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Abstract 

Integrating scRNA-seq data of multiple donors is challenging. Multiple samples may exhibit 

strong heterogeneity and batch effects, which need to be properly corrected. Many previous 

methods focused on integrating multi-sample data in the cluster level, but it was challenging to 

quantitatively measure the benefit of integration. We present scIntegral, a scalable method to 

integrate hundreds of donors scRNA data. Our method aims to identify cell-types of the cells in a 

semi-supervised fashion using marker list information as prior. scIntegral is extremely efficient 

and takes only an hour to integrate ten thousand donor data, while fully accounting for 

heterogeneity with covariates. We quantify the benefit of multi-sample integration in terms of 

accuracy with respect to the gold standard cell labels, and prove that integrating multiple donors 

can significantly reduce the error rate in cell-type identification. scIntegral is more accurate than 

existing methods and can precisely identify very rare (<0.5%) cell populations, suggesting utilities 

for in-silico cell extraction. scIntegral is freely available at https://github.com/hanbin973/scIntegral.  
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INTRODUCTION 

Single-cell RNA sequencing technology (scRNA-seq) can reveal the whole picture of the 

ecosystem of different cells within an individual donor. A common analysis pipeline is to group the 

cells with unsupervised clustering and to determine the type of each group using 2D visualization 

and marker expressions1,2. This pipeline has been widely accepted and consistently used in 

numerous studies3. However, by contrast, there has been no gold-standard pipeline for 

integrating scRNA data of multiple donors. Each individual donor sample presents a snapshot of 

the cell ecosystem that may change temporally. Thus, like many biological experiments, merging 

multiple donor samples together can suppress the individual-specific variations in the data and 

reveal shared components. Although the benefits of integration are apparent, combining multiple 

donor samples is extremely challenging. A simple merging of cell data would not work because of 

the heterogeneity between donor samples. Donor samples may present heterogeneity caused by 

different biological states as well as heterogeneity caused by different experimental conditions 

and technological platforms, if the samples come from multiple studies.  

 

There have been active efforts to develop methods to integrate scRNA data of multiple donor 

samples. Many methods focused on integrating data in the cluster level. Seurat chooses one 

sample as a reference and aligns the clusters of the other samples to the reference4. scAlign 

uses a deep neural network to project multiple sample data to a shared space and performs 

clustering in that space5. Harmony integrates multiple datasets in the principal component 

spaces by calculating the most likely alignment6. The limitation of these methods is that although 

they could integrate multiple donor samples, it was difficult to prove how good the final alignment 

was, because the quality of clustering can hardly be quantified. Another category of methods is 

normalization2,7. These methods try to regress out the effect of between-sample heterogeneity 

from the cell count data. The normalized data can then be integrated together, as if all cells came 

from a single donor. However, it has not been shown if the normalization could effectively remove 

all heterogeneity between donors.  
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Here we propose scIntegral, a scalable method to integrate scRNA data of thousands of donor 

samples. We set our goal to cell-type identification. Particularly, we focus on figuring out an exact 

cell type of each single cell in the whole data. To this end, we employ a semi-supervised 

approach that takes the marker gene list of candidate cell types as input. Recently, semi-

supervised approaches were shown to provide an accurate estimate of cell-types in a single 

dataset8,9. However, none of these methods can scale up to integrating thousands of donor 

samples while accounting for heterogeneity. Because we built our method with scalability in mind, 

in theory, our method can integrate and analyze ten thousand donor samples together in less 

than an hour. Moreover, none of these studies has systematically proven the benefit of 

integration in scRNA analysis.  

 

Since the quality of cell-type identification is directly quantifiable by comparing to the 

experimentally curated cell labels, we were able to systematically measure the benefit of 

integration. We obtained the liver scRNA-seq dataset that consists of 8,444 cells from 5 donors. 

When we analyzed each donor separately, the overall cell-type identification accuracy was 

88.7%. However, when we integrated all donors from the two studies together using our method, 

the accuracy increased to 93.1%. Thus, the error rate was reduced by 40%. We also obtained 

two human pancreas datasets10,11, one consisting of 2,394 cells from 10 donors and another 

consisting of 2,285 cells from 4 donors. In this dataset, our method already had a very high 

accuracy (97.3%) even when analyzing single donors, but the error rate was reduced from 2.7% 

to 2.2% by integrating all 14 donors. Overall, these demonstrated that the donor data supported 

each other, and the integration of all donors was the most effective. That is, like other biological 

experiments, scRNA analysis can benefit from integration of multiple donors and experiments. To 

our knowledge, this was the first attempt to quantify the benefit of multi-sample integration in 

scRNA analysis with respect to a validation data: the experimentally curated cell labels. It was 

important to account for heterogeneity during integration, since the accuracy dropped to 60.0% 

when we simply merged all cell data without covariates.  
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Our method is high-resolution and accurate. If a cell population is very rare (e.g. <0.5%), typical 

unsupervised clustering algorithms have difficulties in identifying it as a separate group. The 

manual curation via human eyes is also not optimal for finding a small population. Our semi-

supervised framework can capture rare populations precisely. When applied to the pancreas 

datasets10,11 (4,679 cells), our method identified Schwann cells correctly that consisted of only 6 

cells (~0.1% of the data). This high-resolution accuracy suggests that our method can be used 

for in-silico extraction of target cells that exist in a very small amount in the data.  

 

There were many cell-type identification methods, but our method differs from them. SCINA8 and 

CellAssign9 are similar semi-supervised methods to ours. SCINA cannot incorporate covariates, 

and therefore cannot be applied to integrate multiple donors. CellAssign can incorporate 

covariates, but integration of hundreds of samples is computationally infeasible. We show that 

our method is more accurate than SCINA and CellAssign even in the analysis of a single donor 

data. For example, in human embryogenic stem cell dataset12, the cell-type identification 

accuracy was 96.8% with our method whereas SCINA and CellAssign’s accuracies were 80.0% 

and 89.7% respectively. Another category of methods are supervised methods that use not only 

the marker list information but also the expression of the markers that are present in existing 

databases. Although supervised methods can utilize more from prior knowledge, they have 

limitations that the methods cannot identify cell types whose expressions are not in the 

databases. Indeed, for human embryogenic stem cell dataset12 used in our analysis, there was 

no appropriate and complete database that contained expressions of all candidate cell types. 

Moreover, supervised methods cannot take advantage of data integration of multiple donors, 

because they process each donor data separately by comparing it to the database.  

 

Our method is publicly available at https://github.com/hanbin973/scIntegral. 
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RESULTS 

 

Linear negative binomial models can explain mRNA expression variability 

scIntegral takes the raw unique molecular identifier (UMI) counts as inputs to predict the cell type 

of each cell. Both theoretical and empirical research have shown that UMI counts follow a 

Poisson or a negative binomial distribution13-15. Furthermore, recent researches showed that the 

UMI count of a given gene depends on its regulatory mechanism13,16. Inspired by these 

observations, scIntegral models the UMI counts of a heterogeneous cell population using a linear 

negative binomial mixture model (Methods). Negative binomial distribution is a generalization of 

the Poisson distribution that can account for over-dispersion which is frequently found in immune 

related genes15. Each negative binomial component is then modeled by a linear combination of 

parameters. One might argue that scRNA-seq data is too complex to be modelled with a simple 

linear modelling strategy. Here we show that linear combination of size factor, cell type indicators 

and donor indicators together can explain a large portion of the variability observed in the UMI 

count data (Methods). When the linear model was applied to human liver and human pancreas 

datasets, the median explained variance (pseudo-R2) among marker genes were larger than 60% 

in both datasets showing that a linear model is an effective modelling strategy for scRNA-seq 

data (Figure 1a and 1c). Based on this model, scIntegral infers the parameters of each mixture 

component and computes the posterior probability of the cell type for each cell. Note that existing 

differentially expressed gene analysis (DEG) methods such as DESeq217 and edgeR18 also 

adopt linear negative binomial models. 

 

scIntegral properly handles confounding effects due to technical variations  

Although large datasets containing multiple experiments and donors can lead to more precise 

prediction of the cell types and estimation of model parameters, heterogeneity underlying the 

data can confound the analysis. We first measured the variance explained by the information of 

the cell donor. We applied negative binomial regression to the human liver19 and human 

pancreas datasets10,11 (Methods). These data consist of five and fourteen different donors 

respectively. The negative binomial regression was fitted with and without donor indicator 
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variables. We see that adding the donor indicators increased the model R2 up to 20% (Figure 1a 

and 1c). The p-values of the indicator variables were also significant after correcting for multiple 

testing (Supplementary Table 1). Therefore, we conclude that when integrating multiple 

experiments, technical variation must be explicitly accounted. In the liver and pancreas datasets, 

scIntegral demonstrated high prediction accuracy of 93.0% and 97.8% respectively, after 

appropriately correcting for the donor effects (Figure 1b and 1d). We visualized the result 

through a t-SNE plot by comparing scIntegral assigned results to true cell type labels. In both 

liver and pancreas datasets, misclassified cells were hardly visible (Figure 2). 

 

Integrating multiple experiments improves classification accuracy 

scIntegral can efficiently integrate multiple datasets from different technological platforms, fully 

leveraging the opportunities of large-scale data. It is well known that in many statistical models, 

larger datasets can help obtain more precise estimates of the parameters and lead to improved 

outcome. Similarly, in many biological experiments, it is common to combine multiple samples or 

replicates to suppress individual-specific variations in the analysis. However, in scRNA analysis, 

it was unclear what the benefit would be from integrating multiple donor samples. Some studies 

tried integrating multiple data in the cluster level, and used specific metric to measure the 

existence of remaining batch effects6. However, the benefit of multi-sample integration has not 

been quantified using experimentally validated data.  

 

Here, we wanted to objectively quantify the benefit of multi-sample integration in cell type 

identification. Since the experimentally curated cell labels such as from FACS sorting can provide 

the gold standard validation, we have an opportunity to quantify the effect of integration in terms 

of the identification accuracy. Specifically, we show that analyzing multiple experiments together 

has advantages over analyzing each donor and aggregating the results afterwards. We divided 

the liver data into five sub-data based on its donor label. Next, we applied scIntegral to each sub-

data to infer cell-type labels. Compared to the cell-type assignment applied to the whole data, the 

results applied to each sub-data from individual donors were much less accurate (Figure 1b and 
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1d). The overall accuracy when analyzed separately was 88.7% compared to 93.1% in the 

combined analysis. Thus, the error rate was reduced from 11.3% to 6.9% by integrating data of 5 

donors. This analysis was repeated in the pancreas dataset with fourteen different donors from 

two different technological platforms, SMART-Seq2 and CEL-Seq2. In this dataset, the accuracy 

of our method in the donor-separated analysis was already as high as 97.3%. In the combined 

analysis integrating data of 14 donors, the overall accuracy increased to 97.8% reducing the 

error rate from 2.7% to 2.2%. Overall, these showed that integrating multiple donors could 

decrease the cell-type classification error rate. We can expect that, as more donor data can be 

integrated, the cell-type identification accuracy can be further improved.  

 

scIntegral can identify rare cell types  

scIntegral can identify very rare cell populations that occupy less than a single percentage in the 

whole data. In the liver dataset, hepatic stellate cells, erythroid cells, cholangiocytes and mature 

B cells each occupy less than 5% of total population (Figure 1b, 1d and Supplementary Table 

2). Surprisingly, scIntegral classified these rare cells with more than 95% accuracy on average 

(Figure 1b, 1d and Supplementary Table 2). In the pancreas dataset, more extreme cases 

were found. Cell-types such as epsilon cells and Schwann cells each occupied less than 0.5% of 

the whole cell population (Figure 1b, 1d and Supplementary Table 2). scIntegrate successfully 

identified these rare cell types with 100% accuracy (Figure 1b, 1d and Supplementary Table 2). 

For example, scIntegral was able to exactly specify the 6 Schwann cells. This high accuracy for 

rare populations suggests that our method can be used for the in-silico extraction of very rare 

cells from the whole sample.  

 

Handling large number of samples and donors  

To fully leverage the advantages of data integration, scIntegral was designed with scalability in 

mind. Instead of using autograd functionally of deep-learning frameworks, we designed a fast 

and optimized gradient computation routine (Figure 3a, Methods). Using highly optimized matrix 

operations, scIntegral achieves significant reduction in computation time. 
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We measure the computational efficiency of scIntegral in human liver and pancreas datasets. In 

the liver dataset, CellAssign took 2625.0 seconds while scIntegral took only 20.0 seconds in 4-

core CPU which was a 131.25 times reduction in runtime (Figure 3b). This is translated into 

processing 900 donors in an hour. In the pancreas dataset, CellAssign failed to run in a computer 

with 16GB memory possibly due to large number of markers (Figure 3c). However, scIntegral 

ran successfully taking 216 seconds, equivalent to processing 234 donors per hour. scIntegral 

supports GPU computation that can further increase the scalability of the algorithm. Using a 

single GPU, scIntegral took only 0.9 and 6.9 seconds in the liver and the pancreas datasets 

respectively. This is equivalent to processing 21,000 and 7,060 donors in an hour. 

 

The computational demand of scIntegral grows linearly respect to the size of the data. PBMC 

68k20 is one of the largest human scRNA-seq dataset available consisting 68,579 cells from 

human peripheral blood. We down-sampled the dataset and applied scIntegral to 5k, 10k, 20k, 

40k and 68k cells. scIntegral on a single GPU took only 5.5, 6.9, 10.8 and 16.7 seconds 

respectively (Figure 3d). On a 4-core CPU, it took 67, 133, 327 and 678 seconds.  

 

When the size of the data increases, the number of cells is not the only source of increased 

computational burden. Increased number of donors demands additional covariates to be 

incorporated into the model. To measure the impact of covariates, we augmented artificial 

covariates information to the PBMC 68k dataset. Even when the number of covariates increased, 

the runtime remained relatively constant in our method (Supplementary Table 3). This showed 

that because of our efficient gradient implementation, scIntegral can handle multiple covariates 

seamlessly.  

 

scIntegral outperforms existing semi-supervised methods in classical tasks 

We compare the classification accuracy of scIntegral to existing semi-supervised methods: 
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SCINA and CellAssign. Human embryogenic stem cell (hESC) dataset and PBMC 4k dataset are 

both FACS sorted datasets with supposedly true cell type labels. When applied to these datasets, 

scIntegral showed superior accuracy compared to other two methods (Figure 4a and 4b). In the 

hESC data of Koh et al., scIntegral showed 96.8% median accuracy. In 20 different runs, this 

ranged from 96.4% to 96.9%. Thus, scIntegral showed robust performance not depending on 

random start. By contrast, SCINA and CellAssign achieved only 80.0% and 89.7% median 

accuracy, respectively. Across 20 runs, SCINA’s accuracy was constant, because the method is 

deterministic. However, CellAssign’s accuracy largely varied from 64.4% to 94.4% (Figure 4a). In 

the PBMC 4k data of Zheng et al., Excell achieved 97.0% median accuracy. Across 20 different 

runs, Excell gave an accuracy ranging from 96.9% to 97.0%. SCINA and CellAssign achieved 94% 

and 74.6% median accuracy, respectively. Across 20 runs, SCINA’s accuracy was constant and 

CellAssign’s accuracy largely varied from 25.0% to 95.9% (Figure 4b). 

 

High precision of scIntegral is highlighted in the hESC dataset. Anterior primitive streak (APS) 

and mid primitive streak (MPS) are closely related cells that emerged during human 

developmental process12. scIntegral successfully distinguished the two populations but SCINA 

and CellAssign did not (Figure 4b-4d). Looking at the cells in the red circles in the t-SNE plot, 

the MPS population colored in green are surrounding the APS population colored in red (Figure 

4b). Since one population is distributed around the other in a circular manner, manual curation 

through vision must have been impossible. This shows that scIntegral can help identify similar 

populations even when they are distributed closely in the dimension reduced 2D plane. 
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Discussion 

We presented scIntegral, a cell-type classifier method that can integrate data of thousands of 

donors efficiently. Our method is a semi-supervised method that takes raw UMI expression 

counts and marker signatures as inputs. scIntegral showed high accuracy in real data analysis, 

and showed surprisingly high precision in identifying very rare cell populations. Importantly, we 

showed that integrating data from multiple donors can increase cell-type identification accuracy. 

scIntegral properly handles data heterogeneity which may confound the classification results. 

 

scIntegral is flexible in the sense that it only requires marker signatures. Our semi-supervised 

classifier overcomes major limitations of existing supervised classifiers that require reference 

data. A drawback of supervised approaches is that they can only provide classification results 

based on a fixed set of cell-type labels since it is trained on a pre-labeled reference data. 

Additionally, reference data may not be available for the cell types in the sample. Another 

drawback is that there can be biological and technical heterogeneity between the reference data 

and the sample, which may affect the accuracy. scIntegral is free from these caveats because it 

is a reference-free semi-supervised method. 

 

scIntegral systematically accounts for confounding by fully integrating covariates in the likelihood 

model. Other possible approaches to correct for confounding include normalization. To remove 

unwanted technical variations among different datasets, many existing approaches such as 

supervised approaches depend on normalization applied to each dataset. However, studies show 

that such normalization can remove meaningful biological signals which can degrade the 

classification quality6,15. scIntegral overcomes this problem by directly modeling the raw UMI 

count through a linear model that can incorporate multiple technical covariates. 

 

Another famous cell-type classification regime is cluster-based labeling1. In this regime, cells are 

primarily grouped based on clustering algorithms and then labeled altogether as a whole based 

on its mean characteristics. This procedure ignores the individual characters of the cell and 
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exhibits low resolution21. In contrast, scIntegral fully leverages the individual expression profile of 

each cell and uses them to provide accurate cell-type labels. 

 

scIntegral also showed superior performance in classifying small conventional datasets. 

Especially, in the hESC dataset, scIntegral successfully distinguished developmentally close cell 

populations that were impossible to discern through visual information nor other existing semi-

supervised methods. Therefore, scIntegral has a high utility not only in large datasets but also in 

relatively small datasets that are routinely analyzed nowadays.  

 

The size of scRNA-seq data are growing rapidly and now starts to reach consortium-level scale21. 

Through scIntegral, we have demonstrated the benefits of aggregating multiple data by explicitly 

showing that classification accuracy is improved by integrating multiple donors. We expect that 

scIntegral will play an important role in an era of such large-scale data for the following reasons. 

First, it is highly scalable and can integrate thousands of donors in less than an hour. Second, it 

can account technical variations in a flexible manner. Third, it can provide accurate cell-type 

labels and performs well even when the candidate cell population is extremely rare.   
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METHODS 

scIntegral  

Linear Negative binomial model  

Negative binomial regression is a famous regression method for overdispersed count data. The linear 

regression model fitted is as follows.  

 log��� � �� � ∑  � ������ � ∑  � ���  �� � log�  

 

Here, ��  is the constant, ���  are covariate coefficients, ���  are cell-type specific expression 

coefficient and �  is the size-factor. �  and �  are covariate and cell-type indicators respectively. 

Covariates can include donors and technological platforms.  

 

Under this model, we can describe the mean UMI count ���� of gene � in the cell � of cell-type � 

as  

 log���� � ��� � Σ������� � ������ � log�� 

Let ��� be the observed UMI count of gene � in cell �. We assume that ��� follows a negative-

binomial distribution. Here, ��  is the constant, ���  are covariate coefficients, ���  are cell-type 

specific expression coefficient and �� is the size-factor. ��� is 1 if gene � is a marker of cell-type � 

and otherwise 0. 

 ��� � �������, ��� 
Existing theoretical literature predict that the dispersion of the expression count is determined by the 

gene regulation mechanism. By assuming that gene regulation mechanism is independent of the 

celltype for the same gene, we model the dispersion to be dependent only on the gene � but not 

celltype �, thus ��. 

The full likelihood is  

 �� � ∑  � log�∑  � exp#∑  � log������; ����, ���%& 
 

Smart calculation of gradient 

The goal is to probabilistically assign cells to cell-types. Conversely, this can be done by estimating 

the correct parameters of the model, because once the parameters (����, ��, ���) are known, it is 

straightforward to calculate the posterior probability of the cell-types by Bayes rule.  

Unfortunately, there is no closed solution to finding parameters that maximize the likelihood. Therefore, 

numerical optimization is required. To this end, we use a deep learning framework in PyTorch. Deep 

learning frameworks provide a package of optimization methods that work by gradient calculation and 

back-propagation, which can be conveniently used for any model even if the model is not a deep 
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neural network. Indeed, a previous study9 also used a deep learning framework for cell-type 

identification.   

In a deep learning framework, the gradient is calculated by automatic differentiation. Automatic 

differentiation is a fast and a general gradient computing algorithm that is implemented in famous 

deep learning libraries. PyTorch, the backend of our scIntegral implementation, also supports this 

feature as Autograd. Thus, the log-likelihood of scIntegral can be differentiated using Autograd. 

However, Autograd ignores the specific structure of the optimization target because it computes the 

gradient using the famous chain-rule of calculus.  

To increase speed and scalability of our method, we analytically derived the gradient for each of the 

unknown parameters by carefully examining the log-likelihood of scIntegral.  

The gradient of the log-likelihood respect to the cell type specific parameter ��� is   

'��
'��� � (  

�

exp#∑  � log������; ����, ���%
∑  �� exp#∑  � log������; �����, ���%  ��

���� � ��

 ���� ) ����� 

 

The gradient of the log-likelihood respect to the dispersion parameter �� is   

'��
'��

� (  
�

exp#∑  � log������; ����, ���%
∑  �� exp#∑  � log������; �����, ���% 

 * +,���� � ��� ) ,���� � log - ��

���	���
. � 	���
���

	������
/ 

 

The gradient of the log-likelihood respect to the covariate effect ��� is   

'��
'��� � (  

�

(  
�

exp#∑  � log������; ����, ���%
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The remaining details about the derivation of the gradients can be found in the Supplementary Note. 

After deriving the closed form formula for the gradient, we implemented a routine that demands the 

minimal number of matrix multiplications and does not rely on the chain rule (Figure 3a). This 

implementation has two advantages over using Autograd. First, there are less matrix multiplications 

compared to Autograd. Autograd computes the gradient of the optimization target layer by layer and 

multiplies all the gradient of each layer in a fixed order. This can be unnecessarily inefficient because 

the total number of operations depends on the multiplication order of the matrices. Second, our 
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implementation demands less memory storage compared to Autograd. Storing large matrices is not 

only memory consuming but also time consuming. Autograd stores intermediate values during target 

optimization to avoid computing the same quantity multiple times. This, however, comes that the cost 

of large memory overhead. Our implementation minimized the number of intermediate matrices 

required to avoid unnecessary memory storage. Overall, this technical advance in gradient calculation 

has given our method extremely high efficiency and scalability. 

 

Implementation 

scIntegral is coded in Python 3.7 using PyTorch v1.4. The required packages are numpy, scipy and 

pandas which can be straightforwardly installed. The method uses GPU, if installed, and CPU 

otherwise. The package is available at the github repository.  

 

Accuracy measurement 

True cell-type labels were provided in the metadata of each dataset. We then measured the accuracy 

of each method by dividing the number of cells in which the true cell-type label and the assigned label 

by the method matched with the total number of cells in each dataset. 

 

Comparison with existing methods 

We compared our method to SCINA8 and CellAssign9. For SCINA, we installed and used the current 

version (v1.2.0) on CRAN. For CellAssign, we installed and used the current version (v0.99.16) coded 

in R-TensorFlow (v2.2.0) with default options. CellAssign uses the EM algorithm where M step is 

optimized using the Adam optimizer with Autograd. The current implementation of SCINA and 

CellAssign does not run on GPU (as of 06/20/2020), but future versions may.  

 

In our comparison, we used the same marker sets, covariates, and cell size factors for all methods. 

For liver dataset, we computed cell size factors using computeSumFactors22 function from the scran 
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R package. For other datasets, we used pre-calculated cell size factors included in the 

DuoClustering2018 R package. We used the same stop criterion (<0.01% change in LL) for 

CellAssign and Excell. For SCINA, the default convergence criterion was used. All the analysis used 

the same computer resource (1 CPU = 4 threads). For all methods, we included the unknown 

category to capture unknown cell-types. 

 

Benchmarking hardware  

All benchmarking took place on an Intel® Xeon® Gold 6136 CPU (3GHz). We used a single CPU and 

limited the number of threads to four using the taskset command in CentOS 7 operating system. A 

single Nvidia® RTX® 2080 was used in GPU mode.  

 

t-SNE 

In all our datasets except for human pancreas10,11, meta information of the samples including the t-

SNE coordinates were available. To maintain comparability with the previous methods, we directly 

adopted the t-SNE coordinates from these metadata to plot Figure 3a-l. For human pancreas, t-SNE 

coordinates were obtained using Seurat1. 

 

Number of donors analyzed per hour 

This quantity was calculated as follows. The hour in seconds (3,600 seconds per hour) was divided by 

the runtime for each dataset. Finally, the number of donors was multiplied.   

 

Datasets 

 

Embryonic stem cell scRNA data 
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The Koh et al. dataset consists of 531 human embryonic stem cells (hESCs) at various stages of 

differentiation. We extracted the data from the R package DuoClustering2018, which can be installed 

using Bioconductor package manager. The dataset contains 9 cell types. Among them, we used 8 cell 

types with both scRNA-seq data and bulk RNA-seq data, which are hESC (day 0), Anterior Primitive 

Streak (day 1), Mid Primitive Streak (day 1), DLL1+ Paraxial Mesoderm (day 2), Lateral Mesoderm 

(day 2), Early Somite (day 3), Sclerotome (day 6), Central Dermomyotome (day 5). Koh et al. 

annotated the cell types through fluorescence activated cell sorting (FACS). We defined marker genes 

for each cell type using the bulk RNA-seq data following the same procedure described in Zhang et al. 

2. Briefly, for each gene, we sorted the N=8 types in ascending order based on the mean expression 

level. We then calculated log fold change between two consecutive types in this order. We then chose 

the maximum value among the N-1 log fold change values. After calculating this maximum value for 

all genes, we used genes with the maximum value in the top 20th percentile as marker genes. 

 

Human liver scRNA data 

The MacParland et al. liver dataset consists of 11 cell types with 8,444 cells collected from 5 patients. 

We extracted the data from the R package HumanLiver, which can be downloaded from 

https://github.com/BaderLab/HumanLiver. After clustering cells, MacParland et al. determined the 

identity of each cluster using known gene expression profiles. We mapped 20 discrete cell 

populations identified by them to 11 unique cell types for our analysis (Hepatocytes, ab T cells, 

Macrophages, Plasma cells, NK cells, gd T cells, LSECs, Mature B cells, Cholangiocytes, Erythroid 

cells, Hepatic Stellate Cells). The mapping was obtained using ClusterNames() function. We applied 

Excell and CellAssign to this dataset using the marker genes described in the supplementary 

materials of Zhang et al.. We included patient information as covariates in both methods. 

 

Human pancreas dataset 

Two datasets with total 14 donors were from Muraro et al. and Segerstolpe et al. 10,11. Total 4,679 cells 

were included. The data were openly available at GEO82541 and E-MTAB-5060. The markers were 

retrieved from the PanglaoDB23. Muraro et al. used the CEL-seq2 platform and Segerstolpe et al. 
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used the SMART-seq2 platform. Each dataset consists of 2,285 and 2,384 cells from 4 and 10 donors 

respectively. The original data contained 14 cell populations (alpha, gamma, acinar, ductal, beta, delta, 

activated stellate, inactivated stellate, macrophage, endothelial, Schwann, mast and epsilon). 

Because the PanglaoDB did not have separated markers for activated and inactivated stellate cells, 

we merged the two populations into a single population. 

 

PBMC 4k scRNA data 

We obtained PBMC 4k (peripheral blood mononuclear cell) dataset, namely Zhengmix4eq, from the R 

package DuoClustering2018. This dataset is a mixture of 3,994 FACS purified PBMC cells of 4 cell 

types, which are B-cells, CD14 monocytes, naive cytotoxic T-cells and regulatory T-cells. We used 

only the genes of which mean expression (log-normalized count) value across all cells was in top 30th 

percentile. We defined marker genes for each cell type in the procedure similar to Koh et al. as follows. 

We sorted N=4 types in ascending order based on the mean expression, and calculated log fold 

change between consecutive types in this order. Among the N-1 log fold change values, we chose the 

maximum. We then used the genes of which the maximum value is in the top 30th percentile as 

marker genes.  

 

PBMC 68k scRNA data 

We obtained PBMC 68k (peripheral blood mononuclear cell) dataset from the 10x genomics data 

download page. This data consists of total 68,579 cells. Unlike other datasets described above, the 

cell labels of this data do not exist. In the original study20, the cell labels were determined 

computationally using a FACS purified PBMC sample. Therefore, we only used this dataset to obtain 

computation time and did not measure the classification accuracy. Markers were retrieved similarly to 

the PBMC 4k dataset. 10x genomics provides a mean expression level of purified PBMC cells. We 

sorted N=11 types in ascending order based on the mean expression, and calculated log fold change 

between consecutive types in this order. Among the N-1 log fold change values, we chose the 

maximum. We then used the genes of which the maximum value is in the top 0.2th percentile as 

marker genes (total 127 markers).  
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Figure 1. (a) Pseudo R2 of negative binomial models with and without covariates in the human liver 
dataset19. (b) Classification accuracy of each cell type using scIntegral with and without integration in 
the human liver dataset. (c) Pseudo R2 of negative binomial models with and without covariates in the 
human pancreas datasets10,11. (d) Classification accuracy of each cell type using scIntegral with and 
without integration in the human pancreas datasets.   
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Figure 2. (a) t-SNE plot of the human pancreas datasets labeled by the true cell type labels. (b) t-
SNE plot of the human liver datasets labels by assignment result of scIntegral. (c) t-SNE plot of the 
human liver dataset labeled by the true cell type labels. (d) t-SNE plot of the human liver dataset 
labeled by assignment result of scIntegral. 
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Figure 3. (a) A graphical illustration of scIntegral’s optimized gradient computing routine. All the 
computations are based on highly optimized matrix routines provided by linear algebra libraries. (b) 
Computation time and number of donors processed per hour of CellAssign9 and scIntegral in the 
human liver dataset. (c) Computation time and number of donors processed per hour of CellAssign9 
and scIntegral in the human pancreas datasets. (d) Computation time of scIntegral in the PBMC 68k20 
dataset with different down-sampling proportions. 
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Figure 4. (a) Accuracy of SCINA8, CellAssign and scIntegral in the hESC dataset12. (b) Accuracy of 
SCINA, CellAssign and scIntegral in the PBMC 4k dataset20. (c) t-SNE plot of the hESC dataset 
labeled by the true cell type labels. (d) t-SNE plot of the hESC dataset labeled by assignment result of 
scIntegral. (e) t-SNE plot of the hESC dataset labeled by assignment result of CellAssign. (f) t-SNE 
plot of the hESC dataset labeled by assignment result of SCINA. 
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