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ABSTRACT 

Proteins are responsible for most physiological processes, and their abundance provides crucial 

information for systems biology research. However, absolute protein quantification, as determined by 

mass spectrometry, still has limitations in capturing the protein pool. Protein abundance is impacted by 

translation kinetics, which rely on features of codons. In this study, we evaluated the effect of codon 

usage bias of genes on protein abundance. Notably, we observed differences regarding codon usage 

patterns between genes coding for highly abundant proteins and genes coding for less abundant 

proteins. Analysis of synonymous codon usage and evolutionary selection showed a clear split between 

the two groups. Our machine learning models predicted protein abundances from codon usage metrics 

with remarkable accuracy, achieving R² values higher than previously reported in the literature. Upon 

integration of the predicted protein abundance in enzyme-constrained genome-scale metabolic models, 

the simulated phenotypes closely matched experimental data, which demonstrates that our predictive 

models are valuable tools for systems metabolic engineering approaches. 

INTRODUCTION 

Proteins are the primary molecules of cellular function. The efficient allocation of the cellular 

proteome is responsible for controlling metabolic flux and many physiological processes (1). The 

absolute abundance of each protein is valuable information for genome-scale metabolic reconstructions, 

as it improves the modelling of metabolic flux and protein allocation (2). Current mass spectrometry 

technology and quantitative proteomics analysis have allowed the quantification of thousands of 

proteins in different organisms (3). However, a large portion of proteins are still undetected (4) due to 

variation in their physicochemical properties, signal intensities, and ionisation efficiencies (5). The high-

cost of reagents and equipment is another drawback (6). Absolute quantification has been mostly limited 

to model species, which hinders systems biology endeavours in non-model species (7). Genome-scale 

metabolic models (GEMs), which account for protein abundance, have been reconstructed for a limited 

number of species. A recent review of models of metabolism and macromolecular expression (ME-

models) reported only 4 ME-models (8), while 108 stoichiometry-only GEMs (M-model) are available 

on the BiGG repository (9). Likewise, GEMs with enzymatic constraints using kinetics and omics data 
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(GECKO models) have only been reconstructed for Saccharomyces cerevisiae (10, 11) and Bacillus 

subtilis (12). The integration of omics data to GEMs, especially protein abundance, can be useful to 

improve simulations. For example, the S. cerevisiae iMM904 model, which is integrated with proteomic 

measurements and solved by Linear Bound Flux Balance Analysis (LBFBA), matched more closely 

experimental fluxomics data than the iMM904 model without proteomics data solved by Parsimonious 

Flux Balance Analysis (pFBA) (13). This finding highlights the importance of further increasing the 

number of GEMs integrated with protein abundance. 

 The abundance of proteins is primarily determined by a combination of factors, such as mRNA 

abundance, translation efficiency, protein turnover rate, and codon usage bias (CUB) (14). CUB, which 

is a phenomenon in which certain synonymous codons are employed more frequently than other codons 

(15), is positively correlated with protein abundance (16). Codons can be optimal or non-optimal, 

depending on their average decoding time (the time needed for a ribosome to read it) (17), and frequent 

and rare, depending on how often a certain codon appears in a coding sequence (CDS) (18). Based on 

this description, codons can be classified as frequent and optimal (FreO), frequent and non-optimal 

(FreNO), rare and optimal (RareO), and rare and non-optimal (RareNO). The distribution of codons 

regarding optimality and frequency in a protein-coding sequence is not stochastic, that is, it follows an 

evolution-selected distribution given their individual contributions to protein biosynthesis (19). For 

instance, 5’- and 3’- extremities of a CDS have a strong selection against uniformity, in sharp contrast 

with more central regions. The pattern of codon composition also impacts protein structures, as certain 

secondary structures, such as coil regions, have an enrichment of RareNO codons that is not detected 

in other types of structures. The 5’- extremity is also enriched with RareNO codons, with an average 

decoding rate that is compatible with ramp theory (20). Furthermore, enzymes from central metabolic 

pathways are highly abundant and present strong codon usage bias (i.e., defined pattern of codon 

usage). Proteins from stress response pathways, on the other hand, are less abundant and have 

weaker codon usage bias (i.e., codons are uniformly employed) (17, 21).  

  As protein abundance is generally conserved across diverse phylogenetic taxa (22), this 

poses the question of whether absolute protein abundance can be mathematically predicted based on 

existing data. Based on the association between protein abundance and codon usage bias, it is 

reasonable to consider that metrics of codon usage bias are a potential source of information that can 

be applied to predict the abundance of proteins of non-model species or proteins undetected by mass 

spectrometry.  

Machine learning has been a useful tool for systems biology, with applications such as the 

prediction of enzyme turnover numbers (23), prediction of metabolomics time-series data from 

proteomics time-series data (24), automated metabolic model ensemble-driven elimination of 

uncertainty with statistical learning (25), and characterisation and reduction of uncertainty in kinetic 

models (26). Thus, we hypothesise that machine learning algorithms can predict protein abundances 

by using codon usage metrics as features. 

In this study, we explore the evolutionary constraints that shape the codon usage bias of the 

Saccharomyces cerevisiae genome in the context of protein abundance by comparing highly abundant 

proteins (HAP) and lowly abundant proteins (LAP). We then apply supervised learning algorithms to a 
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series of codon usage metrics calculated from protein-coding sequences with known protein abundance 

to predict the abundance of proteins employed by enzyme-constrained genome-scale metabolic models 

(ecGEMs), including previously undetected proteins. The integration of these predictions in ecGEMs 

enables phenotype simulations that match those performed with experimentally measured protein 

abundances. 

MATERIAL AND METHODS 

Data collection 

The protein abundance values were obtained from a unified data set of Saccharomyces 

cerevisiae proteome quantifications, which were compiled by Ho et al. (27). This dataset has absolute 

abundance values that exceed 5,000 proteins; it is composed of absolute and relative measurements 

from 21 quantitative proteomics analyses. For all analyses, we applied the median absolute abundance 

values after filtering for GFP autofluorescence. Additionally, we also employed median values for 

measurements performed using either the minimal medium or the YPD medium. 

We retrieved the CDS associated with each protein reported in the proteomics study from 

Ensembl Fungi (28), using the BioMart tool (29). We obtained other information, such as amino acid 

sequences, size and molecular weight from UniProt (30). For the tRNA analysis, we recovered the S. 

cerevisiae tRNA gene copy numbers from GtRNAdb (31, 32). 

Characterisation of codon usage 

To characterise codon usage bias in the S. cerevisiae genome, we assessed how evolutionary 

constraints affect codon distribution and protein biosynthesis regarding protein abundance. Of the 5,388 

proteins with reported absolute abundance values, we chose the top 10% of proteins (538 proteins) 

with the highest overall median abundances and the top 10% proteins with the lowest overall median 

abundances. Proteins whose number of molecules per cell was less than 100 and were detected by 

only one proteomics study were not considered. We analysed the attributes of codons, such as 

frequency, optimality, and positional dependency, for the CDSs of proteins retrieved from the previously 

mentioned data set. 

First, we analysed the codon positional dependency using the CodG package (19) to assess 

how different positions in the sequences are under evolutionary selective pressure. We employ a 

binning scheme, as described by Villada et al. (19), where codons in a sequence are divided in a binning 

scheme relative to the CDS length. Each CDS is divided into 10 parts, which includes information about 

codon quantity per tenth part. We generated a matrix of 59 rows, which includes all codons, except 

start, stop and tryptophan (since it has only one codon), and 10 columns that correspond to the 10 parts. 

Using this matrix, we tested the codon distribution uniformity by calculating the χ2 value of each codon, 

as described by Hockenberry et al. (33), using the following equation: 

𝜒2 = ∑ 𝑍2𝑛
𝑖=1 = ∑

(𝑂−𝐸)2

𝜎2
𝑛
𝑖=1  (1) 
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where O is the observed count per bin in the group of sequences that are being tested, E is the expected 

value, and σ is the standard deviation of the codon counts per bin obtained from 200 simulated groups 

of sequences, where each amino acid sequence of each CDS in each group (highly or lowly abundant 

proteins) was conserved but the codons were randomised. The significance of each codon is reported 

by a p-value of 1.7E-4 after a Bonferroni correction for 59 tests, where the p-value = 0.01, and contrasts 

them with the χ² distributions, which have n - 1 degrees of freedom. For the codon frequency, we 

calculated the Relative Synonymous Codon Usage (RSCU) (18) using the following equation: 

𝑅𝑆𝐶𝑈 =
𝑂𝑖𝑗

[∑ 𝑂𝑖𝑗
𝑁𝑖
𝑗 ]×

1

𝑁𝑖

 (2) 

where Oij is the frequency of the j-th codon for the i-th amino acid, and Ni is the total number of 

synonymous codons for the i-th amino acid. According to Nasrullah et al. (34), codons with RSCU ≥ 1 

are considered frequent codons, and codons with RSCU < 1 are considered rare. We also performed 

principal component analysis (PCA) to identify the distance or relatedness of RSCU values using 

Orange3 data mining software (35). Next, we calculated the selection on transcript translational 

efficiency (St) and selection on transcript biosynthetic cost (Sc), as described by Seward & Kelly (36, 

37). Subsequently, we performed the Akashi Test (38) to calculate the selection on translation accuracy 

using the software Seforta (39).  

Feature compilation for machine learning 

To evaluate whether machine learning could capture any underlying pattern and predict 

absolute abundance values using codon usage metrics as features, we compiled a set of features to 

build predictive machine learning models. We selected codon usage metrics that are calculated 

individually for each gene. For each CDS, we calculated various codon usage metrics (Table S1) by 

using EMBOSS (40), CodonW (41), CAIcal (42), coRdon (43), stAIcalc (44), and scripts included in the 

original manuscripts, such as CodonMuSe (37) and iCUB (45). For codon usage metrics that require 

highly expressed genes as a reference, we employed the CDSs of the top 10% proteins with the highest 

overall median abundance.  

Data-set construction 

We compiled three separate datasets for training (Figure 1). The first data set uses the median 

absolute abundances of all 21 quantitative proteomics analyses described by Ho et al. (27) and has a 

total of 5,388 instances. The second training data set employs the median absolute abundances of 

experiments that quantified proteins of S. cerevisiae yeast growing in minimal media. Eleven 

quantification experiments were taken into account (abbreviated by Ho et al. (27) as PENG, LAW, LAHT, 

DGD, THAK, TKA, BRE, DEN, MAZ, CHO, and YOF), which generated 5,187 instances. The third 

training data set is obtained from experiments in which S. cerevisiae is grown in YPD medium (LU, KUL, 

LEE2, NAG, PIC, WEB, NEW, LEE, DAV, GHA); 5,114 instances are generated. The codon usage 

metrics listed in Table S1 yielded a total of 91 features, including individual gene codon usage metrics 
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and nucleotide composition numbers (Table S2 and Table S3). After compiling the training data sets, 

we log-transformed the protein abundance values for the three data sets to favour a normal distribution. 

 

Figure 1. Machine learning applied to codon usage bias for the prediction of protein abundance. We 

calculated a series of codon usage metrics and nucleotide composition numbers. Three separate data 

sets were compiled and employed for the training: the first data set contains protein measurements 

from yeast cultivation in the minimal medium, the second data set consists of protein measurements 

from yeast cultivation in the YPD medium, and the third data set combines protein measurements for 

both culture media. The hexagonal boxes denote the input data; the rectangular boxes indicate the 

intermediate steps; the ellipsoids represent the trained regression models; and the parallelogram 

denotes the output from these models. 

Regression model training  

We explored different machine learning libraries to build a predictive model, namely, Scikit-

Learn (46), H2O (47), and XGBoost (48). Since the objective was to predict the absolute abundance of 

proteins (numerical value), we employed all available algorithms with support for regression problems 

in the previously mentioned libraries, such as linear models, ensemble models, and neural networks. 

We also applied automated machine learning pipelines from H2O, TPOT (49), and GAMA (50). The 

H2O automated machine learning tool trains and cross-validates pre-configured algorithms included in 

the library to select the best algorithm. TPOT and GAMA utilize genetic algorithms to explore many 

different possible pipelines using Scikit-Learn algorithms to identify the best pipeline. TPOT also exports 

the code of its predicted pipeline. We describe the best algorithm for each training data set in the 

Supplementary Appendix. All the source code was written in Python 3.7 (51). 

 For manually configured pipelines, we randomly split the data set into two subsets and use 75% 

for training and 25% for testing. To determine the hyperparameters of each regressor, we applied a 

randomized approach, where each parameter is sampled from a set of possible parameter values. We 

selected the values that produced models with the best evaluation metrics when we employed the test 

data set as input. For the automated ML pipelines, we ran H2O for a maximum runtime of 6 hours with 

an unlimited number of tested models. We ran TPOT with 1,000 generations and a population size of 

250. For GAMA, we employed an asynchronous evolutionary optimization algorithm with a maximum 

runtime of 3,600 seconds. We trained all automated pipelines with 10-fold cross-validation, where the 

data set is partitioned into 10 equally sized subsets. One of these subsets is randomly chosen as the 

test data set; this process is repeated until each subset has been utilized for a test exactly once. 
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Model evaluation and selection 

After training the models, we evaluated their performance with a separate data set using data 

that had not been selected for training. We predicted the absolute abundance values of the enzymes 

integrated in the ecYeast7 ecGEM and compared them to the median overall abundance data from Ho 

et al. (27). We checked the median absolute deviation (MAD) and the coefficient of determination (R2). 

The MAD is defined as the median value of all absolute differences between the predicted values and 

the real values. We chose this metric since the absolute abundance of proteins employed for training 

are expressed as a median and it is robust to outliers. This metric can be calculated according to the 

following equation: 

𝑀𝐴𝐷(𝑦, �̂�)  = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦1 − �̂�1|, . . . , |𝑦𝑛 − �̂�𝑛|) (3) 

where �̂�𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the known protein abundance value. When 

evaluating the predictive models, we searched for models with the smallest possible MAD. R2 is a 

measure that represents the variance explained by independent values in the regression model; it is 

calculated as 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

 (4) 

where 𝑦𝑖 is the known protein abundance value, �̂�𝑖 is the predicted value, and �̅� is the mean of the 

observed data. We searched for models with an R2 equal to or greater than 0.75. Models with a high 

MAD and low R2 were re-trained with adjusted hyperparameters until they converged. We selected the 

model for each data set with the highest R2 and lowest MAD for the next step. 

Integration of predicted abundances in the enzyme-constrained metabolic model ecYeast8 

After selecting the best predictive models, we decided to predict the abundance of all enzymes 

employed by the ecYeast8 ecGEM, which has 968 enzymes integrated with enzyme turnover values 

(kcat) but no integration of protein abundance values. Codon usage metrics were calculated for the 

CDS of all 968 enzymes. We compiled three prediction data sets in accordance to the medium culture 

utilized for protein quantifications: minimal medium, YPD medium, and a combination of these two 

media. The difference between each data set is the reference highly expressed genes applied to 

calculate the codon usage metrics, as described in the feature compilation section. 

To validate the predictions obtained by machine learning, we integrated the predicted protein 

abundances in the ecYeast8 model. We applied the GECKO Toolbox (10) to set the protein abundances 

as the upper bound for reactions that use enzymes. Considering that the predicted abundance values 

are expressed as the number of molecules per cell and the ecGEM requires protein abundance values 

in millimoles per gram of cell dry weight (mmol/gDW), the values were converted to mmol/gDW by 

assuming a total cellular protein mass of 0.448 gram of protein per gram of cell dry weight (g/gDW), a 

cellular density of 1.5 x 107 cells per litre (cells/L), and a total biomass of 3 grams of cells dry weight 
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per litre (gDW/L). These values were obtained from (10), (52), and (53), respectively. We re-fitted the 

parameters f, GAM and sigma using the batch model before constraining the enzymes. After integrating 

the protein abundances, the upper bound of the enzyme-constrained reactions was flexibilized to 

optimize growth at a dilution rate of 0.1 (h-1) by setting the carbon source as glucose with an uptake 

rate of 1.1 mmol/gDWh-1. To check whether the unit conversion step was performed correctly, we also 

re-ran the enzyme abundance integration step with ecYeast7 using the quantitative proteomics data 

from Lahtvee et al. (54). 

Model growth simulations 

We attempted to replicate the results obtained by Sánchez et al. (10) and compared the simulations of 

the Yeast7 model with the ecYeast7 model using experimental data obtained from (55). We simulated 

a chemostat with a dilution rate fixed at 0.1 h-1. We removed any constraints for substrate uptake and 

limited unmeasured enzyme mass by 0.448 g/gDW, set the f value to 0.4421 g/g, and used a σ value 

of 0.5. For the optimization, we minimized the glucose uptake rate and fixed the glucose uptake rate to 

the optimal value with a 0.1% flexibility, and minimized enzyme usage. Regarding the ecYeast8 model 

integrated with ML-predicted abundances, we simulated a chemostat with the same previously 

mentioned conditions, except that unmeasured enzyme mass was not limited, as the protein pool 

pseudo-reaction was not included in the models. We compared the results to experimental fluxes 

measured by 13C-MFA obtained from (55). For all simulations, we checked the metabolic fluxes 

regarding consumption of glucose and O2 and the production of CO2. We have also compared the 

models by executing flux variability analysis (FVA). All model configuration and problem setups were 

performed with the RAVEN Toolbox 2 (56) in MATLAB 2017a (The MathWorks Inc., Natick, 

Massachusetts). Problems were solved using the Gurobi Optimizer version 8.11 (57). 

RESULTS 

Codon usage is markedly different between the coding sequences of highly abundant proteins 

and those of lowly abundant proteins 

We evaluated how evolutionary constraints shape the codon usage bias of the S. cerevisiae genome 

by comparing the CDSs of HAP and LAP. We observed a noticeable contrast between the CDSs of 

HAP and those of LAP. Regarding the codon frequency, in the principal component analysis of RSCU 

values, two distinct groups of CDSs were observed. The first group is composed of mostly HAP, whilst 

the second group consists of mostly LAP (Figure S1). A heatmap of the 20 most and least abundant 

proteins showed that codons of HAP CDSs are more enriched with frequent codons and that rare 

codons are totally or almost totally depleted (RSCU ≈ 0). Meanwhile, CDSs of LAP have a weaker bias 

in codon usage, that is, there is no preference for certain synonymous codons (Figure 2).  
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Figure 2. Heatmap of relative synonymous codon usage that illustrates the difference in codon usage 

in regard to frequency between the 20 most abundant and 20 least abundant proteins of S. cerevisiae. 

Columns denote the 59 codons with one or more synonymous codons. (A) Rows indicate CDSs of the 

20 most abundant proteins. (B) Rows represent CDSs of the 20 least abundant proteins. CDSs of the 

HAP, in contrast to the CDSs of LAP, have many enriched (high RSCU) or depleted (low RSCU) codons. 

Sequences marked with an asterisk denote the presence of a signal peptide at the 5’ extremity as 

detected by SignalP 5 (58). 

 

For the top 10% proteins with the highest abundances (n = 538), we observed selection against 

uniformity at the 5’ end in the CDSs, as indicated by the enriched codons in the first bin. Otherwise, 

CDS encoding for LAPs (top 10% lowest, n = 538) presented a higher uniformity of codon distribution 

(Figure 3 and Figure S2).  
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Figure 3. Evolutionary selection for position-dependent codon usage bias determined by the chi-

squared test for the matrix constructed with the CodG package. Each CDS was equally divided into 10 

bins to evaluate how each position contributes to overall codon usage. (A) Deviation from uniformity in 

the CDSs of HAPs shows bias towards 5’ end. (B) CDSs of lowly abundant proteins show higher 

uniformity.  

 

Since the values of translation efficiency (St) and selection for biosynthetic costs (Sc) represent 

how strongly natural selection acts on the translational efficiency and biosynthetic cost of codons, 

respectively, we calculated them for both HAP and LAP. Importantly, Sc values suggest that HAP CDSs 

undergo selection pressures to reduce the biosynthetic cost (Sc < 0) and maximize the translation 

efficiency (St > 0) (Figure 4).  

 

Figure 4. Codon evolutionary selection for translation efficiency (St) and biosynthetic costs (Sc). Higher 

St values indicate that the gene is strongly selected for translation efficiency, whilst lower Sc values 

indicate that the gene is strongly selected to reduce the biosynthetic cost of codons. (A) Most Sc values 

of the CDSs of HAPs are lower than zero, whereas most St values of the CDSs of HAPs are higher 

than zero, which suggests that they are selected for decreased biosynthetic costs and increased 

translation efficiency, respectively. (B) CDSs of LAPs did not show any tendency towards any direction. 
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On the other hand, the LAP sequences did not show any tendency, that is, mean St ≈ 0 and 

mean Sc ≈ 0. Interestingly, the Akashi test revealed that both groups are subjected to the same selection 

for translation accuracy (mean odds ratio ≈ 1) (Figure 5). A combination of these results indicate that 

the codon usage bias is different between the CDSs of LAP and those of HAP. 

 

Figure 5. Codon evolutionary selection for translation accuracy. Each dot represents a CDS of HAP or 

LAP. The CDS of both highly and lowly abundant proteins are centred around an odds ratio of 1, which 

suggests that both groups are subjected to the same selection for translation accuracy. The odds ratio 

represents the association between a set of optimal codons and evolutionary constrained sites. 

Machine learning models can predict protein abundance 

Once the three data sets were compiled, we separately trained predictive models for each data 

set. We tested each algorithm with support for the regression problems from three different libraries 

(Scikit-Learn, H2O, and XGBoost) and tested the automated machine learning pipelines (TPOT, H2O, 

GAMA). By validating with an independent data set, which contained 456 enzymes with measured 

protein abundance integrated in the ecYeast7 model, we evaluated the MAD and R² for all tested 

algorithms of the three libraries. The results for the five best conventional algorithms are shown in Table 

1, and those for all tested algorithms are shown in Table S4. 

Regarding the automated machine learning tools, the best predicted pipeline for the all media 

data set was a stacked ensemble predicted by TPOT. For the minimal medium data set, the best 

predicted pipeline was also a stacked ensemble predicted by H2O; for the YPD medium data set, it was 

a gradient boosting machine from the XGBoost library predicted by H2O. We observed that the model 

performances for the automated pipelines were like those for conventional implemented pipelines (refer 

to Table 2).  

 

Table 1. Regression evaluation metrics for the five best trained algorithms for each data set. Each 

algorithm was trained and evaluated by hold-out validation (75% training, 25% validation). In addition, 

we employed an independent data set for testing. Spearman’s ⍴ and its associated p-value assesses 

the correlation between the predicted values and the median values obtained by Ho et al. (27). 
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Algorithm Coefficient of 
determination (R2) 

Median absolute 
deviation (MAD) 

Spearman’s ⍴ p-value 

All abundances data set 

AdaBoost (Scikit-
Learn) 

0.951 0.006 0.756 4.71E-101 

Random Forest 
(H2O) 

0.899 0.175 0.950 0 

Random Forest 
(Scikit-Learn) 

0.843 0.219 0.779 1.03E-220 

Bagging Meta-
estimator (Scikit-
Learn) 

0.842 0.188 0.750 9.11E-186 

Multilayer 
perceptron (H2O)  

0.834 0.224 0.916 0 

Minimal medium data set 

AdaBoost (Scikit-
Learn) 

0.801 0.183 0.763 2.16E-100 

Random Forest 
(H2O) 

0.782 0.234 0.905 0 

Extremely 
Randomized Trees 
(Scikit-Learn) 

0.774 0.277 0.777 2.62E-219 

Bagging Meta-
estimator (Scikit-
Learn) 

0.772 0.232 0.749 6.44E-188 

Gradient Tree 
Boosting (Scikit-
Learn) 

0.722 0.370 0.775 1.61E-217 

YPD medium data set 

Extremely 
Randomized Trees 
(Scikit-Learn) 

0.843 0.227 0.740 4.27E-178 

Random Forest 
(H2O) 

0.828 0.265 0.917 0 

AdaBoost (Scikit-
Learn) 

0.825 0.290 0.744 4.34E-181 

Random Forest 
(Scikit-Learn) 

0.816 0.282 0.743 2.06E-180 

Gradient Boosting 
Estimator (H2O) 

0.734 0.380 0.863 9.67E-282 
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We determined that the AdaBoost estimator from Scikit-Learn, which was implemented with 

the TPOT-predicted stacked ensemble as a base estimator, was the best predictive model for the data 

set of all protein abundances and the data set of the minimal medium abundances; it achieves R² values 

of 0.951 and 0.801, respectively (refer to Supplementary Appendix for details). For the YPD medium 

data set, the gradient boosted tree from the XGBoost library, which was predicted and optimized by the 

H2O automated tool, was the best model with an R² of 0.927 and the lowest MAD for the data set. 

 

Table 2. Regression evaluation metrics for automated machine learning pipelines for each data set. 

Each algorithm was trained and evaluated by 10-fold cross-validation using an independent data set for 

testing. Spearman’s ⍴ and its associated p-value assesses the correlation between the predicted values 

and the median values obtained by Ho et al. (27). 

Algorithm Coefficient of 
determination (R2) 

Median absolute 
deviation (MAD) 

Spearman’s ⍴ p-value 

All abundances data set 

GAMA 0.897 0.042 0.787 2.82E-228 

H2O AutoML 0.907 0.120 0.960 0 

TPOT 0.908 0.004 0.794 2.33E-235 

Minimal medium data set 

GAMA 0.780 0.223 0.745 1.30E-184 

H2O AutoML 0.858 0.212 0.931 0 

TPOT 0.835 0.238 0.752 3.79E-187 

YPD medium data set 

GAMA 0.709 0.308 0.743 6.45E-181 

H2O AutoML 0.927 0.021 0.960 0 

TPOT 0.671 0.355 0.751 1.18E-186 

 

Integration of predictions into enzyme-constrained GEMs 

Since we were able to predict the absolute abundance of all 968 enzymes with reasonable 

accuracy, we decided to incorporate them into the genome-scale metabolic model of S. cerevisiae, 

ecYeast8. We were interested in demonstrating that our predictive model could be useful for 

reconstructing enzyme-constrained GEMs. For this purpose, we converted the unit from nº of protein 

molecules/cell (absolute abundance) to mmol/gDW, as required for simulating the metabolism (refer to 

Material and Methods). Using the GECKO toolbox described by Sánchez et al. (10), we obtained three 
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different models—ecYeast8-MIN, ecYeast8-YPD and ecYeast8-ALL—using the minimal medium 

prediction data set, YPD medium prediction data set, and predicted abundances for all the 21 protein 

measurements in the prediction data set, respectively. Note that the protein pool pseudo-reaction was 

not included in the models as we incorporated the abundance for all enzymes. 

Metabolic fluxes simulated with ML-predicted enzyme abundances are similar to experimental 

data  

The reproduction of the results using the ecYeast7 model and quantitative proteomics data (54) 

showed that our unit conversion step was correctly performed, as it closely approached the original 

predictions (Figure S3). After including the predicted protein abundances in ecYeast8, we performed a 

chemostat simulation to compare the performance of the three models to the conventional GEM Yeast8 

and the experimental fluxes quantified by 13C-MFA. When grown aerobically at a dilution rate of 0.1 h-1 

and limited by glucose concentrations, all models predicted similar fluxes to the experimental values 

and the conventional model (Figure 6A). Between the three models, ecYeast8-ALL displayed the best 

predicted values. The predicted fluxes of both ecYeast8-MIN and ecYeast8-YPD were lower than the 

fluxes predicted by ecYeast8-ALL. We further compared the models by a flux variability analysis. The 

three ecGEMs had significant reductions in flux variability for most reactions when compared to Yeast8 

(Figure 6B). 
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Figure 6. Comparisons between the three ecYeast8 integrated with ML-predicted protein abundances 

and the traditional GEM Yeast 8. A) Predictions of metabolic flux obtained by the ecYeast8 model 

integrated with ML-predicted protein abundances and the Yeast8 model (without enzyme constraints), 

compared to the experimental data. Percentage values represent the relative error when compared to 

experimental values. B) Flux variability cumulative distribution for Yeast8 and ecYeast8 integrated with 

ML-predicted protein abundances. 

DISCUSSION 

In this study, we explored the evolutionary constraints that affect codon usage bias of CDSs of 

highly and lowly abundant proteins. The difference between both groups of proteins boosted us to 

evaluate whether this pattern could be recognized by machine learning algorithms and employed to 

predict protein abundances. Machine learning algorithms remarkably predicted protein abundances 

from codon usage metrics. Predicted abundances of proteins were integrated in enzyme-constrained 

genome-scale metabolic models and successfully applied to simulate metabolic fluxes. 

 Although synonymous codons can code for the same amino acid, comparative analysis of 

protein-coding sequences has revealed a “preference” of certain codons. This bias in codon frequency 

is related to the concentration of tRNA molecules with complementary anticodons and their gene copy 

numbers (citation). We show that RSCU values separate proteins into two groups: HAP and LAP, which 

shows that codon usage bias varies according to protein abundance levels. The CDSs of HAP have the 

highest or lowest RSCU values, which underscores a strong codon bias. Otherwise, the CDSs of LAP 

have no discernible bias. Consistent with our results, Novoa et al. (59) observed that for a large number 

of amino acids, codon usage completely changes depending on the expression level. 

The stochastic nature of cognate tRNA recognition in the ribosome A-site enables evolutionary 

forces to act by selecting codons that more closely match the abundance of tRNAs in the cell (60). This 

selection is likely associated with the differences observed in both translation initiation rates and 

translation elongation rates (20, 61). The enrichment of certain codons positions of a gene is also 
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determined by natural selection (19), such as the presence of clusters of RareNO codons at the 5’ 

extremity. We tested this finding by quantifying the position-dependent codon usage bias using a 

binning scheme as detailed by Villada et al (19). We observed that the CDSs of HAP follows the results 

obtained from the genome-scale analysis, which show a deviation from uniformity most markedly in the 

first bin, which was not observed in the CDSs of LAP. This finding agrees with the ramp theory, which 

poses that a “bottleneck” at the beginning of a CDS is necessary to slow ribosomes to prevent jams 

and collisions (14, 20). 

There are selective pressures regarding codon usage that act on the resource allocation for 

protein biosynthesis (36, 37), translation efficiency (62), and translation accuracy (38). The resource 

allocation for protein biosynthesis governs the synthesis of RNA molecules, and polypeptides, as well 

as other molecules involved in the translational process. One way to reduce the overall biosynthetic 

cost of a protein without altering its amino acid sequence is to reduce the expenditure on RNA synthesis 

or increase the translation efficiency of existing RNA molecules (37). Genome-scale analysis of 1,320 

bacterial genomes performed by Seward & Kelly (37) revealed that genes subjected to strong selection 

for reducing biosynthetic cost are also subjected to strong selection to increase the translation efficiency.  

In this study, we performed translation efficiency and translation accuracy analyses on CDSs 

of HAP and LAP and observed that the results rely on protein abundance, which was also observed by 

Seward & Kelly (37). HAPs experience the strongest selection for reducing the biosynthetic cost and 

increasing the translation efficiency. By increasing the translation efficiency, more proteins could be 

synthesized with less mRNA. As observed by Ho et al. (27), the function of HAPs seems to be related 

to processes such as ribosome biogenesis, protein biosynthesis and cell morphogenesis.  The fact that 

these proteins undergo evolutionary selection for increased translation efficiency and decreased 

biosynthetic cost is consistent with their high demand by the cell at most physiological conditions to 

maintain the metabolic activity. On the other hand, LAPs do not seem to be affected by the selection of 

these parameters. These proteins are associated with processes such as DNA replication, DNA repair, 

RNA processing and cell-cycle regulation, which are necessary in small amounts and therefore might 

not require resource allocation optimization through natural selection. Therefore, the difference 

observed between HAP and LAP in terms of CUB and its relation to the biosynthetic cost reinforces our 

hypothesis that codon metrics can be useful for predicting protein abundance.  

Translation accuracy is also important for reducing the biosynthetic resource cost of a protein 

and improving translation efficiency, as inaccurate translation elongation increases the time needed to 

sequester a ribosome, which causes a diminished availability of ribosomes and protein misfolding (63). 

By applying the Akashi test, we observed that CDSs of both HAP and LAP are subjected to the same 

strength of selection. This finding was also experimentally noted by Yannai et al. (63) in Escherichia 

coli genes. 

As we observed that codon usage bias varies depending on the protein abundance, we were 

interested in evaluating whether machine learning could capture any underlying pattern and predict 

absolute abundance values using codon usage metrics as features. We were also interested in 

addressing whether proteome quantifications with different yeast culture media could impact these 

predictions. We trained regression algorithms with a series of codon usage metrics for three different 
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data sets and predicted the abundance of proteins that were previously unincorporated in the ecYeast8 

model. The data sets differed regarding the type of medium culture employed in each proteomics 

experiment: we applied the median of the protein measurements obtained for the minimal medium, YPD 

medium, and combination of both media. After evaluating the regression metrics, we selected the 

AdaBoost estimator for the data sets of the minimal medium and combination of the minimal and YPD 

media. The AdaBoost algorithm employs a combination of “weak learners” for the training and 

predictions; it supports the integration of many other machine learning algorithms as weak learners to 

improve its performance (64). The TPOT run exported a stacked ensemble of several algorithms; thus, 

we decided to integrate the predicted pipeline into AdaBoost. We discovered that this approach 

outperformed all other algorithms and achieved higher R² scores and lower MAD values. For the YPD 

medium data set, however, this approach was bested by another algorithm. The selected algorithm for 

this medium was the gradient boosted tree from the XGBoost library, which was predicted and optimized 

by the H2O automated tool. 

There have been many attempts to predict protein abundance values, usually for imputation of 

abundance values of missing proteins (65–68). Mehdi et al. (68) utilized a Bayesian network that 

depends primarily on protein abundance and mRNA properties, such as interaction with proteins, 

expression, and folding energy. Even though these studies obtained satisfactory correlation values, 

many of their features rely on experimental data. The advantage of our approach is that our features 

depend entirely on intrinsic information contained in gene sequences (i.e., codon usage metrics), which 

can all be determined in silico and still yield reasonable correlation values. An earlier effort by Nie et al. 

(65) proposed a zero-inflated Poisson-based model that employed microarray data to predict protein 

abundance of Desulfovibrio vulgaris. Torres-García et al. (66) and Li et al. (67) improved on the previous 

work by predicting the abundance of D. vulgaris proteins using gradient boosted trees (GBT) and neural 

networks, respectively. However, the R² for both algorithms was lower than that obtained by our study 

(refer to Tables 1-2). For the GBT algorithm, the R² varied between 0.393 and 0.582, while for the neural 

networks, it ranged from 0.47 to 0.68. Considering the regression metrics in these comparisons, our 

proposed prediction models present significant improvement over previous models. 

The proposed regression models predicted protein abundances with remarkable accuracy. 

Thus, we evaluated whether these predictions could be integrated into GEM to simulate the metabolic 

phenotypes. Comparing the simulated values to the experimental values would be a way to demonstrate 

the application of our method for constraint-based metabolic modelling. We compared the models 

based on protein measurements obtained from a minimal (ecYeast8-MIN) medium, rich medium 

(ecYeast8-YPD) and combination of both media (ecYeast8-ALL). We did not observe differences 

between ecYeast8-MIN and ecYeast8-YPD. Referring to the results of quantitative proteomics studies, 

Ho et al. (27) showed that the same medium did not cluster after being subjected to hierarchical 

clustering or k-means clustering. This finding could explain the similarity between ecYeast8-MIN and 

ecYeast8-YPD. Notably, the ecYeast8-ALL outperformed the models ecYeast8-MIN and ecYeast8-

YPD since its simulations were closer to the experimental values. Consistent with this result, the results 

obtained using ecYeast8-ALL were similar to the results obtained by Sánchez et al. (10), which were 

based on experimental protein measurements. Note that the cumulative distribution of the flux variability 
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in the three ecGEMs showed a variability range lower than that for Yeast8, which highlights their 

capacity to predict metabolic fluxes mostly by reactions constrained by enzymes. According to our 

results, Sánchez et al. (10) also showed that the inclusion of enzymatic constraints reduced the flux 

variability of simulations for the ecYeast7 model when compared to Yeast7. The same result was 

reported for ecYeast8 (11) and the ecGEM of B. subtilis ec_iYO844 (12). Importantly, our predictions 

also maintained a physiologically relevant solution.  

Considering that species from the same domain share similar codon bias signatures (59), the 

use of our proposed regression models to predict the protein abundance of other species should be 

feasible. The extensive range of codon usage metrics used to train the machine learning algorithms 

could capture most patterns that underlie protein abundance in a domain. Since the models were trained 

using data from S. cerevisiae, this approach should work reasonably well for other eukaryotes. It might 

be possible to create similar predictive models for bacteria using absolute protein abundance data from 

Escherichia coli (69).  

Our results underscore that codon usage metrics allow the prediction of protein abundances by 

machine learning. The observed difference between the CDSs of HAPs and the CDSs of LAPs supports 

this statement, as both groups sharply contrasted in the performed tests. Considering that codon usage 

bias is an intrinsic feature of gene sequences, all the metrics employed for compiling the data sets can 

be determined in silico, which simplifies the use of the proposed models for other species and is an 

advantage over previous attempts, which rely on other experimentally measured data. The machine 

learning models generated in our study can be a valuable tool for predicting protein abundances for 

yeasts that do not have large-scale quantitative proteomics available. Taking into account that the 

integration of protein abundances in GEMs allows improvement in phenotype simulations, our proposed 

regression models can be useful in system metabolic engineering approaches. 

 

DATA AVAILABILITY 

All data and code are available in the GitHub repository: 

(https://github.com/LabFisUFV/protein_abundance_prediction) 

Protein abundance data was obtained from Ho et al. (27) supplementary material: 

(https://www.cell.com/cell-systems/fulltext/S2405-4712(17)30546-X?#supplementaryMaterial) 

Quantitative proteomics data for ecYeast7 simulations was obtained from Lahtvee et al. (57) 

supplementary material: 

(https://www.cell.com/cell-systems/fulltext/S2405-4712(17)30088-1#supplementaryMaterial) 
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