> Manuscript for bioRxiv M. Yoshida et al.

1 Title Page

2 Title: A Novel DNA Chromatography Method to Distinguish *M. abscessus* Subspecies and

3 Macrolide Susceptibility

4

5 Authors

6 Mitsunori Yoshida¹, Sotaro Sano², Jung-Yien Chien^{3, *}, Hanako Fukano¹, Masato Suzuki⁴,

7 Takanori Asakura^{1,5}, Kozo Morimoto⁶, Yoshiro Murase⁷, Shigehiko Miyamoto², Atsuyuki

8 Kurashima⁶, Naoki Hasegawa⁵, Po-Ren Hsueh⁸, Satoshi Mitarai⁷, Manabu Ato¹, Yoshihiko

9 Hoshino^{1, *}

¹Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious 10 11 Diseases, ²Medical Solutions Vehicle, Kaneka Co. Ltd., ³Depertment of Internal Medicine, Pulmonary and Critical Care Medicine, National Taiwan University Hospital, ⁴Antimicrobial 12 13 Resistance Research Center, National Institute of Infectious Diseases, ⁵Center for Infectious Diseases and Infection Control, School of Medicine, Keio University, ⁶Respiratory Disease 14 15 Fukujuji Hospital, Japan Anti-Tuberculosis Association, ⁷Department of Center, 16 Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan 17 Anti-Tuberculosis Association, and ⁸National Taiwan University College of Medicine.

18

19 *Corresponding author:

Manuscript for bioRxiv M. Yoshida et al.

20	Yoshihiko Hoshino (lead contact), M.D., Ph.D., Department of Mycobacteriology, Leprosy
21	Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba, Higashi-Murayama,
22	Tokyo 189-0002, Japan. Phone: +81-42-391-8211. Fax: +81-42-394-9092. E-mail:
23	yhoshino@niid.go.jp
24	Jung-Yien Chien, M.D., Ph.D., Department of Internal Medicine, Pulmonary and Critical
25	Care Medicine, National Taiwan University Hospital, Phone; +886-2-2312-3456 ext. 62905,
26	E-mail: jychien@ntu.edu.tw
27	
28	Author contributions
29	Strain collection: JYC, PRH, KM, AK, NH, SMitara
30	Study conception: YH
31	Experimental design : MY, YH
32	Performed experiments : MY, SS, HF, MS, YM, SMiyam
33	Data analysis: MY, YH
34	Data interpretation: MY, YH
35	Figure production: MY
36	Manuscript writing: MY, YH
37	Manuscript editing: MY, SS, JYC, HF, PRH, TA, KM, NH, SMitara, MA, YH
38	

Manuscript for bioRxiv M. Yoshida et al.

39 Funding

40	This work was supported in part by grants from the Japan Agency for Medical Research and
41	Development/Japan International Cooperation Agency to Y.H. (jp19fk0108043,
42	jp19fk0108064, jp19fk0108075, and jp19jm0510004) and to M.A. (jp19fk0108043 and
43	jp19fk0108049); by grants-in-aid from the Japan Society for Fostering Joint International
44	Research (B) to Y.H. and M.Y. (jp19KK0217), for Early-Career Scientists to M.Y.
45	(jp20K17205) and H.F. (jp18K15966), and for Scientific Research (C) to Y.H. (jp18K08312).
46	The funders had no role in study design, data collection and analysis, decision to publish, or
47	preparation of the manuscript.
48	Running title:
49	Chromatography for subspecies identification and detection of inducible MABC macrolide
50	resistance
51	Descriptor: 11.5 Non-Tuberculous Mycobacterial Disease
52	Manuscript word count: 3499
53	
54	This article has an online data supplement, which is accessible from the online table of
55	contents for this issue at www.atsjournals.org
56	

Manuscript for bioRxiv M. Yoshida et al.

57 Abstract

58 Rationale:

59	The clinical impact of infection with Mycobacterium abscessus complex (MABC), a
60	group of emerging non-tuberculosis mycobacteria (NTM), is increasing. Mycobacterium
61	abscessus subsp. abscessus/bolletii frequently shows natural resistance to macrolide
62	antibiotics, whereas Mycobacterium abscessus subsp. massiliense is generally susceptible.
63	Therefore, rapid and accurate discrimination of macrolide-susceptible MABC subgroups is
64	required for effective clinical decisions about macrolide treatments for MABC infection.
65	Objectives:
66	To develop a simple and rapid diagnostic that can identify MABC isolates showing
67	macrolide susceptibility.
68	Methods:
69	Whole genome sequencing (WGS) was performed for 148 clinical or environmental
70	MABC isolates from Japan to identify genetic markers that can discriminate three MABC
71	subspecies and the macrolide-susceptible erm(41) T28C sequevar. Using the identified
72	genetic markers, we established PCR based- or DNA chromatography-based assays.
73	Validation testing was performed using MABC isolates from Taiwan.
71	Magazzara and Main Damilar

74 Measurements and Main Results:

75	We identified unique sequence regions that could be used to differentiate the three
76	subspecies. Our WGS-based phylogenetic analysis indicated that M. abscessus carrying the
77	macrolide-susceptible erm(41) T28C sequevar were tightly clustered, and identified 11 genes
78	that were significantly associated with the lineage for use as genetic markers. To detect these
79	genetic markers and the erm(41) locus, we developed a DNA chromatography method that
80	identified three subspecies, the erm(41) T28C sequevar and intact erm(41) for MABC in a
81	single assay within one hour. The agreement rate between the DNA chromatography-based
82	and WGS-based identification was 99.7%.
83	Conclusions:
84	We developed a novel, rapid and simple DNA chromatography method for
85	identification of MABC macrolide susceptibility with high accuracy.
86	

Manuscript for bioRxiv M. Yoshida et al.

87 Introduction

88	The Mycobacterium abscessus (heterotypic synonym; Mycobacteroides abscessus)(1,
89	2) complex (MABC) is a group of rapid-growing non-tuberculosis mycobacteria (NTM) that
90	includes three subspecies: M. abscessus subsp. abscessus (M. abscessus), M. abscessus subsp.
91	massiliense (M. massiliense), and M. abscessus subsp. bolletii (M. bolletii)(3, 4). MABC
92	causes a range of clinical infections including chronic pulmonary disease even in
93	immunocompetent persons, as well as postsurgical or traumatic infections and skin and soft
94	tissue infections(4–8).
95	Among NTM infections, treatment outcomes for MABC infections are relatively
96	worse and the in-hospital mortality rate can reach 16%(5, 9–13). These poor outcomes are due
97	in part to the extensive antibiotic resistance of MABC(14). However, some MABC patients
98	achieve good clinical outcomes with standard antibiotic regimens(15-17). Out of the three
99	subspecies, M. massiliense is susceptible to macrolide antibiotics whereas M. abscessus and
100	M. bolletii are resistant(18, 19). In the presence of macrolide antibiotics M. abscessus and M.
101	bolletii exhibit inducible expression of erythromycin ribosomal methylase (erm)(41), which
102	produces the Erm protein that reduces macrolide affinity for the ribosome exit tunnel(20-22).
103	M. massiliense harbors a truncated erm(41) that produces inactive Erm(41). A T-to-C
104	sequence variant (sequevar) at position 28 (T28C) of the erm(41) gene also results in
105	production of an inactive enzyme, and does not result in inducible macrolide resistance of M .

106	abscessus and M. bolletii, which are generally macrolide resistant. These observations
107	indicate that determination of subspecies and detection of intact $erm(41)$ and the $erm(41)$
108	T28C sequevar of MABC can inform prediction of clinical course and treatment outcome. In
109	fact, the 2020 ATS/ERS/ESCMID/IDSA Clinical Practice Guideline strongly recommends a
110	macrolide-containing multidrug treatment regimen for patients with MABC respiratory
111	disease caused by strains without inducible macrolide resistance(23). Accordingly,
112	discrimination of subspecies and identification of the <i>erm</i> (41) T28C sequevar is crucial.
113	Sequencing of single 16S rRNA or the RNA polymerase beta subunit (rpoB) cannot
114	distinguish MABC subspecies because these loci are nearly identical(13, 24). Several studies
115	have examined use of multi-locus sequencing typing (MLST) of housekeeping genes to
116	separate subspecies(25-28). Advances in whole genome sequencing (WGS) technology
117	allowed MABC clinical isolates to be phylogenetically divided into three subspecies even at
118	the whole genome level(29, 30). However, detection of the erm(41) T28C sequevar still
119	requires sequencing of the entire erm(41) gene. Although MLST and/or WGS analyses allow
120	discrimination of erm genes, these analyses are time-consuming and labor intensive in clinical
121	practice. Thus, novel assays that are simple and rapid yet retain discriminatory power required
122	to distinguish subspecies and to identify the erm(41) T28C sequevar are needed.
123	We previously reported a PCR-based method to differentiate MABC subspecies, but
124	the capacity of this test was limited(31). In the present study, we analyzed WGS data for 148

125	MABC isolates from Japan to explore genetic markers associated with each subspecies and
126	the <i>erm</i> (41) T28C sequevar. We propose a novel, rapid and easy-to-use DNA chromatography
127	method that can identify all MABC subspecies as well as intact $erm(41)$ and the $erm(41)$
128	T28C sequevar in a single assay.
129	Materials and methods
130	For further details on the applied methods, see the online data supplement
131	Bacterial isolates
132	A total of 147 MABC clinical isolates and one environmental isolate (strain
133	MabLRCB1) obtained for differential diagnosis at 19 hospitals (listed in Acknowledgments)
134	in Japan were considered. Of the clinical isolates, 138 originated in the respiratory system, 8
135	were isolated from skin lesions, and 1 strain was isolated from a blood sample (Table S1).
136	Another 103 clinical isolates were obtained from Taiwan National University Hospital
137	(Yoshida et al., manuscript in preparation, Table S2). All strains were classified as MABC
138	using a DDH Mycobacteria kit (Kyokuto Pharmaceutical Industrial, Tokyo, Japan) or by
139	MALDI-TOF MS (Bruker Daltonics, Billerica, MA, USA). M. abscessus subsp. abscessus
140	JCM 13569 ^T (ATCC 19977), <i>M. abscessus</i> subsp. massiliense JCM 15300 ^T and <i>M. abscessus</i>
141	subsp. <i>bolletii</i> JCM 15297 ^T (BD) type strains were obtained from the Japan Collection of
142	Microorganisms of the Riken Bio-Resource Center (BRC-JCM; Ibaraki, Japan). All bacterial

Manuscript for bioRxiv M. Yoshida et al.

143 strains/isolates were subcultured on 2% Ogawa egg slants or 7H10 agar plates supplemented

144 with 10% OADC.

145 PCR assays for discriminating *M. abscessus* subspecies and *erm*(41) T28C sequevar

146	Single-PCR and multiplex PCR assays differentiating M. abscessus, M. massiliense,
147	and <i>M. bolletii</i> , as well as the <i>erm</i> (41) T28C sequevar were conducted essentially as described
148	previously(31) using newly constructed primers (see supplemental methods). Briefly,
149	template DNA for PCR assays was isolated from one loopful of a mycobacterial colony
150	grown on 7H10 medium that were resuspended in 300 μl sterilized water, boiled at 95 °C for
151	15 min and frozen at -30 °C. PCR amplification was performed using a Mastercycler gradient
152	(Eppendorf) with 95 °C for 10 min; 30 cycles of 95 °C for 30 sec, 60 °C for 30 sec, and 72 °C
153	for 40 sec; and extension at 72 °C for 10 min. Amplification to identify the erm(41) T28C
154	sequevar was performed in the Mastercycler gradient using 95 °C for 10 min; 35 cycles of
155	95 °C for 1 min, 62 °C for 1 min, and 72 °C for 1 min; and extension at 72 °C for 4 min. The
156	PCR products were separated by 2% agarose gel electrophoresis and stained with ethidium
157	bromide. The analytical limit of detection of the multiplex PCR assay was estimated by
158	applying serial dilutions of DNA from M. abscessus ATCC19977, M. massiliense JCM 15300,
159	and M. bolletii BD, in addition to several clinical MABC isolates. To assess the multiplex
160	PCR assay specificity, several laboratory and clinical isolates were used including the M .
161	avium complex (10 clinical isolates and one laboratory stain), M. conceptionense, M.

162 fortuitum, M. gordonae, M. houstonense, M. kansasii, M. leprae (3 clinical isolates and one

163 laboratory stain), M. lentiflavum, M. peregrinum, M. salmoniphilium, M. senegalense, M.

164 shimoidei, M. smegmatis, M. szulgai, M. triplex, M. tuberculosis (10 clinical isolates and one

165 laboratory stain), and *M. xenopi*.

166 DNA chromatography assay for discriminating MABC subspecies, intact erm(41) and

167 the *erm*(41) T28C sequevar

168 We applied a DNA chromatography method that was described elsewhere (32-34) to 169 distinguish the MABC subspecies, intact erm(41) gene and the erm(41) T28C sequevar. This 170 assay comprises PCR amplification and amplicon detection. All primers used in the assay are 171 listed in Table 3. Briefly, primers with 5' tags, which have a domain that anneals to the target 172 sequence and a tag domain that hybridizes to a single-stranded DNA probe on the chip or gold 173 nanoparticle, were used for amplification. DNA extraction was performed essentially as 174 described previously(6, 35). Total genomic DNA was extracted from frozen samples (as 175 described above) using a Kaneka easy DNA extraction kit for Mycobacteria (KANEKA, 176 Osaka, Japan). PCR was performed using a 20 µl mixture containing 10 µl PCR Mix 177 (KANEKA, Osaka, Japan), 5 µl primer mix (5 primer sets, 0.5 µM each, Table 3), 1 µl 178 template DNA. Amplification was performed in a Life ECO thermocycler (BIOER Co. Ltd., 179 Hangzhou, China) with 25 °C for 5 min and 94 °C for 1 min, followed by 35 cycles of 94 °C 180 for 5 sec, 65 °C for 10 sec, and 72 °C for 15 sec. An aliquot of the amplicons supplemented

181	with 70 µl development buffer (KANEKA, Osaka, Japan) was applied to the detection strip
182	sample pad (KANEKA, Osaka, Japan). After 10 min, blue lines were confirmed visually.
183	Sensitivity and specificity tests for the DNA chromatography were performed as described
184	above.
185	
186	Results
187	Subspecies identification based on core gene alignment of MABC isolates
188	In the context of genome-based taxonomy, phylogeny involving concatenated core
189	gene alignments is frequently used instead of 16S rRNA or rpoB gene sequences. We first
190	examined whether a concatenated sequence of core genes, which are defined as homologous
191	genes present in all strains examined, could distinguish the three MABC subspecies. Using a
192	concatenated sequence of 2,957 core genes, the 148 MABC isolates could clearly be divided
193	into three clades, with 92 (62.2%), 52 (35.1%), and 4 (2.7%) isolates identified as M .
194	abscessus, M. massiliense, and M. bolletii, respectively (Fig. 1). This result is consistent with
195	our previous report showing that multi-locus sequence typing (MLST) of rpoB, hsp65, and
196	the ITS region could discriminate the three subspecies with 97.5% accuracy(31). Moreover,
197	most isolates could be phylogenetically categorized in agreement with the core-locus
198	phylogeny, although 4 (2.7%) were inconsistently categorized (Fig. S1A). Another group
199	proposed a MLST scheme using seven housekeeping genes(28). We confirmed that this
200	scheme could reliably discriminate the three MABC subspecies (Fig. S1B). We also

201	confirmed the subspecies identification by calculating the average nucleotide identity (ANI)
202	for all MABC isolates (Fig. S2). The minimum ANI within each of the three subspecies was
203	98.4 (within M. abscessus), 98.3 (within M. massiliense), and 99.1 (within M. bolletii), while
204	the maximum ANI between subspecies was 97.5 (between M. abscessus and M. massiliense),
205	97.7 (between M. abscessus and M. bolletii), and 97.0 (between M. massiliense and M.
206	bolletii). These results indicated that phylogenetic analysis based on core-locus alignment
207	indeed differentiated the three MABC subspecies and suggested that their subspecies
208	boundaries were approximately 98% ANI.
209	Multiplex PCR assay for discriminating the three MABC subspecies
210	Since WGS and/or MLST are not feasible for clinical settings, we sought to develop
211	an alternative method to distinguish the three subspecies of MABC. We focused on "genetic
212	markers" specific to each subspecies. We first aligned the complete genome sequences of type
212 213	markers" specific to each subspecies. We first aligned the complete genome sequences of type strains (ATCC 19977, JCM 15300, and BD) and draft genome sequences of 14 representative
213	strains (ATCC 19977, JCM 15300, and BD) and draft genome sequences of 14 representative
213 214	strains (ATCC 19977, JCM 15300, and BD) and draft genome sequences of 14 representative clinical isolates with progressiveMauve(36) and visually identified unique insertion/deletion
213 214 215	strains (ATCC 19977, JCM 15300, and BD) and draft genome sequences of 14 representative clinical isolates with progressiveMauve(36) and visually identified unique insertion/deletion (indel) regions in each of the three subspecies. We then designed three primer sets specific for
213 214 215 216	strains (ATCC 19977, JCM 15300, and BD) and draft genome sequences of 14 representative clinical isolates with progressiveMauve(36) and visually identified unique insertion/deletion (indel) regions in each of the three subspecies. We then designed three primer sets specific for sequences around the indel regions for size-based differentiation of PCR amplicons (Fig. 2A,

Manuscript for bioRxiv M. Yoshida et al.

220	NTM and <i>M. tuberculosis</i> tested were negative in this PCR assay (Fig. S5). We subsequently
221	examined the primer set accuracy using the 148 MABC isolates, and confirmed that $91/92 M$.
222	abscessus (98.9%), 52/52 M. massiliense (100%), and 4/4 M. bolletii (100%) isolates were in
223	agreement with the WGS-based subspecies identification, and the overall agreement rate
224	between the PCR assay and WGS-based subspecies identification was 99.3% (95% CI: 96.3%
225	to 100%). Results of our previous MLST(31) showed several sequence variants in the isolates,
226	but the PCR assay could still differentiate between strains (Fig. 2B, Fig. S3). Notably,
227	discordant sequencing type 4 (MabLRC28 and MabLRC86) and ds type 5 (MabLRC28) were
228	distinguished as M. abscessus and M. massiliense, respectively, in accordance with
229	WGS-based subspecies identification (Fig. 2). Although our previous multiplex PCR
230	assay(31) could not distinguish all M. bolletii from others (Table S1), the present PCR assay
231	could distinguish them. Moreover, the agreement rate with WGS-based subspecies
232	identification was significantly higher ($P < 0.01$, two-proportion Z test) than that of the
233	previous multiplex PCR assay (92.6%, 95% CI: 87.1% to 96.2%).
234	Multiplex PCR assay for discriminating the erm(41) T28C sequevar of MABC
235	MABC have an Erm(41)-mediated inducible mechanism for resistance to macrolide
236	antibiotics. Earlier studies demonstrated that a T-to-C substitution at position 28 in the erm
237	gene results in macrolide antibiotic susceptibility(20, 37). Thus, discriminating isolates that
000	

238 carry the *erm*(41) T28C sequevar could guide antibiotic selection. To identify genetic markers

239	associated with the $erm(41)$ T28C sequevar, we investigated the $erm(41)$ genotype of the 148
240	MABC isolates and their phylogenetic relationship (Fig. 3). Of the 92 M. abscesssus, 17
241	(18.5%) had the erm(41) T28C mutation and all but MabLRC70 were susceptible to
242	clarithromycin (CAM) (Table S1). Notably, our phylogenetic analysis showed that these
243	clinical isolates were tightly clustered (Fig. 3). Scoary analysis of lineage-associated genes
244	indicated that 68 genes were significantly associated with the lineage to which all M .
245	abscessus with the $erm(41)$ T28C sequevar belonged (Bonferroni corrected P-value < 1E-8,
246	sensitivity >80% and specificity > 80%, Table S4). In a whole-genome alignment, $11/68$
247	lineage-associated genes having the highest sensitivity and specificity were on a
248	lineage-specific genetic locus (Fig. 4A). To determine whether these findings applied to other
249	sample sets, we used public WGS data for MABC clinical isolates from two European
250	countries(38, 39). A phylogenetic analysis based on the core-gene alignment indicated that the
251	M. abscessus erm(41) T28C sequevar was also clustered and had the abovementioned genetic
252	locus (Fig. S6). Among primer sets designed to amplify part of the genetic locus (Table 2, Fig.
253	4A), one set detected only the <i>M. abscessus erm</i> (41) T28C sequevar with a single band (Fig.
254	4B). Among the 148 MABC isolates, all 17 M. abscessus erm(41) T28C sequevars were
255	positive in the PCR assay, whereas all other clinical isolates examined, except for MabMT19
256	and MabLRC77, were negative (Table S1). The agreement between the multiplex PCR assay

259	DNA chromatography to discriminate subspecies and macrolide susceptibility of MABC
258	95.2% to 99.8%).
257	results with WGS-based discrimination of the erm(41) T28C sequevar was 98.6% (95% CI:

260	Based on the results for the two PCR-based assays to discriminate MABC subspecies
261	and the erm(41) T28C sequevar, we developed a simple DNA chromatography-based assay to
262	discriminate MABC subspecies, intact erm(41), and the erm(41) T28C sequevar. We could
263	discriminate subspecies and macrolide resistance in a single assay that in a sensitivity test had
264	a detection limit of 10 pg DNA (Fig. 5), which was more sensitive than that of the multiplex
265	PCR assay (Fig. S4, S7). All other laboratory and clinical isolates of NTM as well as M.
266	leprae and M. tuberculosis that were tested were negative in the assay (Fig. S8 and data not
267	shown). Using the 148 MABC isolates, we also examined the agreement between the DNA
268	chromatography assay and WGS-based discrimination. All M. abscessus (n=92), M.
269	massiliense (n=52), and M. bolletii (n=4) isolates were positive with T4, T5, and T3 bands
270	respectively, while all other isolates identified as the remaining two subspecies were negative
271	for these bands (Table 4, Table S1). All M. abscessus carrying the erm(41) T28C sequevar
272	were positive, whereas other strains carrying wild-type T28 were negative for the T1 band,
273	except for MabMT19 and MabLRC77 clinical isolates. All M. abscessus (n=92) and M.
274	<i>bolletii</i> (n=4) strains carrying a intact <i>erm</i> (41) gene were positive for the T2 band but all <i>M</i> .
275	massiliense (n=53) carrying a truncated erm(41) gene were negative, which is consistent with

276	WGS-based analyses (Table 4, Fig. 3). Overall agreement between the DNA chromatography
277	results with WGS-based discrimination was 99.7% (95% CI: 99.0% to 100%). We also used
278	the DNA chromatography method to analyze another sample set comprising 103 MABC
279	clinical isolates from Taiwan for validation (Table S2). Using this method, within only a few
280	hours we could determine that 49, 2, and 50 clinical isolates were M. abscessus, M. bolletii
281	and M. massiliense, respectively; subspecies of TJMA-002 and TJMA-104 (1.9%) were not
282	determined because these isolates showed multiple bands in subspecies identification (Table
283	S2). Of 47 clinical isolates showing the T4 band, 12 also showed the T1 and T2 band, which
284	corresponded to the <i>M. abscessus erm</i> (41) T28C sequevar, while 37 isolates showed only the
285	T2 band corresponding to <i>M. abscessus</i> with an intact <i>erm</i> (41) gene. Two clinical isolates
286	showing the T3 band also showed the T2 band, indicating that all M. bolletii had an intact
287	erm(41) gene. Of 50 isolates showing the T5 band, 47 did not show the T2 band, indicating an
288	erm(41) gene truncation. However, the remaining three isolates (TJMA-024, TJMA-041,
289	TJMA-046) unexpectedly showed the T2 band. Using PCR amplification, TJMA-024 and
290	TJMA-041 isolates had intact erm(41), whereas TJMA-046 had both an intact and truncated
291	erm(41) gene (data not shown). These results suggested that TJMA-024 and TJMA-041 were
292	<i>M. massiliense</i> with an intact $erm(41)$ gene and TJMA-041 was probably a mixed isolate of <i>M</i> .
293	abscessus or M. bolletii having an intact erm(41) gene and M. massiliense with a truncated
294	erm(41) gene.

> Manuscript for bioRxiv M. Yoshida et al.

295

296 Discussion

297 MABC is the most frequent clinical isolate of rapidly growing mycobacteria and an 298 increased emergence has recently been observed in Japan and other developed 299 countries(40-42). Commercially available DNA-DNA hybridization kits or MALDI-TOF MS 300 are available in clinical laboratories in Japan and Taiwan to identify mycobacterium 301 isolates(43, 44), but they cannot discriminate between either subspecies or the 302 macrolide-susceptible erm(41) truncation and T28C polymorphism(45). Since macrolide 303 susceptibility is crucial for effective treatment of MABC infection, here we developed a novel 304 multiplex PCR and DNA chromatography method to identify subspecies and macrolide 305 susceptibility. This assay allows rapid and accurate identification of inducible-macrolide 306 resistance without need for sequencing of the erm(41) gene and/or 14-day drug susceptibility 307 testing as recommended in the recent ATS/ERS/ESCMID/IDSA Clinical Practice 308 Guideline(23). Our methodology is based on two findings about MABC genome architecture: 309 (i) indel regions are robustly conserved at the subspecies level, and (ii) the 310 macrolide-susceptible *M. abscessus* T28C sequevar is phylogenetically clustered and shares 311 specific genetic loci. We thus used subspecies-associated and erm(41) T28C 312 sequevar-associated genomic sequences as genetic markers to predict macrolide susceptibility. 313 By combining detection of these genetic markers with simple DNA chromatography without 314 DNA degeneration processes, our assay could discriminate both subspecies and their

315	macrolide susceptibility more quickly and easily than previously described MLST or WGS
316	methods(43).

317	DNA chromatography produces clear visual results using only a thermocycler rather
318	than more expensive and complex genome sequencers or MALDI-TOF MS instruments. The
319	one hour turnaround time between DNA extraction to availability of results would
320	substantially reduce the need for MLST or WGS to differentiate MABC subspecies and
321	inducible macrolide susceptibility. Compared with the commercially available GenoType
322	NTM-DR kit (Hain Lifesciences GmbH, Bruker Corporation, Nehren, Germany), the present
323	DNA chromatography method is simpler (DNA chromatography vs. Southern blotting) and
324	faster (1 hour vs. >4 hours). Furthermore, the accuracy of subspecies identification is higher
325	(98%-100% vs. 92%-100%), and the ability to discriminate the erm(41) T28C sequevar is
326	comparable(46-48), although the GenoType NTM-DR kit can detect additional acquired
327	macrolide resistance and amikacin resistance.

Our DNA chromatography method had an analytical limit of detection of 10 pg DNA, which is substantially more sensitive than the GenoType NTM-DR kit (2 ng)(48). This amount of DNA theoretically corresponds to approximately 2.2 x 10^3 MABC cells (DNA content/cell = genome size(bp)/0.978×10⁹ \approx 5.11×10⁻³)(49). There was no cross-reactivity with *M. leprae*, *M. tuberculosis*, MAC, or other representative NTM. These observations suggest that the DNA chromatography assay can identify MABC isolates directly from liquid

334	MGIT or solid Löwenstein-Jensen (LJ) or Ogawa cultures at early time points after
335	decontamination of non-mycobacterial organisms. However, we have not yet tested this DNA
336	chromatography method with highly contaminated nucleotide samples extracted directly from
337	sputum or skin specimens. Future improvements to further increase the speed of this method
338	will focus on direct detection from tissue specimens without culturing.
339	In the present work, we sought to detect associations between indel regions and the
340	subspecies, and between genetic loci and the erm(41) T28C mutation. Our method
341	successfully discriminated the subspecies and inducible macrolide susceptibility of almost all
342	of the clinical isolates, but the few exceptions represent a limitation of the method that should
343	be considered. MabMT37 yielded a 1,200 bp and 450 bp product for locus MAB_2613 and
344	MAB_1655 (similar to <i>M. bolletii</i> strains) and a 330 bp product for MAB_4665 (similar to <i>M</i> .
345	abscessus strains). However, WGS-based phylogenetic and ANI analyses unambiguously
346	categorized MabMT37 as <i>M. abscessus</i> (Table S1). We mapped raw sequence reads of
347	MabMT37 to the M. abscessus ATCC 19977 genome and confirmed that there was no
348	heterogeneity among the MAB2613, MAB_1655, and MAB_4665 loci (data not shown),
349	suggesting that MabMT37 was likely a mono-clonal isolate. This result also suggested that,
350	with respect to these genetic markers, MabMT37 had a chimeric genome structure between M.
351	abscessus and M. bolletii. MabMT19 showed inducible clarithromycin resistance and had no
352	mutation at erm(41) position 28, but it did cluster with other erm(41) T28C mutants and was

353	positive for the primer set MAB18036_2558F and MAB18036_2558R (Table S1), suggesting
354	that MabMT19 had a chimeric genome between M. abscessus clades. These observations are
355	supported by a previous genomic study describing an asymmetrical gene flow between
356	MABC subspecies that resulted in a highly mosaic genome architecture(50). Since our assays
357	do not directly analyze housekeeping genes or the $erm(41)$ gene itself, our approach could be
358	affected by genome architecture mosaicism arising via horizontal gene transfer. To address
359	this limitation, accumulation of genomic information for MABC clinical isolates from across
360	the world and successive adjustments of target genomic sequences will be important.
361	In conclusion, we developed a rapid, easy-to-use, and accurate assay to identify
362	subspecies and macrolide susceptibility of MABC by analyzing WGS data of clinical isolates.
363	This assay could be introduced into clinical laboratory practice to facilitate selection of
364	effective treatments, development of assays having improved discrimination and diagnostic
365	capacity, and acquisition of precise, nation-wide epidemiological information for MABC.
366	Although the incidence of the macrolide-susceptible erm(41) T28C mutation is unknown, a
367	population of <i>M. abscessus</i> in our Japanese sample set (18.5%) carried this mutation.
368	Phylogenetic relationships between these mutants and global circulating clones of M .
369	abscessus(30) should be addressed in future studies. Additional international corroboration
370	studies based on epidemiological and population genomic approaches will be required to
371	address these fundamental research questions.

Manuscript for bioRxiv M. Yoshida et al.

Manuscript for bioRxiv M. Yoshida et al.

373 Acknowledgments

374	The clinical isolates used in this study were sent from the hospitals and universities
375	listed below. We appreciate the work of all of the clinicians at the following institutions who
376	cared for patients infected with these mycobacteria: Hokkaido Social Insurance Hospital,
377	Fukujuji Hospital Japan Anti-Tuberculosis Association (JATA), Saitama Medical University
378	Hospital, National Hospital Organization (NHO) Tokyo Hospital, Showa University Fujigaoka
379	Hospital, Keio University Hospital, National Defense Medical College Hospital, Kyorin
380	University Hospital, Nagaya City University Hospital, NHO Minami-Kyoto Hospital, Kyoto
381	Prefectural University of Medicine Hospital, Osaka City Northern-City Hospital, Osaka
382	Hospital JATA, NHO Kinki-Chuo Chest Medical Center, NHO Matsue Medical Center,
383	Kawasaki Medical School, NHO Higashi-Hiroshima Medical Center, Kyosai-Yoshijima
384	Hospital, Kyushu University Hospital, and NHO Omuta Hospital. Computations were
385	performed in part on the NIG supercomputer at the ROIS National Institute of Genetics. We
386	thank Ms. Maki Okuda, Sayaka Kashiwagi, and Ginko Kaneda for their assistance.
387	Declaration of interests
388	M.Y., S.S., S. Miyam. and Y.H. are listed on a pending patent in Japan for the DNA
389	chromatography methodology to distinguish MABC and identify macrolide susceptibility.
390	Availability of data and materials
391	All raw data are available by request to the corresponding authors.
392	22

> Manuscript for bioRxiv M. Yoshida et al.

393 Figure legends.

394 Figure 1

395 Maximum likelihood core-gene phylogeny of 148 clinical and environmental isolates of

- 396 MABC. Core genome alignment of 148 isolates and three reference strains (M. abscessus
- 397 ATCC19977, M. massiliense JCM 15300, and M. bolletii BD) of MABC was generated by
- 398 Roary(51). An alignment containing 62,196 variable positions was used with RAxML to
- 399 construct a maximum likelihood tree(52) having 300 bootstrap replicates. Bootstrap values >
- 400 90% for the major nodes are shown. Scale bar indicates the mean number of nucleotide
- 401 substitutions per site (SNP/site) on the respective branch. Samples are highlighted based on
- 402 inclusion in three major clusters corresponding to MABC subspecies.

403 Figure 2

404 A. Example of indels among MABC subspecies. A progressiveMauve alignment of the 405 three reference strains of MABC is shown. Each genome is laid out in a horizontal track and 406 white boxes indicate coding sequences annotated by dfast core(53). A colored similarity plot 407 is shown for each genome; the height is proportional to the sequence identity in that region. F 408 and R indicate primer position of MAB2613F and MAB2613R (listed in Table 1), 409 respectively, in each reference strain genome. B. Representative multiplex PCR results for 410 reference strains and clinical isolates amplified with primer pair MAB2613F and 411 **MAB2613R and primer pair MAB_1655F and MAB_1655R.** Types 1, 1a, 1b, 2, 2a, 2b, 2c,

Manuscript for bioRxiv M. Yoshida et al.

412	2d, 3, 3a, 3b, 3c, ds4 and ds5 are the sub-groupings (sequevars) of the clinical isolates based
413	on their sequences [Table 3 of the previous article(31)]. Numerals below the sequevars
414	correspond to reference strains (ab ^T , ma ^T , or bo ^T) or the strain numbers of clinical isolates
415	described in the previous article(31). Colored circles correspond to each member of MABC
416	determined by WGS-based analysis. Lanes: M, DNA marker (100 bp ladder); ab ^T , M.
417	abscessus (ATCC19977); ma, M. massiliense (JCM15300); bo, M. bolletii (BD). The PCR
418	reaction products were electrophoresed on 2% agarose gels.
419	Figure 3
420	Macrolide susceptibility-associated genotypes of 148 MABC isolates. Maximum
421	likelihood core-gene phylogeny of A) M. abscessus, B) M. massisliense, C) M. bolletii
421 422	likelihood core-gene phylogeny of A) <i>M. abscessus</i> , B) <i>M. massisliense</i> , C) <i>M. bolletii</i> correspond to those depicted in Figure 1. The presence (black) and absence (gray) of
422	correspond to those depicted in Figure 1. The presence (black) and absence (gray) of
422 423	correspond to those depicted in Figure 1 . The presence (black) and absence (gray) of macrolide resistance-associated mutations is indicated. The presence of a T-to-C substitution
422 423 424	correspond to those depicted in Figure 1 . The presence (black) and absence (gray) of macrolide resistance-associated mutations is indicated. The presence of a T-to-C substitution in position 28 or a truncation of the <i>erm</i> (41) gene, which are both associated with inducible
422 423 424 425	correspond to those depicted in Figure 1 . The presence (black) and absence (gray) of macrolide resistance-associated mutations is indicated. The presence of a T-to-C substitution in position 28 or a truncation of the <i>erm</i> (41) gene, which are both associated with inducible resistance to macrolides, was detected. Substitutions or truncations with asterisks indicate
422 423 424 425 426	correspond to those depicted in Figure 1 . The presence (black) and absence (gray) of macrolide resistance-associated mutations is indicated. The presence of a T-to-C substitution in position 28 or a truncation of the <i>erm</i> (41) gene, which are both associated with inducible resistance to macrolides, was detected. Substitutions or truncations with asterisks indicate non-synonymous mutations. The lineage to which all <i>M. abscessus erm</i> (41) T28C mutants

429 Figure 4

Manuscript for bioRxiv M. Yoshida et al.

430	A. Visualization of lineage-specific genomic loci. A progressiveMauve alignment of three
431	clinical isolates carrying the erm(41) T28C mutation and the reference strains is shown.
432	Boxes indicate coding sequences annotated by dfast_core(53). Red and blue boxes indicate
433	genes that are significantly associated with the lineage to which all M . abscessus $erm(41)$
434	T28C mutants belong (see Methods and Table S3). F1, R1, F2, R2, F3, and R3 indicate
435	primer position of MAB18036_2551F, MAB18036_2551R, MAB18036_2558F,
436	MAB18036_2558R, MAB18036_2560F, and MAB18036_2560R (listed in Table 2),
437	respectively, in each genome of the presented clinical isolates. A similarity plot for each
438	genome is colored as described for Figure 2A. B. Representative multiplex PCR results to
439	identify macrolide susceptibility in MABC. PCR was performed for the reference strains
439 440	identify macrolide susceptibility in MABC. PCR was performed for the reference strains and clinical isolates were amplified with primer pairs MAB18036_2558F and
440	and clinical isolates were amplified with primer pairs MAB18036_2558F and
440 441	and clinical isolates were amplified with primer pairs MAB18036_2558F and MAB18036_2558R (listed in Table 2) and primer pair ermF (gaccggggccttcttcgtgatc) and
440 441 442	and clinical isolates were amplified with primer pairs MAB18036_2558F and MAB18036_2558R (listed in Table 2) and primer pair ermF (gaccggggccttcttcgtgatc) and ermR (agcttccccgcaccgattcca)(54). Colored circles correspond to each member of MABC
440 441 442 443	and clinical isolates were amplified with primer pairs MAB18036_2558F and MAB18036_2558R (listed in Table 2) and primer pair ermF (gaccggggccttcttcgtgatc) and ermR (agcttccccgcaccgattcca)(54). Colored circles correspond to each member of MABC determined by WGS-based analyses: red, <i>M. abscessus</i> ; blue, <i>M. massiliense</i> ; green, <i>M.</i>
440 441 442 443 444	and clinical isolates were amplified with primer pairs MAB18036_2558F and MAB18036_2558R (listed in Table 2) and primer pair ermF (gaccggggccttcttcgtgatc) and ermR (agcttccccgcaccgattcca)(54). Colored circles correspond to each member of MABC determined by WGS-based analyses: red, <i>M. abscessus</i> ; blue, <i>M. massiliense</i> ; green, <i>M. bolletii</i> . The presence (+) or absence (-) of genotypes associated with the inducible macrolide

448 Figure 5

449 DNA chromatography to differentiate subspecies and macrolide susceptibility of MABC.

450	DNA chromatography results for reference strains (ab ^T , ma ^T , or bo ^T) or representative clinical
451	isolates are shown. Colored circles above the strain names correspond to each member of
452	MABC determined by WGS-based analyses: red, M. abscessus; blue, M. massiliense; green,
453	M. bolletii, respectively. The presence (+) or absence (-) of genotypes associated with
454	inducible macrolide resistance are shown. Bands: C, inner (negative) control; T1, erm(41)
455	T28C polymorphism; T2, intact erm(41) genes; T3, M. bolletii; T4, M. abscessus; T5, M.

456 massiliense.

Set	Primer name	Sequence (5'-3')	Expected product size (bp)			Note
			M. abscessus	M. massiliense	M. bolletii	
	MAB2613F	gttcggatcgcatggcgttgtgctg				ATCC 19977 (2653095 to 2653597),
1	MAB2613R	gggatgctgtgatcgaggtcggc	503	422	1204	C-term of MAB_2613 to downstream of MAB_2613
2	MAB_1655F	gagggcacgggagagaccaccggag				ATCC 19977 (1685112 to 1685763),
	MAB_1655R	ccatttcYctatcYcgcccg	652	291	452	C-term of MAB_1655 to downstream of MAB_1655
	MAB_4665F	gatcccgttactagcgctgctttac				ATCC 19977 (4747125 to 4747435),
3	MAB_4665R	tcccgttcgactggcgcccgga	332	538	666	intergenic region, downstream of MAB_4665c

460 Table 2. Primers for discrimination of the *erm*(41) T28C sequevar.

Set	Primer name	Sequence (5'-3')	Expected product si of <i>M. abscessus</i>	ze Note	
1	MAB18036_2551F	ccgaatcggaatacgggccggggtaca	601	Mab18036 (contig11: 13301 to 13902), C-term of Mab18036_2551 to N-term of	
	MAB18036_2551R	cgcctcgatactcacgccgcgccttca		Mab18036_2553	
2	MAB18036_2558F	caagaaccacatggataaacccgactg	730	Mab_18036 (contig11: 16597 to 17327), Upstream of Mab18036_2558 to Mab18036_2559	
2	MAB18036_2558R	catcggtcgggatcacttcagcggcag	750		
2	MAB18036_2560F	caggagcatcgtgcagatccgctgtcg	820	Mab18036 (contig11: 18219 to 19039), middle of Mab18036_2560 to downstream	
3	MAB18036_2560R	accetgtttgccagegageetaacaet	820	of Mab18036_2561	

Manuscript for bioRxiv M. Yoshida et al.

Cat	Drive or a ora	Secure 26 (51 21)	Torrect
Set	Primer name	Sequence (5'-3')	Target
T1	C28-1f	tcctcggaatcggcactgtccgttg	<i>erm</i> (41) T28C
11	C28-1r	tacagcagctcaacagtgacaccgaag	polymorphism
T2	erm-4f	cgtcgccgaatccggtgttcgc	integet $arm(A1)$
12	erm-4r	ctcggcaaaccgtgaacgaaggtgtc	intact <i>erm</i> (41)
т2	MBO-22f	cggtacgtcttacacgtcacgattgt	M. bolletii
T3	MBO-22r	acgaggtggataccgcgatcatt	M. Dollelli
т1	MAB-25f	atgttggaccgcaaggggttcgacac	Mahaaagua
T4	MAB-23r	gtcaatacgatgaagccgacctcgg	M. abscessus
T5	MMA-20f	tgctcgagagggaatgtcatccaccac	M
	MMA-20r	atatcacatcagccaaagccgcaag	M. massiliense

462 Table 3. DNA chromatography primers.

463

464 Table 4. Accuracy of DNA chromatography test using MABC isolates from Japan (n =

465 148).

<i>erm</i> (41) C28	<i>erm</i> (41) T28	Agreement rate with WGS-based identification
17	2	0.986 (95% CI:
0	129	0.952 to 0.998)
<i>erm</i> (41) intact	<i>erm</i> (41) truncated	Agreement rate with WGS-based identification
96	0	1.000 (95% CI:
0	52	0.975 to 1.000)
M. bolletii	not <i>M. bolletii</i>	Agreement rate with WGS-based identification
4	0	1.000 (95% CI:
0	144	0.975 to 1.000)
M. abscessus	not M. abscessus	Agreement rate with WGS-based identification
	17 0 <i>erm</i> (41) intact 96 0 <i>M. bolletii</i> 4 0	17 2 0 129 erm(41) intact erm(41) truncated 96 0 0 52 M. bolletii not M. bolletii 4 0 0 144

			Manuscript for bioRxiv M. Yoshida et al.
T4 positive	92	0	1.000 (95% CI:
T4 negative	0	56	0.975 to 1.000)
	M. massiliense	not M. massiliense	Agreement rate with WGS-based identification
T5 positive	52	0	1.000 (95% CI:
T5 negative	0	96	0.975 to 1.000)

Manuscript for bioRxiv M. Yoshida et al.

468 References

469	1.	Oren A, Garrity GM. List of new names and new combinations previously effectively,
470		but not validly, published. Int J Syst Evol Microbiol 2016;66:2463–2466.
471	2.	Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly
472		support division of the genus Mycobacterium into an emended genus Mycobacterium
473		and four novel genera. Front Microbiol 2018;9:67.
474	3.	Adekambi T, Sassi M, Van Ingen J, Drancourt M. Reinstating Mycobacterium
475		massiliense and Mycobacterium bolletii as species of the Mycobacterium abscessus
476		complex. Int J Syst Evol Microbiol 2017;67:2726–2730.
477	4.	Tortoli E, Kohl TA, Brown-Elliott BA, Trovato A, Cardoso-Leão S, Garcia MJ,
478		Vasireddy S, Turenne CY, Griffith DE, Philley J V., Niemann S, Wallace RJ, Cirillo
479		DM. Mycobacterium abscessus, a taxonomic puzzle. Int J Syst Evol Microbiol
480		2018;68:467-469.
481	5.	Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland
482		SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, Von Reyn
483		CF, Wallace RJ, Winthrop K. An official ATS/IDSA statement: Diagnosis, treatment,
484		and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med
485		2007;175:367-416.

Manuscript for bioRxiv M. Yoshida et al.

486	6.	Nakanaga K, Hoshino Y, Era Y, Matsumoto K, Kanazawa Y, Tomita A, Furuta M,
487		Washizu M, Makino M, Ishii N. Multiple cases of cutaneous Mycobacterium
488		massiliense infection in a "hot spa" in Japan. J Clin Microbiol 2011;49:613-617.
489	7.	Shields RK, Clancy CJ, Minces LR, Shigemura N, Kwak EJ, Silveira FP,
490		Abdel-Massih RC, Bhama JK, Bermudez CA, Pilewski JM, Crespo M, Toyoda Y,
491		Nguyen MH. Epidemiology and outcomes of deep surgical site infections following
492		lung transplantation. Am J Transplant 2013;13:2137–2145.
493	8.	Lee MR, Cheng A, Lee YC, Yang CY, Lai CC, Huang YT, Ho CC, Wang HC, Yu CJ,
494		Hsueh PR. CNS infections caused by Mycobacterium abscessus complex: clinical
495		features and antimicrobial susceptibilities of isolates. J Antimicrob Chemother
496		2012;67:222–225.
497	9.	Choi H, Kim SY, Kim DH, Huh HJ, Ki CS, Lee NY, Lee SH, Shin S, Shin SJ, Daley
498		CL, Koh WJ. Clinical characteristics and treatment outcomes of patients with acquired
499		macrolide-resistant Mycobacterium abscessus lung disease. Antimicrob Agents
500		Chemother 2017;61:e01146–17.
501	10.	Diel R, Ringshausen F, Richter E, Welker L, Schmitz J, Nienhaus A. Microbiological
502		and clinical outcomes of treating non-Mycobacterium avium complex nontuberculous
503		mycobacterial pulmonary disease: a systematic review and meta-analysis. Chest
504		2017;152:120–142.

505	11.	Griffith DE, Girard WM, Wallace RJ. Clinical features of pulmonary disease caused by
506		rapidly growing mycobacteria. An analysis of 154 patients. Am Rev Respir Dis 1993;
507		147:1271–8.
508	12.	Sfeir M, Walsh M, Rosa R, Aragon L, Liu SY, Cleary T, Worley M, Frederick C,
509		Abbo LM. Mycobacterium abscessus complex infections: A retrospective cohort Study.
510		Open Forum Infect Dis 2018;5:ofy022.
511	13.	Huang YC, Liu MF, Shen GH, Lin CF, Kao CC, Liu PY, Shi ZY. Clinical outcome of
512		Mycobacterium abscessus infection and antimicrobial susceptibility testing. J
513		Microbiol Immunol Infect 2010;43:401–406.
514	14.	Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. Mycobacterium abscessus: a
515		new antibiotic nightmare. J Antimicrob Chemother 2012;67:810-818.
516	15.	Jeon K, Kwon OJ, Nam YL, Kim BJ, Kook YH, Lee SH, Young KP, Chang KK, Koh
517		WJ. Antibiotic treatment of Mycobacterium abscessus lung disease: A retrospective
518		analysis of 65 patients. Am J Respir Crit Care Med 2009;180:896–902.
519	16.	Lyu J, Jang HJ, Song JW, Choi CM, Oh YM, Lee S Do, Kim WS, Kim DS, Shim TS.
520		Outcomes in patients with Mycobacterium abscessus pulmonary disease treated with
521		long-term injectable drugs. Respir Med 2011;105:781-787.
522	17.	Morimoto K, Nakagawa T, Asami T, Morino E, Fujiwara H, Hase I, Tsujimoto Y,
523		Izumi K, Hayashi Y, Matsuda S, Murase Y, Yano R, Takasaki J, Betsuyaku T, Aono A,

524		Goto H, Nishimura T, Sasaki Y, Hoshino Y, Kurashima A, Ato M, Ogawa K,
525		Hasegawa N, Mitarai S. Clinico-microbiological analysis of 121 patients with
526		pulmonary Mycobacteroides abscessus complex disease in Japan – An NTM-JRC
527		study with RIT. Respir Med 2018;145:14-20.
528	18.	Koh WJ, Jeon K, Lee NY, Kim BJ, Kook YH, Lee SH, Park YK, Kim CK, Shin SJ,
529		Huitt GA, Daley CL, Kwon OJ. Clinical significance of differentiation of
530		Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care
531		Med 2011;183:405–410.
532	19.	Park J, Cho J, Lee C-H, Koo S, Yim J-J. Progression and treatment outcomes of lung
533		disease caused by Mycobacterium abscessus and Mycobacterium massiliense. Clin
534		Infect Dis 2017;64:301–308.
535	20.	Nash KA, Brown-Elliott AB, Wallace RJ. A novel gene, erm(41), confers inducible
536		macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from
537		Mycobacterium chelonae. Antimicrob Agents Chemother 2009;53:1367–1376.
538	21.	Luthra S, Rominski A, Sander P. The role of antibiotic-target-modifying and
539		antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front
540		Microbiol 2018;9:2179
541	22.	Choi GE, Shin SJ, Won CJ, Min KN, Oh T, Hahn MY, Lee K, Lee SH, Daley CL, Kim
542		S, Jeong BH, Jeon K, Koh WJ. Macrolide treatment for Mycobacterium abscessus and

543		Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care
544		Med 2012;186:917–925.
545	23.	Daley CL, Iaccarino Jr JM, Lange C, Cambau E, Wallace RJ, Andrejak C, Böttger
546		EC, Brozek J, Griffith DE, Guglielmetti L, Huitt GA, Knight SL, Leitman P, Marras
547		TK, Olivier KN, Santin M, Stout JE, Tortoli E, van Ingen J, Wagner D, Winthrop KL.
548		Treatment of nontuberculous mycobacterial pulmonary disease: An official
549		ATS/ERS/ESCMID/IDSA clinical practice guideline: Executive summary. Clin Infect
550		Dis 2020;71:e1-e36.
551	24.	Macheras E, Roux AL, Ripoll F, Sivadon-Tardy V, Gutierrez C, Gaillard JL, Heym B.
552		Inaccuracy of single-target sequencing for discriminating species of the
553		Mycobacterium abscessus group. J Clin Microbiol 2009;47:2596–2600.
554	25.	Macheras E, Roux AL, Bastian S, Leão SC, Palaci M, Sivadon-Tardy V, Gutierrez C,
555		Richter E, Rüsch-Gerdes S, Pfyffer G, Bodmer T, Cambau E, Gaillard JL, Heym B.
556		Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu
557		lato) strains. J Clin Microbiol 2011;49:491-499.
558	26.	Adékambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and
559		late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 2003;41:5699–5708.
560	27.	Wuzinski M, Bak AK, Petkau A, Demczuk WHB, Soualhine H, Sharma MK. A
561		multilocus sequence typing scheme for Mycobacterium abscessus complex

562		(MAB-multilocus sequence typing) using whole-genome sequencing data. Int J
563		Mycobacteriology 2019;8:273–280.
564	28.	Macheras E, Konjek J, Roux AL, Thiberge JM, Bastian S, Leão SC, Palaci M,
565		Sivadon-Tardy V, Gutierrez C, Richter E, Rüsch-Gerdes S, Pfyffer GE, Bodmer T,
566		Jarlier V, Cambau E, Brisse S, Caro V, Rastogi N, Gaillard JL, Heym B. Multilocus
567		sequence typing scheme for the Mycobacterium abscessus complex. Res Microbiol
568		2014;165:82–90.
569	29.	Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, Reacher M,
570		Haworth CS, Curran MD, Harris SR, Peacock SJ, Parkhill J, Floto RA. Whole-genome
571		sequencing to identify transmission of Mycobacterium abscessus between patients with
572		cystic fibrosis: A retrospective cohort study. Lancet 2013;381:1551-1560.
573	30.	Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P,
574		Verma D, Hill E, Drijkoningen J, Gilligan P, Esther CR, Noone PG, Giddings O, Bell
575		SC, Thomson R, Wainwright CE, Coulter C, Pandey S, Wood ME, Stockwell RE,
576		Ramsay KA, Sherrard LJ, Kidd TJ, Jabbour N, Johnson GR, Knibbs LD, Morawska L,
577		Sly PD, Jones A, et al. Emergence and spread of a humantransmissible
578		multidrug-resistant nontuberculous mycobacterium. Science 2016;354:751-757.
579	31.	Nakanaga K, Sekizuka T, Fukano H, Sakakibara Y, Takeuchi F, Wada S, Ishii N,
580		Makino M, Kuroda M, Hoshino Y. Discrimination of Mycobacterium abscessus subsp.

> Manuscript for bioRxiv M. Yoshida et al.

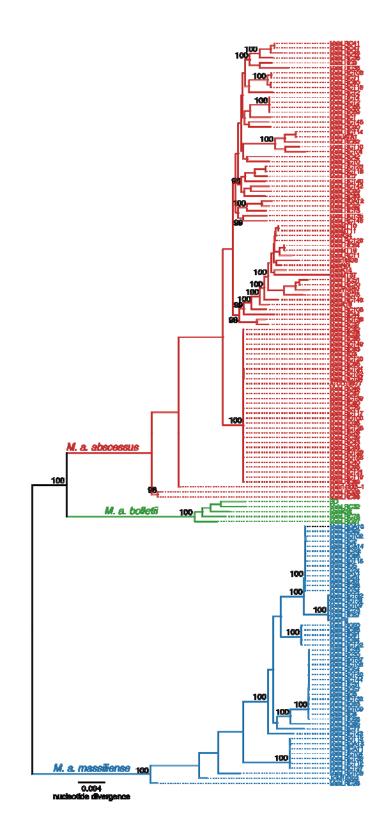
- 581 *massiliense* from *Mycobacterium abscessus* subsp. *abscessus* in clinical isolates by
- 582 multiplex PCR. *J Clin Microbiol* 2014;52:251–9.
- 583 32. Nagai S, Miyamoto S, Ino K, Tajimi S, Nishi H, Tomono J. Easy detection of multiple
- 584 Alexandrium species using DNA chromatography chip. *Harmful Algae*
- **585** 2016;51:97–106.
- 586 33. Sano S, Miyamoto S, Kawamoto S. Rapid multiplex nucleic acid amplification test
- 587 developed using paper chromatography chip and azobenzene-modified
- 588 oligonucleotides. *J Biosci Bioeng* 2018;126:397–403.
- 589 34. Yamamuro T, Miyamoto S, Kitamura M, Muro T, Iwata YT, Segawa H, Kuwayama K,
- 590 Tsujikawa K, Kanamori T, Inoue H. Development of simple and accurate detection
- 591 systems for Cannabis sativa using DNA chromatography. *Forensic Sci Int*
- **592** 2018;291:68–75.
- 593 35. Tortoli E, Nanetti A, Piersimoni C, Cichero P, Farina C, Mucignat G, Scarparo C,
- Bartolini L, Valentini R, Nista D, Gesu G, Tosi CP, Crovatto M, Brusarosco G.
- 595 Performance assessment of new multiplex probe assay for identification of
- 596 mycobacteria. *J Clin Microbiol* 2001;39:1079–1084.
- 597 36. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved
- genomic sequence with rearrangements. *Genome Res* 2004;14:1394–403.

599	37.	Brown-Elliott BA, Vasireddy S, Vasireddy R, Iakhiaeva E, Howard ST, Nash K,
600		Parodi N, Strong A, Gee M, Smith T, Wallace RJ. Utility of sequencing the <i>erm</i> (41)
601		gene in isolates of Mycobacterium abscessus subsp. abscessus with low and
602		intermediate clarithromycin MICs. J Clin Microbiol 2015;53:1211–1215.
603	38.	Tortoli E, Kohl TA, Brown-Elliott BA, Trovato A, Leão SC, Garcia MJ, Vasireddy S,
604		Turenne CY, Griffith DE, Philley J V, Baldan R, Campana S, Cariani L, Colombo C,
605		Taccetti G, Teri A, Niemann S, Wallace RJ, Cirillo DM. Emended description of
606		Mycobacterium abscessus, Mycobacterium abscessus subsp. abscessus and
607		Mycobacterium abscessus subsp. bolletii and designation of Mycobacterium abscessus
608		subsp. massiliense comb. nov. Int J Syst Evol Microbiol 2016;66:4471-4479.
609	39.	Lipworth S, Hough N, Leach L, Morgan M, Jeffery K, Andersson M, Robinson E,
610		Grace Smith E, Crook D, Peto T, Walker T. Whole-genome sequencing for predicting
611		clarithromycin resistance in Mycobacterium abscessus. Antimicrob Agents Chemother
612		2019;63:e01204–18.
613	40.	Namkoong H, Kurashima A, Morimoto K, Hoshino Y, Hasegawa N, Ato M, Mitarai S.
614		Epidemiology of pulmonary nontuberculous Mycobacterial disease, Japan. Emerg
615		Infect Dis 2016;22:1116–1117.
616	41.	Wagner D, Van Ingen J, Van Der Laan R, Obradovic M. Non-tuberculous
617		mycobacterial lung disease in patients with bronchiectasis: Perceived risk, severity and

Manuscript for bioRxiv M. Yoshida et al.

618		guideline adherence in a European physician survey. BMJ Open Respir Res
619		2020;7:e000498.
620	42.	Zhang ZX, Cherng BPZ, Sng LH, Tan YE. Clinical and microbiological characteristics
621		of non-tuberculous mycobacteria diseases in Singapore with a focus on pulmonary
622		disease, 2012-2016. BMC Infect Dis 2019;19(1):436.
623	43.	Hoshino Y, Suzuki K. Differential diagnostic assays for discriminating mycobacteria,
624		especially for nontuberculous mycobacteria: what does the future hold? Future
625		Microbiol 2015;10:205–16.
626	44.	Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, Beretti J-L, Ferroni A,
627		Gutmann L, Nassif X. MALDI-TOF mass spectrometry tools for bacterial
628		identification in clinical microbiology laboratory. Clin Biochem 2011;44:104-9.
629	45.	Mase A, Yamaguchi F, Funaki T, Yamazaki Y, Shikama Y, Fukuchi K. PCR
630		amplification of the <i>erm</i> (41) gene can be used to predict the sensitivity of
631		Mycobacterium abscessus complex strains to clarithromycin. Exp Ther Med
632		2019;19:945–955.
633	46.	Kehrmann J, Kurt N, Rueger K, Bange FC, Buer J. GenoType NTM-DR for
634		identifying Mycobacterium abscessus subspecies and determining molecular resistance.
635		J Clin Microbiol 2016;54:1653–1655.

636	47.	Huh HJ, Kim SY, Shim HJ, Kim DH, Yoo IY, Kang OK, Ki CS, Shin SY, Jhun BW,
637		Shin SJ, Daley CL, Koh WJ, Yong Lee N. GenoType NTM-DR performance
638		evaluation for identification of Mycobacterium avium complex and Mycobacterium
639		abscessus and determination of clarithromycin and amikacin resistance. J Clin
640		Microbiol 2019;57:e00516-19.
641	48.	Mougari F, Loiseau J, Veziris N, Bernard C, Bercot B, Sougakoff W, Jarlier V,
642		Raskine L, Cambau E, on behalf of the French National Reference Center for
643		Mycobacteria. Evaluation of the new GenoType NTM-DR kit for the molecular
644		detection of antimicrobial resistance in non-tuberculous mycobacteria. J Antimicrob
645		Chemother 2017;72:1669–1677.
646	49.	Dolezel J, Bartos J, Voglmayr H, Johann G. Nuclear DNA content and genome size of
647		trout and human. <i>Cytometry</i> 2003;51A:127–128.
648	50.	Sapriel G, Konjek J, Orgeur M, Bouri L, Frézal L, Roux A-L, Dumas E, Brosch R,
649		Bouchier C, Brisse S, Vandenbogaert M, Thiberge J-M, Caro V, Ngeow YF, Tan JL,
650		Herrmann J-L, Gaillard J-L, Heym B, Wirth T. Genome-wide mosaicism within
651		Mycobacterium abscessus: evolutionary and epidemiological implications. BMC
652		Genomics 2016;17:118.

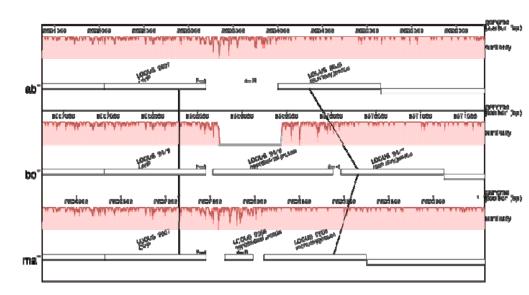

Manuscript for bioRxiv M. Yoshida et al.

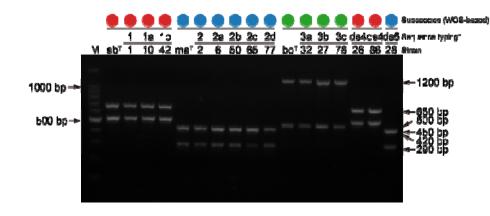
653	51.	Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M,
654		Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome
655		analysis. Bioinformatics 2015;31:3691–3693.
656	52.	Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses
657		with thousands of taxa and mixed models. Bioinformatics 2006;22:2688-2690.
658	53.	Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome
659		annotation pipeline for faster genome publication. <i>Bioinformatics</i> 2018;34:1037–1039.
660	54.	Kim B-J, Kim G-N, Kim B-R, Shim T-S, Kook Y-H, Kim B-J. Phylogenetic analysis
661		of Mycobacterium massiliense strains having recombinant rpoB gene laterally
662		transferred from Mycobacterium abscessus. PLoS One 2017;12:e0179237.
663		

Manuscript for bioRxiv M. Yoshida et al.

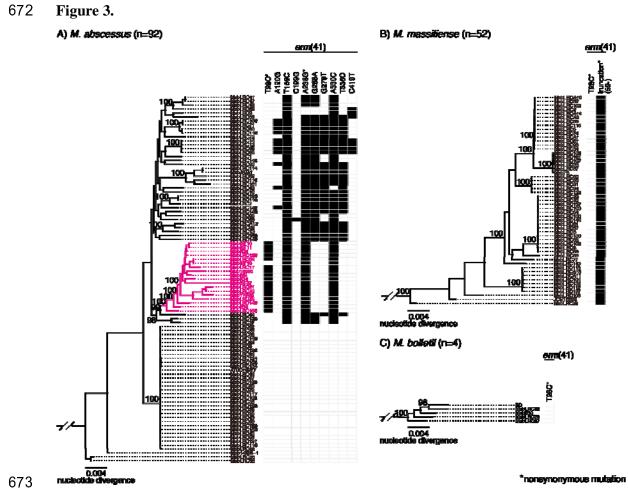
665	Figures
	0

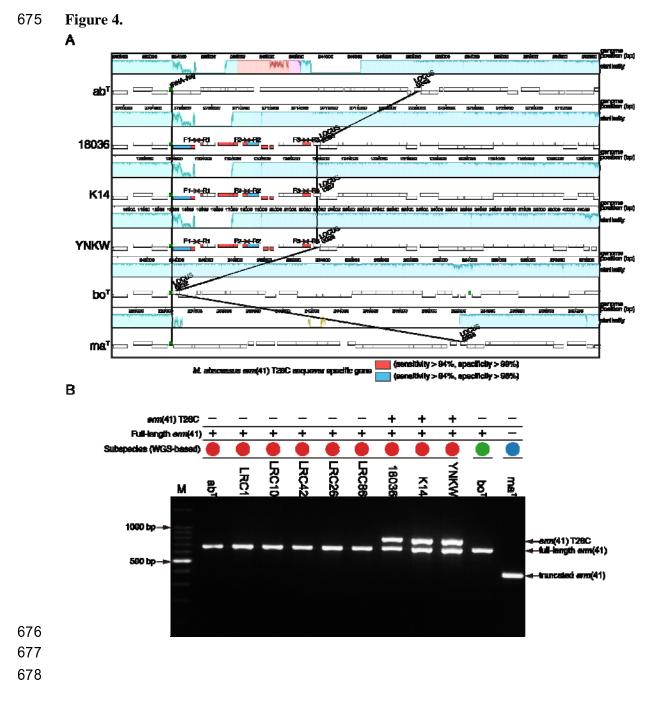
666 **Figure 1.**



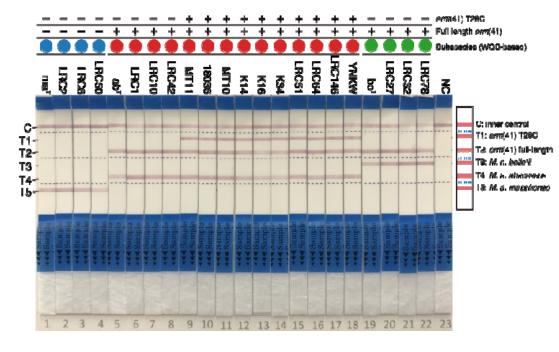

Manuscript for bioRxiv M. Yoshida et al.

А




В

670


Manuscript for bioRxiv M. Yoshida et al.

Manuscript for bioRxiv M. Yoshida et al.

679 Figure 5

> Manuscript for bioRxiv M. Yoshida et al.

682 Online Data Supplement

- 683 Title: A Novel DNA Chromatography Method to Distinguish *M. abscessus* Subspecies and
- 684 Macrolide Susceptibility

685

686 Authors

687 Mitsunori Yoshida¹, Sotaro Sano², Jung-Yien Chien^{3, *}, Hanako Fukano¹, Masato Suzuki⁴,

688 Takanori Asakura^{1,5}, Kozo Morimoto⁶, Yoshiro Murase⁷, Shigehiko Miyamoto², Atsuyuki

689 Kurashima⁶, Naoki Hasegawa⁵, Po-Ren Hsueh⁸, Satoshi Mitarai⁷, Manabu Ato¹, Yoshihiko

690 Hoshino^{1, *}

¹Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious
Diseases, ²Medical Solutions Vehicle, Kaneka Co. Ltd., ³Depertment of Internal Medicine,
Pulmonary and Critical Care Medicine, National Taiwan University Hospital, ⁴Antimicrobial
Resistance Research Center, National Institute of Infectious Diseases, ⁵Center for Infectious
Diseases and Infection Control, School of Medicine, Keio University, ⁶Respiratory Disease

696 Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, ⁷Department of

- 697 Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan
- 698 Anti-Tuberculosis Association, and ⁸National Taiwan University College of Medicine.

699

700 *Corresponding author:

> Manuscript for bioRxiv M. Yoshida et al.

- 701 Yoshihiko Hoshino (lead contact), M.D., Ph.D., Department of Mycobacteriology, Leprosy
- 702 Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba, Higashi-Murayama,
- 703 Tokyo 189-0002, Japan. Phone: +81-42-391-8211. Fax: +81-42-394-9092. E-mail:
- 704 yhoshino@niid.go.jp
- 705 Jung-Yien Chien, M.D., Ph.D., Department of Internal Medicine, Pulmonary and Critical
- 706 Care Medicine, National Taiwan University Hospital, Phone; +886-2-2312-3456 ext. 62905,
- 707 E-mail: jychien@ntu.edu.tw

Manuscript for bioRxiv M. Yoshida et al.

709 Supplemental Methods

710 DNA sequencing and genomic analysis

711	Genomic DNA was extracted from each isolate with a NucleoSpin Plant II kit
712	(MACHEREY-NAGEL, Düren, Germany) in accordance with the manufacturer's instructions,
713	and was used for Nextera XT library construction and genome sequencing with Illumina
714	NovaSeq or MiniSeq. All raw read data for the newly sequenced strains (148 strains isolated
715	in Japan) in this study were deposited in the DNA Data Bank of Japan (DDBJ) and mirrored
716	at the National Center for Biotechnology Information (NCBI) under BioProject accession
717	number PRJDB10333.
718	The Illumina read data for each isolate were <i>de novo</i> assembled into contigs using a
719	Shovill pipeline with default settings (https://github.com/tseemann/shovill). Table S3 lists the
720	number of contigs, raw coverage and N50 value of each isolate. We combined the data with
721	the complete genome sequence of <i>M. abscessus</i> ATCC19977(1), <i>M. massiliense</i> JCM
722	15300(2), and <i>M. bolletii</i> BD(3). Phylogenetic analysis using a core gene set from the MABC
723	isolates from Japan was next performed. We annotated each genome using DFAST-core ver.
724	1.0.3 with the default setting(4) and the resulting gene annotations (GFF3 format) were used
725	with Roary software and the "-cd 100" option(5) to compute core-gene alignments for the
726	isolates. Using the 2,827,548 bp-long core-gene alignment carrying 62,196 SNP positions, we
727	estimated a maximum-likelihood tree using RAxML ver. 8.2.12(6). We used the following

728	parameters that indicate the GTR + G4 model of DNA substitution with estimation of the
729	shape parameter of the gamma distribution by maximizing the likelihood: -f a -m
730	GTRGAMMA. Average nucleotide identity (ANI) values among all MABC isolates were
731	calculated using fastANI with default settings(7). To identify single nucleotide
732	polymorphisms (SNPs) in MABC isolates, we used MUMmer to conduct pairwise genome
733	alignment between M. abscessus ATCC 19977 and one of the 150 strains including M.
734	bolletii BD and M. massiliense JCM 15300(8). We then used an in-house Perl script to
735	combine the alignments in a multiple whole-genome alignment, in which each position
736	corresponded to that of the ATCC 19977 genome. The multiple whole-genome alignments
737	were used for extracting and investigating the erm(41) genotype (MAB_2297, nucleotide
738	position: 2345955 to 2346476 in ATCC 19977 ^T) of all strains using SeqKit(9).
	position. 2545755 to 2546476 in Trice 17777) of an strains using Sequen()).
739	Construction of primers for discriminating MABC subspecies and the <i>erm</i> (41) T28C
739 740	
	Construction of primers for discriminating MABC subspecies and the erm(41) T28C
740	Construction of primers for discriminating MABC subspecies and the <i>erm</i> (41) T28C sequevar.
740 741	Construction of primers for discriminating MABC subspecies and the <i>erm</i> (41) T28C sequevar. To construct primer sets for discriminating MABC, we first aligned the complete
740 741 742	Construction of primers for discriminating MABC subspecies and the <i>erm</i> (41) T28C sequevar. To construct primer sets for discriminating MABC, we first aligned the complete genome sequences of <i>M. massiliense</i> JCM15300 and <i>M. bolletii</i> BD to the <i>M. abscessus</i>
740 741 742 743	Construction of primers for discriminating MABC subspecies and the <i>erm</i> (41) T28C sequevar. To construct primer sets for discriminating MABC, we first aligned the complete genome sequences of <i>M. massiliense</i> JCM15300 and <i>M. bolletii</i> BD to the <i>M. abscessus</i> ATCC19977 reference genome and draft genomes of representative 14 clinical isolates using

747	primer sets to determine the sub-clades of the M. abscessus erm(41) T28C sequevar, we
748	identified accessory genes that were significantly associated with the lineage using
749	Scoary(10). Primer sets were designed around the accessory genes used as genetic markers of
750	the lineage (Table 2).
751	Statistical analysis
752	Statistical analyses were performed with R software (www.r-project.org). The R
753	function binom.test() was used to assess 95% confidence intervals (95% CIs) of agreement
754	rates between the multiplex PCR/DNA chromatography and WGS-based identification.
755	Differences in accuracy between the multiplex PCR developed in this study and our previous
756	multiplex PCR were statistically assessed using the R function prop.test().
757	Ethics Statement
758	This study was reviewed and approved by the medical research ethics committee of the
759	National Institute of Infectious Diseases for inclusion of human subjects (#1004 and #1005 for
760	the Japanese and Taiwanese, respectively).

Manuscript for bioRxiv M. Yoshida et al.

762 Supplemental Figure Legends.

763 Figure S1

764	Maximum-likelihood trees constructed from concatenated sequences. A. Concatenated
765	sequences of rpoB (409-bp), hsp65 (409-bp), and ITS (298-bp) fragments to differentiate
766	subspecies of MABC as previously described (11). Samples having results that differed from
767	those for WGS-based analyses are highlighted. B. Concatenated sequences of 7 housekeeping
768	genes [argH (480 bp), cya (510 bp), glpK (534 bp), gnd (480 bp), murC (537 bp), pgm (495
769	bp), pta (486 bp), and purH (549 bp)] to differentiate subspecies of MABC as described
770	previously(12). Sequences were extracted from the whole-genome alignment of each isolate
771	to the reference strain <i>M. abscessus</i> ATCC 19977 (see Supplemental Methods). The trees for
772	all isolates (n=148) and three reference strains (M. abscessus ATCC 19977, M. massiliense
773	JCM 15300, and <i>M. bolletii</i> BD) were computed using MEGA ver. 10.1.7 with 500 bootstrap
774	replicates. The bootstrap support values (%) are indicated for each node. Colored circles
775	correspond to each member of MABC determined by WGS-based analyses (Fig. 1 and Fig.
776	S2): red, M. abscessus; blue, M. massiliense; green, M. bolletii, respectively.
777	Figure S2
778	Average nucleotide identity matrix of MABC isolates. Average nucleotide identities
779	among 148 isolates and three reference strains (M. abscessus ATCC 19977, M. massiliense
780	JCM 15300, and <i>M. bolletii</i> BD) were measured for all strain pairs using fast ANI(7). Red and

781 blue boxes indicate ANI values higher or lower than 98% for corresponding strain pairs. A

782	boxplot indicates the distribution of ANI values within or between subspecies of MABC. The
783	maximum likelihood tree corresponds to that depicted in Fig. 1.
784	Figure S3
785	Representative single PCR to differentiate MABC subspecies. PCR was performed with
786	primer pair A. MAB2613F and MAB2613R, B. MAB_1655F and MAB_1655R, and C.
787	MAB_4665F and MAB_4665R. Types 1, 1a, 1b, 2, 2a, 2b, 2c, 2d, 3, 3a, 3b, 3c, 4 and 5 are
788	the sub-groupings (sequevars) of the clinical isolates based on their sequences [Table 3 of the
789	previous article]. Numbers below the sequevars correspond to reference strains (ab ^T , ma ^T , or
790	bo ^T) or strain numbers of clinical isolates described in the previous article(11). Lanes: M,
791	DNA marker (100 bp ladder); ab ^T , <i>M. abscessus</i> ATCC19977); ma ^T , <i>M. massiliense</i>
792	(JCM15300); bo ^T , <i>M. bolletii</i> (JCM15297). Colored circles correspond to each member of
793	MABC determined by WGS-based analysis (Fig. 1 and Fig. S2): red, <i>M. abscessus</i> ; blue, <i>M.</i>
794	massiliense; green, M. bolletii, respectively. The PCR reaction products were electrophoresed
795	on 2% agarose gels.
796	Figure S4
797	Sensitivity test of PCR primers to differentiate MABC subspecies. The sensitivity of
798	primers to differentiate MABC subspecies was tested using 10 μ g undiluted or ten-fold
799	diluted DNA from the three MABC reference strains. Primer set 1, primer pair MAB2613F
800	and MAB2613R; Primer set 2, primer pair MAB_1655F and MAB_1655R. Lanes: M, DNA

801	marker (100 bp ladder); ab	^r , <i>M</i> .	abscessus	ATCC19977); ma	$^{\Gamma}, M.$	massiliense	(JCM15300);
-----	----------------------------	---------------------------	-----------	----------------	-----------------	-------------	-------------

bo^T, *M. bolletii* (JCM15297). The PCR reaction products were electrophoresed on 2% agarose

803 gels.

804 Figure S5

805 Specificity test of PCR primers to differentiate subspecies of MABC. The tests were

806 performed with MAB2613F/MAB2613R (Primer set 1), MAB2613F/MAB2613R (Primer set

2), and MAB_1655F/MAB_1655R (Primer set 3), with 4 ng of each indicated mycobacterial

genomic DNA. The PCR reaction products were electrophoresed on 2% agarose gels. M,

809 DNA marker (100 bp ladder). All isolates other than the *M. abscessus* complex were negative

810 in this assay [Only those representative data for rapid-growing NTM (ch^T, *M. chelonae*^T; co^T,

811 *M. conceptionense*^T; fo^T; *M. fortuitum*^T; ho^T, *M. houstonense*^T; sa^T, *M. salmoniphilium*^T; se^T,

812 *M. senegalense*^T; sm^T, *M. smegmatis*^T) are shown in this figure].

813 Figure S6

Maximum likelihood core-gene phylogeny of MABC from Japan, UK and Italy. Core-genome alignment of 120 isolates and three reference strains (*M. abscessus* ATCC19977, *M. massiliense* JCM 15300, and *M. bolletii* BD) of MABC were computed using Roary(5). The alignment containing 2,508 genes and 45,226 variable positions was used to construct a maximum likelihood tree using RAxML(6) with 300 bootstrap replicates. Bootstrap values > 90% for the major nodes are shown. The scale bar represents the mean

Manuscript for bioRxiv M. Yoshida et al.

820	number of nucleotide substitutions per site (SNP/site) on the respective branch. Samples are
821	highlighted based on inclusion in three major clusters corresponding to subspecies of MABC.
822	Colored boxes indicate countries where the corresponding strain was isolated: red, Japan; blue,
823	UK; green, Italy; gray, reference strain. This tree is also annotated for the presence (black)
824	and absence (light gray) of macrolide resistance-associated mutations. These mutations
825	include the presence of a T-to-C substitution in position 28 or a truncation of the erm(41)
826	gene that are associated with inducible resistance to macrolides; the presence of mutations at
827	rrl position 2269 to 2271 confers acquired macrolide resistance. Substitutions or truncation
828	with asterisks indicate non-synonymous mutations. The lineage to which all M. abscessus
829	erm(41) T28C mutants belong is highlighted in magenta. (inset) Visualization of
829 830	erm(41) T28C mutants belong is highlighted in magenta. (inset) Visualization of lineage-specific genomic loci. A progressiveMauve alignment of three clinical isolates
830	lineage-specific genomic loci. A progressiveMauve alignment of three clinical isolates
830 831	lineage-specific genomic loci. A progressiveMauve alignment of three clinical isolates carrying the <i>erm</i> (41) T28C mutation and the reference strains is shown. Red boxes indicate
830 831 832	lineage-specific genomic loci. A progressiveMauve alignment of three clinical isolates carrying the <i>erm</i> (41) T28C mutation and the reference strains is shown. Red boxes indicate genomic regions specific to the lineage to which all <i>M. abscessus erm</i> (41) T28C mutants
830 831 832 833	lineage-specific genomic loci. A progressiveMauve alignment of three clinical isolates carrying the <i>erm</i> (41) T28C mutation and the reference strains is shown. Red boxes indicate genomic regions specific to the lineage to which all <i>M. abscessus erm</i> (41) T28C mutants belong.
830 831 832 833 834	lineage-specific genomic loci. A progressiveMauve alignment of three clinical isolates carrying the <i>erm</i> (41) T28C mutation and the reference strains is shown. Red boxes indicate genomic regions specific to the lineage to which all <i>M. abscessus erm</i> (41) T28C mutants belong. Figure S7
830 831 832 833 834 835	lineage-specific genomic loci. A progressiveMauve alignment of three clinical isolates carrying the <i>erm</i> (41) T28C mutation and the reference strains is shown. Red boxes indicate genomic regions specific to the lineage to which all <i>M. abscessus erm</i> (41) T28C mutants belong. Figure S7 Sensitivity of the DNA chromatography method to differentiate subspecies and

838 the erm(41) T28C polymorphism. Numbers correspond to type strains of MABC (ab^{T} , ma^{T} , or

Manuscript for bioRxiv M. Yoshida et al.

839	bo ^T) or the strain names of the clinical isolates (Mab18036). Bands: C, inner (negative)
840	control; T1, erm(41) T28C polymorphism; T2, intact erm(41) genes; T3, M. bolletii; T4, M.
841	abscessus; T5, M. massiliense.
842	Figure S8
843	Specificity of the DNA chromatography method to differentiate subspecies and
844	macrolide susceptibility of MABC. Specificity tests were performed using 4 ng of each
845	indicated mycobacterial genomic DNA. Several laboratory and clinical isolates were tested in
846	this assay. All isolates other than the <i>M. abscessus</i> complex were negative in this assay [Only
847	representative data for NTM (ch ^T , <i>M. chelonae</i> ^T ; co ^T , <i>M. conceptionense</i> ^T ; fo ^T , <i>M. fortuitum</i> ^T ,
848	go ^T , <i>M. gordonae</i> ^T ; ka ^T , <i>M. kansasii</i> ^T ; sa ^T , <i>M. salmoniphilium</i> ^T ; se ^T , <i>M. senegalense</i> ^T ; sm ^T , <i>M.</i>
849	smegmatis ^T) and <i>M. tuberculosis</i> and <i>M. avium</i> clinical isolates are shown in this figure].

851 Supplementary Tables

Table S1 Bacterial strains and overall results of this study.

		- 10												
Strain	Isorate d from	WGS- based subspe cies identif ication	Previoous multiplex PCR (Nakanaga et al., 2014)	MAB2 613F-R	MAB_1 655F-R	MAB_4 665F-R	MAB1803 6 2558F-R	DNA chromat ography	erm(41) pos 28 gen otyp e	erm (41) pos 61- 62 deli tion	<i>erm</i> (41) trunc ation	CA M MIC early (3-5 days)	CA M MIC late (day 14)	Reference
M. abscess us ^T	NA ^a	ABS ^b	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Moore and Frerichs, 1953
M. massilie nse ^T	NA	MAS ^c	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	0.5 (S)	2 (S)	Adékambi et al., 2006
M. bolletii T	NA	BOL ^d	ABS (150bp/90 0bp)	1200bp	450bp	670bp	negative	T2/T3	Т	No	No	0.5 (S)	>32 (R)	Adékambi et al., 2006
Mab140 33-1	Respir atory	ABS	ND ^e (150bp/30 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	2 (S)	This study
Mab180 36	Respir atory	ABS	ND (150bp/30 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	C	No	No	≦0.2 5 (S)	≦0.2 5 (S)	This study
MabF6	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	8 (R)	>32 (R)	This study
MabJA TA1	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	0.5 (S)	This study
MabK1 4	Respir atory	ABS	ABS (150bp/90	500bp	650bp	330bp	positive	T1/T2/T 4	С	No	No	≦0.2 5 (S)	2 (S)	This study

														cript for bioRxiv 1. Yoshida et al.
			0bp)											
MabK1 6	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	C	No	No	≦0.2 5 (S)	2 (S)	This study
MabK3 0	Respir atory	BOL	ABS (150bp/90 0bp)	1200bp	450bp	670bp	negative	T2/T3	Т	No	No	≦0.2 5 (S)	>32 (R)	This study
MabK3 4	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	С	No	No	≦0.2 5 (S)	1 (S)	This study
MabLR C1	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C10	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C100	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C101	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C102	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	2 (S)	Nakanaga et al., 2014
MabLR C103	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	Nakanaga et al., 2014
MabLR C104	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	2 (S)	Nakanaga et al., 2014
MabLR C105	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	C	No	No	≦0.2 5 (S)	1 (S)	Nakanaga et al., 2014

														cript for bioRxiv 1. Yoshida et al.
MabLR C106	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	32 (R)	>32 (R)	Nakanaga et al., 2014
MabLR C107	Respir atory	MAS	MÂS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	8 (R)	Nakanaga et al., 2014
MabLR C108	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	1 (S)	Nakanaga et al., 2014
MabLR C109	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	Nakanaga et al., 2014
MabLR C11	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	С	No	No	≦0.2 5 (S)	1 (S)	Nakanaga et al., 2014
MabLR C110	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C112	Blood	MAS	MÂS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	2 (S)	This study
MabLR C113	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	This study
MabLR C114	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	2 (S)	This study
MabLR C115	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	2 (S)	This study
MabLR C116	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	1 (S)	>32 (R)	This study
MabLR	Respir	ABS	ABS	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5	>32	This study

													cript for bioRxiv 1. Yoshida et al.
C117	atory	(150bp/90 0bp)									(S)	(R)	
MabLR C118	Respir Al atory	ABS BS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	This study
MabLR C119	Respir atory Al	ABS BS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	This study
MabLR C12	Respir atory Al	ABS BS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C120	Respir atory Al	ABS BS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	This study
MabLR C121	Respir atory Al	ABS BS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	This study
MabLR C122	Respir atory M	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	This study
MabLR C123	Respir atory Al	ABS BS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	1 (S)	>32 (R)	This study
MabLR C124	Respir Al atory Al	ABS BS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	This study
MabLR C125	Respir atory Al	ABS BS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	This study
MabLR C126	Respir Al atory Al	ABS BS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	С	No	No	≦0.2 5 (S)	0.5 (S)	This study
MabLR C127	Respir M atory	AS MAS (650bo/30	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	This study

			0bp)											
MabLR C128	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	This study
MabLR C13	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	16 (R)	Nakanaga et al., 2014
MabLR C130	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	This study
MabLR C131	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	1 (S)	This study
MabLR C132	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	2 (S)	This study
MabLR C133	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	≦0.2 5 (S)	This study
MabLR C134	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	This study
MabLR C135	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	>32 ^f (R)	>32 (R)	This study
MabLR C136	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	This study
MabLR C137	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	2 (S)	This study
MabLR C138	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	2 (S)	This study

														cript for bioRxiv 1. Yoshida et al.
MabLR C139	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	32 (R)	>32 (R)	This study
MabLR C14	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	4 (I)	>32 (R)	Nakanaga et al., 2014
MabLR C140	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	2 (S)	>32 (R)	This study
MabLR C142	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	This study
MabLR C143	Respir atory	MAS	ND (650bp/90 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	This study
MabLR C144	Respir atory	MAS	ND (650bp/90 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	This study
MabLR C145	Respir atory	ABS	ND (150bp/30 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	1 (S)	>32 (R)	This study
MabLR C146	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	С	No	No	≦0.2 5 (S)	0.5 (S)	This study
MabLR C148	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	2 (S)	>32 (R)	This study
MabLR C149	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	This study
MabLR C152	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	16 (R)	>32 (R)	This study
MabLR	Respir	ABS	ABS	500bp	650bp	330bp	negative	T2/T4	Т	No	No	4 (I)	>32	This study

									М	ript for bioRxiv . Yoshida et al.
C153 atory	(150bp/90 0bp)								(R)	
MabLR Respir MAS C2 atory MAS	MAS (650bo/30 420bp 0bp)	290bp 540	0bp negative	T5	Т	Yes	Yes	≦0.2 5 (S)	1 (S)	Nakanaga et al., 2014
MabLR Respir ABS C26 atory	ND (150bp/30 500bp 0bp)	650bp 330	0bp negative	T2/T4	Т	No	No	≦0.2 5 (S)	32 (R)	Nakanaga et al., 2014
MabLR Respir C27 atory BOL	ABS (150bp/90 1200bp 0bp)	450bp 670	0bp negative	T2/T3	Т	No	No	>32 (R)	>32 (R)	Nakanaga et al., 2014
MabLR Respir MAS C28 atory MAS	MAS (650bo/30 420bp 0bp)	290bp 540	0bp negative	T5	Т	Yes	Yes	≦0.2 5 (S)	1 (S)	Nakanaga et al., 2014
MabLR Respir C3 atory ABS	ABS (150bp/90 500bp 0bp)	650bp 330	0bp negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR Respir MAS C30 atory MAS	MAS (650bo/30 420bp 0bp)	290bp 540	0bp negative	T5	Т	Yes	Yes	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR Respir MAS C31 atory MAS	MAS (650bo/30 420bp 0bp)	290bp 540	0bp negative	T5	Т	Yes	Yes	≦0.2 5 (S)	≦0.2 5 (S)	Nakanaga et al., 2014
MabLR Respir C32 atory BOL	ABS (150bp/90 1200bp 0bp)	450bp 670	0bp negative	T2/T3	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR Respir MAS C33 atory MAS	MAS (650bo/30 420bp 0bp)	290bp 540	0bp negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	Nakanaga et al., 2014
MabLR Respir MAS C34 atory MAS	MAS (650bo/30 420bp 0bp)	290bp 540	0bp negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	Nakanaga et al., 2014
MabLR Respir ABS C35 atory ABS	ABS (150bp/90 500bp	650bp 330	0bp negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014

			0bp)											
MabLR C36	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C37	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	32 (R)	Nakanaga et al., 2014
MabLR C38	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C39	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C40	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C41	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C42	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	>32 (R)	>32 (R)	Nakanaga et al., 2014
MabLR C43	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C44	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C46	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C47	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	1 (S)	>32 (R)	Nakanaga et al., 2014

														cript for bioRxiv 1. Yoshida et al.
MabLR C48	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C5	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	Nakanaga et al., 2014
MabLR C50	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≤ 0.2 $5^{f}(S)$	≦0.2 5 (S)	Nakanaga et al., 2014
MabLR C51	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	С	No	No	≦0.2 5 (S)	2 (S)	Nakanaga et al., 2014
MabLR C52	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C53	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C54	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	Nakanaga et al., 2014
MabLR C55	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≤ 0.2 $5^{f}(S)$	≦0.2 5 (S)	Nakanaga et al., 2014
MabLR C56	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	$\stackrel{\leq}{=} 0.2 \\ 5^{f}(S)$	4 (I)	Nakanaga et al., 2014
MabLR C57	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	≦0.2 5 (S)	Nakanaga et al., 2014
MabLR C58	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR	Respir	MAS	MAS	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2	0.5	Nakanaga et

											cript for bioRxiv 1. Yoshida et al.
C6 atory	(650bo/30 0bp)								5 (S)	(S)	al., 2014
MabLR Respir ABS C60 atory	ABS (150bp/90 500bp 0bp)	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR Respir ABS C62 atory	ABS (150bp/90 500bp 0bp)	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR Respir MAS C63 atory MAS	MAS (650bo/30 420bp 0bp)	290bp	540bp	negative	Т5	Т	Yes	Yes	≦0.2 5 (S)	≦0.2 5 (S)	Nakanaga et al., 2014
MabLR Respir ABS C64 atory ABS	ABS (150bp/90 500bp 0bp)	650bp	330bp	positive	T1/T2/T 4	С	No	No	≤ 0.2 $5^{f}(S)$	≦0.2 5 (S)	Nakanaga et al., 2014
MabLR Respir MAS C65 atory MAS	MAS (650bo/30 420bp 0bp)	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	4 (I)	Nakanaga et al., 2014
MabLR Respir ABS C66 atory ABS	ABS (150bp/90 500bp 0bp)	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR Respir MAS C67 atory MAS	MAS (650bo/30 420bp 0bp)	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	Nakanaga et al., 2014
MabLR Respir MAS C68 atory MAS	MAS (650bo/30 420bp 0bp)	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	Nakanaga et al., 2014
MabLR Respir ABS C69 atory	ABS (150bp/90 500bp 0bp)	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR Respir ABS C7 atory ABS	ABS (150bp/90 500bp 0bp)	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR Respir ABS C70 atory	ABS (150bp/90 500bp	650bp	330bp	positive	T1/T2/T 4	С	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014

			0bp)											
MabLR C71	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C72	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C73	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	2 (S)	Nakanaga et al., 2014
MabLR C74	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	$\stackrel{\leq}{=} 0.2 \\ 5^{\rm f}(\rm S)$	≦0.2 5 (S)	Nakanaga et al., 2014
MabLR C75	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	С	No	No	$\frac{\leq}{5^{f}}(S)$	≦0.2 5 (S)	Nakanaga et al., 2014
MabLR C76	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C77	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	positive	T1/T5	Т	Yes	Yes	>32 ^f (R)	>32 (R)	Nakanaga et al., 2014
MabLR C78	Respir atory	BOL	ND (150bp/30 0bp)	1200bp	450bp	670bp	negative	T2/T3	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C79	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C8	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	≦0.2 5 (S)	Nakanaga et al., 2014
MabLR C80	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014

														cript for bioRxiv 1. Yoshida et al.
MabLR C82	Skin lesion	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	Nakanaga et al., 2014
MabLR C83	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	>32 (R)	>32 (R)	Nakanaga et al., 2014
MabLR C86	Respir atory	ABS	ND (150bp/30 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≤ 0.2 $5^{f}(S)$	>32 (R)	Nakanaga et al., 2014
MabLR C87	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	>32 (R)	>32 (R)	Nakanaga et al., 2014
MabLR C88	Respir atory	MAS	MÂS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	Nakanaga et al., 2014
MabLR C89	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	16 (R)	Nakanaga et al., 2014
MabLR C9	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C90	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	16 (R)	Nakanaga et al., 2014
MabLR C91	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	≦0.2 5 (S)	Nakanaga et al., 2014
MabLR C92	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	8 ^f (R)	>32 (R)	Nakanaga et al., 2014
MabLR C93	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	16 (R)	Nakanaga et al., 2014
MabLR	Respir	MAS	MAS	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2	≦0.2	Nakanaga et

														cript for bioRxiv 1. Yoshida et al.
C94	atory		(650bo/30 0bp)									5 (S)	5 (S)	al., 2014
MabLR C95	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C96	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR C98	Respir atory	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	≦0.2 5 (S)	Nakanaga et al., 2014
MabLR C99	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	≦0.2 5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR CA1	Skin lesion	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	1 (S)	Nakanaga et al., 2014
MabLR CA10	Skin lesion	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	2 (S)	Nakanaga et al., 2014
MabLR CA11	Skin lesion	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	≦0.2 5 (S)	Nakanaga et al., 2014
MabLR CA12	Skin lesion	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	negative	T2/T4	Т	No	No	0.5 (S)	>32 (R)	Nakanaga et al., 2014
MabLR CA13	Skin lesion	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	Nakanaga et al., 2014
MabLR CA14	Skin lesion	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	2 (S)	Nakanaga et al., 2014
MabLR CA2	Skin lesion	MAS	MAS (650bo/30	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	0.5 (S)	Nakanaga et al., 2014

													101	. Ioshida ci di.
			0bp)											
MabLR CB1	Enviro nment	MAS	MAS (650bo/30 0bp)	420bp	290bp	540bp	negative	T5	Т	Yes	Yes	≦0.2 5 (S)	≦0.2 5 (S)	Nakanaga et al., 2014
MabMT 10	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	С	No	No	≦0.2 5 (S)	2 (S)	This study
MabMT 11	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	С	No	No	≦0.2 5 (S)	2 (S)	This study
MabMT 19	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	Т	No	No	≦0.2 5 (S)	>32 (R)	This study
MabMT 37	Respir atory	ABS	ABS (150bp/90 0bp)	1200bp	450bp	330bp	positive	T1/T2/T 4	С	No	No	≦0.2 5 (S)	2 (S)	This study
MabNG	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	С	No	No	≦0.2 5 (S)	1 (S)	This study
MabYN KW	Respir atory	ABS	ABS (150bp/90 0bp)	500bp	650bp	330bp	positive	T1/T2/T 4	С	No	No	≦0.2 5 (S)	2 (S)	This study

^aNot Applicable, ^b*M. abscessus*, ^c*M. massiliense*, ^d*M. bolletii*, ^eNot determined, ^fmeasured at day 7 because of very slow growth. R, resistant; I, intermediate; S, susceptible

Manuscript for bioRxiv M. Yoshida et al.

			Expected	Expected
	DNA	Expected	<i>erm</i> (41) pos	<i>erm</i> (41)
Strain	chromatography	subspecies	28 genotype	trucation
TJMA_001	T1/T2/T4	ABS ^a	С	No
TJMA_002	T2/T4/T5	ND^d	Т	No
TJMA_004	T2/T4	ABS	Т	No
TJMA_005	T1/T2/T4	ABS	С	No
TJMA_008	T5	MAS	Т	Yes
TJMA_009	T2/T4	ABS	Т	No
TJMA_010	T1/T2/T4	ABS	С	No
TJMA_011	T2/T4	ABS	Т	No
TJMA_015	T2/T4	ABS	Т	No
TJMA_016	T5	MAS	Т	Yes
TJMA_017	T5	MAS	Т	Yes
TJMA_018	T5	MAS	Т	Yes
TJMA_019	T1/T2/T4	ABS	С	No
TJMA_020	T1/T2/T4	ABS	С	No
TJMA_021	T2/T4	ABS	Т	No
TJMA_022	T2/T4	ABS	Т	No
TJMA_023	Т5	MAS	Т	Yes
TJMA_024	T2/T5	MAS	Т	No
TJMA_025	T2/T4	ABS	Т	No
TJMA_026	T5	MAS	Т	Yes
TJMA_028	Т5	MAS	Т	Yes
TJMA_029	T2/T4	ABS	Т	No
TJMA_030	T5	MAS	Т	Yes
TJMA_031	Т5	MAS	Т	Yes
TJMA_032	T5	MAS	Т	Yes
TJMA_034	T5	MAS	Т	Yes
TJMA_036	T2/T4	ABS	Т	No
TJMA_037	T5	MAS	Т	Yes
TJMA_038	T2/T4	ABS	Т	No
TJMA_039	T5	MAS	Т	Yes
TJMA_040	T2/T4	ABS	Т	No
TJMA_041	T2/T5	MAS	Т	No
ТЈМА_042	T2/T4	ABS	С	No

Table S2 Subspecies and macrolide susceptibility identification of 103 clinical isolates from Taiwan using the DNA chromatography.

				1
TJMA_043	T2/T4	ABS	Т	No
TJMA_044	T5	MAS	Т	Yes
TJMA_045	T5	MAS	Т	Yes
TJMA_046	T2/T5	MAS	Т	No
TJMA_048	T1/T2/T4	ABS	С	No
TJMA_050	T5	MAS	Т	Yes
TJMA_051	T5	MAS	Т	Yes
TJMA_052	T5	MAS	Т	Yes
TJMA_053	T1/T2/T4	ABS	С	No
TJMA_054	T1/T2/T4	ABS	Т	No
TJMA_055	T5	MAS	Т	Yes
TJMA_056	T2/T4	ABS	Т	No
TJMA_057	T2/T4	ABS	Т	No
TJMA_058	T5	MAS	Т	Yes
TJMA_059	T5	MAS	Т	Yes
TJMA_061	T5	MAS	Т	Yes
TJMA_062	T5	MAS	Т	Yes
TJMA_065	T2/T4	ABS	Т	No
TJMA_066	T2/T4	ABS	Т	No
TJMA_067	T5	MAS	Т	Yes
TJMA_068	T2/T4	ABS	Т	No
TJMA_069	T2/T4	ABS	Т	No
TJMA_071	T5	MAS	Т	Yes
TJMA_074	T2/T4	ABS	Т	No
TJMA_075	T5	MAS	Т	Yes
TJMA_077	T2/T4	ABS	Т	No
TJMA_078	T5	MAS	Т	Yes
TJMA_079	T2/T4	ABS	Т	No
TJMA_080	T1/T2/T4	ABS	Т	No
TJMA_081	T2/T4	ABS	Т	No
TJMA_083	T2/T4	ABS	Т	No
TJMA_085	T5	MAS	Т	Yes
TJMA_086	T2/T3	BOL ^c	Т	No
TJMA_087	T5	MAS	Т	Yes
TJMA_089	T2/T3	BOL	Т	No
TJMA_090	T1/T2/T4	ABS	С	No
TJMA_091	T2/T4	ABS	Т	No
TJMA_092	T1/T2/T4	ABS	С	No

Manuscript for bioRxiv M. Yoshida et al.

				<i>M</i> . <i>R</i>
TJMA_095	T5	MAS	Т	Yes
TJMA_096	T1/T2/T4	ABS	С	No
TJMA_097	T5	MAS	Т	Yes
TJMA_098	T2/T4	ABS	Т	No
TJMA_099	T5	MAS	Т	Yes
TJMA_100	T5	MAS	Т	Yes
TJMA_101	T5	MAS	Т	Yes
TJMA_102	T5	MAS	Т	Yes
TJMA_103	T2/T4	ABS	Т	No
TJMA_104	T4/T5	ND	Т	Yes
TJMA_105	T2/T4	ABS	Т	No
TJMA_106	T5	MAS	Т	Yes
TJMA_107	T5	MAS	Т	Yes
TJMA_108	T2/T4	ABS	Т	No
TJMA_109	T5	MAS	Т	Yes
TJMA_110	T2/T4	ABS	Т	No
TJMA_111	T5	MAS	Т	Yes
TJMA_112	T2/T4	ABS	Т	No
TJMA_113	T5	MAS	Т	Yes
TJMA_114	T5	MAS	Т	Yes
TJMA_115	T5	MAS	Т	Yes
TJMA_116	T5	MAS	Т	Yes
TJMA_117	T2/T4	ABS	Т	No
TJMA_118	T2/T4	ABS	Т	No
TJMA_119	T2/T4	ABS	Т	No
TJMA_120	T2/T4	ABS	С	No
TJMA_121	T5	MAS	Т	Yes
TJMA_122	T5	MAS	Т	Yes
TJMA_123	T2/T4	ABS	С	No
TJMA_124	T5	MAS	Т	Yes
TJMA_125	T2/T4	ABS	Т	No
TJMA_126	T5	MAS	Т	Yes

^a*M. abscessus*, ^b*M. massiliense*, ^c*M. bolletii*, ^dNot Determined

852

Table S3 Basic statistics of WGS data of 148 environmental or clinicalisolates from Japan.

Strain Total length N50 Contigs Coverage G	GC (%)
--	--------

					Manuscript for bioRxiv M. Yoshida et al.
Mab14033-1	5316180	213605	52	85.97	64.02
Mab18036	5096890	165746	66	95.16	64.19
MabF6	4799461	213229	38	93.79	64.28
MabJATA1	5057593	118021	100	51.65	63.92
MabK14	5071761	200737	90	86.33	64.08
MabK16	5009684	118480	81	37.05	64.19
MabK30	4704077	165959	65	41.86	64.28
MabK34	4992243	125124	89	61.64	64.19
MabLRC1	5056100	261212	49	91.43	64.03
MabLRC10	5136468	119037	79	88.14	64.08
MabLRC100	5208261	90657	117	34.86	64.22
MabLRC101	4940048	154666	85	557.58	64.00
MabLRC102	4876782	133487	72	48.36	64.13
MabLRC103	5094430	316266	42	99.24	64.18
MabLRC104	4814131	182880	61	78.81	64.27
MabLRC105	4998504	118640	92	85.25	64.19
MabLRC106	5172540	77396	112	46.42	64.03
MabLRC107	4868796	133548	59	251.24	64.21
MabLRC108	5197867	77960	134	31.97	64.02
MabLRC109	5052053	210451	59	385.87	64.12
MabLRC11	5088336	117715	85	30.67	64.25
MabLRC110	5074341	175406	74	511.39	63.91
MabLRC112	4950965	110336	83	33.97	64.19
MabLRC113	5069942	228504	52	119.43	64.22
MabLRC114	5046351	171601	81	46.93	63.97
MabLRC115	4933766	160786	54	410.02	64.23
MabLRC116	4862798	155632	67	428.75	64.15
MabLRC117	5211175	171580	76	52.86	64.23
MabLRC118	5050669	170225	59	462.33	64.17
MabLRC119	5225706	162382	68	413.65	64.11
MabLRC12	5129792	224727	43	118.55	64.09
MabLRC120	5169047	155194	69	418.65	64.10
MabLRC121	5214307	171554	103	510.70	64.04
MabLRC122	5007177	81252	131	62.19	64.27

					Manuscript for bioRxiv M. Yoshida et al.
MabLRC123	4862722	136072	61	262.28	64.15
MabLRC124	5447796	118650	94	126.34	64.05
MabLRC125	5222658	171501	61	56.10	64.21
MabLRC126	5098698	137989	88	305.33	64.18
MabLRC127	5245766	145619	71	100.32	64.13
MabLRC128	5156406	150654	66	153.63	64.12
MabLRC13	5163925	245416	49	61.81	64.09
MabLRC130	5133271	210494	60	186.76	64.20
MabLRC131	4802491	219424	54	133.14	64.25
MabLRC132	4765753	299978	34	421.58	64.26
MabLRC133	5080591	212746	53	751.19	64.17
MabLRC134	5416217	153472	71	424.02	64.05
MabLRC135	4998744	203292	56	559.73	64.13
MabLRC136	4899407	159280	63	168.71	64.14
MabLRC137	4994827	218647	45	267.12	64.14
MabLRC138	4887532	152158	50	88.65	64.25
MabLRC139	5095699	245634	60	105.80	64.12
MabLRC14	5061117	178838	56	95.39	64.10
MabLRC140	4995083	225721	39	115.94	64.15
MabLRC142	5023755	174857	65	97.49	64.14
MabLRC143	4917765	146819	67	240.83	64.20
MabLRC144	5097474	230170	56	401.98	64.17
MabLRC145	4743087	241875	43	137.04	64.27
MabLRC146	5088371	119729	81	83.15	64.24
MabLRC148	4883619	165790	75	32.52	64.21
MabLRC149	5242717	98115	107	30.35	64.16
MabLRC152	5921286	145522	88	58.95	63.88
MabLRC153	5118560	183836	66	56.44	64.12
MabLRC2	4953806	116038	89	51.98	64.04
MabLRC26	5042683	33929	236	35.38	63.92
MabLRC27	4987447	146054	65	50.39	64.17
MabLRC28	4946695	204037	59	60.71	64.06
MabLRC3	5131208	307864	32	151.76	64.12
MabLRC30	5068363	96755	106	119.28	64.13

					Manuscript for bioRxiv M. Yoshida et al.
MabLRC31	5155495	134195	86	240.12	64.15
MabLRC32	4817246	157481	58	48.29	64.15
MabLRC33	5150972	115014	97	177.72	64.10
MabLRC34	5248643	130199	69	221.29	64.13
MabLRC35	5198069	124884	79	91.43	64.19
MabLRC36	4714847	149548	66	149.30	64.29
MabLRC37	4861699	136740	80	187.80	64.14
MabLRC38	4868330	190723	54	236.07	64.22
MabLRC39	5222551	87094	120	42.81	64.20
MabLRC40	5116424	250925	47	82.84	64.17
MabLRC41	4750779	164576	68	85.28	64.28
MabLRC42	4896417	183467	48	106.34	64.14
MabLRC43	5224190	137429	79	135.25	64.21
MabLRC44	5066815	100040	86	232.87	64.11
MabLRC46	5142041	118737	85	150.13	64.12
MabLRC47	4795274	140613	70	232.48	64.28
MabLRC48	4892220	109841	81	64.43	64.20
MabLRC5	4913445	182942	55	31.98	64.17
MabLRC50	5027033	58544	190	39.39	64.16
MabLRC51	4961204	171861	63	200.83	64.13
MabLRC52	5094238	122407	84	158.59	64.10
MabLRC53	4960848	110308	92	179.42	64.12
MabLRC54	5081480	128859	77	430.27	64.17
MabLRC55	4732816	82785	115	100.96	64.34
MabLRC56	5242362	158217	64	263.12	64.07
MabLRC57	5162846	143717	76	242.74	64.17
MabLRC58	5212167	135033	85	127.09	64.07
MabLRC6	5088831	202142	54	56.04	64.14
MabLRC60	5225467	120947	100	69.00	64.05
MabLRC62	5058382	115201	120	237.02	63.87
MabLRC63	5082582	134168	75	273.97	64.17
MabLRC64	5087554	115550	97	328.76	64.26
MabLRC65	4889317	130094	71	46.30	63.97
MabLRC66	5071915	123700	90	243.94	64.08

					Manuscript for bioRxiv M. Yoshida et al.
MabLRC67	4817453	130185	62	273.36	64.26
MabLRC68	5089744	119418	76	200.78	64.18
MabLRC69	4948942	135057	76	254.43	64.11
MabLRC7	4847313	171918	57	64.23	64.20
MabLRC70	5076572	192223	65	83.17	64.10
MabLRC71	5221674	117448	84	92.27	64.06
MabLRC72	5242664	64033	131	32.16	64.03
MabLRC73	4864124	123610	77	69.97	64.21
MabLRC74	5150373	160969	76	185.85	64.10
MabLRC75	4905398	138000	70	136.58	64.20
MabLRC76	5241622	117742	94	225.50	64.22
MabLRC77	4897536	146726	66	42.82	64.16
MabLRC78	4880230	106660	97	52.54	64.04
MabLRC79	5104815	136736	80	130.10	64.21
MabLRC8	5111822	282780	46	79.48	64.19
MabLRC80	5081060	148894	74	117.21	64.12
MabLRC82	4903668	143555	63	87.07	64.10
MabLRC83	5135736	301250	37	103.65	64.16
MabLRC86	5055429	140564	77	43.00	64.08
MabLRC87	5097802	142528	75	175.95	64.12
MabLRC88	4858972	119208	71	34.24	64.21
MabLRC89	5181849	115124	92	50.07	64.12
MabLRC9	5136689	168734	64	31.64	64.10
MabLRC90	4746830	97370	103	52.93	64.24
MabLRC91	5014995	74685	148	371.01	64.27
MabLRC92	5562493	166842	57	90.69	63.92
MabLRC93	5155964	104712	110	51.08	64.12
MabLRC94	5007247	94727	100	228.11	64.28
MabLRC95	5220221	107188	138	51.35	64.04
MabLRC96	5169380	107234	99	62.40	64.10
MabLRC98	5127161	223154	49	64.67	64.14
MabLRC99	4914679	39045	251	34.43	64.14
MabLRCA1	5436859	100425	101	66.72	63.99
MabLRCA10	4904608	378356	32	234.35	64.10

					Manuscript for biol M. Yoshida et
MabLRCA11	5068073	112152	88	47.39	64.22
MabLRCA12	5448539	124992	99	246.38	64.04
MabLRCA13	5068829	120115	70	68.60	64.22
MabLRCA14	4896703	130259	61	140.94	64.14
MabLRCA2	4968754	202412	45	523.53	64.18
MabLRCB1	5325297	133135	83	67.40	64.03
MabMT10	5036670	109522	88	61.68	64.15
MabMT11	5039187	183160	60	79.66	64.15
MabMT19	5055126	145787	62	42.04	64.27
MabMT37	4939260	127894	77	30.27	64.20
MabNG	4945591	118636	94	38.72	64.14
MabYNKW	5193773	275586	49	269.45	64.27

Gene group (by	Locus tag in	Annotation	Sensitivit	Specificit	Bonferroni corrected P
Roary)	Mab18036	Annotation	У	у	value
group_8487	Mab18036_2551	hypothetical protein	94.44	99.25	5.36E-16
group_8493	Mab18036_2561	hypothetical protein	94.44	99.25	5.36E-16
group_5354	Mab18036_2560	hypothetical protein	94.44	99.25	5.36E-16
group_8494	Mab18036_2564	hypothetical protein	94.44	99.25	5.36E-16
group_8490	Mab18036_2556	hypothetical protein	94.44	99.25	5.36E-16
group_8488	Mab18036_2552	hypothetical protein	94.44	99.25	5.36E-16
group_8492	Mab18036_2558	hypothetical protein	94.44	99.25	5.36E-16
group_8491	Mab18036_2557	hypothetical protein	94.44	99.25	5.36E-16
group_8489	Mab18036_2555	hypothetical protein	94.44	99.25	5.36E-16
group_8486	Mab18036_2550	putative phage integrase	94.44	98.50	5.05E-15
group_5353	Mab18036_2559	hypothetical protein	94.44	98.50	5.05E-15
group_2170	Mab18036_3400	hypothetical protein	94.44	98.50	5.05E-15
group_8597	Mab18036_4520	hypothetical protein	100.00	96.24	7.53E-15
group_2305	Mab18036_1747	MFS transporter	100.00	96.24	7.53E-15
group_5342	Mab18036_1750	hypothetical protein	100.00	96.24	7.53E-15
group_8600	Mab18036_4528	hypothetical protein	100.00	96.24	7.53E-15
group_5340	Mab18036_1748	TetR family transcriptional regulator	100.00	96.24	7.53E-15
group_8598	Mab18036_4523	hypothetical protein	100.00	96.24	7.53E-15
group_5341	Mab18036_1749	hypothetical protein	100.00	96.24	7.53E-15
group_2268	Mab18036_4527	hypothetical protein	100.00	96.24	7.53E-15
group_5338	Mab18036_1175	aldehyde dehydrogenase	88.89	99.25	3.39E-14

Table S4. Genes associated with the lineage to which all *M. abscessus* with the *erm*(41) T28C sequevar belonged

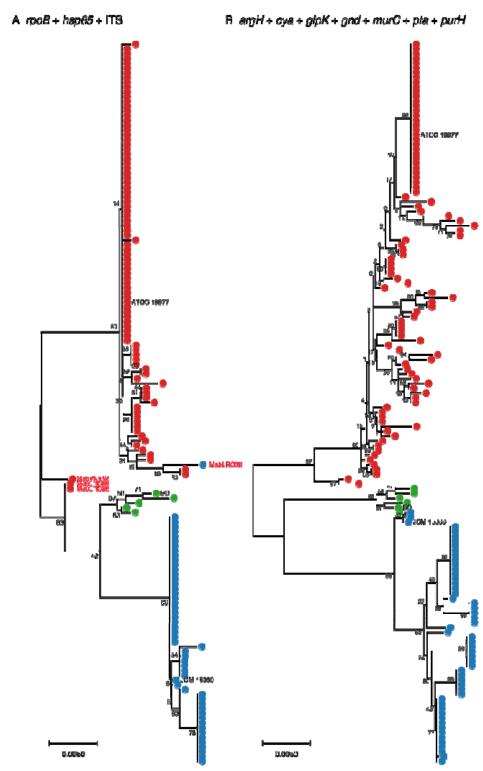
group_8471	Mab18036_1174	amidohydrolase	88.89	99.25	3.39E-14
group_5337	Mab18036_1172	putative membrane protein	88.89	99.25	3.39E-14
group_8470	Mab18036_1173	putative conserved membrane protein	88.89	99.25	3.39E-14
group_8472	Mab18036_1176	hypothetical protein	88.89	99.25	3.39E-14
group_2319	Mab18036_2563	hypothetical protein	94.44	96.99	1.74E-13
group_8685	Mab18036_4787	hypothetical protein	88.89	98.50	3.01E-13
group_5389	Mab18036_4523	hypothetical protein	100.00	93.98	3.50E-13
group_9451	Mab18036_4786	hypothetical protein	94.44	96.24	7.62E-13
group_5355	Mab18036_2562	hypothetical protein	94.44	96.24	7.62E-13
group_8250	Mab18036_4255	hypothetical protein	94.44	95.49	2.90E-12
group_5394	Mab18036_4782	hypothetical protein	94.44	95.49	2.90E-12
group_8113	Mab18036_3336	hypothetical protein	94.44	95.49	2.90E-12
group_5385	Mab18036_4514	TetR family transcriptional regulator	100.00	92.48	2.94E-12
group_3570	Mab18036_4519	hypothetical protein	100.00	92.48	2.94E-12
group_5388	Mab18036_4521	hypothetical protein	100.00	92.48	2.94E-12
group_8595	Mab18036_4511	peptidase	100.00	92.48	2.94E-12
group_5386	Mab18036_4516	FAD-dependent oxidoreductase	100.00	92.48	2.94E-12
group_5383	Mab18036_4508	hypothetical protein	100.00	92.48	2.94E-12
group_5384	Mab18036_4512	NADPH:quinone reductase	100.00	92.48	2.94E-12
group_5390	Mab18036_4524	hypothetical protein	100.00	92.48	2.94E-12
group_8593	Mab18036_4509	TetR family transcriptional regulator	100.00	92.48	2.94E-12
group_8594	Mab18036_4510	membrane protein	100.00	92.48	2.94E-12
group_8596	Mab18036_4513	hypothetical protein	100.00	92.48	2.94E-12
group_2264	Mab18036_4529	hypothetical protein	100.00	91.73	7.74E-12
group_3572	Mab18036_4792	hypothetical protein	100.00	91.73	7.74E-12
		00			

group_8686 Mab18036_4788 hypothetical protein 100.00 91.73 7.74E-12 group_5207 Mab18036_4525 transcriptional regulator 100.00 91.73 7.74E-12 group_8599 Mab18036_4526 hypothetical protein 100.00 91.73 7.74E-12 group_8251 Mab18036_4526 hypothetical protein 94.44 94.74 9.86E-12 group_210 Mab18036_4517 putative oxidoreductase 88.89 96.24 3.83E-11 group_3492 Mab18036_4778 hypothetical protein 88.89 95.49 1.39E-10 nasC Mab18036_4780 hypothetical protein 88.89 95.49 1.39E-10 nasA Mab18036_4781 molybdopterin oxidoreductase 100.00 88.72 2.32E-10 group_1156 Mab18036_4783 hypothetical protein 100.00 87.97 4.93E-10 group_5203 Mab18036_4783 hypothetical protein 94.44 91.73 5.94E-10 group_1156 Mab18036_4784 hypothetical protein 94.33 96.24							
group_8599 Mab 18036_4526 hypothetical protein 100.00 91.73 7.74E-12 group_8251 Mab 18036_4263 hypothetical protein 94.44 94.74 9.86E-12 group_8710 Mab 18036_4918 hypothetical protein 83.33 98.50 1.20E-11 group_2258 Mab 18036_4517 putative oxidoreductase 88.89 96.24 3.83E-11 group_3492 Mab 18036_4778 hypothetical protein 88.89 96.24 3.83E-11 group_5205 Mab 18036_4778 hypothetical protein 88.89 96.24 3.83E-10 nasC Mab 18036_4780 FAD/NAD(P)-binding oxidoreductase 100.00 88.72 2.32E-10 group_7970 Mab 18036_4781 molybdopterin oxidoreductase 100.00 88.72 2.32E-10 group_1156 Mab 18036_4783 hypothetical protein 100.00 87.97 4.93E-10 group_5203 Mab 18036_4784 hypothetical protein 94.44 91.73 5.94E-10 group_530 Mab 18036_4855 hypothetical protein 83.33	group_8686	Mab18036_4788	hypothetical protein	100.00	91.73	7.74E-12	
group_8251 Mab 18036_4263 hypothetical protein 94.44 94.74 9.86E-12 group_8710 Mab 18036_4918 hypothetical protein 83.33 98.50 1.20E-11 group_2258 Mab 18036_4517 putative oxidoreductase 88.89 96.24 3.83E-11 group_3492 Mab 18036_4779 hypothetical protein 88.89 96.24 3.83E-11 group_5205 Mab 18036_4778 hypothetical protein 88.89 95.49 1.39E-10 nasC Mab 18036_4780 FAD/NAD(P)-binding oxidoreductase 100.00 88.72 2.32E-10 group_7970 Mab 18036_4783 hypothetical protein 100.00 88.72 2.32E-10 group_1156 Mab 18036_4783 hypothetical protein 100.00 87.97 4.93E-10 group_1607 Mab 18036_4783 hypothetical protein 94.44 91.73 5.94E-10 group_8695 Mab 18036_4784 hypothetical protein 94.44 91.73 5.94E-10 group_5203 Mab 18036_4855 hypothetical protein 83.33 96.24 1.28E-09 group_530 Mab 18036_4856	group_5207	Mab18036_4525	transcriptional regulator	100.00	91.73	7.74E-12	
group.8710 Mab18036_4918 hypothetical protein 83.33 98.50 1.20E-11 group_2258 Mab18036_4517 putative oxidoreductase 88.89 96.24 3.83E-11 group_3492 Mab18036_4779 hypothetical protein 88.89 95.49 1.39E-10 nasC Mab18036_4778 hypothetical protein 88.89 95.49 1.39E-10 nasC Mab18036_4780 FAD/NAD(P)-binding oxidoreductase 100.00 88.72 2.32E-10 nasA Mab18036_4781 molybdopterin oxidoreductase 100.00 88.72 2.32E-10 group_7970 Mab18036_4783 hypothetical protein 100.00 87.97 4.93E-10 group_1156 Mab18036_4783 hypothetical protein 94.44 91.73 5.94E-10 group_5203 Mab18036_4784 hypothetical protein 94.44 91.73 5.94E-10 group_8695 Mab18036_4865 hypothetical protein 83.33 96.24 1.28E-09 group_530 Mab18036_4856 hypothetical protein 83.33 96.24 1.28E-09 group_8692 Mab18036_4856 hypothetical pro	group_8599	Mab18036_4526	hypothetical protein	100.00	91.73	7.74E-12	
group_2258 Mab 18036_4517 putative oxidoreductase 88.89 96.24 3.83E-11 group_3492 Mab 18036_4779 hypothetical protein 88.89 96.24 3.83E-11 group_5205 Mab 18036_4778 hypothetical protein 88.89 95.49 1.39E-10 nasC Mab 18036_4780 FAD/NAD(P)-binding oxidoreductase 100.00 88.72 2.32E-10 nasA Mab 18036_4781 molybdopterin oxidoreductase 100.00 88.72 2.32E-10 group_7970 Mab 18036_4783 hypothetical protein 94.44 91.73 5.94E-10 group_1156 Mab 18036_4784 hypothetical protein 94.44 91.73 5.94E-10 group_5203 Mab 18036_4784 hypothetical protein 94.44 91.73 5.94E-10 group_5203 Mab 18036_4784 hypothetical protein 94.44 91.73 5.94E-10 group_530 Mab 18036_4855 hypothetical protein 83.33 96.24 1.28E-09 group_530 Mab 18036_4856 hypothetical protein 83.33 96.24 1.28E-09 group_8692 Mab 18036_4856	group_8251	Mab18036_4263	hypothetical protein	94.44	94.74	9.86E-12	
group_3492 Mab18036_4779 hypothetical protein 88.89 96.24 3.83E-11 group_5205 Mab18036_4778 hypothetical protein 88.89 95.49 1.39E-10 nasC Mab18036_4780 FAD/NAD(P)-binding oxidoreductase 100.00 88.72 2.32E-10 nasA Mab18036_4781 molybdopterin oxidoreductase 100.00 88.72 2.32E-10 group_7970 Mab18036_4783 hypothetical protein 100.00 87.97 4.93E-10 group_1156 Mab18036_4785 hypothetical protein 100.00 87.97 4.93E-10 group_1607 Mab18036_4784 hypothetical protein 94.44 91.73 5.94E-10 group_8695 Mab18036_4784 hypothetical protein 94.44 91.73 5.94E-10 group_530 Mab18036_4856 hypothetical protein 83.33 96.24 1.28E-09 group_8694 Mab18036_4856 hypothetical protein 83.33 96.24 1.28E-09 group_8692 Mab18036_4856 hypothetical protein 83.33 96.24 1.28E-09 group_2231 Mab18036_4957 hypothetical	group_8710	Mab18036_4918	hypothetical protein	83.33	98.50	1.20E-11	
group_5205Mab18036_4778hypothetical protein88.8995.491.39E-10nasCMab18036_4780FAD/NAD(P)-binding oxidoreductase100.0088.722.32E-10nasAMab18036_4781molybdopterin oxidoreductase100.0088.722.32E-10group_7970Mab18036_4783hypothetical protein100.0087.974.93E-10group_1156Mab18036_4785hypothetical protein94.4491.735.94E-10group_1607Mab18036_4784hypothetical protein94.4491.735.94E-10group_5203Mab18036_4784hypothetical protein94.4491.735.94E-10group_530Mab18036_4856hypothetical protein83.3396.241.28E-09group_8694Mab18036_4856hypothetical protein83.3396.241.28E-09group_2231Mab18036_4977hypothetical protein83.3396.241.28E-09group_3693Mab18036_4855hypothetical protein83.3396.241.28E-09	group_2258	Mab18036_4517	putative oxidoreductase	88.89	96.24	3.83E-11	
nasCMab 18036_4780FAD/NAD(P)-binding oxidoreductase100.0088.722.32E-10nasAMab 18036_4781molybdopterin oxidoreductase100.0088.722.32E-10group_7970Mab 18036_4783hypothetical protein100.0087.974.93E-10group_1156Mab 18036_4785hypothetical protein94.4491.735.94E-10group_1607Mab 18036_4793hypothetical protein94.4491.735.94E-10group_5203Mab 18036_4784hypothetical protein94.4491.735.94E-10group_530Mab 18036_4855hypothetical protein83.3396.241.28E-09group_8694Mab 18036_4856hypothetical protein83.3396.241.28E-09group_2231Mab 18036_4854hypothetical protein83.3396.241.28E-09group_3578Mab 18036_4855hypothetical protein83.3396.241.28E-09group_8693Mab 18036_4855hypothetical protein83.3396.241.28E-09	group_3492	Mab18036_4779	hypothetical protein	88.89	96.24	3.83E-11	
nasCMab18036_4780oxidoreductase100.0088.722.32E-10nasAMab18036_4781molybdopterin oxidoreductase100.0088.722.32E-10group_7970Mab18036_4783hypothetical protein100.0087.974.93E-10group_1156Mab18036_4785hypothetical protein94.4491.735.94E-10group_1607Mab18036_4793hypothetical protein94.4491.735.94E-10group_5203Mab18036_4784hypothetical protein94.4491.735.94E-10group_8695Mab18036_4865hypothetical protein83.3396.241.28E-09group_530Mab18036_4856hypothetical protein83.3396.241.28E-09group_8692Mab18036_4854hypothetical protein83.3396.241.28E-09group_2231Mab18036_4919hypothetical protein83.3396.241.28E-09group_3578Mab18036_4855hypothetical protein83.3396.241.28E-09group_8693Mab18036_4855hypothetical protein83.3396.241.28E-09	group_5205	Mab18036_4778	hypothetical protein	88.89	95.49	1.39E-10	
nasAMab18036_4781molybdopterin oxidoreductase100.0088.722.32E-10group_7970Mab18036_4783hypothetical protein100.0087.974.93E-10group_1156Mab18036_4785hypothetical protein94.4491.735.94E-10group_1607Mab18036_4793hypothetical protein94.4491.735.94E-10group_5203Mab18036_4784hypothetical protein94.4491.735.94E-10group_8695Mab18036_4855hypothetical protein83.3396.241.28E-09group_8694Mab18036_4856hypothetical protein83.3396.241.28E-09group_2311Mab18036_4854hypothetical protein83.3396.241.28E-09group_3578Mab18036_4855hypothetical protein83.3396.241.28E-09group_8693Mab18036_4855hypothetical protein83.3396.241.28E-09	nasC	Mab18036_4780		100.00	88.72	2.32E-10	
group_7970Mab18036_4783hypothetical protein100.0087.974.93E-10group_1156Mab18036_4785hypothetical protein94.4491.735.94E-10group_1607Mab18036_4793hypothetical protein94.4491.735.94E-10group_5203Mab18036_4784hypothetical protein94.4491.735.94E-10group_8695Mab18036_4865hypothetical protein94.4491.735.94E-10group_530Mab18036_4856hypothetical protein83.3396.241.28E-09group_8694Mab18036_4856hypothetical protein83.3396.241.28E-09group_8692Mab18036_4854hypothetical protein83.3396.241.28E-09group_2231Mab18036_4957hypothetical protein83.3396.241.28E-09group_3578Mab18036_4855hypothetical protein83.3396.241.28E-09group_8693Mab18036_4855hypothetical protein83.3396.241.28E-09	nuse	10000_4700	oxidoreductase	100.00	00.72	2.521 10	
group_1156Mab18036_4785hypothetical protein94.4491.735.94E-10group_1607Mab18036_4793hypothetical protein94.4491.735.94E-10group_5203Mab18036_4784hypothetical protein94.4491.735.94E-10group_8695Mab18036_4865hypothetical protein94.3396.241.28E-09group_530Mab18036_4859hypothetical protein83.3396.241.28E-09group_8694Mab18036_4856hypothetical protein83.3396.241.28E-09group_8692Mab18036_4854hypothetical protein83.3396.241.28E-09group_3578Mab18036_4957hypothetical protein83.3396.241.28E-09group_8693Mab18036_4855hypothetical protein83.3396.241.28E-09	nasA	Mab18036_4781	molybdopterin oxidoreductase	100.00	88.72	2.32E-10	
group_1607Mab18036_4793hypothetical protein94.4491.735.94E-10group_5203Mab18036_4784hypothetical protein94.4491.735.94E-10group_8695Mab18036_4865hypothetical protein83.3396.241.28E-09group_530Mab18036_4859hypothetical protein83.3396.241.28E-09group_8694Mab18036_4856hypothetical protein83.3396.241.28E-09group_8692Mab18036_4854hypothetical protein83.3396.241.28E-09group_2231Mab18036_4919hypothetical protein83.3396.241.28E-09group_3578Mab18036_4855hypothetical protein83.3396.241.28E-09group_8693Mab18036_4855hypothetical protein83.3396.241.28E-09	group_7970	Mab18036_4783	hypothetical protein	100.00	87.97	4.93E-10	
group_5203Mab18036_4784hypothetical protein94.4491.735.94E-10group_8695Mab18036_4865hypothetical protein83.3396.241.28E-09group_530Mab18036_4859hypothetical protein83.3396.241.28E-09group_8694Mab18036_4856hypothetical protein83.3396.241.28E-09group_8692Mab18036_4854hypothetical protein83.3396.241.28E-09group_2231Mab18036_4919hypothetical protein83.3396.241.28E-09group_3578Mab18036_4957hypothetical protein83.3396.241.28E-09group_8693Mab18036_4855hypothetical protein83.3396.241.28E-09	group_1156	Mab18036_4785	hypothetical protein	94.44	91.73	5.94E-10	
group_8695Mab18036_4865hypothetical protein83.3396.241.28E-09group_530Mab18036_4859hypothetical protein83.3396.241.28E-09group_8694Mab18036_4856hypothetical protein83.3396.241.28E-09group_8692Mab18036_4854hypothetical protein83.3396.241.28E-09group_2231Mab18036_4919hypothetical protein83.3396.241.28E-09group_3578Mab18036_4957hypothetical protein83.3396.241.28E-09group_8693Mab18036_4855hypothetical protein83.3396.241.28E-09	group_1607	Mab18036_4793	hypothetical protein	94.44	91.73	5.94E-10	
group_530Mab18036_4859hypothetical protein83.3396.241.28E-09group_8694Mab18036_4856hypothetical protein83.3396.241.28E-09group_8692Mab18036_4854hypothetical protein83.3396.241.28E-09group_2231Mab18036_4919hypothetical protein83.3396.241.28E-09group_3578Mab18036_4957hypothetical protein83.3396.241.28E-09group_8693Mab18036_4855hypothetical protein83.3396.241.28E-09	group_5203	Mab18036_4784	hypothetical protein	94.44	91.73	5.94E-10	
group_8694Mab18036_4856hypothetical protein83.3396.241.28E-09group_8692Mab18036_4854hypothetical protein83.3396.241.28E-09group_2231Mab18036_4919hypothetical protein83.3396.241.28E-09group_3578Mab18036_4957hypothetical protein83.3396.241.28E-09group_8693Mab18036_4855hypothetical protein83.3396.241.28E-09	group_8695	Mab18036_4865	hypothetical protein	83.33	96.24	1.28E-09	
group_8692Mab18036_4854hypothetical protein83.3396.241.28E-09group_2231Mab18036_4919hypothetical protein83.3396.241.28E-09group_3578Mab18036_4957hypothetical protein83.3396.241.28E-09group_8693Mab18036_4855hypothetical protein83.3396.241.28E-09	group_530	Mab18036_4859	hypothetical protein	83.33	96.24	1.28E-09	
group_2231Mab18036_4919hypothetical protein83.3396.241.28E-09group_3578Mab18036_4957hypothetical protein83.3396.241.28E-09group_8693Mab18036_4855hypothetical protein83.3396.241.28E-09	group_8694	Mab18036_4856	hypothetical protein	83.33	96.24	1.28E-09	
group_3578Mab18036_4957hypothetical protein83.3396.241.28E-09group_8693Mab18036_4855hypothetical protein83.3396.241.28E-09	group_8692	Mab18036_4854	hypothetical protein	83.33	96.24	1.28E-09	
group_8693 Mab18036_4855 hypothetical protein 83.33 96.24 1.28E-09	group_2231	Mab18036_4919	hypothetical protein	83.33	96.24	1.28E-09	
	group_3578	Mab18036_4957	hypothetical protein	83.33	96.24	1.28E-09	
group_5253 Mab18036_3337 hypothetical protein 94.44 90.98 1.42E-09	group_8693	Mab18036_4855	hypothetical protein	83.33	96.24	1.28E-09	
	group_5253	Mab18036_3337	hypothetical protein	94.44	90.98	1.42E-09	

854 Supplemental References

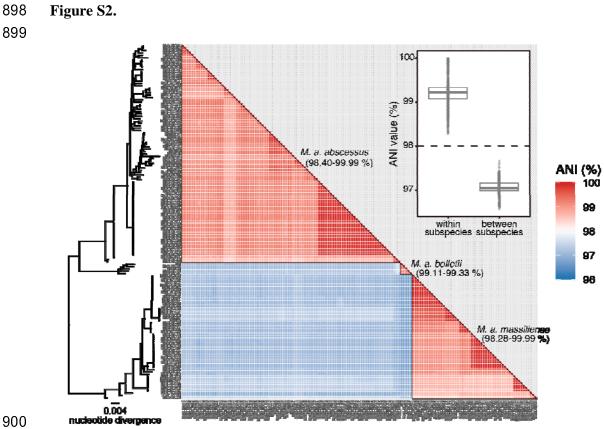
855	1.	Ripoll F, Pasek S, Schenowitz C, Dossat C, Barbe V, Rottman M, Macheras E, Heym
856		B, Hermann JL, Daffé M, Brosch R, Risler JL, Gaillard JL. Non mycobacterial
857		virulence genes in the genome of the emerging pathogen Mycobacterium abscessus.
858		PLoS One 2009;4:e5660.
859	2.	Sekizuka T, Kai M, Nakanaga K, Nakata N, Kazumi Y, Maeda S, Makino M, Hoshino
860		Y, Kuroda M. Complete genome sequence and comparative genomic analysis of
861		Mycobacterium massiliense JCM 15300 in the Mycobacterium abscessus group reveal
862		a conserved genomic island MmGI-1 related to putative lipid metabolism. PLoS One
863		2014;9:e114848.
864	3.	Yoshida M, Fukano H, Miyamoto Y, Shibayama K, Suzuki M, Hoshino Y. Complete
865		genome sequence of a type strain of Mycobacterium abscessus subsp. bolletii, a
866		member of the Mycobacterium abscessus complex. Genome Announc
867		2018;6(5):e01530-17.
868	4.	Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome
869		annotation pipeline for faster genome publication. <i>Bioinformatics</i> 2018;34:1037–1039.
870	5.	Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M,
871		Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome
872		analysis. Bioinformatics 2015;31:3691-3693.

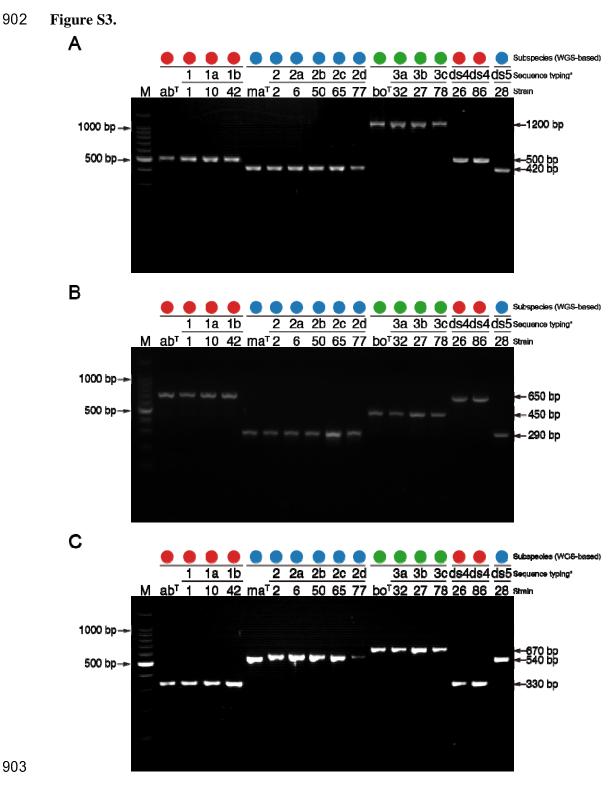
873	6.	Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses
874		with thousands of taxa and mixed models. <i>Bioinformatics</i> 2006;22:2688–2690.
875	7.	Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput
876		ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat
877		<i>Commun</i> 2018;9:1–8.
878	8.	Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL.
879		Versatile and open software for comparing large genomes. Genome Biol 2004;5:.
880	9.	Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for
881		FASTA/Q File Manipulation. PLoS One 2016;11:e0163962.
882	10.	Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial
883		pan-genome-wide association studies with Scoary. Genome Biol 2016;17:238.
884	11.	Nakanaga K, Sekizuka T, Fukano H, Sakakibara Y, Takeuchi F, Wada S, Ishii N,
885		Makino M, Kuroda M, Hoshino Y. Discrimination of Mycobacterium abscessus subsp.
886		massiliense from Mycobacterium abscessus subsp. abscessus in clinical isolates by
887		multiplex PCR. J Clin Microbiol 2014;52:251–9.
888	12.	Macheras E, Konjek J, Roux AL, Thiberge JM, Bastian S, Leão SC, Palaci M,
889		Sivadon-Tardy V, Gutierrez C, Richter E, Rüsch-Gerdes S, Pfyffer GE, Bodmer T,
890		Jarlier V, Cambau E, Brisse S, Caro V, Rastogi N, Gaillard JL, Heym B. Multilocus

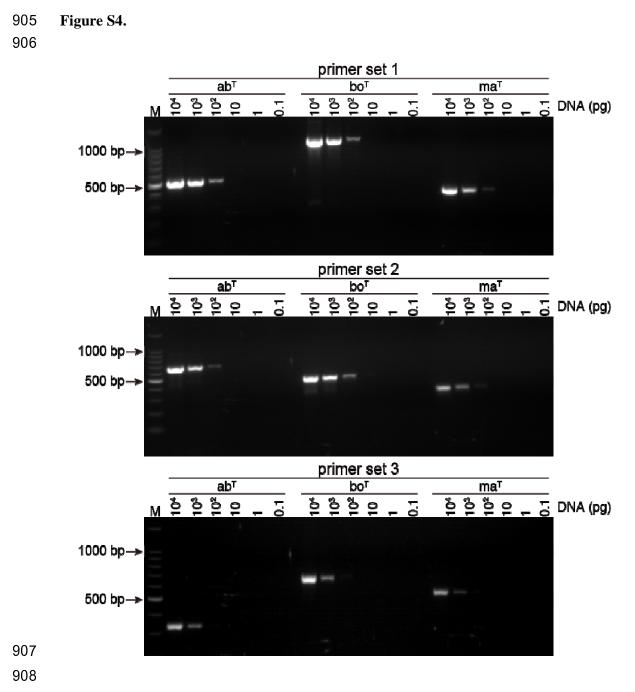

Manuscript for bioRxiv M. Yoshida et al.

- 891 sequence typing scheme for the *Mycobacterium abscessus* complex. *Res Microbiol*
- **892** 2014;165:82–90.

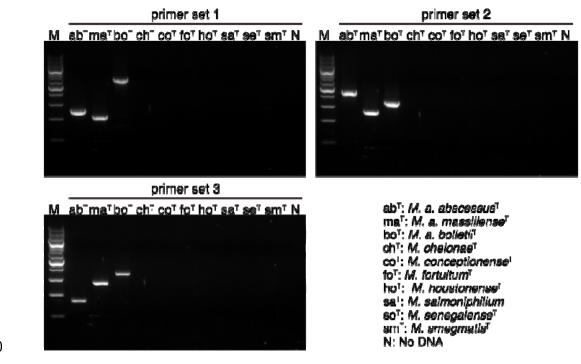
Manuscript for bioRxiv M. Yoshida et al.


894 Supplemental Figures

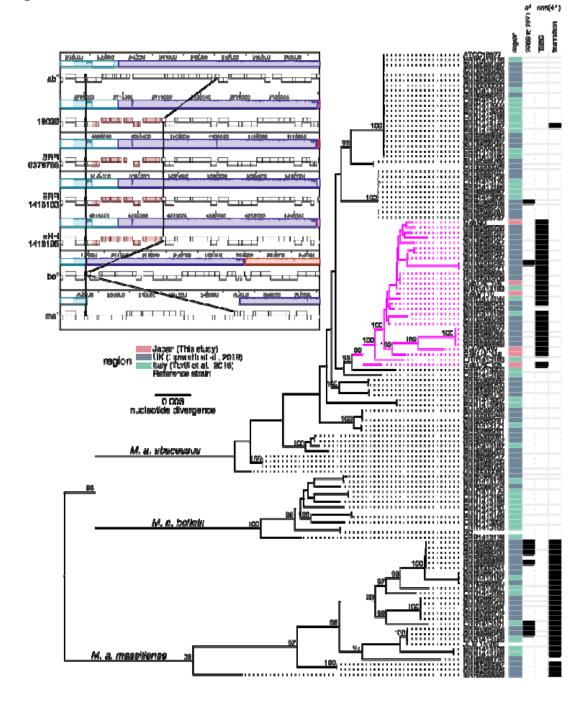

895 Figure S1.

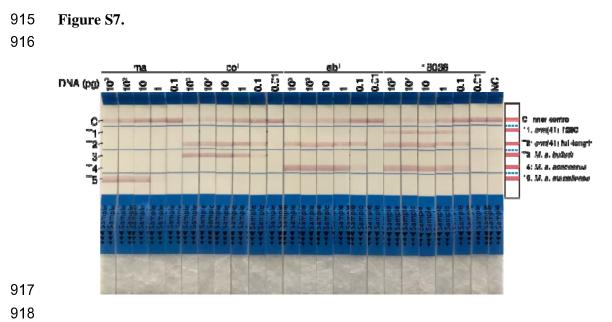

897

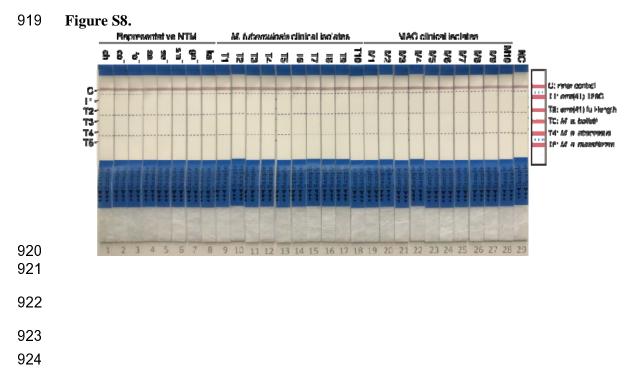
Manuscript for bioRxiv M. Yoshida et al.



> Manuscript for bioRxiv M. Yoshida et al.


910


909


Figure S5.

Manuscript for bioRxiv M. Yoshida et al.

912 Figure S6.

