Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Including intraspecific trait variability to avoid distortion of functional diversity and ecological inference: lessons from natural assemblages

View ORCID ProfileMark K. L. Wong, View ORCID ProfileCarlos P. Carmona
doi: https://doi.org/10.1101/2020.09.17.302349
Mark K. L. Wong
1Department of Zoology, University of Oxford, Oxford, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mark K. L. Wong
  • For correspondence: mark.wong@zoo.ox.ac.uk
Carlos P. Carmona
2Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Carlos P. Carmona
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

  1. Functional diversity assessments are crucial and increasingly used for understanding ecological processes and managing ecosystems. The functional diversity of a community is assessed by sampling traits at one or more scales (individuals, populations, species) and calculating a summary index of the variation in trait values. However, it remains unclear how the scale at which traits are sampled and the indices used to estimate functional diversity may alter the patterns observed and inferences about ecological processes.

  2. For 40 plant and 61 ant communities, we assess functional diversity using six methods – encompassing various mean-based and probabilistic methods – chosen to reflect common scenarios where different levels of detail are available in trait data. We test whether including trait variability at different scales (from individuals to species) alter functional diversity values calculated using volume-based and dissimilarity-based indices, Functional Richness (FRic) and Rao, respectively. We further test whether such effects alter the functional diversity patterns observed across communities and their relationships with environmental drivers such as abiotic gradients and occurrences of invasive species.

  3. Intraspecific trait variability strongly determined FRic and Rao. Methods using only species’ mean trait values to calculate FRic (convex hulls) and Rao (Gower-based dissimilarity) distorted the patterns observed when intraspecific trait variability was considered. These distortions generated Type I and Type II errors for the effects of environmental factors structuring the plant and ant communities.

  4. The high sensitivity of FRic to individuals with extreme trait values was revealed in comparisons of different probabilistic methods including among-individual and among-population trait variability in functional diversity. By contrast, values and ecological patterns in Rao were consistent among methods including different scales of intraspecific trait variability.

  5. Decisions about where traits are sampled and how trait variability is included in functional diversity can drastically change the patterns observed and conclusions about ecological processes. We recommend sampling the traits of multiple individuals per species and capturing their intraspecific trait variability using probabilistic methods. We discuss how intraspecific trait variability can be reasonably estimated and included in functional diversity in the common circumstance where only limited trait data are available.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted September 18, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Including intraspecific trait variability to avoid distortion of functional diversity and ecological inference: lessons from natural assemblages
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Including intraspecific trait variability to avoid distortion of functional diversity and ecological inference: lessons from natural assemblages
Mark K. L. Wong, Carlos P. Carmona
bioRxiv 2020.09.17.302349; doi: https://doi.org/10.1101/2020.09.17.302349
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Including intraspecific trait variability to avoid distortion of functional diversity and ecological inference: lessons from natural assemblages
Mark K. L. Wong, Carlos P. Carmona
bioRxiv 2020.09.17.302349; doi: https://doi.org/10.1101/2020.09.17.302349

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Ecology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4095)
  • Biochemistry (8788)
  • Bioengineering (6493)
  • Bioinformatics (23395)
  • Biophysics (11766)
  • Cancer Biology (9171)
  • Cell Biology (13292)
  • Clinical Trials (138)
  • Developmental Biology (7423)
  • Ecology (11389)
  • Epidemiology (2066)
  • Evolutionary Biology (15121)
  • Genetics (10415)
  • Genomics (14026)
  • Immunology (9152)
  • Microbiology (22111)
  • Molecular Biology (8793)
  • Neuroscience (47460)
  • Paleontology (350)
  • Pathology (1423)
  • Pharmacology and Toxicology (2486)
  • Physiology (3712)
  • Plant Biology (8069)
  • Scientific Communication and Education (1433)
  • Synthetic Biology (2216)
  • Systems Biology (6022)
  • Zoology (1251)