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Abstract	8 
The	emergence	of	single-cell	RNA	sequencing	(scRNA-seq)	has	led	to	an	explosion	in	novel	9 

methods	to	study	biological	variation	among	individual	cells,	and	to	classify	cells	into	functional	and	10 

biologically	meaningful	categories.	Here,	we	present	a	new	cell	type	projection	tool,	HieRFIT	11 

(Hierarchical	Random	Forest	for	Information	Transfer),	based	on	hierarchical	random	forests.	12 

HieRFIT	uses	a	priori	information	about	cell	type	relationships	to	improve	classification	accuracy,	13 

taking	as	input	a	hierarchical	tree	structure	representing	the	class	relationships,	along	with	the	14 

reference	data.	We	use	an	ensemble	approach	combining	multiple	random	forest	models,	organized	15 

in	a	hierarchical	decision	tree	structure.	We	show	that	our	hierarchical	classification	approach	16 

improves	accuracy	and	reduces	incorrect	predictions	especially	for	inter-dataset	tasks	which	reflect	17 

real	life	applications.	We	use	a	scoring	scheme	that	adjusts	probability	distributions	for	candidate	18 

class	labels	and	resolves	uncertainties	while	avoiding	the	assignment	of	cells	to	incorrect	types	by	19 

labeling	cells	at	internal	nodes	of	the	hierarchy	when	necessary.	Using	HieRFIT,	we	re-analyzed	20 

publicly	available	scRNA-seq	datasets	showing	its	effectiveness	in	cell	type	cross-projections	with	21 

inter/intra-species	examples.	HieRFIT	is	implemented	as	an	R	package	and	it	is	available	at	22 

(https://github.com/yasinkaymaz/HieRFIT/releases/tag/v1.0.0)	23 

	24 
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Introduction	26 

Single-cell	RNA-seq	(scRNA-seq)	technology	has	provided	an	unparalleled	picture	of	the	27 

cell-to-cell	complexity	of	biology	in	multicellular	organisms.	As	technological	improvements	have	28 

allowed	increasingly	large	studies,	comprehensive	cell	atlas	experiments	have	revealed	29 

unprecedented	cell-to-cell	heterogeneity	and	molecular	dynamism	of	cell	types	across	both	human	30 

and	model	organisms	(Cao	et	al.,	2017,	Rosenberg	et	al.,	2018).	Single-cell	genomics	have	enabled	31 

tracing	developmental	lineages	of	early	embryonic	cells	and	building	transcriptional	landscapes	of	32 

organogenesis	at	single-cell	resolution,	and	uncovering	novel	rare	cell	populations	(Cao	et	al.,	2019,	33 

Tabula	Muris	et	al.,	2018).		34 

As	single-cell	experiments	grow	in	size	and	scope,	the	computational	challenges	associated	35 

with	analyzing	and	interpreting	these	data	are	also	growing.	In	particular,	identifying	cell	types	36 

present	in	a	sequenced	population	is	critically	important	for	enabling	biological	insight.	Widely	37 

prevalent	single	cell	analyses	protocols	incorporate	unsupervised	clustering	methods	as	a	key	step	38 

in	this	process.	For	example,	k-means,	hierarchical	clustering,	KNN	(k-nearest	neighbor)	or	SNN	39 

(shared-nearest-neighbor)	graphs,	and	Louvain	community	detection	are	all	used	in	a	variety	of	40 

different	packages,	such	as	SC3	(Kiselev	et	al.,	2017)	and	Seurat	(Butler	et	al.,	2018).	Unsupervised	41 

clustering	methods	attempt	to	identify	a	consistent	and	biologically	meaningful	set	of	cell	types	or	42 

cell	states	in	an	experiment,	usually	via	a	projection	of	high	dimensional	data.	These	approaches	43 

have	identified	numerous	novel	subtypes	(Aevermann	et	al.,	2018,	Plasschaert	et	al.,	2018,	Suo	et	44 

al.,	2018),	although	complexities	of	parameter	optimization,	number	of	available	cells,	and	intrinsic	45 

noise	of	single-cell	data	can	pose	challenges	(Kiselev	et	al.,	2019,	Tang	et	al.,	2020). 46 

However,	unsupervised	clustering	approaches	do	not	provide	any	rapid	or	automated	way	47 

of	defining	cluster	identities,	which	is	often	done	by	manually	checking	marker	gene	expression.	In	48 

addition	to	being	cumbersome,	manual	annotation	depends	on	the	robustness	of	a	handful	of	a	49 

priori	marker	genes.	When	cell	types	are	highly	similar	to	each	other	transcriptomically,	manual	50 
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annotation	may	be	prone	to	human	error	as	reliable	and	obvious	marker	genes	may	not	exist	51 

(Lähnemann	et	al.,	2020).	An	alternative	to	unsupervised	clustering	is	to	use	the	rich	information	52 

from	larger	atlas	projects,	and	focus	on	information	transfer	to	new	studies	(Wilbrey-Clark	et	al.,	53 

2020).	While	potentially	faster	and	more	accurate	for	cell	type	annotation	than	unsupervised	54 

clustering,	especially	for	small-scale	studies,	integration	and	accurate	information	transfer	between	55 

existing	atlas	datasets	play	a	critical	role.	Supervised	machine	learning	methods,	using	large	cell	56 

atlas	datasets	as	training	data,	provide	a	potential	approach	to	automate	information	transfer	for	57 

faster	and	accurate	projections	(Petegrosso	et	al.,	2020).	58 

A	number	of	supervised	classification	methods	have	been	developed,	including	59 

singleCellNet	(Tan	and	Cahan,	2019),	ACTINN	(Ma	and	Pellegrini,	2019),	Garnett		(Pliner	et	al.,	60 

2019),	with	different	strengths	and	limitations.	These	methods	differ	in	various	aspects	such	as	61 

feature	selection,	for	instance,	singleCellNet	trains	its	models	with	random	forest	after	extracting	a	62 

set	of	feature	pairs	from	the	reference	data	while	ACTINN	uses	neural	networks	that	automatically	63 

chooses	the	features.	Garnett,	on	the	other	hand,	relies	only	on	a	set	of	cell	type	specific	marker	64 

genes	as	input	independent	of	a	reference	dataset.	Although	the	majority	of	these	developed	65 

methods	are	flat	classifiers,	hierarchical	classification	has	also	been	implemented	in	the	single-cell	66 

context	with	CHETAH	(de	Kanter	et	al.,	2019),	and	scClassify	(Lin	et	al.,	2019),	which	allowed	67 

intermediate	class	assignments,	although	their	outputs	provided	limited	insight	into	actual	cell	68 

types.	69 

Despite	the	rapid	proliferation	of	cell-type	assignment	methods,	a	number	of	limitations	still	70 

exist	with	current	approaches.	Many	existing	methods	work	best	when	the	reference	training	data	71 

is	composed	of	a	few	well-represented	cell	types,	and	when	the	query	data	contains	a	few	or	no	72 

novel	types	(Abdelaal	et	al.,	2019a).	However,	an	ideal	classification	should	be	able	to	handle	many	73 

candidate	cell	classes,	potentially	hundreds,	and	not	rely	on	a	minimum	input	threshold	of	query	74 
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data,	as	some	single-cell	protocols	produce	low-throughput	data	in	which	rare	cell	types	are	75 

represented	with	only	a	few	cells	(Campbell	et	al.,	2017).	In	addition,	handling	complex	76 

classification	tasks	by	conventional	methods	usually	involves	either	assigning	to	a	cell	type	with	77 

low	confidence	or	the	best	case	is	declaring	them	as	‘undetermined’.	However,	this	approach	78 

underestimates	the	potentially	informative	biological	signal	which	is	often	challenging	to	harvest	79 

and	valuable	to	resolve	experimental	questions.	Furthermore,	considering	cell	types	as	discrete	80 

entities	with	clear	boundaries	is	far	from	ideal	as,	in	reality,	many	cells	are	in	transitioning	81 

intermediate	stages,	which	makes	classification	more	compelling	(Macaulay	et	al.,	2016).	Thus,	82 

alternative	approaches	that	benefit	from	hierarchical	consideration	of	cell	types	are	required	to	83 

eliminate	these	issues	in	the	single-cell	identity	detection.		84 

Here,	we	propose	a	new	hierarchical	classification	approach,	HieRFIT,	which	uses	a	85 

hierarchical	tree	structure	of	reference	cell	clusters,	allowing	custom	defined	intermediate	classes	86 

(internal	nodes)	that	have	biological	meaning. Using	this	hierarchical	model,	we	both	improve	87 

HieRFIT’s	ability	to	provide	accurate	cell	type	classification,	and	allow	cells	that	cannot	be	88 

accurately	classified	to	be	assigned	to	the	best	supported	internal	node.	We	implemented	our	89 

approach	as	an	R	package	and	tested	against	various	classification	tasks.	 	90 
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Methods	91 

Constructing	the	cell	type	decision	tree	with	class	hierarchies	92 

A	key	input	component	of	HieRFIT	is	the	cell	type	hierarchical	tree.	We	define	this	hierarchy	93 

as	a	tree,	𝜏,	which	is	a	subtype	of	directed	acyclic	graphs,	where	each	cell	type	or	cell	class	is	94 

represented	as	a	node	𝜐,	and	the	connections	between	the	nodes	are	edges,	E.	Nodes	can	only	have	95 

a	single	parent,	but	can	have	multiple	child	nodes.	The	nodes	in	the	tree,	𝜏,	are	also	asymmetric	96 

(each	child	node	cannot	be	a	parent	of	its	own	parent),	and	the	tree	itself	is	transitive	(each	node	is	97 

also	a	child	node	of	its	parent’s	ancestral	node).	From	this	cell	type	tree,	we	can	define	an	ancestral	98 

hierarchy.	Let	𝐴	represent	a	set	of	all	ancestral	nodes	of	a	given	node	and	𝑌	represent	the	set	of	99 

class	labels	of	all	nodes.	Then,	𝐴! = {𝜐! , 𝜐!"#, 𝜐!"$, . . . , 𝜐%}	is	the	set	of	nodes	comprising	the	ancestral	100 

path	for	node	𝜐! 	reaching	up	to	the	root	node	𝜐% 	and	𝑌! = {𝑦#, 𝑦$, . . . , 𝑦&}	is	the	class	label	set	for	101 

children	of	node	𝜐! .	We	define	the	terminal	nodes	with	no	children	as	leaves.	To	define	this	102 

hierarchical	tree	for	a	given	reference	datasets,	the	user	can	input	a	cell	type	table	in	a	tab	delimited	103 

format	with	each	row	designates	a	leaf	cell	type	from	the	reference	dataset	and	columns	represent	104 

the	intermediate	cell	types	to	be	used	as	internal	nodes	(Supplementary	Table	1).	HieRFIT	can	105 

also	create	a	de	novo	tree	out	of	cell	type	distances	based	on	their	averaged	gene	expressions	using	106 

hierarchical	clustering	if	an	input	tree	is	not	provided.		107 

Feature	selection	from	reference	data	and	local	classifier	training	108 

Feature	selection	is	performed	for	each	local	classifier	(internal	node)	separately.	Let	𝑀	be	109 

the	normalized	expression	matrix	to	be	used	as	a	training	data,	which	is	composed	of	genes	𝐺	and	110 

samples	(cells)	𝑋	accompanied	by	a	set	of	class	types	𝑌.	In	addition	to	the	existing	class	types,	an	111 

‘OutGroup’	class	that	represents	the	other	cell	types	is	also	added	to	the	set,	𝑌.	‘OutGroup’	class	112 

sample	size		is	limited	to	a	maximum	500	cells	(same	as	other	classes,	and	can	be	altered	by	user)	113 
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for	all	nodes	and	is	formed	by	randomly	selecting	cells	from	classes	that	are	not	present	for	the	114 

local	classifier.	HieRFIT	selects	a	set	of	separate	features,	𝑓! ∈ 𝐺,	for	every	internal	node,	𝜐! ∈ 𝜐,	115 

using	the	corresponding	subset	data	𝑚! ⊂ 𝑀.	Genes	with	very	limited	variation	across	cell	types,	𝑚! 	116 

(𝜎$ < 0.01),	are	pre-filtered	in	order	to	eliminate	non-informative	features.	After	standardizing	the	117 

expression	by	centering	at	the	mean	and	scaling	by	the	standard	deviation,	HieRFIT	computes	118 

eigenvectors	of	the	data	with	principal	component	analysis	using	the	‘𝑝𝑟𝑐𝑜𝑚𝑝’	function	from	the	R	119 

stats	package.	To	define	features,	HieRFIT	first	selects	principal	components	(PCs)	that	usefully	120 

separate	class	labels	𝑌! ,	by	computing	a	t-test	on	the	component	scores	of	each	PC	and	selecting	PCs	121 

with	P	<	0.05	(following	Bonferroni	correction).	To	turn	these	informative	PCs	into	highly	variable	122 

feature	sets,	HieRFIT	chooses	the	top	2000	variables	(genes)	that	are	most	correlated	with	their	123 

eigen	vectors	based	on	absolute	component	loading	values	(number	of	top	genes	selected	can	be	124 

changed	by	user).	The	number	of	genes	selected	from	each	component	is	proportional	to	variance	125 

explained	by	the	PC.	Further,	wilcoxon	rank	sum	test	between	the	class	labels	is	applied	to	further	126 

select	(by	default)	200	differentially	expressed	genes	(based	on	adjusted	p-values)	as	features	to	be	127 

used	in	local	classifier	training.		128 

HieRFIT	constructs	a	reference	classifier	with	multiple	local	classifiers,	one	for	each	of	the	129 

internal	nodes	on	the	hierarchical	tree.	Local	classifiers	are	created	using	a	random	forest	algorithm	130 

implemented	with	the	R	package	Caret,	with	the	features	selected	separately	for	each	node	using	131 

the	procedure	described	above,	and	with	500	trees	(by	default).	The	training	sample	set	of	each	132 

local	classifier,	𝑚! ,	corresponds	to	the	cells	from	reference	data	with	cell	type	labels	matching	the	133 

class	labels	of	the	node’s	children,	𝑌! .	The	array	of	local	classifiers	is	stored	as	an	S4	object	(in	R)	in	134 

the	hierarchical	organization	to	be	used	for	projecting	cell	types	on	a	query	data.		135 

	 	136 
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Sigmoid	calibration	and	noise	injection	137 

The	random	forest	classifier	produces	as	output	a	vector	of	votes	for	each	class,	one	from	138 

each	tree.	However,	these	vote	distributions	are	not	equivalent	to	class	probabilities,	therefore,	139 

they	need	to	be	transformed	with	a	calibration	function	before	they	can	be	used	as	probabilities.	140 

HieRFIT	implements	Platt	scaling	(Platt,	1999)	for	this	purpose:	as	the	final	step	of	creating	a	141 

HieRFIT	model,	we	construct	a	sigmoid	function	on	reference	data	with	class	labels	using	a	142 

multinomial	logistic	regression	implemented	in	the	‘nnet’	R	package.	This	sigmoid	function	allows	143 

the	conversion	of	class	votes	as	the	unprocessed	output	of	random	forest	classifier	to	class	144 

probabilities.	In	order	to	provide	a	certain	level	of	flexibility	against	dropout	events	in	scRNA-seq,	145 

we	also	implemented	a	noise	injection	step	prior	to	generating	the	sigmoid	function	(Zur	et	al.,	146 

2009).	Noise	injection	occurs	by	setting	expression	values	of	a	subset	of	randomly	selected	feature	147 

sets	of	each	local	classifier	(by	default	10%	of	all	features)	to	zero.		148 

Asymmetric	entropy-based	certainty	measurement	149 

In	order	to	convert	class	probabilities	into	class	assignments,	allowing	for	the	possibility	150 

that	some	cells	cannot	be	accurately	assigned,	we	implemented	a	certainty	function	per	candidate	151 

class.	We	used	asymmetric	entropy	measurement	(Marcellin	et	al.,	2006)	in	our	certainty	function	152 

as	follows;	153 

Let	𝑝' 	denote	probability	of	class	𝑦' ∈ 𝑌! 	at	the	node	𝜐! ,	then,	the	asymmetric	entropy	as	a	154 

measure	of	uncertainty	is	155 

ℎ(𝑝') =
𝑝' 	(1 − 𝑝')

(1 − 2𝑤')	𝑝' 	+ 	𝑤'$
	156 

where	𝑤' 	is	probability	of	𝑦' 	at	which	maximum	uncertainty	is	achieved.	Note	that	ℎ	is	equal	to	157 

quadratic	entropy	of	Gini	when	𝑤' = 0.5	in	binary	class	modalities.	From	ℎ,	we	then	derived	a	158 
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function	called	‘certainty	function’,	𝑈,	which	contains	an	additional	coefficient,	𝜆,	to	assign	159 

directionality	as	follows;	160 

𝑈 = 𝜆	×	[1 − ℎ(𝑝')]				𝑤ℎ𝑒𝑟𝑒				 H
𝜆 = 1 𝑖𝑓		𝑝' ≥ 𝑤'
𝜆 = −1 𝑖𝑓		𝑝' < 𝑤'

	161 

Certainty	scores	center	at	zero	when	𝑝' = 𝑤' 	and	range	between	-1	and	1	representing	maximum	162 

certainties	about	unrelatedness	and	relatedness	to	the	class,	respectively.	In	order	to	obtain	a	set	of	163 

empirical	probability	centroids,	𝑊 = {𝑤#, 𝑤$, . . . , 𝑤' , . . . , 𝑤&},	for	each	class,	HieRFIT	randomizes	the	164 

feature	set	𝑓! 	of	𝑚! ⊂ 𝑀	for	the	corresponding	node	with	random	permutations	and	calculates	165 

expected	probabilities	of	each	class	as	the	mean	across	iterations.	166 

Scoring	scheme	and	decision	rule	for	class	projection	167 

HieRFIT	then	scores	each	in	a	“top-down”	manner,	which	refers	to	taking	all	ancestral	node	168 

scores	and	their	metrics	into	account	beginning	from	root	node.	In	order	to	project	class	labels	from	169 

the	HieRFIT	model	created	using	the	reference	dataset	and	a	cell	type	tree,	the	first	step	is	to	obtain	170 

an	array	of	certainty	scores	from	all	local	classifiers	for	all	class	types.	Let	𝑥 ∈ 𝑋	be	a	cell	in	a	query	171 

dataset.	In	order	to	determine	class	type	of	𝑥,	HieRFIT	generates	an	array	of	path	certainty	scores	172 

𝑈'!(𝑥)	which	is	calculated	using	classification	certainty	scores	for	every	node	on	the	ancestral	path,	173 

where	𝑖	represents	the	class	types	of	node	𝑗	by	traversing	the	tree	and	following	the	ancestral	path	174 

reaching	to	the	root	𝜐% 	as	follows;	175 

𝑈'!(𝑥) = N 𝑈!

%

(!∈*

(𝑥) − 𝑈!
+',,./0(𝑥)	176 

where	𝑈'!(𝑥)	is	the	path	certainty	score	of	cell	𝑥 ∈ 𝑋	for	class	𝑖	in	the	node	𝜐! ,	and	𝑈!
+',,./0	is	the	177 

sum	of	all	siblings	and	outgroup	certainty	scores	for	the	classifier	node	𝜐! .	178 

During	the	score	aggregation	for	decision,	our	rule	for	assigning	class	labels	is	179 
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𝐶𝑙𝑎𝑠𝑠(𝑥) = S
argmax
1"∈2

	𝑈'!(𝑥) 𝑖𝑓		𝑈'!(𝑥) > 𝛼

′𝑈𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑′ 𝑖𝑓		𝑈3 = ∅
	180 

HieRFIT	assigns	the	maximum	scoring	class	label	out	of	all	candidate	classes	that	pass	a	certainty	181 

threshold,	𝛼.	If	none	of	the	nodes	passes,	“Undetermined”	is	returned	as	a	class	label.	The	certainty	182 

threshold	is	set	to	0.05	by	default,	but	can	be	changed	by	the	user.		183 

Performance	evaluations	184 

For	intra-dataset	performance	evaluation	tasks,	we	used	5-fold	cross	validation,	in	other	185 

words,	training	models	with	80%	and	testing	them	on	20%	of	data.	As	the	evaluation	metric,	we	186 

calculated	precision,	recall,	and	F-measure	averaged	across	iterations	of	cross	validation.	For	inter-187 

dataset	evaluation	tasks,	in	which	training	and	test	data	originate	from	two	separate	datasets,	we	188 

relied	on	the	concordance	between	prior	and	predicted	cell	types	of	query	datasets.	We	excluded	189 

intermediate	cell	type,	‘undetermined’,	and	multi-class	assignments	in	metric	calculations.	In	190 

addition,	given	that	HieRFIT	uses	a	non-mandatory	leaf	node	prediction	approach	and	can	return	191 

intermediate	class	labels,	we	also	accounted	for	intermediate	cell	type	assignments	in	performance	192 

evaluation.	Therefore,	we	utilized	precision,	recall,	and	F-measure	calculations	modified	for	193 

hierarchical	classifications	(Kiritchenko	et	al.,	2005).	For	these,	let	𝐴1	be	a	set	of	all	ancestral	labels	194 

for	the	predicted	class	label	𝑦	and	𝐴4 	be	the	set	of	all	ancestral	labels	for	the	true	class	𝜃3	of	test	195 

sample	𝑥,	then	hierarchical	precision	(ℎ𝑃)	and	recall	(ℎ𝑅)	are	196 

ℎ𝑃 =
∑ |3∈5 𝐴1 ∩ 𝐴4|
∑ |3∈5 𝐴1|

								ℎ𝑅 =
∑ |3∈5 𝐴1 ∩ 𝐴4|
∑ |3∈5 𝐴4|

	197 

where	|𝐴( ∩ 𝐴4|	is	the	number	of	intersecting	nodes	between	ancestors	of	predicted	and	true	class	198 

labels.	Then,	the	hierarchical	F-measure	(ℎ𝐹)	is	199 

ℎ𝐹6 =
(𝛽$ + 1) ⋅ ℎ𝑃 ⋅ ℎ𝑅
𝛽$ ⋅ ℎ𝑃 + ℎ𝑅

, 							𝑤ℎ𝑒𝑟𝑒		𝛽 = 1	200 
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Datasets	201 

We	analyzed	PBMC	scRNA-seq	data	from	10X	Genomics	with	2,700	single-cells	by	following	202 

standard	processing	workflow	as	instructed	on	Seurat	online	tutorials	203 

(https://satijalab.org/seurat/v3.1/pbmc3k_tutorial.html)	(Butler	et	al.,	2018).	The	main	steps	of	204 

this	analysis	were	data	quality	control	and	normalization,	identifying	variable	genes,	data	scaling,	205 

dimension	reduction,	clustering,	finding	differentially	expressed	genes,	and	assigning	cell	type	206 

identities	to	clusters	based	on	known	cell	markers.	We	used	another	public	PBMC	scRNA-seq	207 

dataset	with	68K	cells	(Zheng	68K)	as	one	of	the	reference	datasets	to	generate	a	HieRFIT	model	208 

(Zheng	et	al.,	2017b).	We	followed	the	same	analysis	steps	in	the	publication	(and	code	in	GitHub	209 

https://github.com/10XGenomics/single-cell-3prime-paper).	We	relabeled	the	cell	types	for	easier	210 

interpretation.		211 

To	evaluate	the	prediction	performances	with	various	data	types,	we	selected	several	212 

published	single-cell	datasets	with	available	class	types	and	expression	data	(Supplemental	Table	213 

2).	We	used	the	same	cross	validation	folds	of	these	datasets	previously	generated	for	214 

benchmarking	and	performance	evaluations	through	intra	and	inter-dataset	challenges	(Abdelaal	et	215 

al.,	2019b).	These	datasets	originate	from	10	separate	scRNA-seq	studies,	some	with	multiple	levels	216 

of	cell	type	annotations.		 	217 
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Results	218 

Overview	of	the	algorithm	219 

We	approached	the	cell	type	classification	task	as	a	hierarchical	decision	problem	with	a	set	220 

of	predefined	class	relations.	Our	assumption	of	relationship	between	sub-classes	and	upper	level	221 

classes	does	not	necessarily	have	to	reflect	biologically	defined	developmental	trajectories	but	222 

rather	represents	organization	of	broader	categories	for	cell	type	identities.	HieRFIT	uses	multiple	223 

local	random	forest	classifiers,	organized	in	a	higher-level	hierarchical	decision	tree,	to	split	the	224 

complex	tasks	into	smaller	and	simpler	ones.	Here,	we	give	a	brief	overview	of	the	method,	which	is	225 

described	more	in	details	in	the	Methods.	Given	a	reference	expression	matrix,	HieRFIT	first	226 

extracts	the	most	informative	principle	components	(PCs),	which	distinguish	reference	class	types.	227 

Then,	it	selects	a	set	of	genes	from	those	components	as	predictors	based	on	their	correlations	with	228 

eigenvectors.	Using	the	predictor	set,	it	trains	one	classifier	with	corresponding	subset	data	for	229 

each	parent	node	on	a	user	defined	hierarchical	tree	and	builds	a	reference	classifier.	In	order	to	230 

accurately	project	information	from	reference	dataset	on	new	experiments,	we	also	implemented	a	231 

scoring	scheme	for	assigning	class	labels	in	a	non-mandatory	leaf	node	prediction	manner,	which	232 

allows	us	to	provide	intermediate	cell	types	with	broader	context	when	data	fails	to	provide	enough	233 

resolution	for	more	specific	cell	types.	The	uncertainty	function	that	we	derived	utilizes	the	234 

empirically	learned	background	probability	distribution	and	helps	to	determine	whether	observed	235 

probability	is	informative	for	inferring	class	types.	Our	certainty	based	scoring	scheme	properly	236 

finds	the	most	likely	ancestral	path	on	the	hierarchical	cell	type	tree,	which	also	provides	additional	237 

confidence	about	identity	of	query	cells.	238 

	239 

	240 
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Hierarchical	model	construction	and	its	algorithm	241 

HieRFIT	takes	reference	datasets	with	cell	type	labels	along	with	a	hierarchy	of	242 

corresponding	reference	cell	types	as	prior	information.	The	hierarchical	tree	of	cell	type	can	be	243 

customized	by	the	user	with	proper	intermediate	types.	If	the	user	lacks	such	prior	information,	244 

HieRFIT	can	generate	the	hierarchy	de	novo	by	computing	the	distances	between	the	reference	cell	245 

types	based	on	mean	transcriptome	expressions.	To	construct	the	reference	HieRFIT	model	246 

(HierMod),	we	implement	a	six	step	protocol	that	is	repeated	for	every	internal	node	on	the	247 

hierarchical	tree	(Figure	1A).	For	each	node	a	local	classifier	is	generated	using	a	random	forest	248 

classification	algorithm.	To	prepare	the	reference	expression	data	for	model	training,	the	first	step	249 

is	to	extract	a	cell	data	matrix	that	corresponds	to	the	node.	Training	data	is	relabeled	by	bundling	250 

the	grandchildren	under	the	node’s	children	labels	and	adding	an	outgroup	class	as	the	representer	251 

of	other	classes.	A	principal	component	analysis	using	the	relabeled	data	provides	the	components	252 

that	are	highly	variable	across	cells	and	we	select	the	components	whose	loadings	significantly	253 

separates	cells	with	shared	type	from	the	others.	The	selected	significant	components	allow	us	to	254 

reduce	the	total	number	of	genes	to	a	highly	variable	gene	set	among	which	we	select	the	final	255 

feature	set	following	the	Wilcoxon	rank	sum	test.	This	final	feature	set	is	used	in	the	training	of	the	256 

local	classifier	with	the	cell	type	labels	(or	relabels).	All	local	classifiers	are	stored	as	an	array	of	257 

models	which	are	organized	in	accordance	with	the	input	tree	hierarchy.		258 

Path	certainty	score	computation	and	class	selection	259 

Classical	measures	used	in	decision	trees	such	as	Shannon’s	entropy	or	quadratic	entropy	of	260 

Gini	are	not	suited	well	for	real	life	imbalanced	data	with	their	symmetry	assumptions	for	261 

equiprobability	distributions	among	classes	(Zighed	et	al.,	2010).	Therefore,	we	created	an	262 

alternative	certainty	function	derived	from	asymmetric	entropy	(see	methods).	The	main	stage	of	263 

assigning	a	reference	cell	type	to	a	query	cell	is	to	compute	the	array	of	certainty	(U)	values	for	each	264 
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internal	and	terminal	node	(Figure	1B).	In	order	to	obtain	such	a	metric,	HieRFIT	takes	the	gene	265 

expression	array	of	the	query	cell	and	the	reference	model	(HierMod)	as	inputs.	Along	with	the	266 

gene	expression	array	of	the	query	cell,	a	randomized	(shuffled	1000	times)	expression	array	for	267 

the	same	query	is	generated.	Class	votes	from	local	classifiers	are	obtained	for	both	observed	and	268 

shuffled	expression	arrays,	simultaneously.	Normalized	class	votes	gathered	from	the	local	269 

classifiers	are	converted	to	class	probabilities	with	logistic	regression	(aka	sigmoid	calibration)	270 

function.	The	observed	expression	array	is	used	to	acquire	adjusted	class	probabilities	from	each	271 

local	classifier,	while	the	shuffled	expression	array	is	used	to	determine	class	centroids.	These	272 

centroids	are	used	as	certainties	of	the	classes	for	the	query	with	the	observed	class	probabilities	273 

using	the	certainty	function	(see	Methods	for	details).		274 

After	computing	the	certainty	values	of	each	node	for	the	query,	we	calculate	the	path	275 

certainty	scores	for	all	candidate	nodes	by	adding	up	the	certainty	values	along	the	ancestral	path	276 

and	subtracting	all	outgroup	and	sibling	nodes	certainties	(Figure	1C).	This	path	score	defines	the	277 

final	value	for	the	nodes	to	be	considered	as	candidate	classes.	The	decision	stage	simply	consisted	278 

of	choosing	the	maximum	scoring	node	among	the	ones	whose	score	exceeds	a	certain	threshold	279 

(alpha).	In	cases	where	no	class	exceeds	the	threshold,	HieRFIT	returns	an	“Undetermined”.	This	280 

decision	scheme	permits	internal	nodes	to	be	cell	types	of	the	query	as	well	as	leaf	nodes	that	are	281 

constrained	with	input	the	reference	data	in	the	first	place.		282 

PBMC	cell	type	classification	with	HieRFIT	283 

For	demonstration	purposes,	we	generated	a	reference	model	using	the	68K	PBMC	single-284 

cell	dataset	from	Zheng	et	al	(Zheng	et	al.,	2017b).	We	created	an	example	hierarchical	tree	which	285 

organized	the	reference	cell	types	into	two	main	groups,	myeloid	lineage	and	lymphoid	lineage,	286 

along	with	the	hematopoietic	stem	cells	(HSC)	using	the	input	tree	file	in	Supplemental	Table	1	287 

(Figure	2A).	Two	main	groups	branched	into	further	intermediate	groups	and	general	cell	types.	288 
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The	terminal	nodes	comprise	reference	cell	types	from	the	PBMC	data.	We	used	this	custom	made	289 

hierarchical	tree	to	create	a	HieRFIT	model	with	maximum	500	cells	per	cell	type	in	the	training	290 

process.		291 

To	test	our	hypothesis	that	our	hierarchical	classification	approach	provides	more	accurate	292 

and	meaningful	results	as	compared	to	conventional	way	of	cell	type	identification,	we	used	a	toy	293 

dataset,	another	3K	PBMC,	as	the	query	(10X	Genomics,	https://support.10xgenomics.com/single-294 

cell-gene-expression/datasets/1.1.0/pbmc3k).	This	publicly	available	dataset	has	been	generated	295 

by	10X	Genomics	and	processed	through	the	Seurat	pipeline.	We	followed	the	same	guideline	as	in	296 

the	Seurat	tutorial	to	identify	cell	types	with	no	prior	information.	This	manual	type	annotation	297 

involves	several	commonly	accepted	processes,	such	as	finding	the	variable	genes,	dimension	298 

reduction,	and	clustering	of	cells.	Finally,	determining	the	cell	types	involves	manually	checking	the	299 

marker	gene	expression	that	are	differentially	expressed	in	clusters	against	the	rest	of	the	groups.	300 

This	process	results	annotation	of	3K	PBMC	data	with	cell	types:	‘B	cells’,	‘Megakaryocytes’,	‘CD14+	301 

Monocytes,’	‘CD16+	Monocytes’,	‘Dendritic	cells’,	‘NK	cells’,	‘CD8	T	cells’,	‘CD4	T	Naïve’	and	‘Memory	302 

cells’	(Figure	2B,	left).	Then,	we	tested	the	hierMod	we	created	with	the	68K	PBMC	data	by	303 

projecting	the	reference	cell	types	on	the	same	3K	PBMC	dataset.	HieRFIT	projections	labeled	the	304 

cell	in	the	query	with	leaf	node	labels	as	well	as	intermediate	cell	type	defined	in	the	model	305 

hierarchical	tree	above	(Figure	2B,	right).	HieRFIT	projections	demonstrated	a	significant	306 

concordance	with	Seurat	cell	types	for	the	distinct	cell	types,	such	as	‘B	cells’,	‘Megakaryocytes’,	‘NK	307 

cells’,	and	‘Dendritic	cells’	(although	these	cells’	HieRFIT	projections	were	“Classical	DCs”	rather	308 

than	the	parent	node	“Dendritic	cells”	on	the	tree).	Seurat	‘CD8	T	cells’	were	labeled	extensively	309 

with	subtypes	“CD8	T	GZMK+”	and	“CD8	T	Cytotoxic”	as	well	as	their	parent	node	“CD8	T	cells”,	310 

partially	(Figure	2C).	“CD4	T	Memory”	cells	were	labeled	mainly	as	“CD4	T	Memory”	and	“CD4	T	311 

Reg”	in	addition	to	the	parent	node	“CD4	T	cells”.	“CD4	T	Naive”	cell	group,	on	the	other	hand,	312 

received	labels	from	almost	all	CD4	T	sub-levels	cell	types	and	intermediate	types	such	as	“CD4	T	313 
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cells”	or	even	“T	cells”	as	higher	nodes	on	the	tree.	Interestingly,	a	group	of	cells	within	naïve	CD4	T	314 

cells	received	CD8	T	cell	labels,	especially	“CD8	T	Naïve	Cytotoxic”.	Similarly,	a	subgroup	of	“CD14+	315 

Monocytes”	were	labeled	as	“CD16+	Monocytes”,	while	all	“CD16+	Monocytes”	were	correctly	316 

labeled	by	HieRFIT.	A	small	group	of	cells	from	the	CD14+	cells	were	labeled	as	a	parent	node	317 

“Monocytes”.			318 

HieRFIT	classifications	are	concordant	with	marker	gene	expressions	319 

	 To	investigate	the	discordance	between	Seurat	annotations	and	HieRFIT	projections	for	320 

some	of	the	cell	groups,	we	further	explored	the	marker	gene	expressions	and	their	distribution.	As	321 

the	heatmap	of	the	confusion	matrix	demonstrates,	7	out	of	9	cell	types	were	labeled	with	cell	types	322 

by	HieRFIT	with	more	than	80%	concordance	(Figure	3A).	Two	of	the	cell	types,	“CD14+	323 

Monocytes”	and	“CD4	T	Naïve”	received	classification	labels	that	resulted	in	67.7%	and	73.5%	324 

concordance,	respectively.	For	the	“CD4	T	Naïve”	cell	types,	we	examined	the	expression	325 

distribution	of	the	CD8	T	cell	markers,	CD8A	and	CD8B,	as	well	as	major	CD4	markers	for	naïve	326 

cells,	IL7R	and	CCD7	(Figure	3B).		327 

Within	this	group,	the	subset	of	cells	which	are	predicted	by	HieRFIT	to	be	CD8	T	cells	or	its	328 

subtypes	expressed	CD8A	and	CD8B	at	high	levels,	suggesting	these	cells	are	properly	assigned	to	329 

the	CD8	subtype	(Figure	3B,	upper	panel	-	violin	plots).	The	co-expression	of	the	two	markers	also	330 

clearly	showed	that	the	significant	majority	of	these	cells	in	fact	expressed	at	least	one	of	these	331 

markers	or	both	at	the	same	time	(Figure	3B,	upper	panel	-	UMAP	panel	with	co-expression	332 

projections).	This	observation	supports	the	accuracy	of	HieRFIT	projections	that,	in	fact,	these	cells	333 

are	a	class	of	CD8	T	cells	rather	than	CD4	T	cells.	On	the	other	hand,	the	group	of	cells	that	were	334 

concordantly	labeled	as	CD4	T	cells	or	its	subtypes	carried	the	proper	CD4	T	naïve	marker	335 

expressions,	IL7R	and	CCR7,	in	line	with	their	projected	cell	types	(Figure	3B,	lower	panel	–	violin	336 

plots	and	UMAP	projections).	337 
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We	also	investigated	another	group	of	cells	with	discordant	predictions	in	“CD14+	338 

Monocytes”.	Of	these	monocytes,	27.7%	were	predicted	as	“CD16+	Monocytes”.	When	we	examined	339 

the	marker	gene	expression	in	cells	classified	as	“CD14+	Monocytes”	by	Seurat,	we	observed	that	a	340 

significant	portion	of	them	expressed	CD16	(FCGR3A)	monocyte	marker	at	high	levels	(Figure	3C,	341 

upper	panel).	On	the	other	hand,	HieRFIT	classification	of	these	cells	demonstrated	a	clearer	342 

separation	between	these	two	highly	similar	subtypes	of	monocytes	while	preserving	the	major	343 

monocyte	marker	expression	in	all	cells	even	in	cells	predicted	with	the	label	of	the	parent	node,	344 

“Monocytes”	(Figure	3C,	lower	panel).	345 

Comparative	performance	evaluation	with	intra-dataset	tests	346 

We	evaluated	the	performance	of	HieRFIT	on	a	large	number	of	different	datasets,	with	347 

varying	complexity,	technology,	and	size.	These	include	human	and	mouse	pancreas	datasets	348 

(Baron	et	al.,	2016,	Muraro	et	al.,	2016,	Segerstolpe	et	al.,	2016,	Xin	et	al.,	2016),	human	PBMC	349 

(Zheng	et	al.,	2017a),	human	lung	cancer	cell	lines	(Tian	et	al.,	2019),	mouse	cortex	and	nervous	350 

system	(Tasic	et	al.,	2018,	Zeisel	et	al.,	2018)	as	well	as	whole	mouse	datasets	from	Tabula	Muris	351 

consortium	(2018)	(Supplemental	Table	2).	We	also	compared	its	performance	against	other	cell	352 

type	classification	that	use	supervised	machine	learning	approaches	to	create	a	predictive	model	353 

based	on	the	training	data.	The	first	benchmarking	was	based	on	intra-dataset	evaluations	with	5-354 

fold	cross	validation.	Some	of	the	datasets	with	multi-level	cell	type	annotations	were	treated	355 

separately	as	different	datasets.	We	calculated	the	mean-F1	score	of	each	classification	tool	as	the	356 

overall	performance	averaged	across	each	cell	class	in	the	datasets.	To	obtain	a	fair	benchmarking,	357 

we	included	only	leaf	node	predictions	of	HieRFIT	and	excluded	the	intermediate	node	358 

classifications	in	the	F1-score	computations.		359 

We	compared	the	performance	of	HieRFIT	against	21	classification	approaches	with	various	360 

modes	using	17	unique	tools.	Based	on	the	median	value	of	the	mean-F1	scores	from	test	datasets,	361 
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HieRFIT	demonstrates	better	performance	than	16	of	them	(Supplemental	Figure	1).	LDA,	362 

ACTINN,	SingleR,	SVM,	singleCellNet,	and	SVM	with	rejection	demonstrate	comparable	performance	363 

against	HieRFIT	(Figure	4A,	heatmap).	Both	SVM	and	SVM	with	rejection	option	perform	better	364 

HieRFIT	on	most	datasets	except	two	of	them.	Out	of	18	mean-F1	scores	of	datasets,	ACTINN	is	365 

better	on	12	datasets,	LDA	is	11,	singleCellNet	10,	and	singleR	is	better	on	only	3	datasets	compared	366 

to	HieRFIT.	SingleR	and	singleCellNet	fails	to	complete	the	tasks	on	the	complex	datasets	with	large	367 

number	of	cell	types,	such	as	Zeisel	(237)	and	AMB	(92),	TM	(55),	and	Zheng	datasets.	5	out	of	these	368 

6	classification	approaches	lack	an	important	feature,	a	rejection	option.	HieRFIT,	along	with	LDA	369 

(with	rejection),	scClassify,	and	CHETAH,	returned	low	levels	of	‘unlabeled’	predictions	while	SVM	370 

(with	rejection),	scmap	(both	‘cell’	or	‘cluster’	modes),	Cell-BLAST,	and	scID	classifications	371 

contained	high	level	of	‘unlabeled’	results	(Figure	4A,	boxplot).	Almost	all	of	the	classification	tools	372 

perform	the	worst	on	Zheng	PBMC	(11	cell	types)	dataset,	likely	due	to	its	intrinsic	complexity.	373 

We	further	explored	the	performance	of	HieRFIT	in	depth	by	comparing	it	to	other	two	374 

tools,	scClassify	and	CHETAH,	with	similar	hierarchical	classification	approaches	to	ours	and	with	375 

the	most	commonly	used	software,	Seurat.	We	computed	the	hierarchical	precision,	recall,	and	F-1	376 

score,	which	takes	the	intermediate	cell	type	predictions	into	account	when	computing	the	377 

performance	metric.	To	be	fair	to	the	other	tools,	we	used	the	same	hierarchical	tree	that	HieRFIT	378 

used	in	the	computation	of	the	hierarchical	metrics	for	the	other	tools.	We	obtained	the	results	for	379 

hierarchical	precision,	recall,	and	F-1	score	measurements	from	the	18	intra-datasets	through	5-380 

fold	cross-validations.		381 

HieRFIT	and	the	other	three	classification	tools	demonstrate	high	levels	of	hierarchical	382 

precision	in	all	datasets,	>91%,	except	‘Zheng’	datasets	(Figure	4B,	upper	panel).	However,	383 

scClassify	fails	to	return	the	results	for	AMB	(92)	and	Seurat	fails	to	identify	enough	significant	384 

anchors	for	“CellBench	(CEL-Seq2)”	dataset.	On	the	other	hand,	HieRFIT,	returns	class	predictions	385 
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with	consistently	high	recall	rates	(>	89%)	for	all	datasets	while	scClassify	and	CHETAH	showed	386 

significantly	lower	recalls	especially	on	tasks	with	complex	datasets	with	large	number	of	cell	types	387 

(Figure	4B,	middle	panel).	As	the	performance	metric	that	takes	precision	and	recall	into	account,	388 

hierarchical	F-1	score	clearly	demonstrates	that	HieRFIT	performs	at	consistent	levels	and	389 

comparable	to	Seurat	classifications	(Figure	4B,	lower	panel).		390 

To	better	evaluate	the	HieRFIT	results	in	the	hierarchical	classification	context,	we	391 

categorized	the	projected	cell	types	based	on	their	positions	on	the	reference	tree	(Figure	4C).	392 

These	categories	reflect	the	level	of	prediction	accuracy	relative	to	the	hierarchical	relationship	393 

defined	as	cell	type	similarities.	These	categories	are	as	follows:	The	projection	cell	type	is	394 

categorized	as	‘Correct	node’	if	it	is	same	as	the	true	cell	type	(prior),	as	‘Correct	parent’	if	it	is	395 

parent	of	true	cell	type,	as	‘Correct	ancestral	node’	if	it	is	on	the	ancestral	path	(excluding	parent	396 

node)	of	true	type,	as	‘Incorrect	sibling’	if	it	is	a	sibling	of	true	type,	and	as	‘Incorrect	clade’	is	if	it	is	397 

any	other	node	with	an	unshared	parent	as	true	label.	Using	these	schemes,	we	checked	the	398 

distributions	of	categorized	HieRFIT	projections	for	each	intra-dataset	task	(Figure	4D).	HieRFIT	399 

returns	a	large	proportion	of	correct	leaf	nodes	for	the	majority	of	datasets.	Even	for	the	complex	400 

datasets,	such	as	TM	(55),	AMB	(92),	and	Zeisel	(237),	the	correct	leaf	node	rates	are	95%,	85%,	401 

and	75%,	respectively,	while	Zheng	PBMC	dataset	(11	cell	type)	results	in	inferior	profile	due	it	its	402 

complexity	with	high	rates	of	incorrect	sibling	and	clade	assignments.	The	rates	of	assignments	403 

from	other	categories	are	relatively	lesser	simply	due	to	the	intra-dataset	tasks	using	part	of	the	404 

same	data	to	test	the	performance.			405 

Robustness	against	various	scRNA-seq	methods	(PBMC	bench)	406 

	 To	evaluate	the	performance	of	HieRFIT	on	inter-dataset	tasks	in	which	the	reference	model	407 

is	built	on	a	dataset	completely	different	from	the	test	set,	we	utilized	another	public	data	collection	408 

generated	for	PBMC	from	two	individuals	(Ding	et	al.,	2019).	This	type	of	inter-dataset	tasks	409 
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provide	more	realistic	results	as	they	reflect	real	life	usage	better.	PBMC1	and	PBMC2	samples	were	410 

split	into	multiple	subsets	and	sequenced	with	8	different	versions	of	single-cell	RNA-seq	methods.	411 

In	the	experiment,	we	trained	the	model	using	data	from	one	method	and	tested	it	on	datasets	412 

generated	using	other	methods	(and	on	the	second	of	the	sample	pairs	in	case	same	methods).	As	413 

hierarchical	precision,	recall,	and	F1-score	distributions	on	all	of	the	combinations,	HieRFIT	414 

performs	consistently	well	on	almost	all	tasks	with	average	85%	rates	(Figure	5).	On	the	other	415 

hand,	Seurat	and	CHETAH,	sacrifices	extensive	precision	and	recall	rates,	respectively,	on	many	416 

tests	while	scClassify	performs	slightly	better	than	those	two.	However,	HieRFIT	outperforms	all	417 

with	the	highest	hF1-score	in	average	across	multiple	tasks.	Although	HieRFIT’s	worst	performance	418 

appears	to	be	the	model	generated	with	inDrop	data	when	tested	on	CEL-Seq	data	as	64%	hF-score,	419 

it	is	still	comparably	better	than	its	contenders.	Overall,	these	results	show	that	HieRFIT	exhibits	420 

robustness	against	various	batch	effects	due	to	different	scRNA-seq	methods	and	performs	better	421 

than	other	tools	in	various	aspects.		 	422 
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Discussion	423 

Defining	cell	types	is	a	fundamental	and	complex	challenge	in	single-cell	biology,	which	is	424 

becoming	increasingly	difficult	as	the	diversity	of	single-cell	experiments	increases.	In	this	study,	425 

we	attempted	to	address	one	of	the	challenges	in	the	developing	field	of	scRNA-seq	with	an	426 

alternative	perspective.	Hierarchical	classification,	as	opposed	to	common	flat	classifiers,	is	427 

currently	generating	more	interest	in	the	community	because	it	takes	the	cell	type	relationships	428 

into	account	in	addition	to	providing	more	insight	into	intermediate	cell	types	(Wu	and	Wu,	2020).	429 

The	hierarchical	approach	has	been	used	in	many	other	fields	including	medical	sciences	430 

(Dimitrovski	et	al.,	2011).		431 

In	this	work,	we	hypothesized	that	hierarchical	organization	of	cell	types	and	class	432 

relationships	will	provide	more	accurate	decisions	compared	to	flat	classification	approaches.	We,	433 

then,	implemented	our	approach	as	a	user-friendly	R	package	and	evaluated	its	performance	with	434 

commonly	used	public	datasets.	We	demonstrated	HieRFIT’s	better	classification	of	PBMC	cell	435 

types,	even	in	low	abundances,	in	concordance	with	their	marker	gene	expression	profiles	as	436 

opposed	to	manual	annotations	by	widely	used	software,	Seurat.	In	addition,	the	performance	437 

evaluations	against	other	available	single-cell	classification	tools	and	machine	learning	algorithms	438 

showed	that	HieRFIT	provided	the	most	reasonably	accurate	results.	HieRFIT’s	performance	stayed	439 

stable	across	various	types	of	datasets	produced	with	different	methods	while	other	tools	440 

sometimes	showed	diminished	accuracy,	in	particular,	inter-dataset	tasks.	With	its	‘divide	and	441 

conquer’	approach,	HieRFIT	was	able	handle	very	complex	tasks	with	a	large	number	of	cell	types	442 

and	total	cells	without	any	issue.		443 

Furthermore,	HieRFIT	showed	consistently	better	performance	on	classification	challenges	444 

against	two	other	tools,	CHETAH	and	scClassify,	which	have	similar	hierarchical	classification	445 

approaches.	Both	CHETAH	and	scClassify	learn	tree	topologies	directly	from	reference	data	as	446 
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CHETAH	builds	a	binary	tree	of	cell	types	using	average	linkage	distances	based	on	their	Spearman	447 

correlations	while	scClassify	uses	hierarchical	ordered	partitioning	and	collapsing	hybrid	448 

(HOPACH)	algorithm	for	tree	construction	which	allows	multi-children	nodes.	However,	both	tools	449 

define	the	intermediate	cell	types	with	labels	that	are	hard	to	interpret.	HieRFIT	on	the	other	hand	450 

covers	both	approaches	by	providing	users	an	option,	in	addition	to	ability	to	create	a	de	novo	tree,	451 

to	define	a	tree	containing	intermediate	nodes	with	meaningful	cell	labels	as	opposed	to	other	tools.		452 

We	implemented	the	‘local	classifier	per	parent	node’	(LCPN)	approach	in	HieRFIT	as	453 

opposed	to	the	global	classifier	approach	that	takes	the	entire	tree	topology	into	a	single	model.	454 

Hierarchical	classification	implemented	in	LCPN	attitude	has	been	reported	to	have	better	accuracy	455 

as	compared	to	flat	classifiers	(Gauch	et	al.,	2009,	Jin	et	al.,	2008,	Xiao	et	al.,	2007).	In	addition,	456 

using	various	combinations	of	different	classification	algorithms	as	local	classifiers	has	previously	457 

been	reported	(Secker	et	al.,	2007).	One	important	feature	of	HieRFIT	originates	from	its	‘non-458 

mandatory	leaf	node	prediction’	based	decision	scheme	which	allows	intermediate	nodes	to	be	459 

assigned	as	well.	Our	decision	rule	is	based	on	choosing	the	best	scoring	node	on	the	tree.	460 

Alternative	decision	approaches	have	been	proposed,	e.g.	‘sequential	boolean	decision	rule’	which	461 

chooses	child	nodes,	starting	from	root,	until	reaching	to	a	leaf	node	(Bryant,	1992).	However,	this	462 

approach	might	be	prone	to	error	propagation	more	than	other	top-down	approaches.	The	463 

challenge	is	to	properly	combine	local	classifiers	so	that	their	unbiased	outputs	can	be	used	for	the	464 

decision	making	process.	It	is	commonly	known	that	machine	learning	based	classifiers	are	prone	465 

to	imbalanced	class	sizes	in	addition	to	other	intrinsic	biases	such	as	batch	effect.	To	account	for	466 

these,	we	utilized	a	certainty	function	derived	from	asymmetric	entropy	which	provided	precise	467 

confidence	estimations	about	class	assignment.	The	path	certainty	metric	accumulates	higher	468 

scores	when	correct	cell	types	are	picked	along	the	ancestral	path	while	their	siblings	and	out-469 

groups	behave	as	antagonists.	Thus,	accumulated	confidence	allows	better	decision	regardless	of	470 

the	complexity	of	data	or	tree	topology.		471 
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As	all	other	computational	approaches,	HieRFIT	also	has	several	limitations.	First	of	all,	it	472 

requires	a	reference	data	with	properly	annotated	cell	types.	Although	relying	on	reference	data	473 

and	its	cell	types	can	introduce	biases	due	to	inconsistencies	in	annotations,	HieRFIT’s	ensemble	474 

based	classifiers,	random	forest,	can	compensate	for	subtle	fluctuations.	Reference	based	475 

classification	approaches	usually	miss	the	opportunity	to	discover	novel	cell	types	due	to	their	476 

dependency	on	prior	information.	Another	limitation	of	reliance	on	reference	data	is	that	some	cell	477 

types	are	represented	with	low	numbers	of	cells.	However,	with	the	fast	development	of	new	478 

methods,	single-cell	based	atlas	projects	provide	exponentially	increasing	datasets.	Secondly,	479 

HieRFIT	relies	on	a	user	provided	tree,	a	predefined	class	hierarchy,	and	assumes	that	the	tree	480 

topology	reflects	biological	cell	type	relationships	with	their	underlying	gene	expression	profiles	in	481 

the	reference	data.	To	prevent	senseless	results,	users	must	be	cautious	about	providing	a	tree	482 

topology	for	classification	purposes	with	HieRFIT.	If	a	user	skips	to	provide	a	cell	type	tree,	creating	483 

a	class	hierarchy	by	learning	from	data	(e.g.	by	hierarchical	clustering)	can	also	be	limited	since	484 

similarity	driven	hierarchy	is	prone	to	data	specific	artifacts	and	over-fitting.		485 

	 In	this	study,	we	proposed	to	utilize	hierarchical	relationships	between	cell	types	to	better	486 

harvest	biological	information	and	provide	more	insight	about	the	cell	type	identities.	HieRFIT	487 

provides	stable	and	accurate	cell	type	classification	of	single-cell	RNA-seq	data	with	hierarchical	488 

manner.	It	will	contribute	to	the	field	not	only	by	providing	a	new	perspective	and	faster	cell	type	489 

projections	from	larger	atlas	projects	but	also	allowing	cross	comparisons	across	various	datasets	490 

effectively.	 	491 
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Figure	Legends:	664 

Figure	1.	HieRFIT	workflow	overview.	Reference	model	generation	and	query	665 

projections.	666 

Overview	of	HieRFIT	reference	model	generation	and	prediction	of	a	query	cell	class.	A)	Main	667 

process	starts	with	obtaining	a	tree	as	a	user	input	or	creating	from	the	data.	The	steps	for	668 

generating	the	reference	model	with	a	hierarchical	tree:	1.	Pick	an	internal	node	i	(i.e.	node	“B”)	on	669 

the	tree,	2.	Re-group	its	children	nodes	and	create	an	outgroup	node	for	it,	3.	Extract	the	input	670 

expression	data	based	on	new	group	labels	for	the	node,	4.	Perform	Principal	Component	Analysis	671 

and	pick	the	components	that	separate	the	class	labels	for	variable	feature	selection,	5.	perform	672 

Wilcoxon	Rank	sum	test	to	determine	differentially	expressed	features,	6.	Train	a	local	classifier	673 

(Random	forest)	with	the	group	labels	and	the	expression	matrix	with	selected	features.	Repeat	the	674 

process	until	all	node	classifiers	are	constructed.	B)	Query	of	a	test	cell	and	certainty	calculations.	675 

Given	an	array	of	feature	expressions	of	the	query	cell,	the	first	step	is	to	compute	the	certainty	676 

array	(U)	for	the	candidate	classes.	Votes	are	collected	from	each	node	i	(i.e.	node	“B”)	for	both	677 

observed	query	data	and	its	shuffled	data	separately.	Votes	are	converted	to	probabilities	using	678 

sigmoid	calibration	with	multinomial	logistic	regression.	Using	the	probability	centroids	(wi)	as	the	679 

outcome	of	the	randomized	array	and	the	observed	probabilities	(pi),	compute	the	certainty	value	680 

of	each	class	of	the	node	(i.e	the	certainty	of	class	“E”	is	0.24).	Repeat	the	process	for	every	class	of	681 

all	internal	nodes.	C)	Determining	the	cell	type/class	of	a	query	cell.	Step	1:	Path	certainty	scores	of	682 

each	candidate	class	are	computed	using	the	certainty	values	of	nodes	for	the	given	query	by	683 

traversing	the	tree.	The	sum	of	certainty	values	of	outgroup	and	sibling	nodes	along	the	path	(nodes	684 

in	gray)	are	summed	and	subtracted	from	the	sum	of	Certainty	values	of	nodes	on	the	path	(nodes	685 

in	green).	Step	2:	As	the	final	step,	scores	are	evaluated	and	the	maximum	scoring	class	is	returned	686 

as	the	outcome.	If	none	of	the	classes	passes	the	threshold,	a,	“Undetermined”	is	returned.	687 
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Figure	2.	Demonstration	of	HieRFIT	usage	on	a	PBMC	dataset.	688 

A)	The	cell	type	tree	used	in	HieRFIT	reference	model	with	68K-PBMC	data.	B)	The	UMAP	689 

representation	of	3K-PBMC	data	from	10X	Genomics.	Cells	are	colored	with	cell	types	which	were	690 

identified	through	Seurat	clustering	and	marker	expressions	(left),	cells	are	colored	with	HieRFIT	691 

reference	cell	types	along	with	intermediate	types	specified	in	the	tree	file	(right).	C)	Alluvial	692 

diagram	demonstrating	the	cross	comparisons	of	HieRFIT	projections	with	the	Seurat	cell	type	693 

labels.	Each	line	connecting	the	two	vertical	black	columns	(left	bar:	prior	labels,	right	bar:	694 

projections)	represent	a	cell	and	are	colored	based	on	its	HieRFIT	projection	type.	Annotations	with	695 

less	than	1%,	‘HSC’	and	‘Monocyte	progenitor’	were	not	shown.		696 

Figure	3.	Concordance	analysis	of	Seurat	and	HieRFIT	classifications	with	gene	697 

expression	of	cells	698 

A)	The	heatmap	representation	of	the	confusion	matrix	that	summarized	the	projection	results	of	699 

the	3K-PBMC	query	data	with	percent	distribution	among	the	tree	node	labels.	B)	Violin	plots	of	700 

CD8A	and	CD8B	genes	and	their	co-expression	values	projected	on	UMAP	representation	of	cells	701 

classified	as	“Naïve	CD4	T	cells”	by	Seurat	while	HieRFIT	predicts	them	as	CD8	cells	or	its	subtypes	702 

(upper	panel).	Similarly,	violin	plots	and	co-expression	values	of	IL7R	and	CCR7	genes	projected	on	703 

UMAP	representation	of	cells	predicted	as	CD4	T	cells	or	its	subtypes	by	HieRFIT	in	concordance	704 

with	Seurat	(lower	panel).	C)	Normalized	expression	distribution	of	three	marker	genes,	“LYZ”	and	705 

“FCGR3A	(CD16)”,	markers	of	“monocytes”	and	subset	“CD16	monocytes”,	respectively,	among	the	706 

cells	classified	as	“CD14+	Monocytes”	by	Seurat	(upper	panel).	Similar	violin	plots	for	expression	707 

distribution	of	the	same	set	of	cells	grouped	based	on	HieRFIT	projections	(lower	panel).	708 
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 31 

Figure	4.	Performance	on	various	types	of	datasets.	Robustness	against	batch	biases.	710 

Performance	results	on	various	types	of	datasets	and	comparative	benchmarking	against	other	cell	711 

type	classification	tools.	A)	A	heatmap	representing	the	mean	F1	scores	of	each	test	dataset	for	the	712 

classification	tools.	The	number	of	cell	types	of	each	dataset	is	shown	below	the	columns.	Failed	713 

tests	without	a	score	are	grayed-out.	Percent	unlabeled	data	distribution	from	each	test	data	is	714 

shown	with	an	adjacent	box	plot	for	each	tool.		Asterisk	(*):	Classification	tools	with	rejection	715 

option.	B)	Hierarchical	precision	(red),	recall	(cyan),	and	F-score	(green)	metrics	for	the	tools	716 

HieRFIT,	scClassify,	CHETAH,	and	Seurat.	C)	Various	categories	of	projected	cell	types	by	HieRFIT	717 

based	on	their	position	on	tree	relative	to	the	prior	label.	In	addition	to	categories	in	the	table,	718 

“Correct	children”	or	“Correct	grandchildren”	categories	are	also	possible	in	case	of	a	correct	sub-719 

level	type	assignment.	Bar	plot	summarizes	the	distribution	of	these	categories	for	HieRFIT	outputs	720 

among	all	test	datasets	above.	D)	Stacked-bar	plot	summarizes	the	distribution	of	projection	721 

categories	for	HieRFIT	outputs	among	all	test	datasets	above.	722 

Figure	5.	Robustness	against	batch	biases.	723 

Hierarchical	precision,	recall,	and	F1-score	values	of	HieRFIT	and	3	tools	for	comparing	the	724 

performances	in	various	batches	with	inter-dataset	tests.	At	each	iteration,	a	dataset	from	paired	725 

PBMCs	produced	with	a	scRNA	method	was	used	to	generate	the	reference	model	and	tested	on	the	726 

second	pair	of	the	PBMCs.	727 

	728 
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Supplemental	Tables		732 

Supplemental	Table	1:	An	example	tab-separated	cell	type	table	to	be	used	as	an	input	for	tree	733 
construction	and	creating	a	reference	model	(referencing	68K	PBMC	dataset).	Each	row	specifies	all	734 
ancestral/intermediate	cell	types	of	each	reference	cell	type	(leaves	at	the	end	of	rows).	735 

Supplemental	Table	2:	Datasets	used	in	the	benchmarking	analysis.	736 

	737 

Supplemental	Figures	738 

Supplemental	Figure	1.	Boxplot	for	mean	F1	scores	distribution	of	each	classification	tool	as	an	739 
outcome	of	18	datasets	with	5-fold	cross-validation	tests	(upper	plot).	Percent	unlabeled	data	740 
distribution	from	each	test	data	(middle	plot).	A	heatmap	showing	the	Mean	F1	scores	of	each	test	741 
dataset	for	the	classification	tools	(lower	panel).	Failed	tests	without	a	score	are	grayed-out.	742 
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