Abstract
Reproductive function and duration of the reproductive life span are phenotypically plastic and programmed in response to the early-life environment. Such adaptive responses are described and rationalized in life history theory in the context of resource availability, but the molecular mechanisms responsible have remained enigmatic. In this study, we hypothesized that epigenetic modifications underlie adaptive reproductive strategies, and found distinct methylation patterns in buccal DNA of Bangladeshi women who grew up in Bangladesh or the UK. The later pubertal onset and lower ovarian reserve associated with Bangladeshi childhood was seen to correlate with more numerous childhood infections, so we adopted a mouse model of pre-pubertal colitis to mimic these conditions. These mice have a similarly-altered reproductive phenotype, which enabled us to determine its mechanistic basis. Several genes encoding proteins with known functions in follicle recruitment were differentially expressed in the mice ovaries, and were also differentially methylated in the women’s buccal DNA. One of these, SRD5A1 which encodes the steroidogenic enzyme 5α reductase-1, was down-regulated in the mice ovaries and hyper methylated at the same putative transcriptional enhancer as in the women’s DNA; the levels of methylation correlating with gene expression levels. Srd5a1 expression was down-regulated also in the hypothalamus where 5α reductase-1 catalyzes production of neurosteroids that regulate gonadotropin releasing hormone (GnRH). Chemical inhibition of this enzyme affected both GnRH synthesis and release, and resulted in delayed pubertal onset in vivo. The activity of 5α reductase-1 in hypothalamus and ovary and the sensitivity of SRD5A1 to epigenetic regulation attest to its role in directing long-term physiological strategies in response to environmental conditions. In the reproductive axis, this includes timing of pubertal onset, adult reproductive function and duration of the reproductive lifespan.
Competing Interest Statement
The authors have declared no competing interest.