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Abstract 

Deciding about courses of action involves an estimation of costs and benefits. Decision 

neuroscience studies have suggested a dissociation between the ventral and dorsal medial 

prefrontal cortex (vmPFC and dmPFC), which would process reward value and effort cost, 

respectively. However, several results appeared inconsistent with this general idea of opponent 

reward and effort systems. These contradictions might reflect the diversity of tasks used to 

investigate the trade-off between effort cost and reward value. They might also reflect the 

confusion with a meta-decision process about the amount of deliberation needed to reach a 

sufficient confidence in the reward/effort estimates. Here, we used fMRI to examine the neural 

correlates of reward and effort estimates across several preference tasks, from (dis-)likeability 

ratings to binary decisions involving attribute integration and option comparison. Results 

confirm the role of the vmPFC as a generic valuation system, across the different tasks 

(likeability rating or binary decision) and attributes (the activity increasing with reward value 

and decreasing with effort cost). However, meta-decision variables were represented in more 

dorsal regions, with confidence in the mPFC and deliberation time in the dmPFC. These 

findings suggest that assessing commonalities across preference tasks and distinguishing 

between decision and meta-decision variables might help reaching a unified view of how the 

brain chooses a course of action.  
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Introduction 

Cost-benefit arbitrage is a pervasive process involved in any decision that bears practical 

consequences. Standard decision theory assumes that selecting a course of action can be 

reduced to maximizing a net utility function, where expected benefits are discounted by 

expected costs. In decision neuroscience, a general debate has been engaged between 

opponency theories, where pursuit of benefits and avoidance of costs are mediated by separate 

brain systems, and integration theories, where costs and benefits are combined in a single brain 

system (Boureau and Dayan, 2011; Cisek and Kalaska, 2010; Padoa-Schioppa, 2011; 

Pessiglione and Delgado, 2015; Rangel and Hare, 2010). 

A central dilemma that has been scrutinized in decision neuroscience is between the 

resource to be invested in the action (i.e., the effort) and the value of the action outcome (i.e., 

the reward). Many fMRI studies have documented the existence of a brain valuation system 

(BVS), with the ventromedial prefrontal cortex (vmPFC) as a core component, that would 

signal the value of various categories of rewards (Bartra et al., 2013; Levy and Glimcher, 2012). 

Although the generality of the vmPFC value signal across reward categories is well accepted, 

whether or not this value signal integrates effort costs is a controversial issue. While some 

studies have reported that effort costs result in a decreased vmPFC value signal (Arulpragasam 

et al., 2018; Seaman et al., 2018), others have suggested the existence of an opponent system 

that would signal effort costs with increasing activity, such as the dorsomedial prefrontal cortex 

(dmPFC, sometimes referred to as ‘dorsal anterior cingulate cortex’) and the anterior insula 

(Kurniawan et al., 2013; Skvortsova et al., 2014).  

One explanation for theses discrepancies is the diversity of behavioral tasks employed 

to probe the neural correlates of reward and effort estimates. Here, we reversed the general logic 

of standard functional neuroimaging approach, which specifies the roles of brain regions with 

contrasts that isolate minimal differences between conditions. On the contrary, we intended to 

generalize our findings across various conditions and tasks, with the aim to reach more robust 

conclusions. Thus, we employed a series of preference tasks (also called ‘value-based’ tasks) 

that enable the investigation of 1) the reward value or effort cost of a single option, with (dis-

)likeability rating tasks, 2) the comparison between reward or effort attributes, with one 

dimension – two options (1D-2O) choice tasks and 3) the integration of reward and effort 

attributes, with one option – two dimensions (1O-2D)  choice tasks. 

Another explanation for inconsistencies in the neural correlates of reward and effort is 

the possible confusion with meta-decision variables. Indeed, reward value and effort cost 
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estimation can itself be performed with various amounts of deliberation effort. Intuitively, 

everyone knows that some decisions are made on the fly, without thinking too much, while 

others demand a long and painful deliberation, in order to weigh the pros and cons. This 

intuition has been captured in a theory postulating that the investment of cognitive control is 

based on a cost-benefit arbitrage (Shenhav et al., 2013). Applied to decision-making, the cost 

is essentially the time that the agent spends considering the different options and their attributes, 

while the benefit is essentially the confidence that the agent gains in making the right choice. 

Therefore, in addition to the reward and effort levels that are attributes of choice options, we 

examined constructs related to the meta-choice: confidence and deliberation time. Importantly, 

the reward and effort estimates did not imply actual and immediate implementation, as all 

choices were hypothetical in our tasks. On the contrary, confidence and time were variables 

associated to current behavior, i.e. to the ongoing estimation of reward value and/or effort cost.  

Our results suggest a triple dissociation within the medial prefrontal cortex that is stable 

across preference tasks, with option attributes (reward and effort levels) being represented in 

vmPFC activity, whereas meta-decision variables (confidence and deliberation time) being 

represented in mPFC and dmPFC activity, respectively. 

 

Results 

Behavior 

Participants (n=39 in total) first performed a series of ratings, divided into three blocks 

(Fig. 1A). Each block presented 72 items one by one: reward items presented with text + image 

(Rti), reward items presented with text only (Rt) and effort items presented with text only (Et). 

The reason for varying the mode of presentation was to assess the generality of the neural 

valuation process across different inputs that demand more or less imagination, according to 

previous study (Lebreton et al., 2013). The order of the Rti, Rt and Et blocks was 

counterbalanced across participants. For rewards, participants were asked to rate how much 

they would like it, should they be given the item immediately after the experiment. 

Symmetrically, the instruction for efforts was to rate how much they would dislike it, should 

they be requested to implement it immediately after the experiment. We included both food and 

non-food (goodies) reward items, and both mental and physical effort items. There was no 

number on the scale, just labels on endpoints, and ratings were pseudo-continuous, from ‘I 

would (dis-)like it not at all’ to ‘enormously’. Thus, the left endpoint corresponded to 

indifference and the right endpoint to extreme attraction or extreme aversion (Fig. 2A). 
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The z-scored rating was taken as a proxy for stimulus value (Val) in this task, while the 

square of z-score rating was taken as a proxy for response confidence (Conf), following on 

previous studies (Lebreton et al., 2015; Lopez-Persem et al., 2020). Deliberation time (DT) was 

defined in this task as the time between item onset and the first button press used to move the 

cursor along the scale. DT was regressed against a linear model that included Val and Conf 

proxies, in addition to nuisance factors (such as jitter duration, stimulus luminance, text length 

and trial index, see methods). We found in all blocks (Fig. 2B) a significant effect of both value 

(Rti: βVal = -0.208 ± 0.023 (mean ± standard error of the mean across participants), p = 4∙10-11; 

Rt: βVal = -0.169 ± 0.019, p = 6∙10-11; Et: βVal = 0.261 ± 0.028, p = 2∙10-11) and confidence (Rti: 

βConf = -0.174 ± 0.025, p = 3∙10-8; Rt: βConf = -0.188 ± 0.028, p = 7∙10-8
; Et: βConf = -0.130 ± 

0.040 ; p = 0.0024). Thus, participants were faster to provide their rating when the item was 

more appetitive (or less aversive) and when they were more confident (going towards the 

extremes of the rating scale). Among the nuisance factors, we observed effects of jitter duration, 

stimulus luminance and text length, which were therefore included as regressors in subsequent 

analyses. However, there was no significant effect of trial index, which discards a possible 

contamination of DT by habituation or fatigue. 

Then participants performed a series of binary choices, either 1D-2O choices or 1O-2D 

choices. The choice tasks were always performed after the rating tasks because the ratings were 

used to control the difficulty of choices (i.e., the difference in value between the two options). 

In the 1D-2O choice task (Fig. 1B), participants were asked to select the reward they would 

prefer to receive at the end of the experiment, if they were offered one of two options, or the 

effort they would prefer to exert, if they were forced to implement one of two options. Thus, 

the two options always pertained to the same dimension (reward or effort), and even to the same 

sub-category (food or good for reward, mental or physical for effort), to avoid shortcut of 

deliberation by general preference. The mode of presentation (text or image) was also the same 

for the two options, to avoid biasing the choice by a difference in salience. To obtain a same 

number of trials as in the rating task, each item was presented twice, for a total of three blocks 

(Rti,Rt, Et) of 72 choices. Again, the order of the Rti, Rt and Et blocks was counterbalanced 

across participants. In the 1O-2D choice task (Fig. 1C), participants were asked whether they 

would be willing to exert an effort in order to obtain a reward, at the end of the experiment. 

Only items described with text were retained for this task, each item again appearing twice, for 

a total of 144 choices divided into three blocks. 

The 1D-2O choice task (Fig. 1C) was meant to assess value comparison between the 

two options, within a same dimension. The decision value (DV) in this task was defined as the 
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difference in (dis-)likeability rating between the two options. We checked with a logistic 

regression that DV was a significant predictor of choices (Fig. 2E) in all blocks (Rti: βDV = 3.383 

± 0.273, p = 7∙10-15; Rt: βDV = 2.669 ± 0.155, p = 2∙10-19; Et: βDV = -2.278 ± 0.157, p = 4∙10-17). 

The 1O-2D choice task was meant to assess value integration across two dimensions, for a 

single option. The decision value (or net value) in this task was defined as a linear combination 

of reward and effort ratings. We checked with a logistic regression that both reward and effort 

ratings were significant predictors of choice in this task (βR = 1.502 ± 0.085, p = 6∙10-20; βE = -

1.117 ± 0.079, p = 1∙10-16). 

To analyze DT (time between stimulus onset and button press), we defined proxies for 

stimulus value and response confidence, as we did for the rating task. Stimulus value (Val) was 

defined as a linear integration of the likeability ratings assigned to the two stimuli on screen. In 

the 1D-2O choice task, this is simply the sum of the two item ratings. In the 1O-2D choice task, 

this is the net value (sum of reward and effort ratings weighted by a scaling factor). In both 

cases, choice probability was calculated with the logistic regression model (softmax function 

of decision value). Response confidence (Conf) was defined, by analogy to the rating task, as 

the square of the difference between choice probability and mean choice rate. Linear regression 

showed that DT decreased with value (Fig. 2C) in the 1D-2O choice task (Rti: βVal = -0.061 ± 

0.010, p = 3∙10-7; Rt: βVal = -0.061 ± 0.010, p = 3∙10-7; Et: βVal = 0.048 ± 0.013, p = 8∙10-4), 

albeit not in the 1O-2D choice task (βVal =  0.033 ± 0.024, p = 0.172). DT also decreased with 

confidence (Fig. 2D) in both the 1D-2O choice task (Rti: βConf = -1.738 ± 0.201, p = 2∙10-10; Rt: 

βConf = -1.975 ± 0.184, p = 4∙10-13; Et: βConf = -1.731 ± 0.221, p = 2∙10-9) and the 1O-2D choice 

task (βConf = -1.148 ± 0.145, p = 1∙10-9). Thus, the relationship between DT and the two other 

factors of interest was similar in rating and choice tasks: participants were faster when the 

options were more appetitive (or less aversive) and when they were more confident (because of 

a strong preference for one response or the other). 

 

Neural activity 

The aim of fMRI data analysis was to dissociate the variables related to option valuation 

(reward and effort estimates) from the variables related to the meta-decision (confidence and 

deliberation) across value-based tasks (rating and choice). A meta-analysis of fMRI studies 

using Neurosynth platform (Fig. 3A) shows that value, confidence and effort keywords yield to 

similar activation patterns with clusters in both vmPFC and dmPFC. To better dissociate the 

neural correlates of these constructs, we built a general linear model where stimulus onset 

events were modulated by three parameters of interest - Val, Conf and DT (defined as in the 
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behavior analysis). Nuisance parameters that were found to influence DT (jitter duration, 

stimulus luminance, text length) were also included as modulators of stimulus onset events, 

before the variables of interest. Thus, due to serial orthogonalization, the variables of interest 

were orthogonalized with respect to nuisance factors, and deliberation time was made 

orthogonal to all other regressors, including stimulus value and response confidence. 

After correction for multiple comparisons at the voxel level, we found only three 

significant clusters in the prefrontal cortex (Fig. 3B): Val was signaled in vmPFC activity, Conf 

in mPFC activity and DT in dmPFC activity. With a more lenient threshold (correction at the 

cluster level), we observed significant association with Val in other brain regions, such as the 

ventral striatum (vS), posterior cingulate cortex (pCC) and primary visual cortex (V1). Note 

that vS and pCC are standard components of the brain valuation system, whereas V1 activation 

is likely to be an artifact of gaze position on the rating scale, as it was not observed in the choice 

tasks. Consistently, positive correlation with Val was found in right V1 activity, and negative 

correlation in left V1 activity. This was not the case in the other clusters, which were either 

medial or bilateral. 

We further analyzed the relationship between computational variables and activity in 

the three medial prefrontal regions of interest (ROI) with post-hoc t-tests. We first verified that 

the three main associations were significant in each task (Fig. 3C): it was indeed the case for 

Val in vmPFC activity (rating: βVal = 0.701 ± 0.126, p = 2∙10-6 ; 1D-2O: βVal = 0.293 ± 0.126, 

p = 0.025 ; 1O-2D: βVal = 0.700 ± 0.180, p = 4∙10-4), for Conf in mPFC activity (rating: βConf = 

0.768 ± 0.111, p = 3∙10-8 ; 1D-2O: βConf = 0.335 ± 0.114, p = 0.006 ; 1O-2D: βConf = 0.313 ± 

0.133, p = 0.024) and for DT in dmPFC activity (rating: βDT = 0.410 ± 0.106, p = 4∙10-4 ; 1D-

2O: βDT = 0.875 ± 0.123, p = 2∙10-8 ; 1O-2D: βDT = 0.676 ± 0.125, p = 4∙10-6). We then verified 

that the three dissociations were significant (Fig. 3D): Val was better reflected in vmPFC 

activity (βVal/vmPFC > βVal/mPFC : p = 9∙10-9 ; βVal/vmPFC > βVal/dmPFC : p = 5∙10-8), Conf in mPFC 

activity (βConf/mPFC > βConf/vmPFC : p = 0.0035; βConf/mPFC > βConf/dmPFC : p = 2∙10-7) and DT in 

dmPFC activity (βDT/dmPFC > βDTvmPFC : p = 0.021; βDT/dmPFC > βDTmPFC : p = 2∙10-4). 

Thus, the triple dissociation observed in the maps was robust across tasks and was 

supported by significant differences between ROI. However, the triple dissociation does not 

imply that the three variables of interest were solely represented in one single brain region. In 

particular, Conf and DT were also significantly related to vmPFC activity (βConf = 0.256 ± 

0.098, p = 0.013; βDT = 0.377 ± 0.108, p = 0.001), even if these activities were dominated by 

Val-related activity. In a pilot study, we compared the standard EPI acquisition sequence used 

in the main experiment to sequences using multiband acceleration and multi-echo acquisition. 
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Although the number of participants (n=15) and the number of task sessions (one out of three) 

was too low for sound statistical inference, we nonetheless examined whether the triple 

dissociation would hold with these alternative sequences. This dataset was independent from 

the main dataset based on which regions of interest were defined. We observed the same trends 

(see Fig. S1), with regression estimates higher for Val in vmPFC, Conf in mPFC and DT in 

dmPFC. However, only Val in vmPFC and DT in dmPFC survived statistical thresholds for 

significance. 

We developed variants of our GLM to further assess the robustness of these findings. 

Regarding Val, we examined whether other value-related variables employed in previous 

studies, such as decision value (e.g., chosen minus unchosen option value) could better account 

for vmPFC activity. When replacing our proxy for stimulus value by these other variables, we 

did not find any stronger correlation with activity in the vmPFC, even when defined 

anatomically or from meta-analyses of fMRI data. Regarding Conf, we assessed whether the 

dorsal location of the cluster (mPFC instead of vmPFC) could be related to the 

orthogonalization with Val, by simply removing the Val regressor, but results were unchanged. 

Regarding DT, we tested whether the association with dmPFC activity could arise from the 

delay itself, and not from a prolonged deliberation. When replacing the delta function modeling 

stimulus onset by a boxcar function (whose duration varies with DT), the association between 

DT and dmPFC activity was still significant, suggesting a modulation in amplitude and not just 

a prolongation of the signal. 

We looked for further generalization of the valuation signal, not solely across tasks but 

also across stimuli. We focused on the rating task, in which the link with neural activity is easier 

to assess, as there is only one stimulus to valuate (Fig. 3D). FMRI time series were regressed 

against a GLM that separated stimulus categories (Rti, Rt and Et) into different onset regressors, 

each modulated by corresponding ratings. Results show that vmPFC activity was positively 

related to the value (likeability rating) of reward items, whether or not they are presented with 

an image, and negatively correlated to the cost (dislikeability rating) of effort items (Rti: βVal = 

0.630 ± 0.224, p = 0.008; Rt: βVal = 0.803 ± 0.177, p = 6∙10-5; Et: βVal = -0.670 ± 0.205, p = 

0.002). Thus, the association between Val and vmPFC activity was independent of the 

presentation mode, and integrated costs as well as benefits. Importantly, the association with 

reward value or effort cost was not observed in putative opponent brain regions such as the 

dmPFC, whose activity even tended to decrease with dislikeability rating of effort items (Et: 

βVal = -0.225 ± 0.116, p = 0.060). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301291doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301291
http://creativecommons.org/licenses/by-nc-nd/4.0/


Thus, it appeared that dmPFC activity did not reflect the effort cost attached to the option 

on valuation but the effort cost of the meta-decision (selecting a response). Importantly, the 

association with DT was observed despite the fact that DT was orthogonalized to both value 

and confidence, suggesting that the dmPFC represents the effort invested above and beyond 

that induced by the difficulty of value-based judgment or decision. As DT is a very indirect 

proxy for the effort invested in solving the task, we investigated the relationship with another 

proxy that has been repeatedly related to effort: pupil size. Neural activity was extracted in each 

ROI by fitting a GLM containing one event (stimulus onset) per trial. Then pupil size at each 

time point was regressed across trials against a GLM that contained nuisance factors 

(luminance, jitter duration, text length), variables of interest (Val, Conf, DT) and neural activity 

(vmPFC, mPFC, dmPFC). 

A positive association between pupil size and dmPFC activity was observed in all rating 

and choice tasks (Fig. 4), about one second before the response. This association was not an 

artifact of the trial being prolonged (and therefore the response to luminance being cut at 

different durations) since it was observed both when locking time courses on stimulus onset 

and on motor response (button press). Finally, it was specific to the dmPFC ROI, and observed 

even if dmPFC was made independent (through serial orthogonalization) to all other variables 

(notably Val, Conf and DT). In particular, there was no consistent association between vmPFC 

and pupil size, suggesting that the correlates of DT observed in vmPFC were not related to 

effort but to some other factors affecting DT, such as mind-wandering. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301291doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301291
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 

In this study, we investigated the neural correlates of variables that are common to different 

tasks involving valuation of stimuli and expression of preferences. We observed a triple 

dissociation within the medial prefrontal cortex: stimulus value, response confidence and 

deliberation time were best reflected in vmPFC, mPFC and dmPFC activity, respectively. These 

associations between regions and variables were consistent across rating and choice tasks, 

whether they involved likeability judgment, attribute integration or option comparison. They 

suggest that reward value and effort cost attached to choice options are integrated in a same 

brain region (vmPFC), while meta-decision variables such as response confidence and 

deliberation time are represented in distinct brain regions (mPFC and dmPFC). 

 Our results confirm the role attributed to the vmPFC as a generic valuation system 

(Bartra et al., 2013; Levy and Glimcher, 2012). The subjective value of reward items was 

reflected in vmPFC activity irrespective of the category (food versus goods), as was reported 

in many studies (Abitbol et al., 2015; Chib et al., 2009; Lebreton et al., 2009; Lopez-Persem et 

al., 2020). Also, vmPFC value signals were observed whether or not reward items were 

presented with images, suggesting that they can be extracted from both direct perceptual input 

or from text-based imagination which was shown to recruit episodic memory systems (Lebreton 

et al., 2013). Critically, our results show that the vmPFC also reflects the effort cost (whether 

mental or physical) attached to potential courses of actions. Therefore, they disprove opponent 

systems theories that would predict separate representations, notably those assuming that the 

vmPFC is involved in stimulus valuation, while action costs would implicate the dmPFC 

(Padoa-Schioppa, 2011; Rangel and Hare, 2010; Schneider and Koenigs, 2017). They rather 

suggest that the vmPFC might compute a net value, integrating reward benefit and effort cost, 

so as to prescribe whether or not an action is worth engaging. This idea is in line with previous 

demonstrations that the vmPFC integrates costs such as potential loss or delay in reward 

delivery (Hare et al., 2009, 2011; Kable and Glimcher, 2007; Talmi et al., 2009; Tom et al., 

2007). Consistent with these studies, we observed that vmPFC activity increases with potential 

benefit and decreases with potential cost, which is compatible with the idea of net value 

computation. 

 The other medial prefrontal clusters (mPFC and dmPFC) were not affected by reward 

values or effort costs attached to choice options, but by variables related to providing a response 

in preference tasks, i.e. confidence and deliberation. We have previously argued that confidence 

is what participants maximize when performing these tasks (Lebreton et al., 2015). Following 
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on instructions, they intend to give their best judgment, or make the right choice, even if these 

responses have no material consequence. In a sense, confidence can be conceived as a value, 

but this value would be attached to the response, not to the options. By construction, our proxy 

for confidence, defined as absolute (squared) deviation from the mean response, was orthogonal 

to stimulus value, defined as the sum of (positive) likeability of reward items and (negative) 

likeability of effort items. This proxy was found to elicit similar neural correlates as direct 

confidence ratings (De Martino et al., 2017; Lopez-Persem et al., 2020). 

Confidence was the only variable significantly associated to mPFC activity, but was 

also reflected in vmPFC activity, as previously reported (Chua et al., 2006; De Martino et al., 

2013; Gherman and Philiastides, 2018; Lebreton et al., 2015). Indeed, the addition of value and 

confidence signals in the vmPFC is a pattern that has been already observed in both fMRI and 

iEEG activity (Lebreton et al., 2015; Lopez-Persem et al., 2020). It has been argued that, in a 

binary choice, this pattern may denote the transition from the sum of option values to the 

difference between chosen and unchosen values (Hunt et al., 2012), this difference being 

globally positive and hence related to confidence. However, this explanation would not hold 

for the correlates of confidence observed outside choice tasks, for instance in likeability rating 

tasks. An alternative interpretation would be that, as a generic valuation device, the vmPFC 

computes both the value of options and the value of responses (i.e., confidence). The 

dissociation observed here, with value being better related to vmPFC activity and confidence 

better related to mPFC activity, is consistent with a general ventro-dorsal gradient from value 

to confidence representation that has been previously described (De Martino et al., 2017). On 

the contrary, dmPFC activity tended to decrease with confidence, but this association did not 

survive significance threshold. 

  The variable that was robustly associated with dmPFC activity was deliberation time. 

This variable was not orthogonal to the others, since it decreased both with stimulus value and 

response confidence. The link between deliberation time and stimulus value might arise from 

an appetitive Pavlovian reflex, as suggested in previous studies (Oudiette et al., 2019; Shadmehr 

et al., 2019), since there was no reason to go faster when valuating better rewards, or slower 

when valuating worse efforts, in our design. The link between deliberation time and response 

confidence might relate to the difficulty of the task (Kiani et al., 2014), i.e. the uncertainty about 

which rating or choice best reflects subjective preference. In our analyses, deliberation time 

was post-hoc orthogonalized with respect to the other variables, meaning that the association 

with dmPFC activity was observed above and beyond the variance explained by stimulus value 

and response confidence.  
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This association alone would not yield a clear-cut interpretation, since many factors may 

affect response time. However, the systematic link observed between trial-wise dmPFC 

activation and the increase in pupil size before the response hints that this association might 

reflect the cognitive effort invested in the task. Indeed, pupil size has been linked to the intensity 

of not only physical effort, such as handgrip squeeze (Zénon et al., 2014) but also mental effort, 

such as focusing attention to resolve conflict or overcome task difficulty (Alnaes et al., 2014; 

Kahneman and Beatty, 1966; van der Wel and van Steenbergen, 2018). By contrast, we did not 

observe this systematic link with pupil size during deliberation with vmPFC activity. The link 

between vmPFC and deliberation time might therefore reflect other sources of variance, such 

as mind-wandering (being slower because of some off-task periods). 

 Our dmPFC ROI overlaps with clusters that have been labeled dorsal anterior cingulate 

cortex, or sometimes pre-supplementary motor area, in previous studies (Kamiński et al., 2017; 

Kolling et al., 2016; Shenhav et al., 2013). The association with deliberation time is compatible 

with a role attributed to this region in conflict monitoring, or in signaling the need to exert 

cognitive control (Botvinick et al., 2001; Shenhav et al., 2013). This functional role would also 

be consistent with the negative association between dmPFC activity and our confidence proxy, 

which is opposite to a conflict or ambiguity signal. In binary choices, longer deliberation when 

options are close is often captured as a shallower drift rate in accumulation-to-bound models 

(Steverson et al., 2019). However, our results call for a more general theory, because the link 

between dmPFC activity and deliberation time was also observed in rating tasks.  

 To recapitulate, we have teased apart the neural correlates of likeability, confidence and 

deliberation in the medial prefrontal cortex, which have been confused in previous fMRI 

studies, as shown by meta-analytic maps. The key distinction operated here is perhaps between 

effort as an attribute of choice option and effort as a resource allocated to the decision task, or 

in other words, between valuation applied to effort (implicating the vmPFC) and effort invested 

in valuation (implicating the dmPFC). This dissociation is consistent with the idea that the 

vmPFC anticipates the aversive value of a potential effort, while the dmPFC represents the 

intensity of effort when it must be exerted (Hogan et al., 2019). At a meta-decisional level, our 

results could be interpreted in the frame of a resource allocation model, where the effort or time 

invested in the deliberation is meant to increase confidence in the response, whether a rating or 

a choice (Lee and Daunizeau, 2019). This model would predict that increasing dmPFC activity 

is meant to increase mPFC activity, which we could not test here because our correlational 

approach precludes any inference about causality. Yet it remains possible that dmPFC 

activation is not about demand for control but about estimating the amount of control being 
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invested, on the request of other brain systems. It could even be that dmPFC activation 

corresponds to the aversive feeling induced by effort exertion, without any implication in meta-

decisional regulation.   

Finally, we have shown that the three associations hold across rating and choice tasks, 

and thus cannot be captured by models narrowly applied to the case of binary choice. However, 

this approach (looking for robust associations across tasks) also bears limitations. Notably, our 

design would not allow comparing between conditions, as is traditionally done in neuroimaging 

studies. One may want for instance to compare between tasks and test whether brain regions 

are more involved in one or the other, but this would be confounded by several factors, such as 

the order (choice tasks being performed after rating tasks). A significant contrast would not be 

interpretable anyway, because there is more than one minimal difference between tasks. Thus, 

the aim to generalize the role of brain regions across tasks carries the inherent drawback of a 

limited specificity, but also the promises of a more robust and general understanding of 

anatomo-functional relationships. We hope this study will pave the way to further investigations 

following a similar approach, assessing a same concept across several tasks in a single study, 

instead of splitting tasks over separate reports, with likely inconsistent conclusions.  
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Methods 

Subjects 

In total, 40 right-handed volunteers participated in this fMRI study. Participants were 

recruited through the online RISC (Relais d’Information en Sciences de la Cognition) online 

platform (https://www.risc.cnrs.fr/). All participants were screened for the use of psychotropic 

medications, alcohol and drug use, and history of psychiatric disorders, cognitive/neurological 

disorders, and traumatic brain injury. One participant was excluded from all analyses because 

of a clear misunderstanding about task instructions, leaving n=39 participants for behavioral 

data analysis (22 females / 17 males, aged 25.4±4.1 years). Another participant was excluded 

from the fMRI analysis due excessive movement inside the scanner (>3mm within-session per 

direction). Seven to nine additional participants were excluded from pupil size analysis, 

depending on the task, due to poor signal detection. 

All participants gave informed consent and were paid a fixed amount for their 

participation. The 15 first subjects were paid 60€ and the 25 other subjects were paid 75€. The 

difference in payoff corresponds to a difference in scanning protocols, although all participants 

performed the same tasks. The first protocol (n=15) aimed at comparing scanning sequences. 

Each task was subdivided into 3 sessions. Each session was scanned through a different 

scanning protocol using regular EPI, EPI with multiband acceleration, EPI with multiband + 

multi-echo acquisition. The main analysis only includes fMRI data recorded during the first 

session using regular EPI acquisition. The other participants were scanned with regular EPI 

during the nine sessions, which were all included in the analysis.  

 

Behavioral tasks 

All tasks were programmed using Psychtoolbox (http://psychtoolbox.org/) in Matlab 

2012 (The MathWorks, Inc., USA). Participants were given a 4-button box (fORP 932, Current 

Designs Inc, Philadelphia, USA) placed under their right to provide their responses. For further 

data analyses, stimulus luminance was calculated using standard function of red-green-blue 

composition 0.299∙red + 0.587∙green + 0.114∙blue (http://www.w3.org/TR/AERT#color-contrast), 

which was estimated through the Screen(‘GetImage’) built-in psychtoolbox command. Stimuli 

comprised 144 reward items (72 food and 72 goods) and 72 effort items (36 mental and 36 

physical). Half the reward items were presented with text only (Rt items), and the other half 

was presented with both text and image (Rti items). All effort items were only described with 

text (Et). For each task, fMRI sessions were preceded by a short training session (not included 
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in the analysis), for participants to familiarize with the sort of items they would have to valuate 

and with the button pad they would use to express their preferences. 

Participants all started with a (dis-)likeability rating task (Fig. 1A). Each of the three 

fMRI sessions included three blocks of 24 Rti , 24 Rt  and 24 Et trials, the order of blocks being 

counterbalanced across participants. The items were presented one by one, and participants 

rated them by moving a cursor along an analog scale. They used their index and middle fingers 

to press buttons corresponding to left and right movements, and validated the final position of 

the cursor by pressing a third button, which triggered the new trial. The initial position of the 

cursor, at the beginning of each trial, was randomly placed between 25 and 75% of the 0-100 

rating scale. There was no mark on the scale, giving the impression of a continuous rating, 

although it was discretized into 100 steps. The left and right extremes of the scale were labeled 

“I would not care” and “I would like it enormously” for reward items, “I would not mind” and 

“I would dislike it enormously” for effort items. In any case, the situations to be rated were 

hypothetical: the question was about how much they would like the reward (should it be given 

to them at the end of the experiment) and how much they would dislike the effort (should it be 

imposed to them at the end of the experiment). Should the timeout (10 s in rating tasks and 5s 

in choice tasks) be reached, the message ‘too slow’ would have been displayed on screen and 

the trial repeated later, but this remained exceptional. 

After the three rating sessions, participants performed a series of binary choices. The 

1D-2O left/right choice task (Fig. 1B) involved expressing a preference between two options 

of a same dimension, presented on the left and right of the screen. The two options were items 

presented in the rating task, drawn from the same category, regarding both the presentation 

mode (Rti vs Rti, Rt vs Rt, Et vs Et) and type of items (food vs. food, goods vs. goods, mental vs 

mental, physical vs physical). Each item was presented twice, following two inter-mixed 

pairing schedules: one varied the mean rating (i.e., stimulus value) while controlling for 

distance (i.e., decision value or choice difficulty), whereas the other varied the distance in rating 

while controlling the mean. Participants selected the reward they would most like to obtain, or 

the effort they would least dislike to exert, by pressing the left or right button with their middle 

or index finger. The chosen option was then highlighted with a red frame, so participants could 

check that their choice was correctly recorded. The three sessions of the 1D-2O choice task 

included each three 24-trial blocks presenting the three types of options (Rti, Rt, Et), the order 

of blocks being counterbalanced across participants.  

Then participants performed the 1O-2D yes/no choice task (Fig. 1C), which involved 

deciding whether to accept exerting a given effort in order to get a given reward. Thus, every 
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trial proposed one option combining two dimensions (one Rt and Et). Each item was presented 

twice, following two inter-mixed pairing schedules: one associating more pleasant reward with 

more painful effort (thus controlling for decision value or choice difficulty), the other 

associating more pleasant reward with less painful effort (this varying choice difficulty). The 

mean net value was also balanced across sessions. Participants selected their response by 

pressing the button corresponding to ‘yes’ or ‘no’ with their index or middle finger. The 

left/right position of yes/no responses was counterbalanced across trials. To give participants a 

feedback on their choice, the selected option was highlighted with a red frame. The three 

sessions of the 1O-2D choice task contained 48 trials each. 

 

Behavioral data analysis 

All data were analyzed using Matlab 2017a (The MathWorks, Inc., USA) 

Choices were fitted with logistic regression models with intercept and decision value 

weighted by a free parameter.  

For 1D-2O choices, the model was: 

𝑃( 𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑙𝑒𝑓𝑡 ) =
1

1 + 𝑒𝛽0+ 𝛽1∙(𝛥𝑉)
 

where ΔV is the decision value, i.e. the difference in rating between left and right options.  

For 1O-2D choices, the model was: 

𝑃(𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑎𝑐𝑐𝑒𝑝𝑡) =
1

1 + 𝑒𝛽0+ 𝛽𝑅.𝑉𝑅+ 𝛽𝛦.𝑉𝐸
 

where VR and VE are the ratings provided for the reward and effort items. Thus, the decision 

value (or net value) here is a weighted sum reward likeability and effort dislikeability, with an 

additional parameter scales the two dimensions. 

Deliberation time (DT) was defined across tasks as the time between stimulus onset and 

first button press. Trial-wise variations in DT were fitted with linear regressions models, with 

a session-specific intercept, nuisance factors - fixation cross display duration (Jitter), stimulus 

luminance (Lum), text length in number of words (Length) - and factors of interest - stimulus 

value (Val), response confidence (Conf). Thus, the model was: 

𝐷𝑇 = 𝛽𝑠1 + 𝛽𝑠2 + 𝛽𝑠3 +  𝛽𝑗𝑖𝑡 ∙ 𝐽𝑖𝑡𝑡𝑒𝑟 + 𝛽𝑙𝑢𝑚. 𝐿𝑢𝑚 +  𝛽𝑙𝑒𝑛. 𝐿𝑒𝑛𝑔𝑡ℎ + 𝛽𝑣𝑎𝑙. 𝑉𝑎𝑙

+  𝛽𝑐𝑜𝑛𝑓. 𝐶𝑜𝑛𝑓 
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The Val and Conf regressors represented stimulus value (reward likeability minus effort 

dislikeability) and response confidence (squared distance from mean response). They were 

adapted to the task, as follows:  

 Rating task 1D-2O choice task 1O-2D choice task 

Val V Vleft + Vright βR∙VR + βE∙VE 

Conf [V-mean(V)] ² [Pleft – mean(Pleft)]² [Paccept –mean(Paccept)]² 

In each case, P is probability generated with the logistic regression and V is either reward 

likeability or effort dislikeability, provided by z-scored individual ratings. 

 

fMRI data acquisition  

Functional and structural brain imaging data was collected using a Siemens Magnetom 

Prisma 3-T scanner equipped with a Siemens 64 channel Head/Neck coil. Structural T1-

weighted images were coregistered to the mean echo planar image (EPI), segmented and 

normalized to the standard T1 template and then averaged across subjects for anatomical 

localization of group-level functional activation. Functional T2*-weighted EPIs were acquired 

with BOLD contrast using the following parameters: repetition time TR = 2.01 seconds, echo 

time TE = 25ms, flip angle = 78°, number of slices = 37, slice thickness = 2.5mm, field of view 

= 200mm. A tilted-plane acquisition sequence was used to optimize sensitivity to BOLD signal 

in the orbitofrontal cortex (44). Note that the number of volumes per session was not 

predefined, because all responses were self-paced. Volume acquisition was just stopped when 

the task was completed. 

Most subjects (n=25) performed 9 sessions (3 per task) using this standard EPI 

sequence, but a pilot subgroup (n=15) performed only 3 sessions (1 per task). In this subgroup, 

3 sessions were scanned using a sequence with a multi-band acceleration factor, and 3 sessions 

using multi-band + multi-echo acquisition. Functional data collected with these two other 

sequences have been analyzed to select the best acquisition sequence (standard EPI) for the 

main experiment (see results in supplementary information).  

 

fMRI data analysis 

Functional MRI data were preprocessed and analyzed with the SPM12 toolbox 

(Wellcome Trust Center for NeuroImaging, London, UK) running in Matlab 2017a. 

Preprocessing consisted of spatial realignment, normalization using the same transformation as 

anatomical images, and spatial smoothing using a Gaussian kernel with a full width at a half-

maximum of 8 mm. 
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Preprocessed data were analyzed with a standard general linear model (GLM) approach 

at the first (individual) level and then tested for significance at the second (group) level. All 

GLM included the six movement regressors generated during realignment of successive scans. 

In our main GLM, stimulus onset was modeled by a stick function, modulated by the following 

regressors: 1) fixation cross duration, 2) luminance, 3) text length, 4) Val, 5) Conf, 6) DT. The 

first three were nuisance factors that were found to significantly impact DT in the linear 

regression described above. The regressors of interest were defined as explained in the 

behavioral data analysis section. The different blocks of the rating and 1D-2O choice tasks 

(presenting reward as text + image, reward as text and effort as text) were modeled in separate 

regressors. All regressors of interest were z-scored and convolved with the canonical 

hemodynamic response function and its first temporal derivative. All parametric modulators 

were serially orthogonalized. At the second level, correlates of Val, Conf and DT were obtained 

with contrasts across tasks of corresponding regression estimates against zero. Note that 

dislikeability ratings obtained for effort items were negatively weighted in all regressors 

(meaning that they can only decrease stimulus value).   

Regions of interest (ROI) were defined as clusters in group-level statistical maps that 

survived significance threshold of p < 0.05 after family-wise error correction for multiple 

comparisons at the voxel level. Parameter estimates and t-values were extracted from each 

voxel within these clusters and then averaged across voxels. Finally, a last GLM was built with 

one event per trial, modeled with a stick function, at the time of stimulus onset. It was used to 

extract trial-by-trial activity levels in the clusters of interest, which then served as regressors to 

explain pupil size data (see below). 

 

Meta-analysis of fMRI studies 

 The meta-analytic maps were extracted from the online platform Neurosynth 

(https://www.neurosynth.org/), using the keywords “value” (470 studies), “confidence” (79 

studies) and “effort” (204 studies) for “uniformity test”, which displays brain regions that are 

consistently activated in paper mentioning the keyword.  Each map was binarized to visualize 

clusters surviving a significance threshold of p < 0.01 after false discovery rate (FDR) 

correction for multiple comparisons. 

 

Pupil size  

Pupil diameter was recorded at a sampling rate of 1000Hz, using an EyeLink 1000 plus 

(SR Research) eye-tracker, after calibration before fMRI sessions, once the subject was 
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positioned inside the scanner. A cubicle interpolation was performed to compensate for any 

period of time when the pupil signal was lost due to blinking. The pupil size time series were 

subsequently band-pass filtered (1/128 to 1Hz) and zscored per session. 

 Within-trial variations in pupil size was baseline-corrected (by removing the mean 

signal over the 200 ms preceding stimulus onset) and time-locked either to stimulus onset or 

button press. Then trial-wise variations in pupil size were fitted with a linear regression model 

that included nuisance factors (an intercept per block, jitter duration, stimulus luminance and 

text length), variables of interest (Val, Conf and DT defined as in behavioral data analysis) and 

neural activity (extracted from vmPFC, mPFC and dmPFC ROI clusters). Within-trial 

individual time series of regression estimates were then smoothed using a 100ms kernel. Group-

level significant time clusters were identified after correction for multiple comparisons 

estimated according to random field theory, using the RFT_GLM_contrast.m function of the 

VBA_toolbox (available at http://mbb-team.github.io/VBA-toolbox/). 
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Figure 1. Behavioral tasks. 

Example trials are illustrated as a succession of screenshots from top to bottom, with durations in 

seconds. Only the fixation cross display at the beginning of trials is jittered. The duration of the response 

screen depends on deliberation time, as both rating and choice are self-paced. 

A] Rating task. In every trial, subjects are shown an item that can be a reward described with both text 

and image (Rti), a reward described with text only (Rt) or an effort described with text only (Et). The 

task for subjects is to rate how much they would like receiving the proposed reward or dislike performing 

the proposed effort, should it occur, hypothetically, at the end of the experiment. They first move the 

cursor using left and right buttons on a pad to the position that best reflect their (dis)-likeability estimate, 

then validate their response with a third button and proceed to the next trial. 

B] 1D-2O choice task. In every trial, two options belonging to the same category are shown on screen 

and subjects are asked to select their favorite option, i.e. which reward they would prefer to receive if 

they were offered the two options (hypothetically) or the effort they would prefer to exert if they were 

forced to implement one of the two options (hypothetically). The choice is expressed by selecting 

between left and right buttons with the index or middle finger. The chosen option is then highlighted in 

red, and subjects proceed to the next trial. 
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C] 1O-2D choice task. In every trial, one option combining the two dimensions is shown on screen and 

subjects are asked to state whether they would be willing the exert the effort in order to receive the 

reward, if they were given the opportunity at the end of the experiment (hypothetically). They select 

their response (‘yes’ or ‘no’, positions counterbalanced across trials) by pressing the left or right button, 

with their index or middle finger.  
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Figure 2: Behavioral results. 

A] Distribution of ratings. Bars show the average response rate for each bin of ratings. Effort items (on 

the left) are rated between bin 0 (‘I would not mind’) and bin 10 (‘I would dislike it enormously’). 

Reward items (on the right) are rated between bin 0 (‘I would not care’) and bin 10 (‘I would like it 

enormously’).  

B] Deliberation time in the rating task, as a function of the centered item value (likeability rating). 

Positive value means higher likeability (for rewards) or lower dislikeability (for efforts), 0 is the mean 

rating across trials. 
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C] Deliberation time as a function of stimulus value. In the 1D-2O choice task (left graph), stimulus 

value is the sum of likeability ratings for left and right options (Vleft + Vright). In the 1O-2D choice task 

(right graph), stimulus value is the likeability of reward plus the dislikeability of effort. Thus, in this 

yes/no choice task, stimulus value is equivalent to decision value (βR∙VR + βE∙VE). In any case, stimulus 

value was centered, such that 0 is the mean across trials. 

D] Deliberation time as a function of choice probability. In the 1D-2O choice task (left graph), choice 

probability is the output of the softmax function for the left option, centered such that 0 is the mean 

across trials. In the 1D-2O choice task (right graph), choice probability is the output of the softmax 

function for the yes option, centered such that 0 is the mean across trials. 

E] Choice rate as a function of decision value. Decision value is simply the difference between left and 

right option ratings in the 1D-2O choice task, and the weighted sum of reward and effort ratings in the 

1O-2D choice task. The set of decision values across trials were distributed over 6 bins. Dots are mean 

choice rate (‘left’ response in the 1D-2O and ‘yes’ response in the 1O-2D task). Lines show binned 

logistic regression fits. 

Dots represent mean across participants, error bars are inter-participant standard errors. 
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Figure 3: Neural results. 

A] Meta-analysis of fMRI studies. Statistical maps (sagittal slices) were extracted from the Neurosynth 

platform with the ‘value’, ‘confidence’ and ‘effort’ keywords. Significant clusters in the medial 

prefrontal cortex are similar across keywords. 

B] Neural correlates of value, confidence and deliberation constructs in the present dataset. Statistical 

maps were obtained with a GLM including the different variables as parametric modulators of stimulus 

onset, across rating and choice tasks. Sagittal slice was taken at the same coordinates as the Neurosynth 

output, and superimposed on the average anatomical scan normalized to canonical (MNI) template. 

Coronal slices show the extent of the different medial prefrontal clusters. Statistical threshold was set at 
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p < 0.05 after family-wise error for multiple comparisons at the voxel level. For clusters outside the 

medial prefrontal cortex, surviving a more tolerant statistical threshold, see activations in Tables S1-3. 

C] Decomposition of regression estimates obtained for each variable of interest, per task (rating, 1D-2O 

and 1O-2D choice) on the left, and per ROI (vmPFC, mPFC, dmPFC) on the right. 

D] Decomposition of regression estimates, obtained for Val in the vmPFC during rating, per stimulus 

category (reward R versus effort E, and reward presented as text + image Rti versus text only Rt). 

Bars show mean across participants, error bars show inter-participant standard errors. Stars indicate 

significance of t-test against zero (*** p < 0.001, ** p < 0.01, * p< 0.05).   
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Figure 4: Pupillometric results. 

Plots show the time course of regression estimates, obtained with a GLM built to explain pupil size. The 

GLM included nuisance regressors (jitter duration, stimulus luminance, text length), variables of interest 

(Val, Conf, DT) and activities in main ROI (vmPFC, mPFC, dmPFC, corresponding to red, blue and 

green traces, respectively). Each row corresponds to a different task (likeability rating, 1D-2O and 1O-

2D choice tasks). Left and right columns show time courses aligned on stimulus onset and button press, 

respectively. Lines represent means across participants and shaded areas inter-participant standard 

errors. Horizontal bars indicate significant time clusters after correction for multiple comparisons. 
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