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Abstract

The efficacy of antibiotic drug treatments in tuberculosis (TB) is significantly
threatened by the development of drug resistance. There is a need for a robust
diagnostic system that can accurately predict drug resistance in patients. In recent
years, researchers have been taking advantage of whole-genome sequencing (WGS) data
to infer antibiotic resistance. In this work we investigate the power of machine learning
tools in inferring drug resistance from WGS data on three distinct datasets differing in
their geographical diversity.

We analyzed data from the Relational Sequencing TB Data Platform, which
comprises global isolates from 32 different countries, the PATRIC database, containing
isolates contributed by researchers around the world, and isolates collected by the
British Columbia Centre for Disease Control in Canada. We predicted drug resistance
to the first-line drugs: isoniazid, rifampicin, ethambutol, pyrazinamide, and
streptomycin. We focused on the genes which previous evidence suggests are involved in
drug resistance in TB.

We called single-nucleotide polymorphisms using the Snippy pipeline, then applied
different machine learning models. Following best practices, we chose the best
parameters for each model via cross-validation on the training set and evaluated the
performance via the sensitivity-specificity tradeoffs on the testing set.

To the best of our knowledge, our study is the first to predict antibiotic resistance in
TB across multiple datasets. We obtained a performance comparable to that seen in
previous studies, but observed that performance may be negatively affected when
training on one dataset and testing on another, suggesting the importance of
geographical heterogeneity in drug resistance predictions. In addition, we investigated
the importance of each gene within each model, and recapitulated some previously
known biology of drug resistance. This study paves the way for further investigations,
with the ultimate goal of creating an accurate, interpretable and globally generalizable
model for predicting drug resistance in TB.
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Author summary

Drug resistance in pathogenic bacteria such as Mycobacterium tuberculosis can be
predicted by an application of machine learning models to next-generation sequencing
data. The received wisdom is that following standard protocols for training commonly
used machine learning models should produce accurate drug resistance predictions.

In this paper, we propose an important caveat to this idea. Specifically, we show
that considering geographical diversity is critical for making accurate predictions, and
that different geographic regions may have disparate drug resistance mechanisms that
are predominant. By comparing the results within and across a regional dataset and
two international datasets, we show that model performance may vary dramatically
between settings.

In addition, we propose a new method for extracting the most important variants
responsible for predicting resistance to each first-line drug, and show that it is to
recapitulate a large amount of what is known about the biology of drug resistance in
Mycobacterium tuberculosis.

Introduction 1

Tuberculosis (TB) is a serious infectious disease caused by Mycobacterium tuberculosis 2

(MTB) and one of the 10 leading causes of death in the world, with roughly 1.4 million 3

people dying from the disease every year [1]. Based on the latest WHO TB report, TB 4

incidence is decreasing at approximately 2% each year, and about 16% of the cases of 5

the disease result in death. More efforts are needed to reach the targets of at most a 5% 6

case fatality ratio and at most a 10% TB treatment failure rate adopted by the End TB 7

Strategy [2]. In order to achieve these milestones, a lot of research has focused on 8

addressing one of the most pressing issues in TB, drug resistance. MTB is susceptible to 9

acquiring resistance, which poses challenges for an effective treatment of the disease. 10

600,000 new cases of resistance to rifampicin, one of the key first-line drugs, were 11

reported in 2016, and 490,000 of these cases were multi-drug resistant, defined as 12

resistance to rifampicin and isoniazid, the two most effective first line-drugs [1]. Drug 13

resistance arises and continues to spread largely due to two reasons: improper TB drug 14

treatment, whereby poor quality drugs, premature treatment discontinuation, and 15

inappropriate drug regimens apply selective pressure on the MTB bacteria within 16

patients that leads to drug resistance, and person-to-person transmission, whereby these 17

drug-resistant MTB strains are spread to new patients [1]. 18

The gold standard in detecting drug resistance is phenotypic drug susceptibility 19

testing via bacterial culture, whereby MTB is cultured in a Lowenstein-Jensen medium 20

and exposed to a particular drug, and its response to the drug is then observed. This 21

process is slow and can require up to two months before results are obtained. A faster, 22

also commonly used tool for drug resistance detection is commercial genotypic line 23

probe assays such as XPert MTB/RIF and GenoType MTBDRplus. However, such 24

assays only predict resistance to isoniazid and/or rifampicin; they also only consider 25

common mutations associated with resistance, and therefore have lower sensitivity. Due 26

to recent advancements in whole-genome sequencing (WGS) technology, researchers are 27

able to sequence the whole genome of bacteria within a few hours at a much lower cost 28

while extracting more information about genotypic resistance markers. Mutation 29

libraries and databases based on single-nucleotide polymorphisms (SNPs) have been 30

constructed to detect drug resistance; these are included in tools such as TBProfiler [3], 31

TBDreaMDB [4], PhyResSE [5] and Mykrobe [6]. However, these libraries are not able 32

to capture the interactions between different resistance markers in predicting resistance; 33

moreover, they are highly dependent on the diversity of the sequenced samples. 34
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Machine learning and deep learning have been successfully applied to different areas 35

of research such as natural language processing, computer vision, and more recently 36

bioinformatics, including GWAS and cancer prognosis prediction [7, 8]. Leveraging the 37

abundance of WGS data, researchers have also applied machine learning tools to 38

predicting antibiotic resistance in MTB; for instance, in [9] they applied machine 39

learning models such as logistic regression, support vector machines, and naive Bayes 40

classifiers to predict resistance to 8 drugs from WGS data; in [10], the authors presented 41

a deep learning model, a multi-task wide and deep neural network for drug resistance 42

prediction, where they combined logistic regression and various deep learning techniques. 43

Both of these approaches have demonstrated promising results relative to curated 44

libraries in terms of specificity and sensitivity. 45

Previous work has focused exclusively on the prediction aspect and has not fully 46

explored the insights which could be obtained from the trained machine learning models 47

themselves, namely, a feature importance analysis. Such an analysis is especially 48

important for biological problems, where practitioners such as clinicians or public health 49

professionals may be interested in studying the interpretable factors, such as the genes 50

or SNPs, which are involved in determining resistance. Moreover, previous work has not 51

directly demonstrated the robustness of these models in making predictions on datasets 52

of different diversity. 53

In this work, we investigate the robustness of machine learning models for MTB 54

drug resistance prediction by training them on multiple datasets of different diversity 55

and composition. We demonstrate the pitfalls with regards to the generalizability of 56

models trained on homogeneous datasets with low diversity and regional data. 57

Moreover, we investigate more in depth those genes that are highly associated with 58

determining resistance by using different methods to determine which genes are of 59

particular importance for each model in determining drug resistance. 60

Datasets 61

In this work, we focus on three geographically distinct datasets: the Relational 62

Sequencing TB Data Platform (ReSeqTB) [11], the Pathosystems Resource Integration 63

Center (PATRIC) database [12], and a collection of isolates from the British Columbia 64

Centre for Disease Control (BCCDC). ReSeqTB is a consortium dedicated to the 65

development of next-generation TB diagnostics, and the dataset comprises global 66

isolates from 32 different countries. The PATRIC database contains isolates from 67

around the world. The BCCDC dataset is considered to be homogeneous, since it 68

originates from only one location, while the ReSeqTB and PATRIC datsets are 69

heterogeneous. Since all three datasets contain phenotypes for five first-line drugs - 70

isoniazid (INH), rifampicin (RIF), ethambutol (EMB), pyrazinamide (PZA) and 71

streptomycin (SM) - we focus our analysis on those. 72

For our cross-regional experiments, we used the full genotypic data available from 73

ReSeqTB. The data from three regions with sufficient representation are then analyzed: 74

North America (comprising 306 Canadian and 453 USA samples), Asia (comprising 144 75

Chinese and 101 Vietnamese samples), and Africa (comprising 436 South African 76

samples, 48 Ugandan samples and 73 Sierra Leone samples). 77

In this work, we predict drug resistance to single drugs and focus on SNPs within 78

two lists of candidate genes, one with 23 genes and one with 179 genes, both of which 79

were previously reported to be associated with drug resistance in MTB [13,14]. The 80

number of samples and SNPs in each dataset is presented in 1. Figures 1 and 2 refer to 81

the number of SNPs used for resistance prediction for different drugs as well as the 82

number of susceptible and resistant samples for each drug. As shown in those figures, 83

the BCCDC and the ReSeqTB datasets are very imbalanced for all the first-line drugs 84

(with more susceptible than resistant cases), and there are 3 to 4 times as many SNPs in 85
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the list of 179 genes compared to the list of 23 genes. For PATRIC, there are drugs 86

(INH, PZA, RIF) where the imbalance is in the other direction with a lot more resistant 87

than susceptible cases. In addition, among the first-line drugs we considered, PATRIC 88

and ReSeqTB have many co-occurrences of resistance, with most resistant samples 89

being resistant to 2 or more drugs. The BCCDC dataset, however, has most of its 90

samples resistant to only one drug. The co-occurrence of drug resistance is not 91

necessarily directly related to genetics, however; instead, it is a reflection of the 92

commonly used drug cocktails in the treatment of TB [15]. 93

Table 1. Summary of datasets.

Sample size Countries
Number of SNPs

in 23 genes
Number of SNPs

in 179 genes
ReSeqTB 3428 28 2065 7351
PATRIC 1440 19 2763 8968
BCCDC 1138 1 734 2694

Overall 6006 39 4808 16 419

Fig 1. Number of susceptible and resistant samples for different drugs.

Methods 94

Figure 3 illustrates the workflow of our machine learning approach. 95

Calling single nucleotide polymorphisms (SNPs) 96

For all three datasets, SNPs were called using Snippy [16], with Mycobacterium 97

tuberculosis H37Rv used as the reference genome. We translated the SNPs and the 98

phenotypic data into a feature matrix X and a list of label vectors yD indexed by the 99

drug D, respectively. X is a binary matrix, where xij = 0 indicates that sample i does 100

not have the j-th SNP, while xij = 1 indicates that it does. yD is a binary vector with 0 101

indicating susceptibilty and 1 indicating resistance to the given drug D. 102
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Fig 2. Number of SNPs used to predict resistance to different drugs.

Fig 3. Illustration of the machine learning approach.

For the cross-regional experiments, we used the fully available ReSeqTB genotype 103

data with calls using the UVP pipeline [17]. This was done to ensure more data was 104

available than just the samples committed to a public repository and for which the 105

corresponding accession number was available. This allowed us to obtain SNPs from a 106

total of 6495 isolates through ReSeqTB. 107

Cross-validation protocol 108

We performed a 10-fold cross-validation to choose hyperparameters. In 109

order to choose the best set of parameters for each model, we partitioned each fold 110

within the dataset into a training set (80%), a validation set (10%) and a testing set 111

(10%). Only the training and validation sets were used in the process of parameter 112

tuning. We trained the model on the training set and searched for an optimal 113

probability threshold which yielded the highest accuracy on the training set. We 114

measured performance using the area under the Receiver Operating Characteristic curve 115

(AUC). We picked the best parameters for the model based on the average AUC across 116

the 10 folds on the validation set. Once the set of best parameters was found, we 117

retrained the model on the training and validation sets, then predicted on the test set 118

and reported the AUC of the test set for each fold. 119
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Fig 4. Description of each fold for a 10-fold cross validation process. (Left) The
workflow for choosing the best parameters for each model. Models are trained on the
training set and an optimal probability threshold chosen for classification. The
validation set is used for choosing the best parameters and the testing set was left
untouched. (Right) Once the best parameters are found, we train on both the training
and validation sets, predict on the testing sets, and report the performance on the
testing set for each fold.

Machine learning classifiers 120

We considered the main models used in [9], namely, Logistic Regression with L1 121

and L2 penalty (LR L1 and LR L2), support vector machine with linear kernel and L2 122

penalty (SVM L2), support vector machine with radial basis kernel (SVM RBF) and 123

random forests (RF). In our work we additionally investigated the ElasticNet (eNet) 124

model. eNet refers to a logistic regression model which combines L1 and L2 penalties. 125

Resistance-associated genes 126

We investigated resistance-associated genes for each drug based on the 127

machine learning models using the following two methods: 128

• Submatrix permutation test : For each gene g in the list of (23 or 179) candidate 129

genes, we randomly permuted the rows of the submatrix of the input feature 130

matrix X whose columns were SNPs within g, while leaving the rest of X 131

unchanged. Denoting this permuted matrix as Xg, we then input Xg to the 132

machine learning models for retraining. Let AUC(X) and AUC(Xg) denote the 133

test AUC using X and Xg as the feature matrix, respectively. We computed 134

∆g = AUC(X)−AUC(Xg). If ∆g is positive and large in magnitude, we may 135

conclude that gene g is relevant to resistance determination for the drug of 136

interest. 137

• Gene-wise partial least square (PLS) regression: PLS is a regression model which 138

decomposes X into a set of components explaining as much as possible of the 139

covariance between X and y [18]. We performed PLS on X gene-by-gene and kept 140

only 1 component for each gene. Hence, the PLS-transformed matrix PLS(X) is 141

an n×m matrix, where n is the number of samples and m is the number of genes 142

considered. We then trained and predicted resistance using the LASSO 143

(LR L1) [19] and the random forest (RF) models with X ′ := PLS(X) as the 144

input matrix. By investigating the resulting models, we are able to estimate the 145

importance of each gene for predicting resistance to a particular drug. 146
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Results 147

PCA suggests lineage is not a confounder of drug resistance 148

We performed Principal Component Analysis (PCA) on the feature matrices for the 149

BCCDC and ReSeqTB datasets to investigate the relations between lineages 1 and 150

resistance to isoniazid and pyrazinamide (used as examples). Figure 5 and Figure 6 151

show the plots of the first 2 PCA components, with samples grouped by lineage. For 152

ReSeqTB, the samples can be clearly grouped into clusters, one per lineage. Within 153

each cluster, the resistant and susceptible samples are non-separable, which suggests 154

that lineage is not a confounder of resistance. For BCCDC, a similar conclusion applies 155

for pyrazinamide but for isoniazid, samples are not clustered well with lineages. No 156

PCA was performed for PATRIC since the associated metadata did not contain lineage 157

information. 158

Fig 5. The axes are the first 2 components of PCA. (Left) Isoniazid (Right)
Pyrazinamide.

We achieved good performance when training and testing our 159

models within a dataset 160

Within-dataset performance differs between homogeneous and 161

heterogeneous datasets. Test AUC plots are presented in Figure 7. In general, no 162

model clearly outperforms the others. PZA is the most challenging drug to predict for 163

the heterogeneous datasets PATRIC and ReSeqTB. For the latter, a larger dataset does 164

not aid in PZA prediction. There appears to be a large variability in the mutations 165

driving PZA resistance that makes it challenging for models to learn from a 166

heterogeneous dataset, although PZA prediction performance is high for the 167

homogeneous BCCDC dataset. This underwhelming performance may be partially 168

explained by our genotyping method that does not take into account insertions and 169

deletions, which can be determinant for PZA resistance [20]. 170

Any given probability threshold for assigning a prediction (drug-sensitive or 171

drug-resistant) to each sample determines a sensitivity and a specificity for the model. 172

Rather than using a fixed threshold, we take a holistic view and make use of the 173

1Strains from the same lineage are generally thought to have originated from the same geographical
location; they tend to share some unique mutations.
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Fig 6. BCCDC:The axes are the first 2 components of PCA. (Left) Isoniazid (Right)
Pyrazinamide.

Receiver Operator Characteristic (ROC) curve. This curve can be used to determine 174

the optimal sensitivity for a given specificity, or vice versa. Furthermore, one can use 175

the Area Under this Curve (AUC) to evaluate and compare the performance of different 176

models, as is commonly done in drug resistance studies [10,21,22]. 177

Supplementary Figure 1 illustrates the results of training and testing within a 178

dataset when training on the SNPs in 179 genes of interest. In general, no model clearly 179

outperforms the others. PZA is the most challenging drug to predict for the 180

heterogeneous datasets PATRIC and ReSeqTB. For the latter, a larger dataset does not 181

aid in PZA prediction. There appears to be a large variability in the mutations driving 182

PZA resistance that makes it challenging for models to learn from a heterogeneous 183

dataset, although PZA prediction performance is high for the homogeneous dataset 184

BCCDC. Moreover, the poor performance can be explained by the our method which 185

does not take into account insertions and deletions, which can be determinant for PZA 186

resistance [20]. 187

The performance ranking of the heterogeneous datasets is identical, whereas BCCDC 188

has PZA and RIF as the easiest drugs to predict, and SM as the worst one. Moreover, 189

RIF and PZA are the easiest to predict for BCCDC, with AUC’s greater than 0.95, 190

while SM is harder to predict than it is for any other dataset. The results obtained 191

when training the models on SNPs within 179 genes are very similar to those on SNPs 192

within 23 genes, with no obvious change in performance between the two. These results 193

are shown in the Appendix. 194

Cross-dataset evaluation shows the pitfalls of a model trained 195

on a homogeneous dataset 196

By training our models on one dataset and testing them on another, we were able to 197

observe how generalizable our models are. We use the short-hand notation a→ b to 198

denote a model with training set a and testing set b. Overall, prediction performance is 199

higher when training on a heterogeneous dataset (i.e. ReSeqTB or PATRIC) and 200

testing on a homogeneous dataset (i.e. BCCDC) than vice versa. We call training on a 201

homogeneous dataset task A and training on a heterogeneous dataset task B. The 202

results are shown in Supplementary Figure 2. 203

The gap in performance between task A and task B is larger for PZA than for the 204
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Fig 7. Test AUC for each dataset, trained on SNPs within 23 genes of interest. (Top
left) BCCDC (Top right) ReSeqTB (Bottom) PATRIC.

other drugs. There is an increase of 11% in the AUC of PZA while there is an increase 205

of only 2% for RIF and even a decrease of 8% for ReSeqTB→BCCDC compared to its 206

opposite. Nearly identical results are obtained for PATRIC→BCCDC and 207

BCCDC→PATRIC. It is interesting to note that for PZA prediction, training on a 208

heterogeneous dataset is better, while for SM, training on a homogeneous dataset is 209

better. 210

We also found that training with 179 genes instead of 23 can in some cases make the 211

model perform better in cross-dataset evaluation. For example, for ReSeqTB→BCCDC, 212

the AUC for RIF increased from 73% to 83% when training on 179 genes. However, it is 213

also possible for the performance to become worse, which can be seen for SM. 214

Cross-regional evaluation shows the pitfalls of applying a model 215

trained on regional data on a different region 216

We also hypothesized that regional variation can have an effect on the predictive power 217

of models, and thus in this section, we further investigate the regional impact of a 218

model’s predictive power. The results are presented in Supplementary Figure 4. 219

Similar to our within-dataset evaluation, simpler models such as logistic regression 220

September 14, 2020 9/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2020. ; https://doi.org/10.1101/2020.09.17.301226doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301226
http://creativecommons.org/licenses/by/4.0/


outperform more complex models in most cases. For drug-specific performance, RIF is 221

the most stable drug, meaning that the model can predict its resistance with relative 222

ease throughout different regions. INH closely follows RIF, while PZA prediction 223

fluctuates the most between regions. For a given model, PZA prediction performance 224

can range from 50% to 90%, while RIF prediction performance is stable around 90%. It 225

may be possible that mutations encoding for RIF and INH resistance are homogeneous 226

across strains, meaning there is not much variation in the resistance mechanism across 227

strains, while regional variation may exist for the resistance mechanism of other drugs 228

such as PZA or SM. 229

Trends were also observed when training on different regional subsets. The North 230

American model was much better at predicting resistance for African samples than 231

Asian samples. Similarly, the African model was much better at predicting resistance on 232

North American than Asian samples. The Asian model performed better on the North 233

American than African samples, although the training data was limited. It appears that 234

prediction of Asian samples may be a harder task from both the North American and 235

African samples. It is possible that North American and African strains are 236

genotypically closer to each other than Asian strains. However, this hypothesis would 237

require further investigation and a much more comprehensive dataset, as each regional 238

subset may not be representative of real-world strains present in each region. 239

Furthermore, we did not use European data because the European subset appears to 240

contain many different types of MTB due to the presence of many different groups of 241

immigrants. 242

Which genes are associated with drug resistance? 243

Submatrix permutation tests show that including more features may dilute 244

the importance of key features 245

We considered different machine learning models for estimating gene importance using 246

random permutation of the rows of the feature matrix, to provide an unbiased 247

perspective. We chose the LR L1, LR L2, SVM L2, SVM RBF and RF models for this 248

study and posited that a gene was important for resistance prediction if all the models 249

assigned it a relatively high importance. We define Delta as the largest positive 250

difference in test AUC between all models before and after permuting. The results are 251

shown in Supplementary Table 1. We consider genes that are predicted to be important 252

through machine learning as well as associated with resistance for the corresponding 253

drug in [23] to be resistance-determinant. 254

For all three datasets, including 179 genes over 23 genes generally results in two 255

scenarios: a decrease in the number of resistance-determinant genes deemed as 256

important for resistance prediction, and/or a decrease in the Delta for 257

resistance-determinant genes. For BCCDC (Table 2) with 23 genes, EMB, INH, RIF 258

and SM the gene with the largest Delta (Delta > 10%) is a resistance-determinant gene. 259

This trend remains when including 179 genes, however Delta < 10% for each case. 260

Moreover, we see that resistance-determinant genes are more easily captured as 261

important in a homogeneous dataset. BCCDC has 4 drugs which have a 262

resistance-determinant gene with the largest Delta, whereas ReSeqTB and PATRIC, the 263

more heterogeneous datasets, only have this for at most two of the drugs each. The more 264

modest performance for heterogeneous datasets may be due to a larger pool of possible 265

variants. This hypothesis is supported by looking at the number of genes that have the 266

five largest Delta values for each drug in PATRIC, the most heterogeneous dataset; 267

there is a lower number of resistance-determinant genes identified among the top 5 than 268

for any other dataset, perhaps due to the large number of different SNPs present. 269

270
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23 genes
EMB INH PZA RIF SM
embB*
(11%)

fabG1u*
(16%)

rpoB
rpoB*
(18%)

rrs*
(12%)

rpoB embB embB embC fabG1u

gidB gyrA embR embB embA

katG iniC iniA katG
gidB*
(5.2%

embC*
(7.4%)

ndh*
(1.1%)

embC embR inhA

179 genes
EMB INH PZA RIF SM
embB*
(8.1%)

fabG1u*
(6.5%)

rpoB
rpoB*
(5.9%)

rrs*
(3.0%)

eccC5 rpoB nudC
ponA1*
(3.0%)

ppsB

ppsAu mas Rv0565c Rv1667cu mmpL5

mas
mymA*
(1.1%)

ppsAu*
(4.6%)

rpfB mshA

clpC1 embB embB hadB embC

Table 2. Top 5 genes with the highest Delta in the submatrix permutation tests in
BCCDC. u indicates upstream regions and * indicates a gene known to be resistance
determinant.

Gene-wise partial least squares using the LASSO model reveals the cause 271

of lower performance in heterogeneous datasets 272

We reduce the feature matrix gene-by-gene using PLS and end up with a transformed 273

matrix with 23 or 179 columns, each representing a gene, which is then used as the input 274

to a LASSO classifier. The non-zero coefficients of the LASSO and their magnitude can 275

be interpreted as an estimate of the corresponding genes’ importance for resistance. We 276

picked the regularization type by looking at the best performing logistic regression 277

model for within-dataset evaluation. The results are shown in Supplementary Table 2. 278

A resistance-determinant gene is either the most or second most important feature 279

for every drug in BCCDC. As the datasets get more heterogeneous, the models are less 280

able to capture resistance-determinant genes as important. Only SM has a 281

resistance-determinant gene as the most important for PATRIC, the most 282

heterogeneous dataset. Moreover, including more features dilutes the importance of 283

determinant genes. Many resistance-determinant genes identified within 23 genes are 284

lost completely or have a lower importance when looking at 179 genes. There are cases 285

where new resistance-determinant genes are found when including more features, but at 286

the cost of reducing the importance of resistance-determinant genes. 287

Gene-wise partial least squares using Random Forests shows the difficulty 288

of working with limited sample size heterogeneous datasets 289

We used the same reduced matrices as for the LASSO model, but as an input for RF. A 290

gene’s importance was evaluated by investigating the model’s feature importance values. 291

The results are presented in Supplementary Table 3. 292

The difference between using 23 and 179 genes is not as evident, but there is still 293

evidence of resistance-determinant genes being masked when more features are 294

introduced. The difference between a homogeneous dataset and heterogeneous dataset 295

however, is clearer. BCCDC has a resistance-determinant gene as the most important 296

gene for every drug. ReSeqTB has four drugs with resistance-determinant genes 297

identified as the most important when including 23 genes, and three when including 179 298

genes. PATRIC, the most heterogeneous and the smallest dataset, only has one drug 299

with a resistance-determinant gene as the most important for both 23 or 179 genes. 300

This demonstrates the challenge of obtaining interpretable results with a small 301

heterogeneous dataset. 302
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Discussion 303

In summary, we predicted TB drug resistance using different machine learning models 304

on 3 large datasets, ReSeqTB, PATRIC and BCCDC, and performed the study of 305

resistance-associated genes in a machine learning context. We also performed a 306

cross-dataset evaluation and cross-regional evaluation. 307

The first contribution of our work is demonstrating the robustness of models when 308

training and testing on datasets of different diversity. The test AUC for BCCDC is 309

much higher than the ones for ReSeqTB or PATRIC. This demonstrates the ease of 310

training and testing on a homogeneous dataset compared to a heterogeneous one. 311

Furthermore, the performance difference between training on SNPs within 23 genes and 312

SNPs within 179 genes was not significant, so increasing the size of the feature set does 313

not consistently result in better performance when the sample size remains constant. 314

Increasing the number of features may introduce too much noise that results in the 315

model not performing any better. We also see that a model trained on a homogeneous 316

dataset may not generalize well to a heterogeneous dataset. We demonstrate the 317

potential difficulty of achieving good prediction results when a model trained on a 318

homogeneous dataset is used to make predictions on a heterogeneous one. We also 319

demonstrate the potential challenges of training a model using data from one region. 320

Such a model may only be suitable for that region, but may not be generalizable to 321

other regions. 322

Apart from achieving good results on prediction, it is equally important to study the 323

trained models and understand resistance-associated markers, something that seems to 324

be a limitation of most previous work. Our second contribution is a rigorous method for 325

identifying putative resistance-associated genes by permuting the rows of the submatrix 326

of the corresponding gene as well as performing gene-wise PLS with LASSO. The 327

gene-wise PLS method tends to give a better view of which genes are important, while 328

the submatrix permutation testing method tends to be noisier and less consistent. 329

However, our analysis still showed that some of the highly ranked genes were previously 330

reported as resistance-determinant, supporting the use of our methods. Some other 331

identified genes have not been extensively studied in conjunction with drug resistance, 332

and thus may contain true signal or just noise. Therefore, one key challenge is to 333

construct a reliable feature importance extraction method, preferably from a machine 334

learning perspective, but possibly involving expertise-based feature engineering, to 335

eliminate SNPs that may contribute to irrelevant genes being identified as important. 336

By effectively eliminating noise, we are also able to include more relevant SNPs, which 337

will potentially amplify the advantage of training models on a diverse dataset. 338

Our work can be seen as an exploratory study. To the best of our knowledge, it is 339

the first one to investigate the issues of dataset homogeneity and heterogeneity and the 340

identification of drug resistance markers at different resolutions by analyzing machine 341

learning models trained on 3 major datasets and two sets of genes. We hope that this 342

study will inform future work on drug resistance in pathogenic bacteria and the 343

application of machine learning to the drug resistance problem. 344
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Supporting information 345

S1 Fig. Test AUC for each dataset, trained on SNPs within 179 genes of 346

interest. (Top left) BCCDC (Top right) ReSeqTB (Bottom) PATRIC.

347
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S2 Fig. Test AUC for cross-dataset evaluation with SNPs within 23 genes 348

of interest.

349
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S3 Fig. Test AUC for cross-dataset evaluation with SNPs within 179 350

genes of interest. 351
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S4 Fig. Test AUC for cross-regional evaluation. 352
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S1 Table. Top 5 genes with the highest Delta in the submatrix 353

permutations tests for each dataset. 354
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S2 Table. Top 5 genes with the highest LASSO coefficients for each 355

dataset. 356
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S3 Table. Top 5 genes with the highest random forests importance values 357

for each dataset. 358
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