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ABSTRACT  

The relationship between the feature-tuning curve and information transfer profile of individual 

neurons provides vital insights about neural encoding. However, the relationship between the 

spatial tuning curve and spatial information transfer of hippocampal place cells remains 

unexplored. Here, employing a stochastic search procedure spanning thousands of models, we 

arrived at 127 conductance-based place-cell models that exhibited signature electrophysiological 

characteristics and sharp spatial tuning, with parametric values that exhibited neither clustering 

nor strong pairwise correlations. We introduced trial-to-trial variability in responses and 

computed model tuning curves and information transfer profiles, using stimulus-specific (SSI) 

and mutual (MI) information metrics, across locations within the place field. We found spatial 

information transfer to be heterogeneous across models, but to reduce consistently with 

increasing degrees of variability. Importantly, whereas reliable low-variability responses implied 

that maximal information transfer occurred at high-slope regions of the tuning curve, increase in 

variability resulted in maximal transfer occurring at the peak-firing location in a subset of 

models. Moreover, experience-dependent asymmetry in place-field firing introduced 

asymmetries in the information transfer computed through MI, but not SSI, and the impact of 

activity-dependent variability on information transfer was minimal compared to activity-

independent variability. Biophysically, we unveiled a many-to-one relationship between different 

ion channels and information transfer, and demonstrated critical roles for N-methyl-D-aspartate 

receptors, transient potassium and dendritic sodium channels in regulating information transfer. 

Our results emphasize the need to account for trial-to-trial variability, tuning-curve shape and 

biological heterogeneities while assessing information transfer, and demonstrate ion-channel 

degeneracy in the regulation of spatial information transfer.   
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INTRODUCTION 

Biological organisms rely on information about their surroundings through different senses for 

survival. They receive, encode and process information about their surroundings in eliciting 

robust responses to challenges posed by the external environment. From an ethological 

perspective, it is essential that sensory information is efficiently encoded by neural circuits to 

ensure effective responses to environmental challenges. A dominant theme of neural circuit 

organization is the ability of individual neurons to encode specific features associated with the 

external environment, with different neurons responding maximally to distinct feature values. 

For instance, neurons in the primary visual cortex respond maximally to a specific visual 

orientation (Hubel & Wiesel, 1959), neurons in the cochlea respond maximally to specific tones 

(von Békésy & Wever, 1960) and place cells in the hippocampus act as spatial sensors by 

responding maximally to specific locations of an animal in its environment (O'Keefe, 1976). 

Central to this overarching design principle is the concept of tuning curves, whereby neurons that 

respond maximally to a given feature value also respond to nearby feature values, with the 

response intensity typically falling sharply with increasing feature distance from the peak-

response feature. A fundamental question on neurons endowed with such tuning curves relates to 

the relationship between the turning curve and the sensory information transfer profile of the 

neuron across feature values. Although this relationship has been explored in neural responses 

across different sensory modalities (Bezzi, Samengo, Leutgeb, & Mizumori, 2002; Butts, 2003; 

Butts & Goldman, 2006; DeWeese & Meister, 1999; Montgomery & Wehr, 2010), the question 

on the relationship between spatial information transfer and spatial tuning curve within the place 

field of hippocampal place cells has not been quantitatively assessed.  

In this morphologically realistic, conductance-based modeling study, we aim to fill this 

lacuna on the relationship between spatial tuning curves and spatial information transfer in 

individual hippocampal place cells within their respective place field. In addressing this, we 

systematically assessed spatial information transfer with reference to the expansive biophysical 

and physiological heterogeneities associated with hippocampal neurons, to the different forms 

and levels of trial-to-trial variability in place-cell responses to the same stimuli, and to the 

emergence of experience-dependent asymmetry in the hippocampal spatial tuning curves. 

Explicitly, we accounted for electrophysiologically-characterized heterogeneities in ion channel 

properties, intrinsic response characteristics and synaptic localization, and analyzed the impact of 
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trial-to-trial variability that was either dependent or independent of activity. Instead of hand-

tuning a single model and inferring the outcomes from that single model, we built a population 

of models of the CA1 pyramidal neuron through an unbiased stochastic search spanning 22 

different parameters. These parameters defined neuronal passive properties and characteristics of 

ten distinct electrophysiologically characterized ion channel subtypes from hippocampal 

neurons. We searched 12,000 stochastic model instances, which were driven by 80 spatially 

dispersed synapses carrying theta-modulated place-field information. We declared 127 of these 

models that manifested 22 signature somato-dendritic intrinsic properties and sharp place-field 

tuning (high firing rate and low spatial width) to be valid models. Although these valid models 

manifested signature physiological characteristics of CA1 pyramidal neurons, they exhibited 

significant heterogeneity in the parametric combinations that yielded them (Basak & Narayanan, 

2018, 2020; Rathour & Narayanan, 2014, 2019). 

We subjected this heterogeneous population of models to different degrees of activity-

independent or activity-dependent trial-to-trial variability, introduced into the presynaptic firing 

profiles. We found that the introduction of activity-independent variability resulted in a 

progressive increase in neural firing frequency, accompanied by reductions in tuning width and 

theta-band power, with increasing degree of variability. We assessed spatial information transfer 

using two sets of information transfer metrics based on mutual information (MI) and stimulus-

specific information (SSI). When these place cells acted as reliable sensors of spatial location 

with low trial-to-trial variability, the neural rate code conveyed maximal spatial information (MI 

or SSI) at the high-slope, and not the peak-firing, locations of the tuning curve. However, owing 

to differences in parametric heterogeneity in this population of models, there was significant 

heterogeneity in spatial information transfer across models although they received identical 

distributions of afferent synaptic patterns. The heterogeneity manifested in terms of the 

quantitative value of the amount of information transferred, and in terms of how they responded 

to increases in the degree of trial-to-trial variability. Specifically, with increases in trial-to-trial 

variability, whereas one subpopulation of models switched to transferring peak stimulus-specific 

spatial information at the peak-firing locations, another subpopulation continued to transfer peak 

information at the high-slope locations. We demonstrated the dependence of the spatial 

information transfer profile on the type of trial-to-trial variability, whereby activity-dependent 

variability had little impact on spatial information transfer compared to the significant reduction 
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introduced by activity-independent variability. Importantly, we show that the model population 

manifested parametric degeneracy, whereby models with similar intrinsic measurements, similar 

tuning curves and similar information transfer metrics exhibited immense heterogeneity in and 

weak pair-wise correlations across underlying parameters.  

 To further delineate the relationship of spatial information transfer with place-cell 

characteristics and its components, we assessed the impact of experience-dependent asymmetry 

in the place-field firing rate profile. We found that the MI profile showed a dependence on the 

asymmetric nature of the firing profile, but the peak values of SSI profile were largely invariant 

to the asymmetry. Finally, we found heterogeneity in the impact of knocking out individual ion 

channels on these information metrics, pointing to a many-to-one relationship between different 

ion channel subtypes and spatial information transfer. As direct experimentally testable 

predictions, our analyses unveiled a potent reduction in information transfer consequent to 

virtually knocking out transient potassium channels, NMDA receptors or dendritic sodium 

channels. 

Together, our analyses emphasize the need to account for neuronal heterogeneities in 

assessing sensory information transfer and show that synergistic interactions among several 

neural components regulate the specifics of information transfer and its relationship to tuning 

curve characteristics. These neural components include the ubiquitous biophysical and 

physiological heterogeneities, the type and degree of trial-to-trial variability, the specific metrics 

employed to assess information transfer and behavior-dependent alterations to the sensory tuning 

curves. 
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METHODS 

The computational modelling of the place cell was performed by employing a morphologically 

realistic CA1 pyramidal neuron of rat hippocampus. A morphologically reconstructed model 

(n123; Fig. 1A) was obtained from Neuromorpho.org (Ascoli, Donohue, & Halavi, 2007). 

Several active and passive mechanisms were incorporated into the model to mimic intrinsic 

functional properties of a CA1 pyramidal neuron. The passive properties arising due to the lipid 

bilayer was modelled as a capacitive current, and to represent the leak channels a resistive 

current was included. The three parameters which regulated the passive electrical properties of 

the neuron are axial resistivity (𝑅!), specific membrane resistivity (𝑅!) and specific membrane 

capacitance (𝐶!). In the base model, 𝑅! was set to 120 Ω.cm and the specific membrane 

capacitance was set to 1 µF/cm2 for the entire neuron (Table 1, Figure 1B). The specific 

membrane resistivity was non-uniform and varied in a sigmoidal manner (Basak & Narayanan, 

2018; Golding, Mickus, Katz, Kath, & Spruston, 2005; Narayanan & Johnston, 2007; Rathour & 

Narayanan, 2014) as a function of the distance of the point from the soma (𝑥) (Figure 1B):  

 
𝑅! 𝑥 = 𝑅!_𝑠𝑜𝑚𝑎 +

𝑅!_𝑒𝑛𝑑 − 𝑅!_𝑠𝑜𝑚𝑎
1+ exp 𝑅!_ℎ𝑚𝑝 − 𝑥 /𝑅!_𝑠𝑙𝑜𝑝𝑒

 (1) 

In equation 1, 𝑥 is the radial distance from soma, and the parameters and their base-model values 

are provided in Table 1. The neuron was compartmentalised using the 𝑑! rule (Carnevale and 

Hines, 2006), such that the length of each compartment was lesser than one-tenth of λ!"", the 

space constant at 100 Hz. In the base model, this resulted in the compartmentalization of the 

neuron into 879 distinct compartments. 

To model the active properties of the neuron, 10 different types of ion channels were 

incorporated into the base model, based on electrophysiological characterization from CA1 

pyramidal neurons. The ion channels incorporated were the fast sodium (NaF), delayed rectifier 

potassium (KDR), A-type potassium (KA), M-type potassium (KM), small-conductance calcium 

activated potassium (SK), T-type calcium (CaT), N-type calcium (CaN), R-type calcium (CaR), 

L-type calcium (CaL) and hyperpolarisation activated cyclic nucleotide gated (HCN or h). The 

current through these channels due to Na+, K+ ions were modelled in an ohmic formulation with 

the reversal potentials of Na+, K+ and h channels being 55, –90 and –30 mV respectively. The 

current due to calcium ions was modeled as per the Goldman-Hodgkin-Katz (GHK) conventions 

with the internal calcium concentration as 50 nM and external calcium concentration as 2 mM. 
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The equations underlying the kinetics of these channels were obtained from prior 

electrophysiological recordings: NaF, KDR and KA (Hoffman, Magee, Colbert, & Johnston, 

1997; Magee & Johnston, 1995; M. Migliore, Hoffman, Magee, & Johnston, 1999), HCN 

(Magee, 1998), KM (Shah, Migliore, Valencia, Cooper, & Brown, 2008), SK (Sah & Clements, 

1999; Sah & Isaacson, 1995), CaT (Shah, Migliore, & Brown, 2011), CaN (M. Migliore, Cook, 

Jaffe, Turner, & Johnston, 1995), CaR and CaL (Magee & Johnston, 1995; Poirazi, Brannon, & 

Mel, 2003).  

These ion channels were distributed along the somatodendritic axis to match 

experimental recordings (Table 1 provides the distributions and the parameter values in the base 

model). Specifically, the fast sodium and the delayed rectifier potassium were uniformly 

distributed (Bittner, Andrasfalvy, & Magee, 2012; Hoffman, et al., 1997; Magee & Johnston, 

1995). The A-type potassium channel density increased linearly (Hoffman et al. 1997) as a 

function of distance from soma, 𝑥 (Fig. 1B): 

 
𝑔!" 𝑥 = 𝑔!"_𝑠𝑜𝑚𝑎 1+

𝑔!"_𝑓𝑜𝑙𝑑
100 𝑥  (2) 

The HCN and T-type calcium channel density were set in a sigmoidal manner (Fig. 1B), 

increasing with radial distance from the soma (Lorincz, Notomi, Tamas, Shigemoto, & Nusser, 

2002; Magee, 1998; Magee & Johnston, 1995; Narayanan & Johnston, 2007; Rathour & 

Narayanan, 2014): 

 
𝑔! 𝑥 = 𝑔!_𝑠𝑜𝑚𝑎 1+

𝑔!_𝑓𝑜𝑙𝑑
1+ 𝑒𝑥𝑝 𝑔!_ℎ𝑚𝑝 − 𝑥 /𝑔!_𝑠𝑙𝑜𝑝𝑒

 (3) 

 
𝑔!"# 𝑥 = 𝑔!"#_𝑠𝑜𝑚𝑎 1+

𝑔!"#_𝑓𝑜𝑙𝑑
1+ 𝑒𝑥𝑝 𝑔!"#_ℎ𝑚𝑝 − 𝑥 /𝑔!"#_𝑠𝑙𝑜𝑝𝑒

 (4) 

The M-type potassium and L-type calcium channels were perisomatic (Hu, Vervaeke, & Storm, 

2007; Magee & Johnston, 1995). The SK and the R-type calcium channels were distributed 

uniformly across the apical dendrites (Lin, Lujan, Watanabe, Adelman, & Maylie, 2008; Magee 

& Johnston, 1995; Ngo-Anh, et al., 2005). The N-type calcium channels were uniformly 

distributed till 340 µm of radial distance along the apical dendrite (Magee & Johnston, 1995). 

 

Intrinsic physiological measurements. 

We matched several physiological measurements of CA1 pyramidal neurons in our model: back 

propagating action potential (bAP) amplitude, input resistance (Rin) and impedance-based 
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measurements like resonance frequency (fR), maximum resonance amplitude (|Z|max), strength of 

resonance (Q) and total inductive phase (ΦL) at different somato-dendritic locations were used to 

tune the base model and validate models generated by the stochastic search process (Hoffman, et 

al., 1997; Narayanan, Dougherty, & Johnston, 2010; Narayanan & Johnston, 2007, 2008; 

Rathour & Narayanan, 2014; Spruston, Schiller, Stuart, & Sakmann, 1995).  

To measure input resistance of a somato-dendritic compartment, a hyperpolarizing 

current step of 100 pA was injected for 500 ms into the compartment. The local change in the 

membrane potential as a result of the step current was measured and the ratio of the local voltage 

deflection to the step current amplitude was taken to be the input resistance (Fig. 1C). For 

measuring the bAP amplitude, a step current of 1 nA was given at the soma for 2 ms. This 

generated a single action potential at the soma which actively back propagated along the 

dendrites. The amplitude of the bAP was measured at different locations along the somato-apical 

trunk (Fig. 1D).  

To quantify the frequency dependence of neuronal responses, we employed impedance 

based physiological measurements across the somato-dendritic arbor (Basak & Narayanan, 2018, 

2020; Narayanan, et al., 2010; Narayanan & Johnston, 2007, 2008; Rathour & Narayanan, 2014): 

resonance frequency (fR), maximum impedance amplitude (|Z|max), strength of resonance (𝑄) and 

total inductive phase (Φ!). To measure these a chirp stimulus, defined as a current stimulus with 

constant amplitude (peak to peak 100 pA) and linearly increasing frequency with time (0–15 Hz 

in 15 s), was injected in the compartment where the measurement was required. The local 

voltage response was recorded. To compute the impedance as a function of frequency, the 

Fourier spectrum of voltage response was divided with the Fourier spectrum of the current giving 

us the impedance profile as a complex quantity. The magnitude of impedance as a function of 

frequency was calculated using the following equation, 

 
𝑍 𝑓 =   𝑅𝑒 𝑍 𝑓 ! + 𝐼𝑚 𝑍 𝑓 !  (5) 

In equation 5, Re 𝑍 𝑓  is the real part of the impedance profile and Im 𝑍 𝑓  is the imaginary 

part of the impedance profile and 𝑍 𝑓  is the magnitude of impedance. The maximum 

impedance amplitude was measured and the frequency at which it occurred was taken to be the 

resonance frequency. The strength of resonance was measured by taking ratio of the maximum 
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impedance amplitude to the impedance amplitude at 0.5 Hz. For the phase related measures, the 

impedance phase profile was computed: 

 
ϕ 𝑓 = 𝑡𝑎𝑛!!

𝐼𝑚 𝑍 𝑓
𝑅𝑒 𝑍 𝑓

 (6) 

In equation 6, ϕ 𝑓  is the phase as a function of frequency. The total inductive phase was 

measured by calculating the area under the positive portion of phase profile: 

 Φ! = ϕ 𝑓 𝑑𝑓
! ! !!

 (7) 

 

Synapses and normalization of somatic unitary synaptic potential. 

The model contained excitatory synapses with colocalized NMDAR and AMPAR, with an 

NMDAR-to-AMPAR ratio of 1.5, with 80 such synapses randomly dispersed across the apical 

dendritic arbor (Basak & Narayanan, 2018, 2020). The current through the NMDAR were 

divided into current due to three ions, Na+, K+ and Ca2+. The dependence of current due to each 

of these ions as a function of voltage and time was modelled in GHK formulation (Anirudhan & 

Narayanan, 2015; Ashhad & Narayanan, 2013; Basak & Narayanan, 2018, 2020; Narayanan & 

Johnston, 2010): 

 𝐼!"#$ 𝑣, 𝑡 = 𝐼!"#$!" 𝑣, 𝑡 + 𝐼!"#$! 𝑣, 𝑡 + 𝐼!"#$!" 𝑣, 𝑡  (8) 

 
𝐼!"#$!" 𝑣, 𝑡 = 𝑃!"#$%𝑃!"𝑠 𝑡 MgB 𝑣

𝑣𝐹!

𝑅𝑇
𝑁𝑎 !– 𝑁𝑎 !𝑒𝑥𝑝 − 𝑣𝐹𝑅𝑇

1− exp − 𝑣𝐹𝑅𝑇
 (9) 

 
I!"#$! v, t = 𝑃!"#$%𝑃!𝑠 t MgB 𝑣

𝑣F!

𝑅𝑇
𝐾 !– 𝐾 !𝑒𝑥𝑝 − 𝑣𝐹𝑅𝑇
1− exp − 𝑣𝐹𝑅𝑇

 (10) 

   

 𝐼!"#$!" 𝑣, 𝑡 = 𝑃!"#$%𝑃!"𝑠 𝑡 MgB 𝑣
4𝑣𝐹!

𝑅𝑇
𝐶𝑎 !– 𝐶𝑎 !𝑒𝑥𝑝 − 2𝑣𝐹𝑅𝑇

1− exp − 2𝑣𝐹𝑅𝑇
 (11) 

Here, 𝑃!!"#$ defined the maximum permeability of NMDA receptors. The relative permeability 

ratios were set to 𝑃!" = 10.6, 𝑃!" = 1 and 𝑃! = 1. The ionic concentrations were set as, 𝑁𝑎 ! = 

18 mM, 𝑁𝑎 ! = 140 mM, 𝐾 ! = 140 mM, 𝐾 ! = 5 mM, 𝐶𝑎 ! = 100 nM and 𝐶𝑎 ! = 2 mM. 

The magnesium dependence of the NMDAR current was calculated as follows (Jahr & Stevens, 

1990): 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	 10 

 
MgB 𝑣 = 1+

𝑀𝑔 !exp −0.062𝑣
3.57

!!

 (12) 

with 𝑀𝑔 ! = 2 mM. The kinetics of the NMDAR current was determined by 𝑠 𝑡 : 

 
𝑠 𝑡 = 𝑎 exp −

𝑡
𝜏!

− exp −
𝑡
𝜏!

 (13) 

Here a is a normalisation constant such that 0 ≤ 𝑠 𝑡 ≤ 1, 𝜏! is the decay constant, 𝜏! is the rise 

time, with 𝜏!  = 5 ms and default 𝜏! = 50 ms (Narayanan and Johnston, 2010; Ashhad and 

Narayanan, 2013).  

The current through the AMPA receptor was mediated by two ions, Na+ and K+.  

 𝐼!"#! 𝑣, 𝑡 = 𝐼!"#!!" 𝑣, 𝑡 + 𝐼!"#!! 𝑣, 𝑡  (14) 

In equation 14, 

 
𝐼!"#!!" 𝑣, 𝑡 = 𝑃!"#!$𝑃!"𝑠 𝑡

𝑣𝐹!

𝑅𝑇
𝑁𝑎 !– 𝑁𝑎 !exp − 𝑣𝐹𝑅𝑇

1− exp − 𝑣𝐹𝑅𝑇
 (15) 

 
𝐼!"#!! 𝑣, 𝑡 = 𝑃!"#!$𝑃!𝑠 𝑡

𝑣𝐹!

𝑅𝑇
𝐾 !– 𝐾 !exp − 𝑣𝐹𝑅𝑇
1− exp − 𝑣𝐹𝑅𝑇

 (16) 

 

In equations 15–16, 𝑃!"#!! defined the maximum permeability of AMPA receptors. The relative 

permeability ratios were set to 𝑃!" = 1 and 𝑃! = 1. The 𝑠 𝑡  was modelled in a manner similar 

to NMDAR with τ! = 2 ms and τ! = 10 ms. To normalize the unitary EPSP values associated 

with each synapse, we ensured that the attenuation along the dendritic cable did not affect the 

unitary somatic EPSP amplitude. Hence, the AMPAR permeabilities at the somato-apical trunk 

was tuned such that it produced a unitary somatic response of ~0.2 mV irrespective of the 

synaptic location (Andrasfalvy & Magee, 2001; Magee & Cook, 2000).  

 

Place cell inputs and synaptic localization. 

The input to this neuron was fed through colocalized AMPAR-NMDAR synapses. As the virtual 

animal traversed through the place field the presynaptic neurons fired action potentials. Their 

firing rates were modeled in a stochastic manner, driven by a Gaussian modulated cosinusoidal 

function, mimicking place cell inputs to the neuron (Basak & Narayanan, 2018, 2020; 
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Seenivasan & Narayanan, 2020). The presynaptic firing drove the opening of the colocalized 

synaptic NMDAR and AMPARs, resulting in synaptic currents (equations 8–16) flowing into the 

model neuron. The Gaussian modulated cosinusoidal function that defined the probability of 

occurrence of a presynaptic spike to each synapse in the neuron was computed as (Basak & 

Narayanan, 2018, 2020; Seenivasan & Narayanan, 2020):  

 
𝐹!"# 𝑡 = 𝐹!"#!"# 1+ cos 2π𝑓! 𝑡 − 𝑇 exp −

𝑡 − 𝑇 !

2σ!  (17) 

In equation 17, T (5 s) defined the center of the place field, 𝑓! is the frequency of the cosine (8 

Hz), 𝐹!"#!"# is the maximal input firing rate, σ is the standard deviation of the Gaussian (1 s). In 

our analyses, the virtual animal was assumed to traverse a linear arena at constant velocity, 

implying the equivalence of time and space as the independent variable in equation (17). The 

input current resulting from synaptic activation produced post-synaptic action potentials and 

caused place cell like firing activities in the model neuron.  

 In introducing experience-dependent asymmetry in place-field firing (Harvey, Collman, 

Dombeck, & Tank, 2009; Mehta, Barnes, & McNaughton, 1997; Mehta, Lee, & Wilson, 2002; 

Mehta, Quirk, & Wilson, 2000), we replaced the symmetric Gaussian profile in equation (17) by 

a horizontally reflected Erlang distribution to construct an asymmetric place-field envelope 

(Seenivasan & Narayanan, 2020). In this scenario, the Erlang-modulated cosinusoidal function 

that defined the probability of occurence of a presynaptic spike to each synapse in the neuron 

was computed as:  

𝐹!"# 𝑡 = 𝐹!"#!"# 1+ cos 2π𝑓! 𝑡 − 𝑇
!! !!! !!!!!! !!!

!!! !
   (18) 

In equation (18), the parameters 𝜆 (=5) and k (=25) governed the extent of asymmetry 

(Seenivasan & Narayanan, 2020).   

 

Trial-to-trial variability in place cell responses.  

For simulating trial-to-trial variability in the place cell firing profile with different degrees of 

variability, noise was introduced into the presynaptic firing rate profile (equation 17) associated 

with each synapse. Simulations were performed with Gaussian white noise (GWN) which was 

introduced either additively (AGWN) or multiplicatively (MGWN):  

 𝐹!"#!"#$ 𝑡 = 𝐹!"# 𝑡 + 𝜉(𝑡) !
 (18) 
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 𝐹!"#!"#$ 𝑡 = 𝐹!"# 𝑡 1+ 𝜉(𝑡) !
 (20) 

In equations (19–20), [F]+ = max(F, 0) represents rectification to avoid negative firing rates, 𝜉(𝑡) 

defined a GWN with zero mean and standard deviation 𝜎!"#$%. The value of 𝜎!"#$% was increased 

to enhance the degree of trial-to-trial variability, with 𝐹!"# 𝑡  defined by a Gaussian- (equation 

17) or an Erlang-envelope (equation 18) to assess the impact of trial-to-trial variability in 

symmetric or asymmetric place-field firing profiles, respectively. As AGWN (equation 19) 

introduced trial-to-trial variability across stimulus locations, irrespective of the strength of 

afferent synaptic activity, this form of variability is activity-independent. On the other hand, the 

degree of trial-to-trial variability introduced by MGWN is progressively higher with increasing 

strength of afferent synaptic activity (equation 20), thereby manifesting as activity-dependent 

trial-to-trial variability. 

 

Neuronal voltage response during place-field traversal. 

Spikes were detected from the place-cell voltage response to afferent synaptic stimuli (equations 

17–20) by setting a voltage threshold on the rising phase of the voltage values. These spike 

timings were employed to compute the firing rate of the place as a function of time (F(t)) 

through convolution with a Gaussian kernel (𝜎=200 ms). The maxima (Fmax) and the full-width 

at half maximum (FWHM) of the place-cell firing profile were employed as relative measures of 

place-field tuning sharpness. Specifically, high Fmax and low FWHM were indicative of a sharply 

tuned place cell responses (Basak & Narayanan, 2018, 2020). As animals traverse through the 

place field of a given hippocampal place cell, these neurons are known to produce characteristic 

sub-threshold voltage ramps (Harvey, et al., 2009). To assess such ramps, we filtered the voltage 

traces using a 0.75 s wide median filter, which removed the spikes and exposed the sub-threshold 

structure of the voltage response during place-field traversal. The maximum value of these ramps 

was taken as peak ramp voltage (Vramp). Since the firing rate of the presynaptic neurons were 

modulated with a sinusoid of theta frequency (8 Hz, equations 17–18), we analyzed whether the 

post synaptic voltage traces reflected this temporal modulation. The voltage trace at the soma 

was filtered using a 50 ms wide median filter, to eliminate spikes but retain theta-frequency 

temporal modulation, and the Fourier spectrum of the filtered signal was computed. The power at 

8 Hz of this power spectrum was employed as theta power (Basak & Narayanan, 2018, 2020; 

Seenivasan & Narayanan, 2020).  
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Spatial information transfer within a place field: Mutual information metrics. 

To quantify the information transmitted through the firing pattern of a place cell, we employed 

two sets of information metrics. The first set employed the computation of mutual information  

(MI), with space within the place field considered as the stimulus and the neuronal firing-rate 

considered the response. The aforementioned equivalence of time and space as the independent 

variable in equations 17–20 allowed us to compute spatial information transfer from the firing 

rate response. 

Mutual information was computed at 20 different locations (Nloc) from the instantaneous 

firing-rate profile obtained for 30 different trials. To compute MI at these 20 locations, each 

location was subdivided into 4 bins, and the associated firing rate response was quantized into 20 

bins. Mutual information between the spatial stimulus (S) and firing-rate response (F) was 

calculated at each Nloc as: 

 𝐼! 𝐹;  𝑆 =  𝐻! 𝐹 − 𝐻! 𝐹 𝑆  (21) 

where, 𝐼! 𝐹; 𝑆  denoted mutual information between the response and the spatial stimulus at the 

𝑖!" location (𝑖 = 1…𝑁!"#), and 𝐹 defined the firing rate for 𝑆. The response entropy 𝐻! 𝐹  was 

calculated as: 

 𝐻! 𝐹 =  − 𝑝! 𝐹!
!

log! 𝑝! 𝐹!  (22) 

where, 𝑝! 𝐹!  represented the probability of the firing rate lying in the 𝑗!" response bin within 

the ith spatial location, and was computed as: 

 
𝑝! 𝐹! =  𝑝! 𝐹! 𝑆! 𝑝! 𝑆!

!

!!!

 (19) 

In equation (23), 𝑝! 𝐹! 𝑆!  represented the conditional probability that the response was in the jth 

firing rate bin, given that the stimulus was in the kth spatial bin within the ith spatial location. 

𝑝! 𝑆!  denoted the probability that the virtual animal was in the kth spatial bin within the ith 

spatial location, which was considered to follow a uniform distribution given the constant 

velocity assumption.  

The noise entropy term 𝐻! 𝐹 𝑆  in equation (21) was computed as: 
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𝐻! 𝐹 𝑆 = 𝑝! 𝑆! 𝐻! 𝐹 𝑆!

!

!!!

 (20) 

where 𝐻! 𝐹 𝑠!  represented the conditional noise entropy for the kth spatial bin within the ith 

spatial location, calculated as: 

 𝐻! 𝐹 𝑆! = − 𝑝! 𝐹! 𝑆! log! 𝑝! 𝐹! 𝑆!
!

 (21) 

where 𝑝! 𝐹! 𝑆!  denoted the conditional probability of the firing rate being in the 𝑗!! bin given 

that the stimulus was in the 𝑘!" spatial bin within the 𝑖!" location. 

 

Spatial information transfer within a place field: Stimulus-specific information metrics. 

The second set of metrics that we employed to compute spatial information transfer was derived 

from stimulus-specific information (SSI), obtained for 30 different trials of the entire traversal 

spanning all spatial locations. SSI has been proposed and employed as a measure of information 

in neuronal response about a particular stimulus, and conveys the average specific information 

spanning all responses to a particular stimulus. To calculate the SSI the spatial stimulus and the 

firing rate response were segregated into 80 and 40 bins, respectively. The SSI was calculated 

using the expression given below (Butts, 2003; Butts & Goldman, 2006; Montgomery & Wehr, 

2010): 

𝑆𝑆𝐼 𝑆! = 𝑝 𝐹! 𝑆! 𝐼!" 𝐹!

!"

!!!

 (26) 

where 𝑝 𝐹! 𝑆!  is the conditional probability of the firing rate being in the 𝑗!! response bin given 

that the 𝑖!! stimulus location was presented, and the specific information 𝐼!" 𝐹!  (DeWeese & 

Meister, 1999) was computed as: 

𝐼!" 𝐹! = − 𝑝 𝑆!  log!𝑝 𝑆!

!"

!!!

+ 𝑝 𝑆! 𝐹!  log!𝑝 𝑆! 𝐹!

!"

!!!

 (27) 

Here, 𝑝 𝐹!  is the probability of the firing rate being in the 𝑗!! response bin and 𝑝 𝑆! 𝐹!  defined 

the conditional probability for the stimulus in the 𝑖!" bin given that the firing rate was in the 𝑗!" 

response bin. The first term in equation (27) represents the entropy of the stimulus ensemble 

𝐻(𝑆!) and the second term represents the entropy of the stimulus distribution conditional on a 
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particular firing rate response 𝐻(𝑆!/𝐹!), providing 𝐼!" 𝐹! = 𝐻 𝑆! − 𝐻(𝑆!/𝐹!) (Butts, 2003; 

Butts & Goldman, 2006; Montgomery & Wehr, 2010). Before employing 𝐼!" 𝐹!  for computing 

the SSI, bias in 𝐼!" 𝐹!  calculation was corrected using the Treves-Panzeri correction procedure 

(Bezzi, et al., 2002; Montgomery & Wehr, 2010; Panzeri, Senatore, Montemurro, & Petersen, 

2007; Panzeri & Treves, 1996; Treves & Panzeri, 1995): 

 𝐼!"!!"## 𝐹! = 𝐼!" 𝐹! − 𝐶! (28) 
where 𝐶! =

!!!! !!!!
! !!"# !" !

 with 𝑁! representing the total number of stimulus bins, 𝑁! denoting the 

total number of response bins and 𝑁!"# depicting the total number of stimulus-response pairs. 

Spatial information transfer as a function of space within a place field was found to be 

bimodal or trimodal in several scenarios. To quantify the information and compare the 

information transfer across models and across the different degrees of trial-to-trial variability, 

several MI-based and SSI-based information metrics were developed and employed (listed in 

Table 3). 

 

Exploring parametric dependencies in spatial information transfer. 

A single hand-tuned model does not account for the numerous biophysical heterogeneities 

inherent to neural structures, and the results obtained with a single model could be biased by the 

specific selection of parametric values. A simple methodology to account for the biophysical 

heterogeneities with signature electrophysiological properties of specific neuronal subtype under 

consideration is to build a population of models. We employed a multi-parametric multi-

objective stochastic search (MPMOSS) algorithm to arrive at a population of models that would 

satisfy the several biophysical heterogeneities (by allowing the multiple parameters to span an 

experimental range, shown in Table 1) and would match with bounds on several 

electrophysiological measurements (Table 2). Since this procedure involves a uniform random 

sampling of parameter values, it is unbiased and provides a good strategy to search for 

interdependencies between parametric combinations that yield signature electrophysiological 

characteristics.  

To match physiological outcomes, these models were then validated on the basis of 

sharpness of their place-cell firing properties (𝐹!"# > 56 Hz and 𝐹𝑊𝐻𝑀 < 2.5 s; 2 

measurements), six signature intraneuronal functional maps (Basak & Narayanan, 2018, 2020; 
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Narayanan & Johnston, 2012) of back propagating action potential amplitude (𝑏𝐴𝑃), input 

resistance (𝑅!"), resonance frequency (𝑓!), maximum impedance amplitude ( 𝑍 !"#), strength of 

resonance (𝑄) and total inductive phase (Φ!), each validated at three locations (soma, ~150 µm 

and ~300 µm from soma on the apical trunk; total 18 measurements) and firing rate at the soma 

resulting from step current injections of 100 pA, 150 pA, 200 pA and 250 pA (4 measurements). 

Only the models that matched the bounds on these 24 measurements (Table 2) were declared 

valid. To explore interdependencies among parameters that resulted in the valid models, which 

showed sharp place-field tuning and manifested signature intrinsic electrophysiological 

properties, pairwise Pearson’s correlation coefficients spanning the parameters of all valid 

models were computed. To assess the impact of individual channels in the model on spatial 

information transfer, we removed each channel individually from the model (by setting the 

conductance value associated with that channel to zero) and assessed how the information 

measures changed due to the removal of this ion channel.  

 

Computational details. 

All simulations were performed using custom-written software in the NEURON simulation 

environment (Carnevale & Hines, 2006), at 34° C with an integration time step of 25 µs. Unless 

otherwise stated, all simulations were performed with a resting potential of –65 mV. Analysis 

was performed using custom-built software written in Igor Pro programming environment 

(Wavemetrics). Statistical tests were performed using statistical computing language R (www.R-

project.org), and the p values are reported while presenting the results, or in the respective figure 

panels or associated captions. In qualitatively defining weak and strong correlations, we 

employed the nomenclature followed by (Evans, 1996) by placing thresholds on the absolute 

value of the Pearson’s correlation coefficient: 0–0.19: Very weak; 0.2–0.39: Weak; 0.4–0.59: 

Moderate; 0.6–0.79: Strong; 0.8–1: Very Strong. To avoid potential misinterpretations arising 

from representing data by merely their summary statistics (Marder & Taylor, 2011; Rathour & 

Narayanan, 2019), all data points from the population of neural models are depicted as beeswarm 

or scatter plots. 
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RESULTS 

We built a morphologically realistic, conductance-based model of a CA1 pyramidal cell, 

incorporating electrophysiologically characterized passive and active mechanisms (Fig. 1A). The 

model contained 10 distinct biophysically constrained ion channel subtypes that were distributed 

along the somatodendritic arbor to match experimental findings (Fig. 1B). We hand-tuned the 

base model parameters (Table 1) to match several intrinsic somato-dendritic electrophysiological 

properties (Table 2) of rat CA1 pyramidal neurons (Fig. 1C–H). We tuned the strength of 

synaptic connections such that the somatic unitary AMPAR EPSP was set to ~0.2 mV (Fig. 1I) 

irrespective of synaptic location within the stratum radiatum of the CA1 pyramidal neuron (~350 

µm of apical dendrites from the soma).  

 
Ion-channel degeneracy in the concomitant emergence of sharply tuned spatial firing 

profile and intrinsic physiological properties of the neuron. 

As a first step in evaluating the impact of heterogeneous ion channel combinations on sharp 

tuning of place cell responses, we generated 12,000 random models by independent selection of 

parameter values from their respective uniform distributions (Table 1). We randomly dispersed 

80 distinct synaptic locations (of the 428 possible locations) across the stratum radiatum where 

presynaptic afferent inputs impinged. These 80 synapses received independent presynaptic inputs 

governed by equation (17), and the somatic voltage response of the neuron was recorded to 

compute the place-field firing rate profile.  

We validated the firing rate profiles of these randomly generated neuronal models for 

sharpness of place field tuning by placing thresholds on maximum firing rate within the place 

field (> 56 Hz) and the width of the firing rate profile (<2.5 s), and found 1024 of the 12,000 

models (~8.5%) to satisfy these constraints (Fig. S1). We picked five models within these 1024, 

with similar place-field firing profiles reflected as similar values of Fmax and FWHM and asked if 

similar place-field tuning required similar parametric combinations (Fig. S1A–B). Consistent 

with prior findings with models endowed with fewer ion channels (Basak & Narayanan, 2018, 

2020), we found that sharp-tuning of place field profiles could be achieved with disparate 

combinations of underlying biophysical parameters, pointing to ion channel degeneracy in the 

expression of sharp place-field tuning (Fig. S1C). Across all 1024 sharply-tuned models, whose 

Fmax and FWHM are depicted in Fig. S1D–E, the parameters spanned the entire valid range of 
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parameters pointing to the absence of any parametric clustering in arriving at sharp spatial tuning 

(Fig. S1F). We explored pairwise correlations of the parameters underlying these place-cell 

models with sharply tuned firing profiles, and found most of the correlation coefficients to be 

weak (Fig. S1F).  

Whereas place-field tuning constitutes one aspect of CA1 pyramidal neuron physiology, 

their well-characterized signature somato-dendritic intrinsic properties form a defining 

electrophysiological attribute. To match our model population with these signatures, we 

validated the 1024 sharply tuned models against 22 distinct electrophysiological measurements 

(Table 2): each of input resistance, backpropagating action potential amplitude, maximal 

impedance amplitude, resonance frequency, resonance strength and total inductive phase at 3 

different somato-dendritic locations; and action potential firing rate in response to somatic pulse 

current injections at 4 different current values. Of the total 12,000 models generated, we found 

127 (~1.06%) models to match all 24 measurement bounds (Table 2) and were declared valid. 

We picked five models within these 127 valid models, with similar place-field firing profiles 

(Fig. S2A) and similar intrinsic measurements across the somato-dendritic axis (Fig. S2B–F). 

We assessed the parameters associated with five models and found that the concomitant 

expression of similar place-field tuning and similar intrinsic properties could be achieved with 

disparate combinations of underlying biophysical parameters, pointing to ion channel degeneracy 

in the expression of sharp place-field tuning (Fig. S2G). Across all 127 models that were 

intrinisically-valid (Fig. 2A–G) and sharply-tuned (Fig. 2H–J), the parameters spanned the entire 

valid range of parameters pointing to the absence of any parametric clustering in these models 

(Fig. 3). We explored pairwise correlations of the parameters underlying these models, and found 

most of the correlation coefficients to be weak (Fig. 3).  

Together, the unbiased stochastic search procedure provided us with a population of 

place-cell models that exhibited several signature electrophysiological properties, and manifested 

sharp place-field tuning in their firing rate profiles. This population of models did not exhibit 

parametric clustering or strong parametric correlations, pointing to the expression of ion channel 

degeneracy in achieving these physiological goals. We employed this population of place-cell 

models for assessing the impact of several biophysical and physiological characteristics on 

spatial information transfer within the place field. 
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Heterogeneities in the regulation of spatial information transfer by trial-to-trial variability 

in place cell responses. 

The firing profile of a place cell within its place field represents a spatial tuning curve, with the 

spatial location at the center of a place-field eliciting the peak firing response and the response 

progressively falling for spatial stimuli on either side of this peak (e.g., Fig. 4A–B). Within the 

place field of this neuron, does maximal spatial information transfer occur at the peak of this 

tuning curve or at the high-slope regions of the tuning curve? Prior studies in other brain regions 

have shown that the answer to this question depends on several factors, with trial-to-trial 

variability playing a prominent role in regulating the relationship between the tuning curve and 

information transfer (Butts & Goldman, 2006; Montgomery & Wehr, 2010). To address this 

question for spatial information within the place field of individual place cells, we introduced 

trial-to-trial variability in neural responses by introducing synaptic noise into the afferent input 

frequency (equation 19).  

 The introduction of synaptic noise as additive Gaussian white noise (AGWN) manifested 

as trial-to-trial variability in the firing rate responses, enhanced the firing rate (Fig. 4C) and 

reduced the width (Fig. 4D) of place cell responses. Across all 127 valid models, progressive 

increase in trial-to-trial variability, introduced by increasing 𝜎!"#$% (equation 19), resulted in a 

progressive increase in the peak firing rate (Fig. 4C), and progressive reductions in the FWHM 

(Fig. 4D), theta power (Fig. 4E–F) and the voltage ramp (Fig. 4G–H) of the place-field response 

profile. We performed 30 trial simulations for each of the 127 valid place-cell models, obtained 

their firing rate profiles for 3 different levels of noise (Fig. 5A–C; designated as low, medium 

and high) and computed stimulus-specific information (SSI; Fig. 5D–F) and mutual information 

(MI; Fig. 5G–I) for all these 127 models. 

 Similar to the heterogeneities observed in place-cell measurements in the presence of 

different degrees of trial-to-trial variability (Fig. 4C–D; Fig. 5A–C), we noted marked 

heterogeneity in spatial information, assessed with the SSI and MI profiles across models (Fig. 

5D–I). Importantly, at low levels of trial-to-trial variability, the SSI (Fig. 5D) and the MI (Fig. 

5G) showed maximal spatial information transfer at the high-slope locations of the 

corresponding spatial tuning curves (Fig. 5A). Consequently, both the SSI and the MI profiles 

were bimodal when low degrees of trial-to-trial variability was introduced, although the values of 

SSI at high-firing locations were higher compared to MI values at these locations. With 
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increased trial-to-trial variability, introduced as AGWN, the out-of-field firing rates increased 

(Fig. 5B–C) while also enhancing the peak firing rate (Fig. 5B–C; Fig. 4C).  

Progressively enhancing trial-to-trial variability by increasing 𝜎!"#$% resulted in a marked 

reduction in spatial information across models, while still manifesting heterogeneity in spatial 

information transfer across the model population (Fig. 5E–F; Fig. 5H–I). Whereas the MI profile 

maintained bimodality despite reduction in the transferred information with higher degrees of 

trial-to-trial variability (Fig. 5H–I), there was a progressive transition from a bimodal (Fig. 5D) 

to a trimodal (Fig. 5E–F) distribution of the SSI profiles. The transition in the SSI profile was 

consequent to the suppression in spatial information transfer at the high-slope locations of the 

tuning curve, with relatively small changes to spatial information transfer at the high-firing 

locations (Fig. 5D–F). 

To further assess this transition in the SSI profile with enhanced trial-to-trial variability, 

we increased 𝜎!"#$% to larger values and computed the values of the SSI at the high-slope 

locations (𝑆𝑆𝐼!"#$% , the average value from the two peaks of the SSI, computed for symmetric 

firing profile; Fig. 6A) and at the peak-firing locations (𝑆𝑆𝐼!"#$ ; Fig. 6A). We computed the 

ratio 𝑆𝑆𝐼!"#$ 𝑆𝑆𝐼!"#$%  and plotted this as a function of 𝜎!"#$% (Fig. 6A). A value less than unity 

for this ratio indicates that maximal stimulus specific spatial information was transferred at the 

high-slope regions, whereas a value above unity reflects maximal SSI at the peak-firing location. 

Whereas 𝑆𝑆𝐼!"#$ 𝑆𝑆𝐼!"#$%  was less than unity for low values of 𝜎!"#$% across all models (Fig. 

5D, Fig. 6A), two sub-populations of models emerged with higher values of 𝜎!"#$%. In one 

subpopulation (N=87), 𝑆𝑆𝐼!"#$ 𝑆𝑆𝐼!"#$%  was always lower than unity even with higher degrees 

of trial-to-trial variability (teal and orange plots in Fig. 6A, bottom panel; example SSI profiles 

in Fig. 6B); in a second smaller subpopulation (N=27), this ratio was less than unity for low 

degrees of trial-to-trial variability but transitioned to values higher than unity for higher degrees 

of trial-to-trial variability (black and purple plots in Fig. 6A, bottom panel; example SSI profiles 

in Fig. 6C). Thus, whereas a large proportion of models transferred maximal spatial information 

at the high-slope locations irrespective of the degree of trial-to-trial variability, a subpopulation 

of models switch to transferring maximal information at the peak-firing locations with higher 

degrees of trial-to-trial variability. 

We found that there were no significant differences in the peak firing rate or the width of 

the place-field firing profiles of models within the two model subpopulations, the ones showing 
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higher SSI at high-slope vs. high-firing locations with high degrees of trial-to-trail variability 

(Fig. 6D). Were there systematic differences in the parameters that defined models within these 

two subpopulations? To answer this question, we performed principal component analysis (PCA) 

on parameters that governed the models within the two subpopulations (Fig. 6E–H). We asked if 

there were distinct clusters representative of the two subpopulations in the reduced dimensional 

space, pointing to structured parametric differences between these two populations. We found 

that the three principal dimensions explained merely 24% of the total variance, and there was 

considerable overlap in the coefficients associated with these two subpopulations, suggesting the 

absence of systematic parametric differences in the subpopulations (Fig. 6E–H).  

We developed 12 distinct profile-specific metrics for quantifying the SSI (Fig. 7A) and 

MI (Fig. 7H) profiles for the 127 models for three levels of noise. These quantitative metrics 

confirmed the considerable heterogeneities in spatial information transfer across the model 

population (Fig. 7). These results showed that across models, information transferred reduced 

with increase in trial-to-trial variability, with symmetry in spatial information transfer at the two-

high slope regions (Fig. 7B–C, Fig. 7I–J). These quantitative metrics also corroborated the 

emergence of the two subpopulations (Fig. 6) at high values of 𝜎!"#$%; specifically, the value of 

SSIdip (Fig. 7F) was greater than zero in a small sub-population of models, indicating that these 

models transfer maximal information at the peak-firing location compared to the high-slope 

locations (Fig. 7A). The value of MIdip (Fig. 7M), however, was always negative across all 

measured values of 𝜎!"#$%. 

Together, our results point to a critical role for the degree of trial-to-trial variability in 

regulating both qualitative and quantitative aspects of spatial information transfer profile in 

hippocampal place cells. Specifically, the amount of information transfer progressively reduced 

with an increase in the degree of trial-to-trial variability, with a qualitative transition from high 

spatial information transfer occurring at the high-slope to high-firing locations of the spatial 

tuning curve. In addition, these observations unveil heterogeneities in the place-cell model 

population in terms of their information transfer capabilities, and in terms of how information 

transfer changes with increased degrees of trial-to-trial variability. These results emphasize the 

need to account for biological heterogeneities in neural populations while assessing information 

transfer characteristics.  
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Degeneracy in the emergence of place cells manifesting similar rate-based spatial 

information transfer profiles. 

We computed the SSI and MI profiles for the five similar models shown in Fig. S2, and found 

they possessed similar SSI and MI metrics as well (Table S1). The parametric values of these 

models, which have similar place-field firing profiles, similar intrinsic measurements and similar 

spatial information transfer profiles, however were distributed over the entire span of the 

respective parametric space (Fig. S2G). These point to the ability of disparate combinations of 

neuronal parameters to provide similar spatial information transfer profiles, thereby pointing to 

the expression of degeneracy in concomitantly achieving similar intrinsic properties and similar 

rate-based spatial information transfer in place cells.  

 In further exploring the dependencies of spatial information transfer on model 

parameters, we asked if any of the model parameters values would predict spatial information 

transfer with different degrees of trial-to-trial variability. To do this, we computed pairwise 

correlations between 20 physiological measurements (3 somato-dendritic measurements of Rin, 

|Z|max, fR, Q, Φ! and bAP; Fmax and FWHM for place-field profiles in the absence of noise) that 

defined the 127 valid models and the 12 information transfer measurements (Table 3) that were 

obtained from the place-field responses of these models with low (Fig. S3), medium (Fig. S4) 

and high (Fig. S5) degrees of trial-to-trial variability. Although there were expected strong 

correlations between some of the information metrics — such as strong positive correlations 

between SSI1 vs. SSI2 and SSI1/SS2 vs. MI1/MI2, and strong negative correlations between 

SSI1/SSI2 vs. SSIdip across all three values of 𝜎!"#$% — the pairwise correlations between 

information metrics and model measurement values were weak (Fig. S3–S5).  

 Our model contained 80 synaptic locations that were randomly distributed across the 

apical dendritic arbor. Our outcomes thus far froze synaptic locations at one specific randomized 

localization and varied ion channel conductances exploring parametric dependencies of spatial 

information transfer. In another set of simulations, we fixed the model parameters to reflect the 

base model profile (Table1; Figure 1) and varied localization of the 80 distinct synapses along 

the dendritic arbor. Specifically, we dispersed the 80 synapses that received the presynaptic 

afferent inputs across the apical dendritic arbor to 400 combinations of distinct locations, 

computed the firing rate profile and the information transfer profiles and plotted the associated 

measurements (Fig. S6). We found that the introduction of heterogeneities in synaptic 
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localization profiles introduced heterogeneities in spatial firing profiles (Fig. S6A–B) and in the 

spatial information transfer measured through SSI (Fig. S6C–H) or MI metrics (Fig. S6I–N). 

However, we also noted that spatial firing profiles endowed with similar firing rate and 

information transfer metrics could be obtained with distinct combinations of synaptic 

localization profiles.  

Together, these results demonstrated the ability of several disparate ion-channel 

parametric combinations and different synaptic localization profiles to elicit similar place cell 

firing profiles endowed with similar information transfer profiles, thereby pointing to the 

expression of parametric degeneracy in the regulation of spatial information transfer in place 

cells. 

 

Regulation of spatial information transfer by experience-dependent asymmetry in place-

field response profiles. 

Our simulations thus far resulted in symmetric place field firing profiles (e.g., Fig. 4B) with a 

symmetric subthreshold voltage ramp (e.g., Fig. 4G), consequent to the symmetric input 

structure defined by a Gaussian (equation 17). However, electrophysiological lines of evidence 

from behavioral experiments point to an experience-dependent asymmetric expansion of 

hippocampal place fields in the direction opposite to the movement of the animal (Harvey, et al., 

2009; Mehta, et al., 1997; Mehta, et al., 2002; Mehta, et al., 2000). What is the impact of such 

experience-dependent asymmetry on spatial information transfer within a single place filed 

through place-cell rate code? To address this, we first altered the input structure to a 

horizontally-reflected Erlang distribution (equation 19) which yielded an asymmetric place-field 

firing (Fig. S7A–B) profile (Seenivasan & Narayanan, 2020). Consistent with our observations 

with the symmetric place-field firing profile (Fig. 4), enhanced trial-to-trial variability resulted in 

increase in Fmax (Fig. S7C) accompanied by reductions in FWHM (Fig. S7D), theta power (Fig. 

S7E–F) and subthreshold ramp voltage (Fig. S7G–H). The subthreshold voltage ramp profile was 

asymmetric (Fig. S7G), and reflected the asymmetric firing rate profile (Seenivasan & 

Narayanan, 2020). 

 We computed the asymmetric firing rate profiles for all valid models with low (Fig. 8A), 

medium (Fig. 8B) and high (Fig. 8C) degrees of trial-to-trial variability introduced as AGWN to 

the input structure (equation 18). We found the baseline and the peak firing rates to shift with 
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increased 𝜎!"#$%, manifesting heterogeneities across models in the populations (Fig. 8A–C). 

Strikingly, the stimulus-specific information transfer profiles were relatively insensitive to the 

asymmetry in the firing rate profile (Fig. 8D–F), although the MI profiles reflected the 

asymmetry (Fig. 8G–I). Specifically, the first and the second peaks were not significantly 

different for SSI profiles (Fig. 8D–F, Fig. 9A–B; Wilcox signed rank test between first and 

second peaks: Low: p=0.1264; Medium: p=0.1383; High: p=0.2927), but the second peak was 

significantly larger than first peak for MI profiles (Fig. 8G–I, Fig. 9G–H; Wilcox signed rank test 

between first and second peaks: Low: 𝑝 = 2.2×10!!"; Medium: 𝑝 = 2.2×10!!"; High: 

𝑝 = 5.5×10!!!) especially for low degrees of trial-to-trial variability. 

Consistent with our observations with a symmetric place-field profile, there was marked 

reduction in spatial information transfer, measured either as SSI or MI (Fig. 8D–I; Fig. 9A–B; 

Fig. 9G–H), with increased trial-to-trial variability. With low degrees of trial-to-trial variability, 

we observed that the highest information transfer occurred at the high-slope regions of the firing 

rate profile, computed either through SSI (Fig. 9E) or MI (Fig. 9K). With increase in degree of 

trial-to-trial variability, in a manner similar to our findings with symmetric firing profiles (Fig. 

6–7) a subpopulation of models switched to transferring maximal SSI at the peak of the firing 

rate profile (Fig. 9E; High 𝜎!"#$%; subpopulation with SSIdip > 0), but no such transition occurred 

in the MI profile (Fig. 9K). There were several models which transferred similar amount of 

spatial information, but were endowed with disparate parametric combination, pointing to the 

expression of degeneracy with asymmetric firing profiles. Pairwise correlations between model 

physiological measurements and information metrics were mostly weak, irrespective of the 

degree of trial-to-trial variability (Fig. S8–S10). Together, these results showed that the 

introduction of asymmetry in place-field firing profile introduced asymmetries in the spatial 

information transfer profiles computed through MI, but not through SSI. 

 

The impact of activity-dependent trial-to-trial variability on spatial information transfer 

was minimal. 

We had introduced trial-to-trial variability as an AGWN, whereby the variability was 

independent of spatial location and synaptic activity (equation 19). To understand the impact of 

trial-to-trial variability that was dependent on synaptic activity, we introduced trial-to-trial 

variability as a multiplicative GWN (equation 20) and repeated our analyses on spatial 
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information transfer for the population of valid models, both with symmetric as well as 

asymmetric firing profiles (Fig. 10, Fig. S11–S20). Although we observed heterogeneity in firing 

profiles and information transfer, and found models expressing similar information transfer 

despite being governed by disparate parametric combinations, we found the impact of trial-to-

trial variability with the higher range of 𝜎!"#$% (compared to those employed for AGWN) to be 

minimal on place cell properties (Fig. S11), SSI and MI profiles (Fig. 10, Fig. S12, Figs. S16–

S17) or pair-wise correlations between intrinsic and information metrics (Figs. S13–S15; Figs. 

S18–S20). The value of 𝜎!"#$% employed for achieving “high” degree of trial-to-trial variability 

(=0.5 Hz2) was the highest possible, as increases beyond that resulted in depolarization-induced 

block of action potential firing in several models. Experience-dependent asymmetry in firing 

profiles introduced asymmetry in the MI profiles, but not the SSI profile, even with MGWN-

based trial-to-trial variability (Fig. S16–S17). In summary, our results showed that the impact of 

activity-dependent trial-to-trial variability is minimal compared to activity-independent 

variability in trial-to-trial responses, across different levels of noise and with symmetric or 

asymmetric place-field firing profiles. 

  

Regulation of spatial information transfer by ion channel conductances and synaptic 

receptors. 

Our results established degeneracy in the emergence of place cells with similar spatial 

information transfer profiles, and also showed an absence of strong correlations with any 

physiological measurement. What contributes to such degeneracy whereby it is possible for 

models to achieve similar information transfer profiles despite significant differences in channel 

expression profiles? Are there specific ion channels that play critical regulatory roles in spatial 

information transfer within a place field? 

 We took advantage of our conductance-based modeling framework, and employed the 

virtual knockout approach (Basak & Narayanan, 2018, 2020; Jain & Narayanan, 2020; Mittal & 

Narayanan, 2018; Mukunda & Narayanan, 2017; Rathour & Narayanan, 2014; Seenivasan & 

Narayanan, 2020) to assess the contribution of individual ion channels to spatial information 

transfer. Specifically, we systematically assessed information transfer profiles in each of the 

valid models after virtually knocking out individual ion channels by setting their conductance 

value to zero (Fig. S21). We computed the SSI and MI metrics for the virtual knockout models 
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(VKM) for each of the 8 active ion channels (Fig. 11). Virtual knockout of the spike generating 

conductances — NaF and KDR — was infeasible because the neuron ceases spiking on setting 

these conductance values to zero. 

 In terms of information transfer, we found that the impact of knocking out individual 

channels was heterogeneous across the model population. There were models where the SSI 

(Fig. 11A–B) or MI (Fig. 11G–H) values increased after knocking out the channel, but there 

were also models where these values decreased upon knockout. Among the channels assessed, 

we found the A-type potassium channel to have the maximal impact on spatial information 

transfer. Specifically, virtual knockout of the A-type potassium channel resulted in reductions in 

SSI (Fig. 11A–B) and MI (Fig. 11G–H) values (Wilcoxon signed rank p values: SSI1: 7.8×10–9, 

SSI2: 1.6×10–10, MI1: 2.7×10–5, MI2: 6.2×10–15), and increased the FWHM values of both SSI 

(Fig. 11C) and MI (Fig. 11I) profiles (Wilcoxon signed rank test p values: SSIFWHM: 8×10–14, 

MIFWHM: 2.2×10–16). These observations offer a clear testable prediction that A-type potassium 

channels play a critical role in regulating spatial information transfer in hippocampal place cells. 

These results also establish a many-to-one mapping between the different ion channels and the 

efficacy of spatial information transfer, whereby different ion channels could contribute towards 

maintaining efficacious information transfer with heterogeneous contributions across neurons in 

the population. This many-to-one mapping provides a substrate for the expression of degeneracy 

where different combinations of ion channels could maintain similar functional outcomes in 

terms of spatial information transfer efficacy. 

 Finally, as the role of NMDA receptors and dendritic spikes mediated by sodium 

channels expressed in the dendrites have been considered critical in place-cell physiology (Basak 

& Narayanan, 2018, 2020; Nakazawa, McHugh, Wilson, & Tonegawa, 2004; M. E. Sheffield & 

Dombeck, 2015; M. E. J. Sheffield, Adoff, & Dombeck, 2017), we explored the roles of these 

NMDARs and dendritic NaF channels in regulating spatial information transfer in our 

heterogeneous model population. To evaluate the role of dendritic fast sodium channels, we 

recomputed place-field firing rate and spatial information transfer profiles after setting the value 

of 𝑔!"# to zero in apical dendritic compartments (Fig. S22A–B). Although there were 

heterogeneities in the impact of deleting dendritic sodium channels, we found a significant 

reduction in spatial information transfer computing either as SSI (Fig. 12A–B) or as MI (Fig. 

12G–H). To assess the role of NMDARs, we recomputed place-field firing rate and spatial 
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information transfer profiles after setting the value of 𝑃!"#$% in equations (9–11) to zero (Fig. 

S22C–D). Deletion of NMDARs resulted in a significant reduction in spatial information transfer 

(SSI: Fig. 12A–B; MI: Fig. 12G–H). 

 Together, these results unveiled a many-to-one relationship between the different ion 

channels and spatial information transfer, while also providing testable predictions on the roles 

of A-type potassium channels, NMDARs and dendritic sodium channels in regulating spatial 

information transfer within a single place field of hippocampal place cells. 
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DISCUSSION 

Conclusions. 

We demonstrated that hippocampal neurons, when they act as reliable (i.e., low trial-to-trial 

response variability) sensors of animal location by spatially modulating their firing rate, transfer 

peak spatial information at the high-slope locations (and not at peak firing location) of the firing 

rate tuning curve within their place field. However, we showed that there was significant 

heterogeneity across a population of models that received identical distributions of afferent 

synaptic patterns, owing to differences in ion channel composition of these models. The 

heterogeneity manifested in terms of the quantitative value of the amount of information 

transferred, and in terms of how they responded to increases in the degree of trial-to-trial 

variability. Specifically, with increases in trial-to-trial variability, whereas one subpopulation of 

models switched to transferring peak stimulus-specific spatial information at the peak-firing 

locations, another subpopulation continued to transfer peak information at the high-slope 

locations. These heterogeneities in spatial information transfer did not show strong relationships 

between heterogeneities in intrinsic or tuning properties of the models. We demonstrated the 

dependence of the spatial information transfer profile on the type of trial-to-trial variability, 

whereby activity-dependent variability had little impact on spatial information transfer compared 

to the significant reduction introduced by activity-independent variability. Furthermore, we show 

that the model population manifested parametric degeneracy, whereby models with similar 

intrinsic measurements, similar tuning curves and similar information transfer metrics exhibited 

immense heterogeneity in and weak pair-wise correlations across underlying parameters.  

 To further delineate the relationship of spatial information transfer with place-cell 

characteristics and its components, we assessed the impact of experience-dependent asymmetry 

in the place-field firing rate profile. We found that mutual information metrics showed a 

dependence on the asymmetric nature of the firing profile, where information transfer was 

maximal in the second half of the place-field where the firing rate dropped at a higher rate. 

However, the peak values of stimulus-specific information metrics were largely invariant to the 

asymmetric slopes of the firing rate profile on either side of the peak-firing location. Finally, we 

asked if there were specific ion channels that played critical roles in regulating spatial 

information transfer by recomputing information metrics in models that lacked each of 8 

different ion channels. We found heterogeneity in the impact of knocking out individual ion 
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channels on these information metrics, pointing to a many-to-one relationship between different 

ion channel subtypes and spatial information transfer. Our analyses unveiled a potent reduction 

in information transfer consequent to knocking out transient potassium channels, NMDA 

receptors or dendritic sodium channels, providing direct experimentally testable predictions. 

Together, our analyses emphasize the need to account for neuronal heterogeneities in 

assessing sensory information transfer and show that synergistic interactions among several 

neural components regulate the specifics of information transfer and its relationship to tuning 

curve characteristics. In what follows, we present the implications of our study to place-cell 

physiology, also outlining the limitations of our study and potential directions for the future. 

 

Trial-to-trial variability and spatial information transfer. 

Our results show that trial-to-trial variability in neural responses results in a marked reduction in 

spatial information transfer within a single place-field, in a manner that is dependent on how the 

noise was introduced. In demonstrating this, we had introduced trial-to-trial variability 

employing either an additive or a multiplicative GWN. The incorporation of synaptic additive 

noise is physiologically similar to a scenario where there is either a location-independent 

increase in afferent excitation or a reduction in tonic or spatially-uniform inhibition (Duguid, 

Branco, London, Chadderton, & Hausser, 2012; Grienberger, Milstein, Bittner, Romani, & 

Magee, 2017). Such a scenario, which could be a result of physiological plasticity or 

pathological synaptopathies, would enhance response variability in a location-independent 

manner. Our results demonstrate that the presence of such location- and activity-independent 

enhancement in trial-to-trial variability critically reduces spatial information transfer within a 

place field, irrespective of whether the place field profiles are symmetric (Fig. 5, Fig. 7) or 

asymmetric (Figs. 8–9). With enhanced trial-to-trial variability of this form, our results show that 

the location of maximal SSI transitions from the high-slope regions to the peak-firing location in 

a subpopulation of models (Fig. 6).  

In striking contrast, incorporation of trial-to-trial variability as a multiplicative noise had 

little impact on spatial information transfer for a wide range of noise variance values, and the 

location of maximal SSI was always tuned to the high-slope regions of the tuning curve (Fig. 

10). Multiplicative noise, activity-dependent trial-to-trial variability, is physiologically similar to 

noise consequent to variability in synaptic release and receptor kinetics. In such a scenario, the 
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amount of variability is dependent on the extent of synaptic activation, and therefore is activity-

dependent. In place cells, as excitatory afferent activity is higher within the place field of the 

neuron (highest at the center of the place field), such multiplicative noise translates to location-

dependent variability in neural responses. Our results show that the ability of such activity-

dependent noise, especially with strong excitatory drives observed during place-field traversal, in 

altering spatial information transfer is minimal. 

 These results emphasize the importance of assessing the source of trial-to-trial variability 

and asking whether the variability is dependent or independent of activity, and caution against a 

generalization of all types of trial-to-trial variability to yield similar outcomes. Further 

explorations on the dependence of spatial information transfer on the specific types and sources 

of variability should account for several experimental details, some of which are listed below. 

First, although we consider two mutually exclusive versions of trial-to-trial variability 

(dependent or independent of activity), variability in neuronal responses under awake, behaving 

conditions is conceivably a mixture of both versions. Second, there are theoretical and 

electrophysiological lines of evidence for a critical role for asynchronous synaptic release, 

induced by active reverberation in recurrent circuits (such as the CA3, a presynaptic counterpart 

to the CA1 neurons studied here), on information transfer (Lau & Bi, 2005; Volman & Levine, 

2009). Third, there are lines of evidence of stimulus independent noise improving the detection 

of subthreshold stimulus (Stacey & Durand, 2000, 2001, 2002). Fourth, although we employed 

white noise sources in our analyses, it has been demonstrated that the color of the noise is a 

critical determinant of how information transfer is affected (Gingl, Kiss, & Moss, 1995). Finally, 

in our analyses the trial-to-trial variability was introduced solely as synaptic noise. However, 

other factors such as noisy biochemical processes and stochasticity of ion channels could also 

contribute to the trial-to-trial variability, with different noise color and different ways of 

interactions with the inputs (Faisal, Selen, & Wolpert, 2008). It is essential that future studies 

incorporate these additional layers of mechanisms to the model and examine how different 

sources of variability, each with potentially different characteristics, synergistically affect 

stimulus-specific information content. It is possible that one or the other version dominates under 

specific physiological/pathological conditions, and therefore it is important that the variability-

inducing mechanisms are delineated before the impact of such variability is assessed. 
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Place-cell characteristics and spatial information transfer. 

An important insight obtained from our study pertains to parametric degeneracy in effectuating 

spatial information transfer in place cells, with reference to ion channels and parameters that 

govern place cell biophysics and physiology. Specifically, we demonstrate that several disparate 

combinations of ion channel conductances and model parameters could elicit similar spatial 

information transfer across locations through the place-cell firing rate profile within a place field 

(Figs. S1–S2; Fig. 3). Ion-channel degeneracy in the hippocampal formation is ubiquitous, and 

expresses across different scales of analyses (Mishra & Narayanan, 2019; Mittal & Narayanan, 

2018; Rathour & Narayanan, 2019). In hippocampal CA1 pyramidal neurons, the expression of 

degeneracy has been demonstrated with reference to the concomitant emergence of several 

somato-dendritic intrinsic properties (R. Migliore, et al., 2018; Rathour, Malik, & Narayanan, 

2016; Rathour & Narayanan, 2012, 2014; Srikanth & Narayanan, 2015), spike-triggered average 

(Das & Narayanan, 2014, 2015, 2017; Das, Rathour, & Narayanan, 2017; Jain & Narayanan, 

2020), short- (Mukunda & Narayanan, 2017) as well as long-term (Anirudhan & Narayanan, 

2015) plasticity profiles. More specifically, with reference to the firing properties of CA1 

pyramidal neurons as place cells, degeneracy has been shown to express in the sharpness of 

place-field firing properties with reference to biophysical as well as morphological parameters 

(Basak & Narayanan, 2018, 2020), which has been confirmed in this study with a larger set of 

ion channels incorporated into the model. Finally, from the spatial encoding and information 

transfer perspective, an earlier study had quantitatively defined efficiency of phase coding in 

hippocampal place cells and showed that similar spatial information transfer could be achieved 

with disparate ion channel combinations (Seenivasan & Narayanan, 2020). The findings of this 

study, demonstrating ion channel degeneracy with reference to spatial information transfer 

through the rate code within a single place field, further strengthen the expression of degeneracy 

in encoding systems such as the hippocampus.  

In encoding systems, it is essential that encoding of information occur concurrently with 

maintenance of homeostasis of intrinsic neuronal properties, including neuronal firing rate 

(Rathour & Narayanan, 2019). In our study, we showed that similar amounts of spatial 

information transfer and similar firing rate (both with reference to place-field firing and 

responses to pulse currents) could concomitantly occur with disparate combinations of ion 
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channel conductances and parameters that govern their expression (Table S1, Fig. S2). It has 

been shown that the balance between excitation, inhibition and intrinsic excitability (E–I–IE 

balance) is essential for achieving concomitant efficient phase coding as well as activity 

homeostasis. In our study, we had fixed the excitatory synaptic weights to account for synaptic 

democracy (Fig. 1I) and did not incorporate spatially-uniform inhibition (Grienberger, et al., 

2017) as this would have translated to merely a negative bias term across locations (Basak & 

Narayanan, 2018). We also found that there were no correlations between information 

measurements and other intrinsic measurements (e.g., Figs. S3–S5). Future studies could alter 

excitatory synaptic weights associated with place-field inputs and explore the balance between 

excitation, location-dependent inhibition and the heterogeneous intrinsic excitability properties 

of hippocampal pyramidal neurons to assess the role of E–I–IE in the emergence of efficient 

information transfer through rate codes as well. Specifically, such studies could validate models 

based on their ability to transfer maximal spatial information through the rate code (i.e., efficient 

rate coding) and concomitantly maintain intrinsic homeostasis, and ask if E–I–IE was essential to 

achieve these when the search space involves excitatory/inhibitory synaptic weights and ion 

channel conductances (Seenivasan & Narayanan, 2020). Importantly, such models could 

maximize the joint spatial information transfer occurring through the rate as well as the phase 

codes (Mehta, et al., 2002; O'Keefe & Burgess, 2005) within a place field, and explore the 

constraints required for such efficient encoding to occur simultaneously with the expression of 

intrinsic homeostasis.  

 Degeneracy in the emergence of similar spatial information transfer and signature 

intrinsic properties emerged as a consequence of a many-to-one relationship between ion 

channels and spatial information transfer. This was inferred from our analysis with virtual 

knockout models (Fig. 11–12), whereby removal of any of the several ion channels resulted in 

heterogeneously altering spatial information transfer in the model population. These results 

emphasize the importance of recognizing the many-to-one relationship between underlying 

parameters and information transfer. These observations were feasible only because we 

employed a heterogeneous population of models, derived from an unbiased stochastic search that 

covered heterogeneities in the underlying parameters. If we had employed a single hand-tuned 

model to arrive at our conclusions, that single model and its specific composition would have 

biased our results. In such a scenario, the identification of the aforementioned many-to-one 
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relationship and the consequent heterogeneities on the impact of individual ion channels on 

information transfer wouldn’t have been feasible. These results emphasize the critical role of 

synergistic interactions among different ion channels in effectuating behavior, and underscore 

that the impact of any ion channel subtype is dependent on the relative expression profiles of 

other channels and receptors in the specific model under consideration.  

Degenerate systems show dominance of specific underlying parameters in regulating 

specific physiological measurements (Basak & Narayanan, 2018, 2020; Drion, O'Leary, & 

Marder, 2015; Mishra & Narayanan, 2019; Mittal & Narayanan, 2018; Mukunda & Narayanan, 

2017; Rathour, et al., 2016; Rathour & Narayanan, 2014, 2019). In our analyses, although we 

found that all ion channels had the ability to reduce or increase spatial information transfer in a 

model-dependent manner (Fig. 11–12), certain parameters played a crucial role in regulating 

information transfer. Specifically, our analyses provide specific experimentally testable 

predictions on the critical roles of dendritic sodium channels, NMDA receptors and A-type 

potassium channels in regulating spatial information transfer (Figs. 11–12). Interestingly, these 

three components play critical roles in regulating the prevalence of dendritic spikes and in the 

sharpness of place-cell tuning profiles (Basak & Narayanan, 2018, 2020; Gasparini, Migliore, & 

Magee, 2004; Golding, Jung, Mickus, & Spruston, 1999; Golding & Spruston, 1998; Losonczy 

& Magee, 2006), and form strong candidates in regulating spatial information transfer. Further 

studies could test the roles of these channels in regulating information transfer in hippocampal 

pyramidal neurons employing electrophysiological recordings during place-field traversal in the 

presence of pharmacological agents. As these components alter dendritic spiking in opposite 

directions (suppressing NMDA receptors or sodium channels suppresses dendritic spiking, 

whereas suppression of A-type potassium channels enhances dendritic spiking), such studies 

could also potentially assess the requirement of an intricate balance between mechanisms that 

promote and those that prevent dendritic spike initiation in maintaining efficient spatial 

information transfer (Basak & Narayanan, 2020). 

Our results proffer a testable prediction that experience-dependent asymmetry in place-

field profiles does not markedly alter SSI, but alters MI. As experience-dependent asymmetry is 

considered to be predictive, reduction in spatial information transfer during the early parts of 

place-field firing would have rendered this predictive capability to be ineffectual. Our 

observations demonstrate that although the low values of slope during the early parts of firing 
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profile reduces mutual information as a consequence of the asymmetry, stimulus specific 

information remains high. Further explorations could test this prediction on 

electrophysiologically obtained individual place cells transitioning with experience (Mehta, et 

al., 1997), employing different metrics of spatial information transfer. 

Finally, an important outcome of the analyses presented here relates to the widespread 

prevalence of biological heterogeneities across all scales of analysis, and all physiological 

metrics. These heterogeneities are ubiquitous, spanning ion channel expression and localization 

profiles, morphological characteristics, neuronal intrinsic properties, tuning properties with 

reference to external features (in our case, space), information transfer profiles, the location of 

high-information transfer (high-slope vs. peak-firing), responses of information metrics to trial-

to-trial variability and quantitative metrics associated with these properties. Therefore, it is 

extremely critical to account for these heterogeneities in experimental analyses and in 

computational models of brain function, at all scales of analyses spanning the genes-to-behavior 

range. With specific reference to hippocampal place fields, future studies should explore the 

impact of systematic gradients in neuronal properties and ion channel expression along the 

dorso-ventral, proximo-distal and superficial-deep axes of the hippocampus (Cembrowski, et al., 

2016; Cembrowski & Spruston, 2019; Danielson, et al., 2016; Dougherty, Islam, & Johnston, 

2012; Dougherty, et al., 2013; Kjelstrup, et al., 2008; Lee, et al., 2014; Malik, Dougherty, Parikh, 

Byrne, & Johnston, 2016; Marcelin, et al., 2012; Maroso, et al., 2016; Mizuseki, Diba, 

Pastalkova, & Buzsaki, 2011; Strange, Witter, Lein, & Moser, 2014; Sun, et al., 2017) on spatial 

information transfer within a single place field. Furthermore, the question on how spatial 

information transfer is regulated by activity-dependent plasticity and behavioral state-dependent 

neuromodulation of ion channels and receptors is critical in understanding the emergence of 

spatial information transfer in the context of novel place-field formation (Bittner, et al., 2015; 

Bittner, Milstein, Grienberger, Romani, & Magee, 2017; Cohen, Bolstad, & Lee, 2017; M. E. J. 

Sheffield, et al., 2017; Zhao, Wang, Spruston, & Magee, 2020).  
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FIGURE LEGENDS 
 
Figure 1. Base model of rat hippocampal CA1 pyramidal neurons, showing its intrinsic and 

synaptic properties along the somato-apical trunk. (A) Two-dimensional reconstruction of the 

3D morphologically realistic model employed in this study. (B) Distribution of parameters 

governing the passive properties (𝑔!"#$ and Ra) and ten different active ion channels (𝑔!, 𝑔!"#, 

𝑔!"#, 𝑔!", 𝑔!", 𝑔!", 𝑔!"#, 𝑔!"#, 𝑔!"# and 𝑔!"#) along the somato-apical span to match 

multiple intrinsic measurements at the soma and along the apical dendrites, including input 

resistance (C), backpropagating action potential amplitude (D) maximum impedance amplitude 

(E), strength of resonance (F) resonance frequency (G), total inductive phase (H) and the 

maximum AMPAR permeability (I), all as functions of radial distance from the soma. The 

distance-dependent profile of maximum AMPAR permeability, PAMPA (I, right vertical axis) was 

set such that the somatic unitary excitatory postsynaptic potentials (uEPSPs) was around 0.2 mV, 

irrespective of synaptic location (I, left vertical axis).  

 

Figure 2. A subset of models generated through a stochastic search process showed sharp 

place-cell tuning and manifested signature somato-dendritic intrinsic measurements of 

CA1 pyramidal neurons. Out of 12000 randomly generated models, 127 satisfied 20 intrinsic 

somato-dendritic measurements and manifested sharply-tuned place field firing. (A–G) The 

intrinsic measurements for the 127 valid models are shown: input resistance (Rin, A), maximum 

impedance amplitude (|Z|max, B), resonating frequency (fR, C), strength of resonance (Q, D), total 

inductive phase (Φ!, E) and back-propagating action potential (bAP) amplitude (F), each of them 

at three locations (soma, ~150 µm from soma and ~300 µm from soma) on the apical trunk; and 

the firing rate for step currents of 100 pA, 150 pA, 200 pA and 250 pA at the soma (G). (H) A 

typical place-field firing profile illustrating the measurement of maximum firing rate (Fmax) anad 

the temporal distance between the places with half the maximum value of firing rate (FWHM). A 

relative criterion on tuning sharpness, involving high Fmax (>56 Hz) and low FWHM (<2.5 s), 

was applied to obtain the 127 valid place-cell models (out of the 12000 randomly generated 

models). (I–J) Place field firing measurements Fmax and FWHM at the soma for the 127 models. 

 

Figure 3. Models showing sharp place-field firing and signature intrinsic characteristics 

exhibited wide parametric variability and weak pair-wise correlations among underlying 
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parameters. Pairwise scatter plot matrix of parametric values defining the 127 valid models 

superimposed on the corresponding correlation coefficient matrix. Inset shows the histogram of 

all the correlation coefficient values.  

 

Figure 4. Impact of additive Gaussian white noise (AGWN) on place-cell characteristics. 

(A–B) Voltage trace (A) and corresponding firing rate profile (B) during traversal of a place field 

in a typical valid place-cell model in the presence of AGWN (𝜎!"#$%=5×10–4 Hz2).  (C–D) Impact 

of different levels of AGWN on the peak firing frequency, 𝐹!"# (C) and full-width at half 

maximum, FWHM (D) of the 127 valid place-cell models. The red bars represent the respective 

median values. 𝐹!"#: Kruskal Wallis test, p=2.2×10–12, Wilcoxon Signed Rank test, Low vs. 

Medium p=3.6×10–8, Medium vs. High p=5.3×10–6, Low vs. High = 3.3×10–10. FWHM: Kruskal 

Wallis test, p=8.8×10–8, Wilcoxon Signed Rank test, Low vs. Medium p=4.3×10–4, Medium vs. 

High p=2.3×10–4, Low vs. High = 5.3×10–6. (E) Voltage profile in (A) filtered to emphasize 

theta-frequency oscillations  during traversal of a place field. (F) Impact of different levels of 

AGWN on theta power of the 127 valid place-cell models. Kruskal Wallis test, p=1.2×10–8, 

Wilcoxon Signed Rank test, Low vs. Medium p=7.0×10–4, Medium vs. High p=6.1×10–7, Low 

vs. High = 5.3×10–8. (G) Voltage profile in (A) filtered to emphasize subthreshold voltage ramp 

during traversal of a place field. (H) Impact of different levels of AGWN on voltage ramp 

amplitude of the 127 valid place-cell models. Kruskal Wallis test, p=2×10–4, Wilcoxon Signed 

Rank test, Low vs. Medium p=0.4152, Medium vs. High p=3.4×10–3, Low vs. High = 7.7×10–5. 

When present, the red bars represent the respective median values. AGWN 𝜎!"#$% values: Low: 

5×10–4  Hz2, Medium: 1×10–3 Hz2, High: 5×10–3 Hz2.  

 

Figure 5. Enhanced trial-to-trial variability, imposed as an additive Gaussian white noise 

(AGWN), reduced spatial information transfer in place-cell models. (A–I) Firing rate 

profiles (A–C), stimulus specific information (SSI) profiles (D–F), and mutual information 

profiles (G–I) as functions of time, shown for low (plots on the left), medium (plots in the 

middle), high (plots on the right) levels of AGWN. AGWN 𝜎!"#$% values: Low: 5×10–4  Hz2, 

Medium: 1×10–3 Hz2, High: 5×10–3 Hz2. 
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Figure 6. Heterogeneous impact of enhanced trial-to-trial variability on spatial information 

transfer in place cells. (A) Top, Illustration of the measurements SSIpeak and SSIslope. SSIpeak 

depicts the SSI value at the location where the place-field firing profile (𝐹) is at its peak, and 

SSIslope represents the SSI value at the location where the absolute slope of the place-field firing 

profile, 𝑑𝐹
𝑑𝑡

, is at its peak. Bottom, Traces from four representative models showing the 

heterogeneity in the evolution of SSIpeak/SSIslope as a function of enhanced trial-to-trial variability. 

(B–C) There were broadly two classes of models, one where the SSIpeak was low even at high 

noise levels (B; several representative examples shown in red), and another where SSIpeak was the 

highest SSI when noise level was high (C; several representative examples shown in blue). (D) 

Peak firing rate (left) and FWHM (right) of the two classes of model subpopulations. The 

rectangles besides each plot represent the respective median value. 𝜎!"#$%=5×10–3 Hz2. p values 

provided correspond to the Wilcox rank sum test. (E–H) Principal component analyses on the 

parameters underlying the two classes of models shown in B (red) and C (blue). Shown are the 

coefficients associated with these model parameters with reference to the first three principal 

components. The percentage variance explained by each principal component is provided within 

parentheses in panel H.  

 

Figure 7. Quantification of the reduction in spatial information transfer as a consequence 

of enhanced trial-to-trial variability, imposed as an additive Gaussian white noise (AGWN) 

in place-cell models. (A) Idealized representation of stimulus-specific information (SSI) as a 

function of time, illustrating the various metrics developed here for quantifying spatial 

information transfer in place cell models. (B–G) SSI metrics for the population of valid models 

depicting the impact of three levels of noise on the first (B, SSI1) and second (C, SSI2) peaks of 

SSI, the full width half maximum of the SSI profile (D, SSIFWHM), the ratio of the first peak-to-

center distance to the center-to-second peak distance (E, SSI dRatio), the difference between the 

SSI value at the place field center to the peak SSI value (F, SSI dip) and the difference between 

the location of SSI1 and SSI2 (G, SSI d). (H–N) Same as (A–G) for mutual information profiles 

of the valid model population. AGWN 𝜎!"#$% values: Low: 5×10–4  Hz2, Medium: 1×10–3 Hz2, 

High: 5×10–3 Hz2. 
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Figure 8. Enhanced trial-to-trial variability, imposed as an additive Gaussian white noise 

(AGWN), reduced spatial information transfer in models with asymmetric place-field 

firing. (A–I) Firing rate profiles (A–C), stimulus specific information (SSI) profiles (D–F), and 

mutual information profiles (G–I) as functions of time, shown for low (plots on the left), medium 

(plots in the middle), high (plots on the right) levels of AGWN. AGWN 𝜎!"#$% values: Low: 

5×10–4  Hz2, Medium: 1×10–3 Hz2, High: 5×10–3 Hz2. 

Figure 9. Quantification of the reduction in spatial information transfer as a consequence 

of enhanced trial-to-trial variability, imposed as an additive Gaussian white noise (AGWN) 

in models with asymmetric place-field firing. (A–F) SSI metrics for the population of valid 

models depicting the impact of three levels of noise on the first (A, SSI1) and second (B, SSI2) 

peaks of SSI, the full width half maximum of the SSI profile (C, SSIFWHM), the ratio of the first 

peak-to-center distance to the center-to-second peak distance (D, SSI dRatio), the difference 

between the SSI value at the place field center to the peak SSI value (E, SSI dip) and the 

difference between the location of SSI1 and SSI2 (F, SSI d). (G–L) Same as (A–F) for mutual 

information profiles of the valid model population. AGWN 𝜎!"#$% values: Low: 5×10–4  Hz2, 

Medium: 1×10–3 Hz2, High: 5×10–3 Hz2. 

 

Figure 10. Minimal impact of enhanced activity-dependent trial-to-trial variability, 

imposed as a multiplicative Gaussian white noise (MGWN), on spatial information 

transfer. (A–F) SSI metrics for the population of valid models depicting the impact of three 

levels of noise on the first (B, SSI1) and second (C, SSI2) peaks of SSI, the full width half 

maximum of the SSI profile (D, SSIFWHM), the ratio of the first peak-to-center distance to the 

center-to-second peak distance (E, SSI dRatio), the difference between the SSI value at the place 

field center to the peak SSI value (F, SSI dip) and the difference between the location of SSI1 and 

SSI2 (G, SSI d). (G–L) Same as (A–F) for mutual information profiles of the valid model 

population. MGWN variance values: Low: 0.01 Hz2, Medium: 0.1 Hz 2, High: 0.5 Hz 2.  

 

Figure 11. Heterogeneous impact of virtually knocking out individual ion channels on 

spatial information transfer in the place cell population. (A–F) Box plots showing the median 

and the quartiles of percentage changes in SSI-based spatial information metrics depicted in Fig. 

7A as a consequence of virtually knocking out each of the 8 individual ion channels (NaF and 
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KDR, the spike generating conductances were not knocked out because models cease spiking 

upon  elimination of these channels). (G–L) Box plots showing the median and the quartiles of 

percentage changes in MI-based spatial information metrics depicted in Fig. 7H as a 

consequence of virtually knocking out each of the 8 individual ion channels. Plots are shown for 

the valid place-cell population. Red lines indicate a zero-change scenario. 

 

Figure 12. Elimination of dendritic sodium channels or NMDA receptors critically reduces 

spatial information transfer in the place cell population. (A–L) Box plots showing the median 

and the quartiles of percentage changes in SSI-based (A–F) and MI-based (G–L) spatial 

information metrics as a consequence of eliminating dendritic fast sodium channels (dNaF) or 

NMDA receptors (NMDAR). Plots are shown for the valid place-cell population. Red lines 

indicate a zero-change scenario. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	 45 

Table 1: Model parameters, their base values and ranges for stochastic search. For all 
parameters, the range uniformly spanned 0.5–2× of the respective base model value.  

 Parameter (unit) Symbol Base value Range 

Passive properties 
𝑹𝐚 (uniform across the neuron) 

1 Axial resistivity (Ω-cm) 𝑅! 120 100–250 
𝑹𝐦 (sigmoidal reduction with distance from soma) 

2 Maximum value (kΩ cm–2) 𝑅!_𝑠𝑜𝑚𝑎 125 62.5–250 
3 Minimum value (kΩ cm–2) 𝑅!_𝑒𝑛𝑑 85 42.5–170 
4 Half-maximal point of sigmoid (µm) 𝑅!_ℎ𝑚𝑝 300 150–600 
5 Slope of sigmoid (µm) 𝑅!_𝑠𝑙𝑜𝑝𝑒 50 25–100 

Active properties 
Spike-generating channels (uniform across all somatodendritic compartments) 

6 Maximum conductance for NaF (mS cm–2) 𝑔!" 16 8–32 
7 Maximum conductance for KDR (mS cm–2) 𝑔!"# 10 5–20 

HCN channel (sigmoidal increase with distance from soma)  
8 Maximum somatic conductance (µS cm–2) 𝑔!_𝑠𝑜𝑚𝑎 25 12.5–50 
9 Fold increase 𝑔!_𝑓𝑜𝑙𝑑 12 6–24 

10 Half-maximal point of sigmoid (µm) 𝑔!_ℎ𝑚𝑝 320 160–640 
11 Slope of sigmoid (µm) 𝑔!_𝑠𝑙𝑜𝑝𝑒 50 25–100 
T-type calcium channel (sigmoidal increase with distance from soma) 
12 Maximum somatic conductance (µS cm–2) 𝑔!"#_𝑠𝑜𝑚𝑎 80 40–160 
13 Fold increase 𝑔!"#_𝑓𝑜𝑙𝑑 30 15–60 
14 Half-maximal point of sigmoid (µm) 𝑔!"#_ℎ𝑚𝑝 350 175–700 
15 Slope of sigmoid (µm) 𝑔!"#_𝑠𝑙𝑜𝑝𝑒 50 25–100 
A-type potassium channel (linear increase with distance from soma) 
16 Maximum somatic conductance (mS cm–2) 𝑔!"_𝑠𝑜𝑚𝑎 3.1 1.55–6.2 
17 Fold increase per 100µm 𝑔!"_𝑓𝑜𝑙𝑑 8 4–16 
N-type calcium channel (till 340 µm from soma in apical dendrites) 
18 Maximum conductance  𝑔!"# 15 7.5–30 
R-type calcium channel (dendritic localization) 
19 Maximum conductance in dendrites (µS cm–

2) 
𝑔!"# 15 7.5–30 

L-type calcium channel (perisomatic, till 50 µm from soma in apical dendrites) 
20 Maximum conductance (mS cm–2) 𝑔!"# 1.20 0.6–2.4 

Small-conductance calcium-activated potassium  channel  (dendritic localization) 
21 Maximum conductance of SK (µS cm-2) 𝑔!" 1.5 0.75–3 
M-type potassium channel (perisomatic, till 50 µm from soma) 
22 Maximum conductance (µS cm-2) 𝑔!" 1 0.5–2 
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Table 2: Intrinsic somato-dendritic measurements of CA1 pyramidal neurons and their 
electrophysiological bounds employed for validating models.  

 Measurement Soma ~150 µm ~300 µm 
  Lower Upper Lower Upper Lower Upper 

Intrinsic somato-dendritic functional map measurements (18) 
1 Input Resistance (MΩ) 40 100 30 60 10 50 

2 Maximum Impedance (MΩ) 50 110 35 80 20 80 
3 Resonance frequency (Hz) 2 7 4 8 5 14 
4 Strength of Resonance 1.01 1.5 1.01 1.9 1.2 2.6 

5 Total Inductive Phase (rad.Hz) 0 0.3 0 1 0.025 2 

6 Backpropagating Action Potential (mV) 90 115 40 70 5 45 

Action potential firing rate measurements (4) 

7 Firing rate for 100 pA current injection 0 20  

8 Firing rate for 150 pA current injection 0 30  

9 Firing rate for 200 pA current injection 0 40  

10 Firing rate for 250 pA current injection 5 45  

Measurements of place cell tuning shaprness (2) 

11 Peak firing rate (Hz) 56 –  

12 Full Width Half Maxima (s) – 2.5  
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Table 3: Quantitative metrics of information transfer. 

Measurement name Symbol 

SSI-based information metrics (Fig. 7A) 
1st peak of the SSI curve SSI1 
2nd peak of the SSI curve SSI2 
Full width at half maximum of the SSI curve SSI FWHM 
Ratio of the distance between middle peak with 1st peak and the distance 
between middle peak and 2nd peak of the SSI curve 

SSI dRatio 

SSI middle peak value – average of SSI peak values at the slopes SSI dip 
Temporal distance between the two peaks in the SSI curve SSId 

MI-based information metrics (Fig. 7H) 
1st peak of the MI curve MI1 
2nd peak of the MI curve MI2 
Full width at half maximum of the MI curve MI FWHM 
Ratio of the distance between middle peak with 1st peak and the distance 
between middle peak and 2nd peak of MI curve 

MI dRatio 

MI middle peak value – average of MI peak values at the slopes MI dip 
Temporal distance between the two peaks in MI curve Mid 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	
	
	
	
	
	
	
	
	

	
	

Figure 1: Roy and Narayanan  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	
	
	
	
	
	
	
	
	

	
	

Figure 2: Roy and Narayanan		 	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	
	
	
	
	
	

	
	

Figure 3: Roy and Narayanan		 	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	
	

	

	
	

Figure 4: Roy and Narayanan		 	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	
	
	
	
	
	
	
	
	

	
	

Figure 5: Roy and Narayanan		
	

	 	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	
	

	
	
	
	
	
	

	
	

Figure 6: Roy and Narayanan		 	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	
	
	
	
	
	
	
	
	

	
	

Figure 7: Roy and Narayanan		 	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	
	
	
	
	
	
	
	
	

	
	

Figure 8: Roy and Narayanan	
	 	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	
	
	
	
	
	
	
	

	
	

Figure 9: Roy and Narayanan	
	 	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	
	
	
	
	
	
	

	

	
	

Figure 10: Roy and Narayanan	
	 	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	
	
	
	
	
	
	
	

	
	

Figure 11: Roy and Narayanan	
	 	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747


	
	
	
	
	
	
	

	
	

Figure 12: Roy and Narayanan	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301747doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301747

