 

Model internal validation 557 

Our cross-validation approach produces separate models for each of the 5 outer folds. We 558 

evaluated the performance of each model against the remaining 20% of loci not used for 559 
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training. We used average precision and area under the receiver operator curve (AUC) metrics 560 

to assess the classification across the full range of prediction probabilities outputted by the 561 

model. We also assess the performance of the model after applying a hard threshold of >0.5 562 

(>50% confidence that the characteristics of the observed locus is consistent with being a gold-563 

standard positive locus). 564 

 565 

We compared the relative performance of leave-one-group-in and leave-one-group-out models 566 

by calculating the net reclassification improvement (NRI) of loci compared to the full model 50. 567 

NRI measures the number of GSP loci that move above the classification threshold (>0.5), 568 

compared to GSN that move below, when the model is updated. We also calculate continuous 569 

NRI (cNRI), the sum of the percentage of GSPs with classification scores that move in the 570 

correct direction vs. GSNs that move in the wrong direction (towards higher scores) 51. 571 

Model external validation with literature evidence 572 

We benchmarked the L2G assignment against independent gene-disease associations scored 573 

by literature mining in the Open Targets Platform. We excluded any publications for studies 574 

curated in GWAS Catalog to ensure independence of the training data. We restricted analyses 575 

to a subset of 22 prioritized diseases (Coronary artery disease, Breast carcinoma, Prostate 576 

carcinoma, Acute lymphoblastic leukemia, Inflammatory bowel disease, Crohn's disease, 577 

Ulcerative colitis, Rheumatoid arthritis, Osteoarthritis, Type I diabetes mellitus, Hypothyroidism, 578 

Psoriasis, Atopic eczema, Asthma, Alzheimer's disease, Parkinson's disease, Ankylosing 579 

spondylitis, Celiac disease, Gout, Multiple sclerosis, Systemic lupus erythematosus). For each 580 

disease, we constructed a 2x2 contingency table of ‘gene prioritised by L2G model (score > 581 

0.5)’ and ‘gene prioritised by Open Targets literature evidence (top decile [>0.52])`. Only genes 582 

scored by the L2G model (±500kb of a sentinel GWAS variant) were included in the contingency 583 

table. We calculated enrichment and statistical significance using Fisher’s exact test. 584 

Enrichment of known drug targets 585 

We calculated drug target enrichment using known target-indication pairs curated in ChEMBL 586 

(accessed: 2019-03-25). We constructed a single 2x2 contingency table pooling across all 587 

indications, which consisted of ‘gene prioritized by L2G model (score > 0.5)’ and ‘gene is known 588 

target of drug for indication matched to GWAS disease phenotype’. GWAS studies were only 589 

included if they could be mapped to a ChEMBL indication (matched using Experimental Factor 590 

Ontology) and that indication has a known drug that can be mapped to a protein-coding gene 591 

that was scored by the L2G model. Enrichment was calculated by Fisher’s exact test. 592 
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Data availability 593 

Our results are freely available through a web portal (genetics.opentargets.org), GraphQL API 594 

or through bulk download. GWAS gold standard genes: github.com/opentargets/genetics-gold-595 

standards. 596 
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