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ABSTRACT 

Sleep is thought to support memory consolidation via reactivation of prior experiences, 

with particular electrophysiological sleep signatures (slow oscillations (SOs) and sleep 

spindles) gating the information flow between relevant brain areas. However, empirical 

evidence for a role of endogenous memory reactivation (i.e., without experimentally 

delivered memory cues) for consolidation in humans is lacking. Here, we devised a 

paradigm in which participants acquired associative memories before taking a nap. 

Multivariate decoding was then used to capture endogenous memory reactivation 

during non-rapid eye movement (NREM) sleep. Results revealed reactivation of learning 

material during SO-spindle complexes, with the precision of SO-spindle coupling 

predicting reactivation strength. Critically, reactivation strength in turn predicted the level 

of consolidation across participants. These results elucidate the memory function of 

sleep in humans and emphasize the importance of SOs and spindles in clocking 

endogenous consolidation processes.  
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INTRODUCTION 

How do we strengthen memories while we sleep? The prime vehicle of systems 

consolidation is thought to be the reactivation of information encoded during prior 

wakefulness 1–3. Through reactivation, memory representations are relayed between the 

hippocampus and neocortical long-term stores, transforming initially labile 

representations into long-lasting memories during sleep 4,5. The communication 

between the hippocampus and neocortical networks is thought to be facilitated by an 

intricate interplay of the cardinal NREM sleep-related oscillations, namely cortical slow 

oscillations (SOs), thalamo-cortical sleep spindles and hippocampal sharp-wave ripples 
6–11. SOs initiate time windows of neuronal excitability and inhibition (up- and down-

states, respectively) in cortical as well as subcortical areas 12,13. They trigger the 

emergence of sleep spindles in the thalamus 14, which nest in the excitable up-states of 

the SOs. Spindles have been shown to gate Ca2+ influx into dendrites, thereby 

facilitating synaptic plasticity 15,16. Importantly, recent evidence from two-photon imaging 

in mice suggests that Ca2+ influx is strongly amplified when spindles coincide with SO 

up-states 17. Lastly, hippocampal ripples are transient network oscillations and have 

been closely linked to reactivation/replay of learning experiences 18,19. They have been 

shown to occur in the excitable troughs of the spindle, suggesting that spindles might 

facilitate information transfer from the hippocampus to neocortical target sites 20,21. The 

efficacy of systems consolidation through memory reactivation might thus hinge on 

concurrent SO-spindle coupling, ensuring optimal conditions to ignite structural 

changes in cortical target sites 7,10,22,23.  

Indeed, recent work in humans has revealed a key role of SO-spindle coupling during 

NREM sleep for behavioral expressions of consolidation. For instance, the precision of 

SO-spindle coupling, i.e., the exact timing of spindle maxima with respect to the SO up-

state, has been shown to correlate with retention of declarative learning material 24,25. 

Moreover, levels of SO-spindle coupling track the rise and decline of memory 

performance across development 26–28. What is unknown, however, is whether there is a 

link between SO-spindle coupling and physiological expressions of consolidation, i.e., 

memory reactivation. A recent rodent study revealed that precise SO-spindle coupling is 

key for maintaining the reactivation of neural ensembles 29, but whether and how this 

relates to episodic memory consolidation in humans is unclear.  

In humans, the study of memory reactivation during sleep has mainly relied on targeted 

memory reactivation (TMR) protocols 30,31. This experimental technique follows the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.16.299545doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299545
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4 

rationale that reminder cues are presented during sleep to exogenously trigger memory 

reactivation. Intriguingly, presenting auditory reminder cues during NREM sleep reliably 

induces SO-spindle complexes 32–34. However, to what extent TMR-induced processes 

reflect natural/endogenous consolidation processes remains unknown.   

Building on the work summarized above, we propose that SO-spindle complexes might 

clock endogenous memory reactivation in service of consolidation during human sleep. 

To test this notion, we devised an experimental paradigm in which participants acquired 

associative memories before taking a nap. Multivariate decoding was then used to 

assess endogenous memory reactivation during NREM sleep. We observed that 

memory reactivation was specifically bound to the presence of SO-spindle complexes, 

with the precision of their coupling correlating with reactivation strength. Reactivation 

strength in turn predicted the extent of consolidation across participants. These findings 

elucidate the memory function of sleep in humans and illustrate the importance of SO-

spindle coupling for clocking endogenous consolidation processes. 

RESULTS 

Twenty participants (age: 20.75 ± 0.35; 17 female) took part in two experimental 

sessions. In both sessions they performed an episodic learning task, with memory 

performance being assessed before and after taking a 120 minutes nap (Fig. 1a). 

Depending on the experimental session, participants learned to associate verbs with 

images of objects or scenes during the pre-sleep learning phase. These stimulus 

categories were chosen as they recruit distinctive brain networks (e.g., lateral occipital 

complex for objects, parahippocampal place area for scenes 35,36), thus facilitating the 

analytical readout of endogenous, experience-dependent memory reactivation during 

sleep. Specifically, learning-related memory reactivation during sleep would manifest as 

enhanced representational evidence for the stimulus category learned before sleep (i.e., 

greater evidence for object representations after word-object encoding and greater 

evidence for scene representations after word-scene encoding, respectively).    

Memory performance was tested both before and after the sleep period in a step-wise 

manner. First, participants made word-recognition judgments (old or new). Then, for 

recognized words only, recall of the associated image exemplar (object or scene, 

depending on experimental session) was assessed. The resulting recall performance 

was then normalized by the amount of correctly recognized items (i.e. ‘hits’). To avoid 

any impact of pre-sleep testing on our behavioral consolidation measures 37,38, only half 
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of the learned material was tested before sleep, while the remaining half was tested 

after sleep. Finally, at the end of the experimental sessions participants performed an 

independent ‘localizer task’, where a new set of object and scene images was 

presented (including both stimulus categories, irrespective of experimental session). 

This localizer served to train a linear classifier to distinguish object- vs. scene-related 

EEG patterns. 

Behavioral results & category classification during the localizer task 

First, we calculated d-prime (d’ 39) as a general measure of recognition memory 

performance (for a detailed overview of memory measures as well as sleep 

characteristics see Supplementary Table 1 and 2). Both pre- and post sleep d’ levels 

confirmed that participants could reliably discriminate between old and new items (i.e.: 

d’ > 0; pre-sleep objects: d’ = 2.08 ± 0.14, scenes: d’ = 1.97 ± 0.21; post-sleep 

objects: d’ = 1.72  ± 0.18, scenes: d’ = 1.65 ± 0.22). Out of hits, participants recalled 

the correct image for 64.31 ± 3.23% before sleep (objects: 64.91 ± 3.99%, scenes: 

63.72 ± 5.20%) and for 57.61 ± 3.91% after sleep (objects: 59.39 ± 5.71%, scenes: 

55.82 ± 5.47%).  

To test for potential differences in memory performance between test times and 

stimulus categories, we conducted ANOVAs for recognition memory (d’) and cued 

recall, including the factors category (object vs. scene) and test-time (pre- vs. post-

sleep).  Results indicated that memory performance (both recognition and recall) 

declined over the course of sleep (main factor test-time: recognition memory: F1,19 = 

10.91; p = 0.004; cued recall: F1,19 = 15.53; p = 0.001). Importantly though, no 

difference in memory performance between categories was observable (main effect 

category: recognition memory: F1,19 = 0.21; p = 0.65; cued recall: F1,19 = 0.38; p = 0.54) 

and no interaction between test-time and learning category (recognition memory: F1,19 = 

0.003; p = 0.95; associative memory: F1,19 = 0.69; p = 0.41), ensuring that task difficulty 

was highly comparable between image categories (also see Table S1).   

The localizer task at the end of each session was employed to derive the neural 

signatures of object vs. scene processing, which were then used to track category-

specific memory reactivation during NREM sleep (see below). Participants were 

presented with novel sets of object and scene images and performed a continuous 

recognition task on these images. Specifically, each image was presented twice (mean 
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distance between successive presentations = 8.06, range = 2 - 33) and participants 

were instructed to indicate whether a given item was ‘new’ (first presentation) or ‘old’ 

(second presentation). As expected, participants showed high accuracy levels on this 

task (objects: 97.02 ± 0.61 correct decisions; scenes: 92.57 ± 4.44 correct decisions), 

with performance again matched between image categories (t(19) = 1.05, p = 0.31). 

To extract the category-specific (i.e., object and scene) patterns of neuronal activity, we 

pooled the localizer data across experimental sessions and performed multivariate 

classification (linear discriminant analysis; LDA) on these data (Fig. 1c). Using 5-fold 

cross-validation (see Methods), above-chance classification accuracy emerged around 

130 ms following image onset, was sustained until 2800 ms and peaked at 600 ms 

(p = 0.004, corrected for multiple comparisons across time). Hence, the localizer data 

allowed us to isolate brain patterns associated with the processing of object and scene 

images, which we then used to guide analysis of category-specific reactivation during 

sleep. 

 
Figure 1 Experimental procedure, behavioral results & localizer task. (a) During encoding, participants 
were presented with 120 verb-object or verb-scene combinations (depending on experimental session). 
Memory performance was tested before and after a 120 minutes nap period. At the end of each session, 
participants performed a localizer task in which they processed a new set of object and scene images.  (b) 
Behavioral results for both experimental sessions pre- (light gray) and post-sleep (dark gray). Bar graphs 
show mean (±SEM) percentage of recalled image exemplars out of correctly recognized verbs. Dots 
indicate individual memory performance of participants. Stars denote significant differences (p = 0.001). (c) 
Stimulus categories (objects vs. scenes) could be reliably decoded (above chance) from the localizer EEG 
data, starting around 130 ms post stimulus onset. Horizontal and vertical dashed lines indicate chance level 
and stimulus onset (time = 0), respectively.  Horizontal gray line shows the temporal extent of significant 
decoding results (p = 0.004, cluster corrected across time).  
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Endogenous memory reactivation during NREM sleep is clocked by SO-spindle 

complexes 

As mentioned above, theoretical models and recent empirical findings point to particular 

role of SO-spindle coupling for memory consolidation. We thus tested the resulting 

prediction that the joint presence of SOs and sleep spindles (henceforth referred to as 

‘SO-spindle complexes’) would drive endogenous memory reactivation during human 

sleep. SOs and sleep spindles were detected in the EEG data using established 

algorithms 7,40. To isolate SO-spindle complexes, we identified events where SO down-

states were followed by sleep spindles within a time window of 1.5 seconds (for a time-

frequency representation of the SO-spindle complexes see Fig. 2a; for a peri-event SO-

spindle histogram, see Supplementary Figure S1). To determine whether learning-

related (i.e. category-specific) neuronal activity would be differentially reactivated during 

SO-spindle complexes, we first trained a classifier on the concatenated localizer data 

from both experimental sessions. Importantly, the localizer tasks of both sessions 

included object and scene images, to ensure that multivariate measures of potential 

reactivation not merely reflect session-specific EEG properties. The resulting training 

weights were then applied on both sessions’ sleep data, centered around the down-

state of SO-spindle complexes. Classifier testing labels reflected the stimulus category 

used in the preceding encoding session (object or scene), such that above-chance 

classification signifies endogenous activation patterns more strongly resembling the 

just-learned stimulus category than the alternative stimulus category.  

As shown in Fig. 2b, results revealed a cluster of significant above-chance classification 

from 800 to 1200 ms relative to the SO down-state (p = 0.018, corrected for multiple 

comparisons across time), coinciding with the presence of coupled sleep spindles (for 

the corresponding accuracy map see Supplementary Fig. 2).  

But does endogenous memory reactivation indeed require the joint presence of SOs 

and spindles? To address this question, we performed the same decoding procedure, 

but locking the data to all SO or all spindle events, regardless of the presence of the 

respective other event. For both types of events, when testing accuracy levels against 

chance at any localizer time x sleep time point, effects did not survive correction for 

multiple comparisons across time (both p > 0.1).  
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Precision of SO-spindle coupling correlates with reactivation strength 

If SO-spindle coupling is indeed instrumental for consolidation, its precision should 

impact the extent of endogenous memory reactivation. To quantify the preferred phase 

of SO-spindle modulation, we determined in every participant the SO phase 

corresponding to the spindle peak amplitude (electrode Cz) and tested the distribution 

against uniformity (Rayleigh test). In line with previous findings, we found a significant 

non-uniform distribution (Rayleigh z = 16.75, p < 0.0001), with spindles peaking near 

the SO up-state (corresponding to 0°; mean coupling direction: -35.95° ± 5.48°; see 

Figure 2c). 

To further test whether the precision of SO-spindle coupling would be relevant for the 

reactivation of memories we computed a circular-linear correlation between each 

participant’s preferred SO-spindle phase (averaged across sessions) and their mean 

reactivation strength (averaged across the significant cluster shown in Fig. 2b). The 

individual SO-spindle modulation phase was significantly correlated with decoding 

accuracy (r = 0.63; p = 0.018). The distribution indicated that the closer the spindles 

were nested towards the SO-upstate, the higher the fidelity of the associated 

reactivation signal (see Figure 2d).  

 
Figure 2 SO-spindle locked memory reactivation. (a) Time frequency representation of all SO-spindle 
segments (z-scored across time; only positive values are displayed). (b) Learning-related brain patterns 
(objects vs. scenes) were decodable during SO-spindle complexes (contour lines indicate the extent of the 
significant cluster, p < .05 corrected; color range represents t-values against chance level). The averaged 
EEG trace (electrode Fz) of all SO-spindle segments illustrates the relationship of the observed reactivation 
signal with ongoing oscillatory activity. (c) Phases of the SO-spindle modulation, illustrating the clustering of 
spindle power toward the SO up-state (up-state corresponding to 0, down-state to ± π; Rayleigh test: p < 
0.0001; z = 16.75). The red line illustrates the mean coupling direction (-35.95° ± 5.48°) (d) Circular-linear 
correlation analysis between the individual mean SO-spindle coupling phase and the mean reactivation 
strength (r = 0.63; p = 0.018).   
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Reactivation strength predicts consolidation of associative memories 

If SO-spindle triggered reactivation reflects memory-related processes, one would 

expect a functional link with behavioral expressions of consolidation. To address this 

question, we correlated, across participants, levels of post-sleep memory retention and 

reactivation strength. Specifically, a ‘retention index’ (proportion of post-sleep recalled 

images (out of hits) in relation to pre-sleep memory performance; see Methods section 

for details) was collapsed across sessions and correlated with decoding accuracies 

averaged across the significant cluster reported above. As shown in Figure 3, we 

observed a significant positive relationship between the two variables (Spearman rho = 

0.47, p = 0.036). Of note, no association between decoding accuracy and recognition 

memory performance was detectable (r = 0.02, p = 0.93), indicating that reactivation 

strength was specifically linked to the consolidation of hippocampal-dependent 

associative memories 41. 		

	

 
 
 
 
 
 
 
 
 
 
 
Figure 3. Reactivation strength predicts the level of consolidation across participants. Reactivation 
strength correlated positively with behavioral levels of associative memory consolidation (Spearman's r = 
0.47, p = 0.036).  
 
 
DISCUSSION 

Our results demonstrate that consolidation relies on endogenous memory reactivation 

clocked by SO-spindle complexes. In particular, we found that during the presence of 

SO-spindle complexes, activation patterns were biased towards the previously encoded 

learning material (Fig 2a-b). Moreover, the precision of SO-spindle coupling predicted 

the fidelity of memory reactivation (Fig 2c-d). Finally, reactivation strength predicted the 

amount of consolidation across participants, highlighting its functional significance for 

behavior (Fig 3).  
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NREM sleep oscillations (SOs, spindles and ripples) have long been implicated in the 

memory function of sleep, and recent work has emphasized the importance of their 

temporal synchronization 42. Specifically, the precise timing of SOs, spindles and ripples 

is thought to enable the relay of hippocampus-dependent memories to cortical 

networks 1. Indeed, recent work in rodents has shown that their co-occurrence is 

necessary for effective consolidation as assessed via fear conditioning 9 or an object-in-

place recognition task 8. However, how these tasks relate to expressions of episodic 

memory in humans is not entirely clear. Human iEEG work with epilepsy patients has 

corroborated the triple-interaction of these sleep oscillations 7,20,23, but none of these 

studies has assessed memory reactivation or the effects on behavior. Investigation of 

healthy participants via scalp EEG has shown that brain patterns across sleep differ as 

a function of prior learning tasks 43, but these activation patterns were not directly 

related to wake activity or to discrete SOs/spindles. Another study employed 

simultaneous EEG-fMRI and found univariate signal increases in learning-related areas 

during spindles 44 (see also 44), but it remained open whether such reactivation bears 

relevance for memory consolidation. Finally, the advent of targeted memory reactivation 

(TMR) protocols 45,46 has shown evidence for both SO-spindle complexes and 

information processing in response to external reminders 32,34,47–51, but it is unclear 

whether and how such exogenous memory reactivation relates to endogenous 

reactivation in service of memory consolidation. In sum, different lines of research 

across species point to a key role in coupled sleep oscillations, but the dynamics of 

endogenous reactivation in humans and its relevance for memory consolidation has 

remained unclear.  

  

In the current study, we tackled this question by employing two learning sessions per 

participant, each using different and analytically discriminable learning stimuli (object 

and scene images, Fig.1a). To ensure that multivariate measures of reactivation not 

merely reflect session-specific EEG properties, we included an object/scene localizer 

task in each session and trained a linear classifier on the combined data. This allowed 

us to track the re-emergence of learning categories during the nap periods. Another key 

feature of our paradigm was the assessment of both item- and associative memory 

performance. Interestingly, the strength of memory reactivation during sleep predicted 

consolidation levels for associative memory only. This finding could indicate that 

reactivation particularly benefits hippocampus-dependent memories 41. However, it 

might also reflect the fact that reactivation pertained to the categorical features of the 
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learning material, which was also the aspect relevant for associative- and not item 

memory. Moreover, while performance levels were carefully matched between object 

and scene tasks (Fig. 1b), performance was lower for associative memory than for item 

recognition. Thus, differential effects of reactivation for associative- vs. item memory 

could also suggest differential benefits of sleep for weaker vs. stronger memories 52–55   

but see 56. 

Owing to the limited spatial resolution of scalp EEG (especially for transient high-

frequency oscillations), our current data remain agnostic with regard to hippocampal 

ripples. That said, a recent iEEG study has shown that both hippocampal ripples and 

hippocampal-cortical interactions are most eminent when preceded by a cortical SO-

spindle complex 20. To the extent that reactivation observed here is linked to 

hippocampal engagement, the timing of our effects (Fig.2 a-b) is consistent with 

accumulating evidence that the hippocampal-cortical dialogue is in fact initiated by 

cortex 20,21,57–59. One tentative interpretation of our results might thus be that cortical 

SO-spindle complexes trigger hippocampal memory reactivation while ensuring that the 

cortical target area is optimally tuned for synaptic plasticity 15,17,60. Indeed, recent rodent 

work has shown that optogenetic induction of SO-locked spindles enhances SOs-

spindle-ripple coupling and the consolidation of hippocampus-dependent memories 9. 

In conclusion, our results indicate that endogenous memory reactivation in service of 

sleep-dependent consolidation is clocked by the fine-tuned coupling of SOs and 

spindles. Future work employing simultaneous recordings from the hippocampus will 

further elucidate the intricate dynamics underlying the hippocampal-cortical dialogue of 

systems consolidation. 
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METHODS 

Participants 

Twenty healthy, right-handed participants (mean age: 20.75 ± 0.35 ; 17 female) with 

normal or corrected-to-normal vision took part in the experiment. An additional five 

participants had to be excluded due to insufficient sleep (less than 30 minutes sleep 

during one of the sessions). The sample size was determined in accordance with 

previous human sleep and memory studies (e.g. 26,61). Pre-study screening 

questionnaires indicated that participants did not take any medication at the time of the 

experimental session and did not suffer from any neurological or psychiatric disorders. 

All participants reported good overall sleep quality. Furthermore, they had not been on a 

night shift for at least 8 weeks before the experiment. All participants were instructed to 

wake up by 7:00 am and avoid alcohol the evening before and caffeine on the day of 

the experimental sessions. The study was approved by the University of Birmingham 

Research Ethics Committee and written informed consent was obtained from 

participants. 

Stimuli and procedures 

Overview 

The experiment consisted of two experimental sessions (object and scene condition), 

separated by at least one week (mean = 8.5 ± 0.85 days). The order of the two 

sessions was counterbalanced across participants. On experimental days participants 

arrived at the sleep laboratory at 11am. The experimental session started with the set-

up for polysomnographic recordings during which electrodes for 

electroencephalographic (EEG), electromyographic (EMG) and electrocardiographic 

(ECG) recordings were applied. Before the experimental sessions, participants were 

habituated to the environment by spending an adaptation nap in the sleep laboratory.  

At around 12:00 am the experiment started with the memory task (for details see 

Memory Task below). The sleep period began at ~1pm and participants were given 120 

minutes to nap (mean total sleep time: 101.63 ± 2.23 minutes; for sleep characteristics 

see Supplementary Table 2). Afterwards, memory performance was tested again. At the 

end of each session a localizer task was conducted (see Localizer Task for details). 
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Stimuli 

A set of in total 360 verbs and 240 images (half objects, half scenes) served as 

experimental stimuli during both sessions. Objects were images of animals, food, 

clothing, tools or household items presented on a plain white background (e.g. a 

hammer). Scenes were images of nameable landscapes or places (e.g., a coffee shop). 

All images were taken from 62.  

Experimental Tasks 

For the recording of behavioral responses and the presentation of all experimental 

tasks, Psychophysics Toolbox Version 3 63 and MATLAB 2018b (MathWorks, Natick, 

USA) were used. Participants completed a practice run (5 trials) of each experimental 

task in advance to ensure they fully understood the instructions. Responses were made 

via keyboard presses on a dedicated PC. Across all experimental phases, presentation 

order of stimuli was randomized across participants.  

Familiarization 

The experiment began with an image familiarization phase. The purpose of this part was 

(i) to facilitate learning of the verb-image pairs in the main encoding session and (ii) to 

provide the proper image names for subsequent cued recall. Each trial started with a 

fixation cross, presented for 1.5 ± 0.1 seconds. Subsequently, participants saw one of 

130 images showing objects or scenes (depending on the experimental session). 120 of 

these images were part of the subsequent learning material and were accompanied by 

a caption naming the exemplar. 10 additional images, which were not further used 

during the experiment, were accompanied by an erroneous description. Each stimulus 

combination was presented for 2.5 seconds on the computer screen. The participants’ 

task was to press a button whenever they encountered a wrong image-word 

combination.  

Encoding 

Participants learned pairwise associations between 120 verbs and images. The images 

comprised either objects or scenes (depending on experimental session).   

Each trial started with a fixation cross, presented for 1.5 ± 0.1 seconds. Afterwards, a 

verb (e.g., ‘‘jump’’) was presented for 1 second on the computer screen and 

immediately followed by the to-be-associated image for 4 seconds. Participants were 

instructed to form a vivid mental image or story linking the verb and the object/scene. 

After the presentation of the image (4 seconds), they had to indicate whether the image 
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they had formed was realistic or bizarre. In addition, participants were informed that 

their memory performance for verb- image pairs would be tested later. The learning 

block was run twice with varying trial order to reach satisfactory levels of pre-sleep 

memory performance (as determined in a pilot study).  

Pre-sleep Memory Test  

In order to prevent any testing effect on our behavioral measures of memory 

consolidation 37,38, only half of the learned verb-image combinations was tested during 

the pre-sleep memory test. Thus, the pre-sleep memory test included 60 randomly 

chosen verbs intermixed with 30 new verbs, which were not seen by the participants 

before (‘foils’). Each trial started with a fixation cross, presented for 1.5 ± 0.1 seconds. 

After the fixation cross, a verb was presented on the computer screen. After 3 seconds, 

participants had to indicate whether the verb was ‘old’ (i.e., part of the learning material) 

or ‘new’ (i.e., it was not seen during learning) within the next 10 seconds. In case of 

‘new’ responses, participants immediately moved on to the next trial. In case of ‘‘old’’ 

responses, participants were required to type a description of the image they had in 

mind or to type ‘do not know’ in case they could not recall the target image.  

Sleep period 

The nap period began at ~1pm. Participants had the opportunity to sleep in a 

laboratory bedroom for 120 minutes, while their brain activity was monitored using 

polysomnography.). 

Post-sleep Memory Test  

20 minutes after waking up, participants performed another memory test on the 

remaining 60 study items. This followed the same procedures as the pre-sleep memory 

test with the exception that new foil verbs were used. 

Localizer Task 

During the localizer task participants were presented with a new set of images 

comprising objects and scenes (90 objects and 90 scenes, irrespective of session). 

Each trial started with a fixation cross, presented for 1.5 ± 0.1 seconds. Subsequently, 

a randomly chosen image (object or scene) was presented on the computer screen for 

a minimum of 2.5 and a maximum of 10 seconds. Each image was presented twice 

during the task and participants were instructed to indicate whether it was shown for 
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the first (‘new’) or second (‘old’) time (mean distance between successive presentations 

= 8.06, range = 2 - 33).  

By administering the localizer task at the very end of each session, we assured that 

participants engaged exclusively with a given stimulus category before sleep (objects or 

scenes, respectively). The rationale of this approach was to keep the category-specific 

representations during learning as pure as possible, in an effort to bias their reactivation 

during the subsequent sleep period. However, presenting both stimulus categories 

during the localizer task ensured that category-specific classifier evidence during sleep 

would not merely reflect general differences between sessions (e.g. electrode 

impedances, electrode positions etc.).    

EEG 

A Brain Products 64 channel EEG system was used to record electroencephalography 

(EEG) throughout the experiment. Impedances were kept below 10 kΩ. EEG signals 

were referenced online to electrode FCz and sampled at a rate of 1000 Hz. 

Furthermore, EMG and the ECG was recorded for polysomnography. Sleep 

architecture was determined offline according to standard criteria by two independent 

raters 64.  

Data analysis 

Behavioral preprocessing 

To assess recognition memory performance, we calculated the sensitivity index d’ [i.e., 

z(Hits) – z(False Alarms)] according to signal detection theory. Proportions of 0 and 1 

were replaced by 1/2N and 1-1/2N, respectively, with N representing the number of 

trials in each proportion (i.e., N = 60, see 39). 

For associative memory performance we calculated the proportion of correctly recalled 

images relative to the number of recognized words (i.e. (recalled images / hits)*100). To 

correlate levels of memory retention and reactivation strength we derived a ‘retention 

index’. We computed the proportion of post-sleep recalled images (out of hits) in 

relation to pre-sleep memory performance (i.e. (recalled out of hits post-sleep / recalled 

out of hits pre-sleep)*100) and collapsed these measures across sessions.   

EEG Data Analysis 

EEG data were preprocessed using the FieldTrip toolbox for EEG/MEG analysis 65. All 

data were downsampled to 200 Hz. Subsequently, the localizer and sleep data were 
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segmented into epochs. The temporal range of the epochs was [-1 to 3] seconds 

around stimulus onset for localizer trials. For the sleep data, epochs [−2.5 to +2.5 

seconds] time-locked to SO down-states were extracted (for details see Event 

detection). Noisy EEG channels were identified by visual inspection, discarded and 

interpolated, using a weighted average of the neighboring channels. The localizer data 

were additionally subjected to an independent component analysis 66 and ICA 

components associated with eye blinks and eye movements were identified and 

rejected.  

Event detection and SO-spindle coupling 

SOs and sleep spindles were identified for each participant, based on established 

detection algorithms 7,40. All sleep data were re-referenced against linked mastoids 67. 

SOs were detected as follows: Data were filtered between 0.3–1.25 Hz (two-pass FIR 

bandpass filter, order = 3 cycles of the low frequency cut-off). Only movement-free data 

(as determined during sleep scoring) from NREM sleep stages 2 and 3 were taken into 

account. All zero-crossings were determined in the filtered signal, and event duration 

was determined for SO candidates (that is, down-states followed by up-states) as time 

between two successive positive- to-negative zero-crossings. Events that met the SO 

duration criteria (minimum of 0.8 and maximum of 2 s, 0.5–1.25 Hz) entered the 

analysis. 5-s-long segments (±2.5 s centered on the down-state) were extracted from 

the unfiltered raw signal. 

For spindle detection, data were filtered between 12–18 Hz 21,68 (two-pass FIR 

bandpass filter, order = 3 cycles of the low frequency cut-off), and again only artifact-

free data from NREM sleep stages 2 and 3 were used for event detection. The root-

mean-square (RMS) signal was calculated for the filtered signal using a moving average 

of 200 ms, and a spindle amplitude criterion was defined as the 75% percentile of RMS 

values. Whenever the signal exceeded this threshold for more than 0.5 s but less than 3 

s (duration criteria), a spindle event was detected. Epochs time-locked to the minimum 

spindle trough (−2.5 to +2.5 seconds) were extracted from the unfiltered raw signal for 

all events. To isolate SO-spindle complexes, we determined for all SOs whether a 

spindle was detected following the SO (SO down-state + 1.5 seconds). Finally, SO-

spindle events were extracted (−2.5 to +2.5 seconds with regards to the SO-down-

state) from the raw signal at channel Cz. 

For the analysis of SO-spindle coupling 7,20, we filtered the SO-spindle data in the SO 

range (0.3 - 1.25 Hz, two-pass Butterworth bandpass filter), applied a Hilbert transform 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.16.299545doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299545
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 17 

and extracted the instantaneous phase angle. Next we filtered the same data segments 

in the spindle range (12-18 Hz two-pass Butterworth bandpass filter), Hilbert 

transformed the signal and extracted the instantaneous amplitude. Only data points 

within ±1.5 seconds were considered to avoid filter-related edge artifacts. Then we 

detected the maximal sleep spindle amplitude in channel Cz and isolated the 

corresponding SO phase angle. The preferred phase of SO-spindle coupling was then 

obtained from averaging all individual events’ preferred phases of each participant, and 

the resulting distribution across participants was tested against uniformity (Rayleigh 

test, CircStat toolbox 69). 

Multivariate analysis 

Multivariate classification of single-trial EEG data was performed using MVPA-Light, a 

MATLAB-based toolbox for multivariate pattern analysis 70. For all multivariate analyses, 

a linear discriminant analysis (LDA) was used as a classifier 70. Prior to classification, all 

data were re-referenced using a Common Average Reference (CAR).  

Classification within the localizer task: The localizer data were z-scored across all trials 

for each time point separately. Next, data from both sessions were collapsed and 

subjected to a principal component analysis (PCA), which transforms the data into 

linearly uncorrelated components, ordered by the amount of variance explained by each 

component 71. PCA was applied to reduce dimensionality and limit over-fitting 72 and the 

first 30 principal components were retained for further analysis 73–75. To quantify whether 

object and scene representations can be differentiated in the localizer, the classifier was 

trained and tested to discriminate between object and scene trials. Data were 

smoothed using a running average window of 150 ms. The EEG channels served as 

features and a different classifier was trained and tested on every time point. As metric, 

we used Area Under the ROC Curve (AUC), which indexes the mean accuracy with 

which a randomly chosen pair of Class A and Class B trials could be assigned to their 

correct classes (0.5 = random performance; 1.0 = perfect performance). To avoid 

overfitting, data were split into training and test sets using 5-fold cross-validation 76. 

Since cross-validation results are stochastic due to the random assignment of trials into 

folds, the analysis was repeated five times and results were averaged. 

Decoding object and scene representations during SO-spindle complexes: To 

investigate differential evidence for object vs. scene representations as a function of 

prior learning during SO-spindle complexes (Figure 2b), we used the temporal 

generalization method 77. Prior to decoding, a baseline correction was applied based on 
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the whole trial ([-0.5 to 3 seconds] for localizer segments; [-1.5 to 1.5 seconds] for SO-

spindle segments). Next, localizer and sleep data were z-scored across trials and 

collapsed across sessions. PCA was applied to the pooled wake-sleep data and the 

first 30 principal components were retained. Localizer and sleep data were smoothed 

using a running average window of 150 ms. A classifier was then trained for every time 

point in the localizer data (Figure 2b, vertical axis) and applied on every time point 

during SO-spindle complexes (horizontal axis). No cross-validation was required since 

localizer and sleep datasets were independent. As metric, we again used AUC (see 

above).  

Time-frequency analysis  

Time-frequency analysis of the SO-spindle segments was performed using FieldTrip. 

Frequency decomposition of the data, using Fourier analysis based on sliding time 

windows (moving forward in 50-ms increments). The window length was set to 5 cycles 

of a given frequency (frequency range: 1 – 30Hz in 1Hz steps). The windowed data 

segments were multiplied with a Hanning taper before Fourier analysis. Afterwards, 

power values were z-scored across time [-4 to 4 seconds]. The longer time segments 

were chosen to allow for resolving low frequency activity within the time-windows of 

interest [-1.5 to 1.5 seconds] and avoid edge artifacts.  

Statistics 

Behavioral retrieval data were subjected to a 2 (Category: Object/Scene) X 2 (Test-

Time: Pre-sleep/Post-sleep) repeated measures ANOVA. To test for potential 

differences in memory accuracy between sessions in the localizer task, a paired 

sampled t-test was computed. The statistical significance thresholds for all behavioral 

analyses were set at p < .05. Spearman correlation was used to assess the relationship 

between memory retention and reactivation strength. To determine statistical 

differences between correlations (correlations between reactivation and consolidation of 

associative memory and recognition memory, respectively) we computed the Fisher r to 

z transformation 78.  

FieldTrip’s cluster permutation test 79 was used to deal with the multiple comparisons 

problem for all classification analyses. A dependent-samples t-test was used at the 

sample level to identify clusters of contiguous time-points across participants and 

values were thresholded at p = .05. Maxsum (sum of all t-values in cluster) served as 

cluster statistic and Monte Carlo simulations were used to calculate the cluster p-value 

(alpha = .05, two-tailed) under the permutation distribution. Analyses were performed at 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.16.299545doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299545
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 19 

the group level. The input data were either classification values across time (Figure 1c) 

or time x time classification values (Figures 2b). In all cases a two-sided cluster 

permutation test with 1000 randomizations was used to contrast classification accuracy 

against chance performance.  

Non-uniformity of the preferred phase with regard to SO-spindle coupling was assessed 

using the Rayleigh test (CircStat toolbox). The non-linear relationship between SO-

spindle coupling and reactivation strength was determined with a circular linear 

correlation as implemented in the CircStat toolbox. In both cases the statistical 

significance thresholds were set at p < .05. 

Data and Code availability   

All relevant data and code supporting the findings of this study will be made publicly 

available upon publication via the Open Science Framework (OSF).   
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Supplementary Information 
 
Figure S1. Perievent histogram of sleep spindles (amplitude maxima) following SO 
down-states (time = zero; normalized by number of spindles).   
 

 
 
 
Figure S2. Accuracy map for the classification during SO-spindle complexes 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2020. ; https://doi.org/10.1101/2020.09.16.299545doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.16.299545
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 25 

Supplemental Tables 
 
Table S1: Overview of memory performance  
 

 Objects Scenes t P 
Recognition [Hits] %     
   pre-sleep 72.16 ± 4.16 70.91 ± 4.26  0.47 0.64 
   post-sleep 63.16 ± 4.19 63.58 ± 4.76 -0.79 0.86 
   Change  87.41 ± 2.82 87.96 ± 2.88 -0.16 0.85 
     
Recognition [Correct Rejections] %     
   pre-sleep 90.00 ± 2.14 85.33 ± 4.48 1.13 0.27 
   post-sleep 88.00 ± 2.89 83.33 ± 5.22 0.98 0.33 
   Change  97.49 ± 1.75 97.33 ± 3.60 0.04 0.96 
     
Recognition [d’]     
   pre-sleep 2.11 ± 0.14  2.02 ± 0.22 0.47 0.64 
   post-sleep 1.76 ± 0.19 1.69 ± 0.23 0.37 0.71 
     
Source Memory %     
   pre-sleep 49.16 ± 4.87 46.75 ± 3.08 1.13 0.41 
   post-sleep 40.08 ± 4.94 36.50 ± 4.46 1.11 0.28 
   Change [%] 76.52 ± 5.27 72.61 ± 4.51 0.71 0.48 

     
Source Memory [out of hits] %     
   pre-sleep 64.90 ± 3.99 63.72 ± 5.20 0.33 0.73 
   post-sleep 59.39 ± 5.71 55.82 ± 5.47 -1.03 0.31 
   Change  86.94 ± 5.51 82.54 ± 4.82 0.50 0.55 
	
	
Table S2: Sleep characteristics. Data are means ± s.e.m. N1, N2: NREM sleep stages N1 & 
N2, SWS: slow-wave sleep, REM: rapid eye movement sleep, WASO: wake after sleep onset. 
 

Sleep stage [%] Objects Scenes t P 
     
N1 12.9 ± 1.6 13.5 ± 2.1 -0.6 0.53 
     
N2 39.5 ± 2.6 48.1 ± 3.1 -1.7 0.09 
     
SWS 22.9 ± 3.3 19.4 ± 2.6 -1.2 0.25 
     
REM 21.9 ± 3.4 16.7 ± 2.8 1.4 0.15 
     
WASO 2.3 ± 0.9 1.4 ± 0.7 0.7 0.49 
     
Total Sleep Time [min]  102.6 ± 3.4 100.6 ± 2.9 0.6 0.53 
     

№ SO – spindle complexes 
 

48.8 ± 3.8  50.7 ± 4.9  -0.3 0.71 
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