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Abstract

Affinity maturation (AM) of antibodies through somatic hypermutations (SHMs) enables1

the immune system to evolve to recognize diverse pathogens. The accumulation of SHMs2

leads to the formation of clonal trees of antibodies produced by B cells that have evolved3

from a common naive B cell. Recent advances in high-throughput sequencing have enabled4

deep scans of antibody repertoires, paving the way for reconstructing clonal trees.5

However, it is not clear if clonal trees, which capture micro-evolutionary time scales, can6

be reconstructed using traditional phylogenetic reconstruction methods with adequate7

accuracy. In fact, several clonal tree reconstruction methods have been developed to fix8

supposed shortcomings of phylogenetic methods. Nevertheless, no consensus has been9

reached regarding the relative accuracy of these methods, partially because evaluation is10

challenging. Benchmarking the performance of existing methods and developing better11

methods would both benefit from realistic models of clonal tree evolution specifically12

designed for emulating B cell evolution. In this paper, we propose a model for modeling B13

cell clonal tree evolution and use this model to benchmark several existing clonal tree14

reconstruction methods. Our model, designed to be extensible, has several features: by15

evolving the clonal tree and sequences simultaneously, it allows modelling selective16
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pressure due to changes in affinity binding; it enables scalable simulations of millions of17

cells; it enables several rounds of infection by an evolving pathogen; and, it models18

building of memory. In addition, we also suggest a set of metrics for comparing clonal trees19

and for measuring their properties. Our benchmarking results show that while maximum20

likelihood phylogenetic reconstruction methods can fail to capture key features of clonal21

tree expansion if applied naively, a very simple postprocessing of their results, where super22

short branches are contracted, leads to inferences that are better than alternative methods.23

Key words : Antibody evolution, Clonal trees, Joint tree and sequence evolution.24

25

Antibodies are Y-shaped proteins consisting of two identical heavy chains and two26

identical light chains. Antibodies are produced by B cells and are used by the immune27

system to recognize, bind, and neutralize pathogens (also called antigen). Unlike other28

proteins, antibodies are not encoded in the genome directly but present results of somatic29

V(D)J recombination of immunoglobulin (IG) loci (Kurosawa and Tonegawa, 1982). Each30

chain of each antibody is a concatenation of one of V, D (only for heavy chain), and J31

genes and is konwn as an IG gene. An IG gene contains three complementarity-determining32

regions (CDRs) representing antigen binding sites. CDRs are separated by four framework33

regions (FRs) that form a stable structure displaying CDRs on the antibody surface.34

After successful binding of an antibody to a given pathogen, the corresponding B35

cell undergoes the affinity maturation (AM) process aiming to improve the affinity (i.e.,36

binding ability) of the antibody (Tonegawa, 1983; Neuberger and Milstein, 1995). First,37

the targeting B cell moves to the germinal center (GC) of a lymph node where it38

undergoes clonal expansion: cell divisions that increase the pool of antibodies that bind to39

the antigen. Then, certain enzymes in the B cell and its clones are activated and introduce40

somatic hypermutations (SHMs) in the utilized IG genes as a means to improve affinity41

(Muramatsu et al., 2000). SHMs change the three-dimensional structure of an antibody42
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(and thus its ability to bind to an antigen) in a stochastic way. The regulatory mechanisms43

of the immune system play the role of natural selection by expanding B cells with high44

affinity for antigen and killing self-reactive B cells with potentially harmful mutations. The45

AM process activates naive B cells (i.e., those that have not been exposed to an antigen)46

and differentiates them into memory and plasma B cells. Memory B cells can be repeatedly47

activated and subjected to the AM, while plasma B cells can secrete massive levels of48

neutralizing antibodies. Recent studies show that CDRs, which include the binding sites,49

accumulate more SHMs compared to FRs (Hsiao et al., 2019; Safonova and Pevzner, 2019).50

The AM process leads to the formation of clonal lineages within a given antibody51

repertoire, where each clonal lineage is formed by descendants of a single naive B cell. The52

expressed IG transcripts within the same clonal lineage share a common combination of V,53

D, and J genes and differ by SHMs only. The evolutionary history of each clonal lineage54

can be represented by a clonal tree, where each vertex corresponds to a B cell and each B55

cell is connected by a directed edge with all its immediate descendants.56

Recent development of sequencing technologies have enabled high-throughput57

scanning of antibody repertoires (Rep-Seq) and have opened up new avenues for studying58

adaptive immune systems (Georgiou et al., 2014; Robinson, 2015; Yaari et al., 2015;59

Watson et al., 2017; Miho et al., 2018). Rep-Seq technologies enabled AM analysis of60

antibody repertoires responding to antigens of various diseases: flu (Laserson et al., 2014;61

Horns et al., 2019), HIV (Haynes et al., 2012; Sok et al., 2013a), hepatitis (Galson et al.,62

2016; Eliyahu et al., 2018), multiple sclerosis (Stern et al., 2014; Lossius et al., 2016),63

rheumatoid arthritis (Elliott et al., 2018). Such analysis allows biologists to identify64

broadly neutralizing antibodies (Yermanos et al., 2018) and reveal antigen-specific and65

general mutation patterns (Horns et al., 2019; Hsiao et al., 2019).66

An intriguing feature of the clonal trees is that due to the short time frame they67

represent, they can differ from phylogenetic trees. Some of the sequenced nodes may68

belong to the internal nodes of the tree instead of the tips. Also, there is no reason to69
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assume that the tree should be bifurcating or even close to bifurcating. Thus, unlike70

traditional phylogenetics, perhaps Steiner trees (which can put observations at some of the71

internal nodes) or spanning trees (that put an observation at all internal nodes) should be72

preferred for reconstructing antibody sequences (Fig. 1a). Various reconstruction methods73

have been developed attempting to recover clonal trees from antibody sequences (e.g.,74

Jiang et al., 2013; Sok et al., 2013b; Lee et al., 2017; Hoehn et al., 2017; Horns et al., 2016;75

Lees and Shepherd, 2015; DeWitt et al., 2018). Some of these methods use simple76

clustering methods (e.g., Jiang et al., 2013), while others formulate the problem as a77

Steiner tree problem (Sok et al., 2013b; Lee et al., 2017; Horns et al., 2016; DeWitt et al.,78

2018) or maximum-likelihood (ML) phylogenetic tree reconstruction under models of79

sequence evolution (Hoehn et al., 2017; Lees and Shepherd, 2015).80

In order to evaluate methods proposed for reconstructing clonal trees, we need81

models for antibody sequence evolution and clonal tree expansion that can be used for82

simulation. This modeling step is challenging for several reasons. i) Since selection is an83

important force in AM, it needs to be modelled directly, or else, the shape of the resulting84

trees will not be realistic. Traditional phylogenetics simulations first simulate a tree of85

sampled taxa and then evolve sequences down the tree. This two-step approach simplifies86

simulation but is not sufficient for AM because the strong selection effects make the87

evolution of the clonal tree and the antibody sequences interdependent. A better approach88

is to co-evolve the tree and all evolving sequences. The challenge in co-evolving is to design89

a principled model for how sequences impact evolution and to develop a scalable90

simulation algorithm that can generate millions of cells (which can then be subsampled).91

ii) Literature suggests that there are hotspots and coldspots of SHMs (e.g., Rogozin and92

Kolchanov, 1992; Pham et al., 2003). However, traditional models of sequence evolution93

are i.i.d and will miss the context-dependence. iii) Different types of antibody cells (e.g.,94

activated and memory cells) have very different mutational and selection behaviors and95

these distinctions need to be modelled.96
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There have been several attempts at designing models that are appropriate for97

clonal expansion in AM (e.g., Childs et al., 2015; Amitai et al., 2017; Reshetova et al.,98

2017; Davidsen and Matsen, 2018). As many processes involved are complex and hard to99

model exactly, these models have all taken different routes. For example, determining100

affinities of sequences to hypothetical antigens is difficult, as affinity binding itself is a101

complicated chemical process, and each method models affinity in a different fashion.102

Nevertheless, all these methods have limitations, which we will return to in our discussion103

session. In summary, they do not scale to very large number of cells (millions), they allow104

for simulating one round of infection (as opposed to an evolving antigen and recurring105

infections), and they do not model various types of antibody B cells. We propose that to106

simulate realistic clonal trees and correctly benchmark lineage reconstruction tools, we107

need models that are generic and flexible, so that they can be updated as a better108

understanding of the underlying processes is developed. One goal of the present work is to109

provide such a scalable and flexible simulation framework. In addition to simulation, we110

note that comparing clonal trees and characterizing their properties require extending111

metrics from phylogenetics to trees with internal node samples and multifurcations.112

In this paper, we make several contributions. i) We introduce a general birth, death,113

transformation (BDT) model and describe how BDT can be instantiated to create a model114

of AM that simultaneously co-evolves the clonal tree and antibody sequences. ii) We115

introduce a scalable sampling algorithm for our model that enables generating very large116

trees (millions of cells). iii) We refine existing metrics and define new ones for117

characterizing properties (e.g., balance) of clonal trees and define a set of evaluation118

metrics for comparing them. iv) We study a small post-processing step applied to ML119

phylogenetic inference and show that it effectively deals with the problem of internal node120

sampling in antibody sequences. v) We perform extensive simulation studies (Fig. 1b)121

under various parameters and benchmark the performance of seven reconstruction122

methods: minimum spanning tree, existing tools BRILIA (Lee et al., 2017), IgPhyML123
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Fig. 1. (a) Examples of a phylogenetic tree, a Steiner tree, and a spanning tree. Letters indicate sequenced data.
Phylogenetic trees put all data points at leaves and none at internal nodes, spanning trees put data at every node
(whether internal or leaf), and Steiner trees are in between (some but not all internal nodes correspond to data).
(b) The evaluation framework. The BDT model, parameterized by several values (Table 1) is first sampled using the
fast algorithm implemented in DIMSIM to create the simulated (i.e., “true”) sequence data and clonal trees. These
trees are then reconstructed from the simulated sequence data using various methods. The reconstructed clonal tree
is compared to the simulated tree using several metrics adopted here to account for internal node sampling and
multifurcation. Properties of true and inferred trees are measured using metrics such as balance and resolution.

(Hoehn et al., 2017), RAxML (Stamatakis, 2014), and Immunitree (Sok et al., 2013b), and124

modified methods IgPhyML* and RAxML*). We study how the parameters of the AM125

model impact properties of clonal trees and reconstruction error. These studies showcase126

the power and flexibility of our benchmarking framework.127

Generative Model128

We first define a general Birth/Death/Transformation (BDT) model and introduce129

an efficient algorithm for sampling trees from the BDT model. We then instantiate the130

general model for simulating AM processes.131
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The birth/death/transformation (BDT) model132

Forward-time birth-death models are used extensively in macro-evolutionary133

modelling (Nee, 2006), whereas micro-evolution simulations often use coalescent models,134

which hope to approximate forward time evolution, albeit not always successfully (Stadler135

et al., 2015). We start by describing a general forward-time model that can allow realistic136

micro-evolutionary simulations by ensuring that birth and death rates are not constant,137

and instead change with properties of evolving units (e.g., cells).138

Model description. In the BDT model, a set of particles continuously undergo139

birth (B), death (D), and transformation (T) events. Each particle i has a list of properties140

xi ∈ RN
+ . At each moment in time, the system contains a set S of n active particles, and141

each active particle i ∈ S undergoes birth, death, and transformation events according to142

independent Poisson point processes. In the birth event, a particle i is removed from S and143

new particles j and k, with properties xj and xk, are added to S; properties xj and xk are144

drawn from a distribution determined by xi and model parameters. In the event of the145

death for particle i, it is removed from S. In the transformation event, a particle i is146

removed from S and a new particle j with properties xj, drawn from a distribution147

determined by xi, is added to S. Starting from a single node and continuously applied, this148

process defines a rooted tree where nodes are all particles that ever existed (including those149

that died); birth events create bifurcations, transformation events create nodes with one150

child, and death events create leaves with no child. The tree can be subsampled as desired.151

For each particle i ∈ S, the birth rate, death rate, and transformation rate are152

thoroughly determined by its properties xi and S =
∑

j∈S xj, the sum of property vectors153

over all particles. We let ΛB(xi,S), ΛD(xi,S), and ΛT (xi,S) denote the birth, death, and154

transformation rates, respectively. In the time interval between two events for any two155

particles in the system, we assume a memoryless process. Thus, these rates remain constant156

between any two events but can change when an event happens. The ratio between the157
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birth rate and the death rate, both of which are functions of the particle properties, can be158

thought of as the factor controlling the selective pressure, which can be time-variant.159

Because of the memoryless property, the time until the next BDT event always160

follows the exponential distribution with rates ΛB(xi,S),ΛD(xi,S), and ΛT (xi,S) for each161

event type. The time until any event for any particle follows an exponential distribution162

with λ =
∑

i∈S(ΛB(xi,S) + ΛD(xi,S) + ΛT (xi,S)). The probability of the next event being163

a specific event E ∈ {B,D, T} for a particular particle i is ΛE(xi,S)/λ. Specifying the rate164

functions and the distribution of properties at the initial state fully specifies the model.165

Efficient sampling under the general model. The model we described can be166

efficiently sampled if we also assume that we are able to write ΛE(xi,S) = PE(xi,S)
Q(S)

where167

PE : RN
>0 × RN

>0 −→ R>0 and Q : RN
>0 −→ R>0 are polynomial functions with a constant168

degree, where coefficients of PE are non-negative. Thus, for any particle i ∈ S, the birth169

rate can be written as ΛB(xi,S) =
∑
α,β∈Γ Bα,βSβxαi∑

β∈ΓQβSβ
where Γ = [0 . . . γ]N for some integer γ,170

Bα,β and Qβ are coefficients of the polynomials, and ab denotes
∏

i a
bi
i for vectors a and b.171

We can write ΛD(xi,S) and ΛT (xi,S) similarly by replacing Bα,β with Dα,β and Tα,β.172

With this assumption, λ =
∑
α,β∈Γ Pα,βSβθα∑

β∈ΓQβSβ
where Pα,β = Bα,β +Dα,β + Tα,β and173

θα =
∑

i∈S xαi for all α values (note that S = θ1). Thus, to efficiently sample the time till174

the next event, we only need θα values which we can simply store and update in constant175

time after each event. This allows for a constant time sampling of the next event time (in176

terms of n) for constants N and γ. Once we sample the time till the next event, we need to177

sample one of the three possible events. The probability of the next event being birth for178

particle i is (derivations shown in the supplementary material)179

ΛB(xi,S)

λ
=

ΛB(xi,S)∑
j∈S(ΛB(xj,S) + ΛD(xj,S) + ΛT (xj,S))

=
∑
α,β∈Γ

(
(
Bα,β
Pα,β

)(
xαi
θα

)(
Pα,βS

βθα∑
ᾱ,β̄∈Γ Pᾱ,β̄S

β̄θᾱ
)
)

.
(1)

and probability of each death and transformation events can be written similarly.180

We now suggest the following sampling procedure (see Algorithm S1):181
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1. Sample (α, β) pair (representing one term of the polynomial) from a multinomial182

distribution on Γ× Γ where each pair has probability
Pα,βSβθα∑

ᾱ,β̄∈Γ Pᾱ,β̄Sβ̄θᾱ
.183

2. Sample particle i from a distribution on S where each i has probability xαi /θα.184

3. Sample birth, death, or transformation with probabilities
Bα,β
Pα,β

,
Dα,β
Pα,β

, and
Tα,β
Pα,β

.185

In this procedure, the probability of selecting the birth event for a particle i is186

simply
∑

α,β
Bα,β
Pα,β

xαi
θα

Pα,βSβθα∑
ᾱ,β̄∈Γ Pᾱ,β̄Sβ̄θᾱ

, which matches Equation (1) (ditto for death and187

transformation events). Step 1 takes constant time (in terms of n) given that θα values188

(and thus S) are pre-computed for all α; step 2 can be achieved in O(log n) time using an189

interval tree data structure to store partial sums of xαj ’s (see Algorithm S1); step 3 takes190

constant time. Thus, a tree on k nodes drawn from the distribution defined by the BDT191

process can be sampled in O(k log(k)) time by repeated applications of Algorithm S1.192

Antibody Affinity Maturation (AM) model193

We now define a specific case of the general model for dynamic antibody affinity194

maturation. Our goal is to model how antibody-coding sequences evolve in response to195

several rounds of infections by an evolving antigen (e.g., flu). Simulations according to this196

AM model are implemented in a C++ tool called Dynamic IMmuno-SIMulator (DIMSIM).197

In this paper, we focus on simulating the heavy chain sequences only (thus, by198

antibody-coding sequences we mean only the heavy chains). While light chains might be199

important for some immunological applications, most existing Rep-Seq studies focus on200

sequencing heavy chains only (e.g., Stern et al., 2014; Ellebedy et al., 2016; Magri et al.,201

2017; Horns et al., 2019). Also, since only memory B cells can be repeatedly activated by202

the encounter with an antigen, we will simulate memory B cells only. Plasma B cells do not203

undergo SHMs and represent terminal states of the clonal lineage development and thus204

can be sampled from the leaves of the simulated tree if needed. We will refer to a B cell205

that has just encountered an antigen and moved to a GC as an activated B cell (Fig. 2a).206
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Rounds and stages. The model simulates r rounds of infection. Each round consists207

of two stages, an infected stage, where a set of new antigens initiate a response that208

activates the B cells being modeled, and a dormant stage, where the B cells being modeled209

are not actively involved in an immune response. The generative model is identical in the210

two stages but is parameterized differently. The system can switch between the two stages211

using user-defined rules including those that reflect infection progression (described below).212

During the infected stage of round i, we assume the existence of a given target amino-acid213

sequence of length L (ζ
(1)
i , . . . , ζ

(L)
i ) (without any stop codon), defined as the best possible214

antibody-coding sequence that can bind to the present antigen. When antigens evolve from215

one round to the next, the target should also change. The model has many parameters216

related to the immune system properties (Table 1), which we define as we progress.217

Cell Properties. In the AM model, each particle i represents a B cell with the218

property vector xi = (gi, si, ti, gi/ai, giai). The binary property gi = 1 indicates whether a219

cell i has entered a germinal center of a lymph node, in which case we call it an activated B220

cell (or “activated cell” for short); gi = 0 indicates a memory B cell outside lymph nodes,221

which we call a “memory cell” for simplicity. The si property encodes the DNA sequence222

of B cell i coding for the variable region of the heavy chain with a fixed length 3L (for the223

sake of simplicity, we assume the faith of the cell depends only on the variable region of224

the heavy chain). The other properties are derived from the first two properties, but we225

keep them as part of xi because they allow us to define ΛE(xi,S) functions as polynomials226

of saved properties (Table 2); this, in turns, enables the use of our fast sampling algorithm.227

Property ti denotes the rate of transformation. For memory cells, ti is the rate at which228

the memory cell activates and becomes an activated cell in response to an antigen. For229

activated cells, ti is the rate at which the activated cells mature into memory cells. Thus,230

transformations, which only happen during the infected stage, create a child cell j with231

property gj = 1− gi and sj = si. Property ai denotes the strength of affinity binding of232

the Ig receptor of the cell i to the antigen. We let σ =
∑

i∈S giai denote the fifth element of233
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Table 1. Parameters of the AM model

Parameter name Default value Parameter description

λ′d
1⁄402 Rate (inverse life time) of cell death for memory cells (days−1)

λb 6 Rate of cell division for activated B cells (days−1)
λd 104 Rate of cell death during dormant stage (day−1).
λt 0.01 Rate of activation of a typical responsive memory cell
ρp 1/100 Portion of activated B cells that turn into plasma cells per cell division
ρm 1/4 Portion of activated B cells that turn into memory B cells per cell division

µ 5× 10−4 Rate of SHMs per base pair per generation
K5 See appendix Empirical 5-mer mutation frequencies per generation
L 125 Length of the amino acid antibody-coding sequence (assuming the length is fixed)

CDR {31 . . . 35, 50 . . . 65, Positions of the three CDR regions (amino acid coordinates)
98 . . . 114}

δ(i, j) Table S1 BLOSUM matrix defined on a pair of amino-acids i and j
∆0 -120 BLOSUM score of a typical responsive memory B cell antibody-coding sequence to target
∆′0 -75 BLOSUM score of activated B cell antibody-coding sequences that leads to cure
wf 1/3 BLOSUM score multiplier of non-CDR positions (i.e., FRs)
κ 2 BLOSUM score ratio of antibody-coding sequences to antigen sequences
A 0.1 Selective pressure: factor connecting sequence similarity and log binding affinity
ρa 1/2 Factor connecting log affinity and B cell activation (sensitivity to affinity level A)
C 105 Carrying capacity limited by total resources (see text for meaning)

M CeA∆′
0 The threshold of the sum of affinity for a stage change

r 56 Rounds of viral infections

Ψ̂ See appendix Nucleotide sequence of the initial B cell
ζ1, . . . , ζr See appendix Target amino acid sequences for viral infections in each round
η1, . . . ,ηr See appendix Flu sequences assumed as antigens in the simulation
t1, . . . , tr See appendix Starting time of each infected stage (day)

Table 2. Birth, death, and transformation rates. See Table S3 for polynomial forms.

Rate functions Infected stage Dormant stage

ΛB(xi,S) giλb + (1− gi)× 0 0

ΛD(xi,S) gi(
λb(1−ρp−ρm)

C
σ
ai

+ ρpλb) + (1− gi)λ′d giλd + (1− gi)λ′d
ΛT (xi,S) ti = giρmλb + e−ρaA∆0aρai (1− gi) 0

vector S; thus, σ is the total affinity of activated cells and ai/σ is the fraction of total234

affinity assigned to a cell. We will show how ti and ai are set based on the sequence of i235

and the target. The fourth and fifth properties are simple functions of other properties.236

Sequence evolution. Each cell has a fixed sequence, and mutations occur at the237

time of a cell birth, which happens only for activated cells in the infected stage. After a238

birth event for cell i, properties sj and sk of child cells j and k are chosen independently239

and identically at random. While any sequence evolution model could be incorporated in240

the DIMSIM framework, we describe below a 5-mer-based model used in these analyses.241
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Determining sequence affinity. Affinity ai is only defined and used during the

infected stage where the target is available (it is undefined during the dormant stage). We

define the affinity ai of a cell i as a function of its sequence si and the target sequence ζ.

The closer the sequence to the target, the higher its affinity should be. Exact relationships

between the sequences and affinity are not know and cannot be easily modelled. For the

purpose of benchmarking, any reasonable function should suffice. Assuming fζ(si) gives a

measure of closeness of the sequence to the target in the affinity space, we set

ai
.
= eAfζ(si)

where A is a constant factor used to calibrate the selective pressure (see below). We will242

describe our particular choice of function fζ(si) using BLOSUM similarity below.243

Rates. The event rates are functions of cell properties and the stage (Table 2).244

During the dormant stage, there are no births or transformations; cell only die with a very245

high uniform rate λd for activated cells and a low uniform rate λ′d for memory cells.246

During the infected stage, we adjust death rates of cells based on their affinities but247

keep the birth rates constant; this interplay is used to simulate the selective pressure. An248

activated cell can undergo cell division at a uniform rate λb, differentiate into a memory249

cell at a uniform rate ti = ρmλb or a plasma-like cell at a uniform rate ρpλb driven by250

helper T cells, and undergo apoptosis (i.e., die) driven by follicular dendritic cells (FDCs).251

We do not model plasma-like cells; instead, both differentiation into plasma-like cells and252

apoptosis are treated as death events (Figure 2a). The rate of apoptosis of activated cell i253

is inversely proportional to the amount of resources (antigens and FDCs) to which cell i254

has access when competing against other activated cells. Thus, the proportion of resources255

available to cell i is modelled by the affinity proportion ai/σ (i.e., the affinity of the cell to256

the antigen normalized by the current sum of the affinity of all activated cells). This257

affinity proportion is impacted by the choice of parameter A. The lower the A, the more258

uniform these proportions become, as expected with low selective pressure; conversely, as259

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.17.302505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.302505
http://creativecommons.org/licenses/by-nc-nd/4.0/


13

(a)

Activated Memory

Plasma-

like

Apoptosis

Transformation

Birth

(b)

0.0 0.1 0.2
Selective Pressure (A)

0.0

0.2

0.4

0.6

0.8

1.0

Af
fin

ity
 P

ro
po

rti
on

0.6 0.8
Affinity Proportion

1.0

1.5

2.0

2.5

3.0

3.5
De

at
h-

to
-B

irt
h 

Ra
tio

0.0 0.5 1.0
Population Size

0.5

1.0

1.5

2.0

2.5

De
at

h-
to

-B
irt

h 
Ra

tio
Fig. 2. (a) States of cells and transitions during infected stage. Only states colored blue are modeled. Transitions to
states colored orange are treated as death events. (b) Consider a population of activated B cells where all cells have
one of two sequences: L (Blue) or H (Orange). Let ρ be the ratio of affinity of H-type cells to L-type cells, and let
the affinity proportion be the total affinity of H (or L) cells over the affinity of all cells (i.e., ρ/1 + ρ for H and 1/1 + ρ

for L). Left: The affinity proportion as a function of the selective pressure A when the sequence closeness to the
target is fζ(L) = −50 and fζ(H) = −10,−20,−30, or −40 (respectively: dotted, dashed/dotted, dashed, or solid).
Middle: the ratio of death rate to birth rate as a function of affinity proportion of H cells, fixing the population size
to the carrying capacity. Right: ratio of death rate to birth rate as a function of the population size normalized by
the carrying capacity, fixing ρ = 2. All other parameters set to defaults (Table 1). The selective pressure A and the
level of binding control the portion of affinity taken up by better sequences (left), which controls the growth of the
cell type (middle), but the growth rate is also a function of the total population size (right).

A increases, ai/σ values further diverge between low affinity and high affinity cells (Fig. 2b).260

Thus, A can be used to control the strength of the selective pressure.261

The memory cells undergo apoptosis at a uniform rate λ′d. They can also activate

by helper T cells to enter the germinal center and become an activated cell at the rate ti

set to:

ti
.
= λte

ρaA(∆ζ(ξi)−∆0) = λte
−ρaA∆0aρai

Note that activation rate of memory cells increases monotonically with their affinity to the262

target, according to aρai where ρa, set by default to 1/2, is the sensitivity of B cell activation263

to affinity. This dependency on affinity is to model the increased propensity of the memory264
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cells to activate when presented by helper T cells with familiar antigen. The choice of the265

default ρa = 1/2 is motivated by the fact that although memory cells with higher binding266

strengths to the antigen are more likely to be activated, the interaction between a helper T267

cell and a memory B cell is an one-time event, and is thus less sensitive to binding strength.268

As an example, consider a system with two cell types: L and H, each type with its269

own unique sequence (Figure 2b). Assume all cells are activated cells, the number of L and270

H are the same at one point in time, and H cells have a higher affinity than L cells by a271

factor of ρ. For ease of exposition, here, we include mutation rate as part of the death rate272

because mutation events also decrease cell count. Let’s assume the total number of cells273

equals the carrying capacity C. If L and H have the same affinity (i.e., ρ = 1), then the274

birth and death rates are identical for all cells. As the affinity of H cells is increased (i.e.,275

ρ > 1), the death rate of L cells increases linearly whereas the death rate of H cells276

decreases. Thus, H cells will have higher birth rates than death, will be selected for, and277

will expand. If we fix ρ = 2 and increase the population size, the death rates of both L and278

H cells increase but at different rates. When the population size is small compared to C,279

both types of cells have more birth than death. After a threshold (C/3 in this example), the280

death rate of L type surpasses its birth rate (thus, its population starts to shrink) while281

the population of H cells continues to grow. However, as the population size increases (2C/3282

here), both sets of cells start to shrink (i.e., higher death rates than birth).283

Default Models Choices284

Several steps of our simulations are flexible and can be changed by the user to285

provide reasonable models. We next describe the particular choices we made in our286

experiments below, noting that these choices can be changed.287

Stopping criteria. The system enters dormant stage when antigens are neutralized288

by the antibodies. A simple way to define neutralization is to switch the stage when the289
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total affinity of antibodies produced by plasma-like cells reach a certain threshold; here, we290

switch when the sum of affinities of activated cells (σ) reaches a predefined constant M .291

Sequence evolution. In our experiments, we use an empirical 5-mer-based model

inspired by Yaari et al. (2013). Let s
(p)
i be the nucleotide on the p-th position of nucleotide

sequence of cell i. Each s
(p)
j or s

(p)
k is independently set to s ∈ {A,C,G, T} with probability:

Pr(s
(p)
j = s) = Pr(s

(p)
k = s) = f(s, s

(p−2)
i , s

(p−1)
i , s

(p)
i , s

(p+1)
i , s

(p+2)
i )

where f : {A,C,G, T}6 −→ [0, 1] denotes an empirically determined 5-mer frequency model292

based on the model of Yaari et al. (2013) and recomputed based on newer datasets293

including non-synonymous mutations (see details in the supplementary material).294

Modelling affinity. While various methods can be imagined for measuring295

closeness of the sequence to the target, we used a simple approach: measuring sequence296

similarity according to the BLOSUM matrix and appropriate scaling of numbers. In this297

formulation, we assume each amino-acid position contributes to the binding strength to298

the target and the sanity of the structure of Ig-receptor independently. Thus, we model299

affinity proportionally to the product of the effect of each amino-acid position. This simple300

model completely ignores the 3D structure of proteins, but we argue, is sufficient for the301

purpose of creating benchmarking datasets.302

When si includes a stop codon, we simply set ai = 0. Otherwise, let303

ξ(si) = (ξ
(1)
i , . . . ., ξ

(L)
i ) denote the antibody-coding amino-acid sequence of cell i. We define304

the BLOSUM score of an amino acid sequence ξ as305

∆ζ(ξ) =
∑

p∈CDR

(
δ(ξ(p), ζ(p))− δ(ζ(p), ζ(p))

)
+wf

∑
p∈{1...L}\CDR

(
δ(ξ(p), ζ(p))− δ(ζ(p), ζ(p))

)
(2)

where δ(., .) gives the BLOSUM score between two amino acids (Table S1), and wf is a306

constant used to calibrate the importance of CDRs versus FRs in the affinity and307

transformation processes. We then simply set fζ(si) = ∆ζ(ξ(si)).308
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Choosing targets. Several rounds of target sequences are assumed to be provided309

as input, and the extent of the change in targets across rounds impacts the patterns of the310

immune response and hence the shape of the clonal trees that result. In our experiments,311

to define targets across rounds, we seek a set of sequences with an evolutionary trajectory312

that reflects the evolutionary history of a set of real antigen (e.g., influenza virus). Let the313

known amino-acid sequences of an antigen sampled through time (flu sequence over314

seasons) be denoted by η1, . . . ,ηr, and let each sequence have the fixed length Lη. To315

choose the targets, we first select an arbitrary naive B cell, here chosen from datasets of316

Ellebedy et al. (2016), and set Ψ̂ to antibody-coding nucleotide sequence of the variable317

region of its heavy chain. Then, we simply set ζ1 to the amino-acid translation of Ψ̂. In318

other words, in the first round, we use the naive cell as the target, and therefore, the first319

couple of rounds of the simulation should be treated as dummy rounds and should be320

discarded. Let κ be a positive constant that controls the rate of change in the target321

relative to the rate of change in the antigen sequences. To define the remaining targets, we322

seek to find the set of r − 1 sequences that minimize:323

∑
i,j∈[r]

∣∣∣κ ∑
p∈CDR

δ(ζ
(p)
i , ζ

(p)
i )− δ(ζ(p)

i , ζ
(p)
j )−

Lη∑
q=1

(
δ(η

(q)
i , η

(q)
i )− δ(η(q)

i , η
(q)
j )
)∣∣∣ . (3)

This score simply penalizes a set of targets by the divergence between pairwise sequence324

distances of all target sequences across all rounds versus pairwise sequence distances of all325

antigen sequences over the same rounds. To account for the presence of conserved regions,326

we arbitrarily chose to keep all the non-CDR regions invariable in all target sequences (note327

that the chose of invariable sites can be easily changed). Thus, if the score is minimized,328

the distance between two target sequences from two rounds would become similar to the329

distances of antigen sequences, scaled by a factor of κ. We approach this NP-hard problem330

using a greedy search heuristic (Algorithm S3). The heuristic starts with arbitrary331

ζ2, . . . , ζr and replaces one symbol of one sequence at a time to reduce the objective332

function; it repeats until reaching a local minimum where no such replacement is possible.333
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Material and Methods334

Flu simulations335

Simulation settings. We performed several simulations of a series of r = 56 rounds336

of flu infections, using sequences of hemagglutinin (HA) protein. HA found on the surface337

of the influenza viruses is the primary target of neutralizing antibodies. High mutation rate338

of influenza genome changes the sequence of HA and allows the virus to escape from the339

immune pressure thus making flu recurring seasonal infection. The NCBI Influenza Virus340

Resource (Bao et al., 2008) contains 961 HA sequences from influenza B virus collected341

around the world. Each HA sequence is labeled with a year and a location. For simulation342

purposes, we extracted 59 HA sequences corresponding to flu infections in Hong Kong and343

selected 56 out of 59 HA sequences that have the same length (584 aa). The selected HA344

sequences were detected in Hong Kong from 1999 to 2010.345

We used the default settings for the various parameters of Table 1, and used the346

approach described earlier to choose the target amino-acid sequences. Each round347

corresponds to one season, starts at the infected stage with a given target sequence ζl,348

which ends when σ = M . At that point, we assume the infection is overcome and the349

system switches to dormant, where we stay until the next round starts (times of flu350

outbreaks are known in our dataset). When the r = 56 rounds of infections end, we sample351

ς = 200 antibody-coding nucleotide sequences Ψ1, . . . ,Ψς from cells in the system (i.e.,352

from the round r) and built their clonal tree.353

Table 3. Experiment setup

Experiment Controlled parameters Parameter values Parameter units

Selective A× µ (2, 2), (2, 1), (2, 1/2), (2, 1/4), (2, 1/8), (1, 2), A : 10−1,
pressure vs. (1, 1), (1, 1/2), (1, 1/4), (1, 1/8), (1/2, 1), (1/2, 1/2), µ : 10−3

rate of (1/2, 1/4), (1/2, 1/8), (1/4, 1), (1/4, 1/2),
hypermutation (1/4, 1/4), (1/4, 1/8), (1/8, 1/4), (1/8, 1/8)

Framework weight wf 2, 1, 1/2, 1/3, 1/5 1

Germinal center size C 4, 2, 1, 1/2, 1/4, 1/8 105

Memory cell life 1/λ′
d 16, 8, 4, 2, 1, 1/2 year (365 days)
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Experiments. To benchmark reconstruction tools, we set up four experiments,354

varying one or two parameters in each experiment (Table 3) and setting the remaining ones355

to default values (Table 1). The central experiment contains 19 conditions, changing the356

selective pressure (A) and the rate of hypermutation (µ). We vary A from 1/8× of default357

value (0.1) to 2× and vary µ s from 1.25× 10−4 to 2× 10−3 per base-pair per generation.358

In six combinations, the selective pressure is not high enough to overcome random359

mutations; in these cases, the affinity values do not increase and as a result, the carrying360

capacity is never reached. Thus, we exclude these conditions. We also study three other361

parameters. We vary the weight multiplier of FRs (wf ) from 1/5 to 2. We vary the carrying362

capacity (C), which is the germinal center size or the amount of antigens FDCs hold in the363

context of B cell maturation, from 12500 to 400000. The value of this parameter can364

impact the speed of novel mutations arising and may change the properties of simulated365

trees. We also vary the mean life-time of memory cells from 0.5 year to 16 years, to study366

the impact of the extent of memory cell activation during recurrent infections.367

Methods of Clonal Lineage Reconstruction368

MST(-like) methods. We implemented a simple minimum spanning tree method in369

the following way. We let the vertices of the graph to correspond to Ψ1, . . . ,Ψς as well as370

Ψ̂. For each pair of vertices, we let the distance between them to be the Hamming distance371

between corresponding nucleotide distance. We then find the minimum spanning tree372

(MST) of the graph and root the resulting tree at the vertex corresponding to Ψ̂.373

Besides MST, we also ran reconstruction using Immunitree Sok et al. (2013b), a374

tool that clusters antibody-coding sequences into lineages and builds clonal trees at the375

same time by optimizing a minimum spanning tree and Steiner tree-like problem. We took376

as input Ψ1, . . . ,Ψς and used Immunitree to build a set of clonal trees. We then added377

vertex Ψ̂ as the root and let the roots of the clonal trees to be immediate children of Ψ̂.378
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Brilia clusters antibody-coding sequences into lineages and builds clonal trees at379

the same time. We took as input Ψ1, . . . ,Ψς and used Brilia to build a set of clonal trees.380

We then added vertex Ψ̂ as the root and added roots of the clonal trees as children of Ψ̂.381

Phylogenetic methods. We tested ML based phylogenetic reconstruction using on382

RAxML under GTR model and IgPhyML, a ML method tuned specifically for immune383

cells. For RAxML, we took as input Ψ1, . . . ,Ψς as well as Ψ̂ to obtain an unrooted384

phylogenetic tree and reroot at Ψ̂. For IgPhyML, we took as input Ψ1, . . . ,Ψς and provided385

Ψ̂ as root to obtain a rooted phylogenetic tree. Both methods produce fully binary trees.386

Zero-aware phylogenetic methods. Since the length of each antibody-coding387

nucleotide sequence 3L < 400, it is reasonable to assume that both ends of any branch388

with length less than 10−4 would correspond to the same sequence (if it was sampled).389

Therefore, we slightly modified RAxML and IgPhyML by contracting branches of length390

less than 10−4 and we call the new methods RAxML* and IgPhyML* respectively.391

Evaluation Framework392

Notations. The simulated and reconstructed histories of samples Ψ1, . . . ,Ψς are393

represented as trees where samples are uniquely labeled on some nodes and the remaining394

nodes are left unlabelled. For a rooted tree T , we let LT be the set of leaves and IT be the395

set of internal nodes. For each node v of T , let C(v) be the set of its children. We define396

φ(v) as the set of node labels of labeled nodes below v. Also, for any set of nodes V , we397

define φ(V ) = {φ(v) : φ(v) 6= ∅, v ∈ V } and φ(T ) = φ(IT ∪ LT ).398

Characterizing a clonal tree. We define a set of metrics for characterizing399

properties of simulated trees in terms of their topology, branch length, and distribution of400

labelled nodes (Table 4). Some of these metrics are motivated by similar ones on401

phylogenetic trees but are adjusted to allow sampled internal nodes and multifurcations.402
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Table 4. Properties of a clonal tree T .

Property Definition

Internal sample (%) The percentage of labeled nodes in set IT .

Bifurcation index Defined as |IT |
|LT |−1

equals 1 for bifurcating trees and ≈ 0 for the star tree.

Sample depth The average depth of labeled nodes in T .
Balance (cherry) Half the sum over all leaves of the fraction of their siblings that are also leaves.∑

v∈IT

(
|C(v)∩LT |

2

)
/(|C(v)| − 1) where 0/0

.
= 1/2

Single mutation branches (%) The percentage of branches with length one.
Accumulated mutations (avg) The average depth (path length to the root) of all labeled nodes of tree T .
Accumulated mutations (sum) The summation of branch lengths of all branches of tree T .
Mutations per branch The average branch length of tree T .

The last four metrics require branch length (in mutation unit) on the tree.

Table 5. Metrics for comparing the reference simulated tree R to estimated tree E.

Metric AB Definition

False Discovery Rate FDR |φ(E) \ φ(R)|/|φ(E)|

FDR no singletons FDR* |φ(IE) \ φ(IR)|/|φ(IE)|

False Negative Rate FNR |φ(R) \ φ(E)|/|φ(R)|

FNR no singletons FNR* |φ(IR) \ φ(IE)|/|φ(IR)|

RF cluster distance RF |φ(R) ∪ φ(E)| − |φ(R) ∩ φ(E)|
RF cluster distance no singletons RF∗ |φ(IR) ∪ φ(IE)| − |φ(IR) ∩ φ(IE)|
Triplet discordance TD |{Φ : φ(R) � Φ 6= φ(E) � Φ,Φ ⊂ {Ψ1, . . . ,Ψς}, |Φ| = 3}|
Triplet edit distance TED

∑
Φ⊂{Ψ1,...,Ψς},|Φ|=3 |(φ(R) � Φ) ∪ (φ(E) � Φ)| − |(φ(R) � Φ) ∩ (φ(E) � Φ)|

MRCA Discordance MD
∑
i,j∈[ς] |UR(i, j)−UE(i, j)|

Patristic Distance PD 1/2
∑
i,j∈[ς] |UR(i, j) +UR(j, i)−UE(i, j)−UE(j, i)|

For a set of nodes V and a set of labels Φ, φ(V ) � Φ = {Φ′ ∩Φ : Φ′ ∩Φ 6= ∅,Φ′ ∈ φ(V )}. For labeled nodes Ψi and
Ψj , let UT (i, j) be the number of edges between the node Ψi in T and the the MRCA of Ψi and Ψj in T .

For example, to measure tree balance, we extend the definition of the number of cherries403

but allow modifications (our definition reduces to the traditional definition when the tree is404

binary). Other metrics (e.g., percent internal samples) are only meaningful for clonal trees405

and are meant to quantify the deviation of a clonal tree from phylogenetic trees.406

Comparing trees. Many metrics exist for comparing phylogenetic trees. However,407

in the presence of polytomies and sampled ancestral nodes, the classic metrics need to be408

amended. Here, we generalize several existing metrics and introduce new ones. All metrics409

are defined over a simulated tree R and a reconstructed tree E, both induced down to410

include all labeled nodes (i.e., removing unlabelled nodes if less than two of their children411

have any labelled descendants). See Table 5 for precise definitions of metrics.412
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RF-related. We define False Discovery Rate (FDR) as the percentage of clusters in E that413

are not in R, False Negative Rate (FNR) as the percentage of clusters in R that are not in414

E, and Robinson-Foulds cluster distance (RF) as the number of clusters in either but not415

both trees. Note that unlike traditional Robinson and Foulds (1981) distance, here,416

internal nodes can also have labels, and we define the metric based on clusters in a rooted417

tree instead of bipartitions in an unrooted tree. Moreover, the singleton clusters are trivial418

when all labeled nodes are leaves; however, when there are labeled internal nodes,419

including or excluding singletons can make a difference. Thus, we also define FPR FNR,420

and RF distance when excluding singleton clusters.421

Triplet-based. We define triplet discordance (TD) as the number of trees induced by422

triples of labeled nodes (leaf or internal) where the topology in the simulated tree and the423

reconstructed tree differ. We define the triplet edit distance (TED) as the summation over424

all triplets of the labeled nodes of cluster RF distance between the two trees induced to the425

triplet. Intuitively, it is the sum of the minimum number of branch contractions and426

resolutions required to covert a triplet in R to a triplet in E, summed over all triplet.427

Path discordance. Patristic discordance for a pair of labelled nodes Ψi and Ψj is defined as428

the difference between the number of branches in the path between Ψi and Ψj on two trees429

R and E. The patristic discordance (PD) between R and E is the summation of the430

Patristic discordance over all pairs of labelled nodes (intern or leaf). We define the MRCA431

discordance for an ordered pair of labelled nodes Ψi and Ψj as the difference between the432

number of branches in the path between Ψi and its MRCA with Ψj when computed from433

trees R and E. The MRCA discordance (MD) between the two trees is the summation of434

MRCA discordance over all ordered pairs of labeled nodes.435

The FNR and FDR metrics are already normalized. To normalize other metrics, for436

each experimental condition, we create a control tree by randomly permuting labels of the437

true tree. We then normalize scores (other than FNR and FDR) of a reconstruction438
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method by dividing it by the average score of replicates of the control method.439

Computing FNR, FDR, and RF metrics takes O(ς) time with hashing and440

randomization (algorithm S4). Triplet-based metric can be easily computed in O(ς3) time441

with simple preprocessing and iterating over all triplets. Both PD and MD take O(ς2) time442

with preprocessing that computes distances to MRCAs.443

Results444

Demonstration of the simulation process445

Visualizing one replicate of simulation under default condition, we see patterns of446

average affinity and the number of activated and memory cells that rise and fall as time447

progress during the infected stage (Fig. 3a). During each round of infection, the affinity448

first decreases and then increases as long as the duration of the infection is long enough.449

This pattern agrees with biological expectations: when the number of activated cells is low450

and the selective pressure is low, a mutation is likely to lead to reduced affinity, whereas,451

when the number of activated cells increases, the selective pressure begins to increase and452

select for higher affinity. The duration of infections, the mean affinity at the end, and the453

total number of cells also varies widely across different seasons. When the affinity at the454

start of a season is low, the duration of infection is longer and more activated cells and455

memory cells are generated (Figs. 3a and S1a). This pattern is also consistent with the456

biological expectation: when the immune system already has high affinity to the antigen, it457

can eradicate the antigen quickly and without much need for further evolution. To further458

quantify the pattern, we define the novelty of each target ζi as the negation of the459

maximum BLOSUM score between that target and any previous target: −maxj<i{∆ζi(ζj)}.460

We observe that as novelty of the target increases, the average affinity of activated cells at461

the end of the infection tends to decrease (R2 = 0.242, p = 2.5× 10−4), whereas, the462

number of activated cells at the end of the infection (R2 = 0.248, p = 2.0× 10−4) and the463

duration of infection (R2 = 0.288, p = 4.8× 10−5) both tend to increase (Fig. 3b).464
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Fig. 3. a) Average affinity of activated cells to current infection target (log scale), the number of activated cells, and
the number of memory cells by total time in infected stage across the last 51 stages of infection (colors) each
corresponding to one flu season (discarding the first 5 rounds and dormant stages). b) Impact of the novelty of the
antigen on the outcome of the infection across the 56 seasons simulated. The novelty of seasons is measured by
−maxj<i{∆ζi(ζj)} and is ranked from less novel to more novel on the x axis. Y-axis shows ranking (from low to
high) of average affinity of activated cells to current infection target (R2 = 0.242, p = 2.5× 10−4) at the end of the
infection, the number of activated cells (R2 = 0.248, p = 2.0× 10−4) at the end of the infection, the duration of
infection (R2 = 0.288, p = 4.8× 10−5), and the change in memory cell count (R2 = 0.264, p = 1.2× 10−4) from the
start to the end of the infection. c) Clonal tree of memory cells sampled from one simulation under default
condition after all 56 seasons. Nodes are colored by seasons when the memory cells emerge (grey for season 1
through 46; as part (a) for others). Here, 17 internal nodes are sampled and are indicated as circles. Edge weights
denote the number of mutations of sequences denoted by adjacent nodes. See Figure S1 for more.

Memory cells counts fluctuate. Each season leads to a buildup in memory cells from465

the start to the end of the infection, and the amount of buildup depends on the duration466

and correlates with novelty (R2 = 0.264, p = 1.2× 10−4). However, the total number of467

memory cells reduces between seasons due to cell deaths (Fig. S1c) and changes across468

seasons. In particular, a string of short-lived infections and large time spans between the469

flu seasons between 2002 and 2008 gradually lead to a depletion of the memory cells, which470

are then built up again in the subsequent seasons (Fig. S1c).471
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Fig. 4. (a) False Discovery Rate (FDR) and False Negatie Rate (FNR) of various reconstruction methods on
simulations under default conditions; (b) Normalized Robinson-Foulds cluster distance (RF), MRCA discordance
(MD), triplet edit distance (TED), and triplet discordance (TD). (c) Properties of the estimated and true trees. For
results excluding singeltons and the PD metric, see Fig. S2.

Benchmarking reconstruction methods472

Default Parameters. Under default parameters, over all evaluation metrics,473

zero-aware Phylogenetic methods (IgPhyML* and RAxML*) clearly have the best474

accuracy in reconstructing the lineage history (Fig. 4). The normal Phylogenetic methods475

(IgPhyML and RAxML), which produce fully binary trees with no samples at leaves, have476

the lowest FNR error, retrieving more than 90% of the correct clusters. However, their477

precision is predictably low: close to 35% of their clusters are incorrect. Interestingly,478

zero-aware phylogenetic methods have only a slight increase in FN rate (< 2% on average)479

but enjoy a dramatic improvement in precision. By simply contracting super-short480

branches, the FDR error reduces to less than 15%, which is better than all other methods.481

Similarly, normal phylogenetic methods perform poorly according to RF, PD, and MD482

metrics, which emphasize false positives, but perform well (but not as well as the483
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zero-aware versions) according to triplet-based metrics (TED and TD), which penalize484

false negatives more than false positives. Among the two phylogenetic reconstruction485

methods, RAxML is slightly more accurate than IgPhyML.486

The MST-like methods have low FDR, coming close to zero-aware phylogeny-aware487

methods, but also have much higher FNR (25% or more). Immunitree (which uses Steiner488

trees) is substantially better than a simple MST in terms of FNR, but not in terms of489

FDR or triplet-based measures. These patterns largely follow the expectations: more490

resolved trees have lower FNRs whereas less resolved trees have lower FDRs. However,491

zero-aware phylogeny methods are able to obtain the best FDR and FNR and dominate492

other methods. BRILIA consistently has high error in our analyses. These patterns remain493

largely similar (but are magnified) when singletons are removed from the consideration494

(Fig. S2). The main exception is that when singletons are excluded, Immunitree is no495

longer the second best method according to the RF distance.496

We next compare properties of the inferred trees and true trees (Figure 4c).497

BRILIA and MST put far too many labels at internal nodes (≈35% instead of ≈8%), while498

Immunitree and zero-aware phylogenetic trees are very close to the true tree in terms of499

percent internal samples. BRILIA and Immunitree over-estimate the tree balance, while500

phylogenetic trees under-estimate balance, especially before contracting low support501

branches. Conversely, phylogenetic methods over-estimate depth of samples while BRILIA,502

MST, and Immunitree underestimate the depth; zero-aware phylogenetic methods,503

however, produce trees that are very close to the true tree in sample depth. Phylogenetic504

methods, by definition, overestimate bifurcation index as 1; this overestimation is505

dramatically reduced but not fully eliminated by zero-aware phylogenetic methods and506

Immunitree. MST is quite close to the correct levels of bifurcation.507

Varying selective pressure. The reconstructions methods are all impacted as508

selective pressure (A) changes, but some methods are more sensitive than others, and they509

are affected differently (Figs. 5ab). Zero-aware phylogenetic methods have the best510
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Fig. 5. Impact of selective pressure A (a-c) and mutation rate µ (d-f) on tree inference error (a,b,d,e) and tree
properties (c,f). We measure tree error by FDR and FNR (a,d), Robinson-Foulds cluster distance (RF), MRCA
discorance (MD), triplet edit distance (TED), and triplet discordance (TD) (b,e). We show properties of true
(black) and reconstructed trees (c,g). µ = 5× 10−5 in (a-c) and A = 0.1 in (d-f), which are all default values.
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accuracy across values of A. The ranking among other methods depends on the selective511

pressure such that phylogenetic methods become the worst when A is high and become the512

best when A is low. As A increases, error tends to increase for phylogenetic methods under513

all evaluation metrics except for the FNR; for example, the FDR of RAxML increases from514

27% at the 1/4x level to 42% at the 2x level. In contrast, the error of Immunitree, MST,515

and BRILIA reduces with increased A according to FNR and RF. Zero-aware phylogenetic516

methods are relatively robust to the A and their error rates change only slightly across517

conditions. When singletons are removed from the metrics of comparison, patterns remain518

similar, though the impact of selective pressure becomes less pronounced (Fig. S3a).519

The reason behind these patterns becomes more apparent once we consider changes520

in tree properties (Figs. 5c). As A increases, the fraction of internal samples tends to521

increase. This pattern can be explained: when selective pressure is high, cells with low522

affinity die off quickly, which results in shorter branch lengths. Since phylogenetic methods523

cannot put sequences on internal nodes, they have reduced accuracy. In contrast,524

IgPhyML*, RAxML*, and Immunitree are able to successfully assign sequences to internal525

branches; as a result, their percentage of internal samples match those of the true trees526

(Figs. 5c). Similarly, with increased A, the bifurcation index of the simulated tree tends to527

decrease, a pattern that is observed also in reconstructed trees from IgPhyML*, RAxML*,528

Immunitree, MST, and BRILIA. Again, phylogenetic trees, which produce binary trees, are529

unable to capture these patterns. As A increases, depth of sampled nodes of the simulated530

tree tends to decrease, a pattern matched by IgPhyML* and RAxML* but not other531

methods. Finally, when A is high, trees are shorter (i.e., accumulate less mutations) and532

more branches are single mutation (Fig. S4), both of which make phylogenetic inference533

more difficult. The reduced levels of depth, total change, and bifurcation make sense:534

higher pressure should result in fewer mutations needed to reach M because cells with535

unfavorable mutations are less likely to survive; this would produce shorter trees.536
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Fig. 6. For varying levels of selective pressure (A), rate of hypermutation (µ), and all reconstruction methods
except BRILIA, we show tree error measured by the triplet edit distance TED (left) and properties of the true tree
(right). When the mutation rate is too high and selection pressure is to low, the simulation never ends, meaning
that the total affinity needed to overcome the antigen is never reached; these conditions are missing from the figure.
For other evaluation criteria see S5.

Varying rate of hypermutation. As the hypermutation rate (µ) increases, error537

decreases for normal Phylogenetic methods (IgPhyML and RAxML) according to most538

metrics but stays relatively stable for zero-aware methods (Fig. 5de). Increasing µ results539

in simulated trees that are marginally less balanced, are more bifurcating, have fewer540

internal node samples, and have a higher depth for sampled nodes (Fig. 5f). Thus,541

increasing µ generates trees more similar to what traditional phylogenetic methods542

assume. Zero-aware phylogenetic methods and Immunitree designate the right percentage543

of nodes as internal, but both are slightly more bifurcating than true trees (Fig. 5f).544

Overall, zero-aware phylogenetic methods are the most accurate across all values of µ.545

Interplay between selective pressure and mutation rate. When we vary both A and546

µ, we observe that increasing mutation rate has similar effects on the error and tree547

properties as decreasing the selective pressure (Fig. 6). Reassuringly, error patterns548

observed when fixing one variable and changing the other are consistent with patterns549

when both variables are changed (Figs. 6 and S5). The most difficult condition for550

phylogenetic methods is low mutation rate and high selective pressure, where close to 70%551

of the branches include only a single mutation and bifurcation index is only 43%. However,552
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zero-aware methods are impacted less in these conditions, and are in fact improved553

according to the RF metric (Fig. S5). In addition, we observe that antibody clonal trees554

become more phylogenetic-like – that is, more bifurcating (max: 0.74) and fewer internal555

samples (min: 20%) – with µ = 10−3 and A = 1/4x. Increasing the mutation rate or556

decreasing the selective pressure beyond these values leads to combinations where the557

infection could not be overcome.558

Other parameters. Beyond the main two parameters, we also studied changing six559

secondary parameters, most of which had relatively little impact on the results (Fig 7). As560

the weight of FRs regions in computing affinity (wf ) increases, error tends to slightly561

increase for all methods under many evaluation metrics (Fig. S6). This pattern can be562

related to the slight increase in the number of single branch mutations and the reduction563

in the total number of substitutions across the tree. As germinal center capacity (C)564

increases, error increases or decreases slightly, depending on what measure is examined565

(Fig. S7). Increasing C tends to reduce internal samples of the simulated tree and single566

mutation branch and tends to increase mutations per branch. As memory cell life-time567

(1/λ′d) increases, error tends to increase for phylogenetic methods (Fig. S8), including568

IgPhyML* and RAxML*, which nevertheless continue to be the best methods. Plasma569

cells conversion rate (ρp) (Fig. S9), rate of change in antibody target compared to antigen570

change (κ) (Fig. S10), and the threshold of total affinity for neutralization and stage571

change (M) (Fig. S11) have small and inconsistent impacts on tree inference error. In all572

conditions examined, IgPhyML* and RAxML* have the best accuracy (Fig 7).573

Discussion574

Implications for reconstructing antibody evolution575

Our study partially confirms that phylogenetic methods need to change for inferring576

antibody clonal trees with high accuracy. Depending on the simulation condition, 1% to577
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Fig. 7. a) Triplet edit distances and b) RF cluster distances by selective pressure on framework region, carrying
capacity, mean-life of memory cells, plasma cell conversion rate, antibody-flu blosum ratio (MARatio), stage change
threshold (M).

20% of sampled sequences belonged to internal nodes, and the true trees are only 60% to578

70% bifurcating. We observed that results of phylogenetic inference using ML, taken at579

face value, can have low accuracy. However, we also showed that ML phylogenetic580

methods, with a very simple adjustment, can outperform the alternative methods based on581

Steiner trees and spanning trees. The simple adjustment we applied was to contract582

branches with length lower than a fixed constant. We selected this constant using a583

rule-of-thumb based on the length of the sequences; however, statistical tests of whether a584

zero branch length null hypothesis can be rejected exist (Jackman et al., 1999; Walsh585

et al., 1999; Goldman et al., 2000) and are fast (Anisimova et al., 2006) and could be used586

in lieu of our simple heuristic. Moreover, our work implies that phylogenetic methods that587

try to naturally model zero branch length (e.g., Lewis et al., 2005) are also promising. In588

particular, the adaptive LASSO method of Zhang et al. (2020) seems suitable for inferring589

antibody evolution and should be put to test once available as part of a software package.590

Despite the higher accuracy of zero-aware phylogenetic methods compared to the591

available alternatives, we note that there is still substantial error. Under the default592

condition, 90% of clusters of the true tree were recovered but about 15% of the recovered593

clusters were incorrect. In particular, the discrepancy between FNR and FDR is due to the594

fact that the inferred trees are somewhat more bifurcating than true trees (e.g., ≈70%595
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versus 60% in the default condition). Thus, while contracting some super-short branches596

has been helpful in increasing accuracy, our zero-aware phylogenetic trees are still biased597

towards too much resolution. It is possible that better Steiner-based methods that598

incorporate more advanced models of sequence evolution can solve this shortcoming.599

Implications for evaluation criteria600

The ranking of reconstruction methods can change based on which of the ten601

evaluation criteria we choose, and these rankings only partially correlate (Fig. S12). Most602

interestingly, FDR and FNR are weakly anti -correlated (mean Spearman’s rank correlation603

coefficient across all tests ρ = −0.12), though excluding singletons changes this patterns.604

Thus, false positive and false negative errors can a paint contradictory picture, especially605

when singletons are included. RF distance, which combines both aspects, correlates606

moderately with both FDR (ρ = 0.5) and FNR (ρ = 0.57). The triplet-based metrics607

strongly agree with each other (ρ = 0.97) and are mostly compatible with the RF distance608

(ρ ≈ 0.75), but are less similar to MD and PD metrics (ρ 6 0.52). Consistent with the609

observation that triplet metrics penalize false negatives more than false positives, they610

agree more strongly with FNR than FDR (ρ = 0.65 vs 0.26). MD and PD are very similar611

to each other (ρ = 0.96), have no correlation to FNR (ρ 6 0.05), but have moderately high612

correlation to FDR (ρ = 0.71). Finally, we notice that singletons can matter: while FNR613

and FNR* are highly correlated (ρ = 0.94), RF correlates with RF* less strongly614

(ρ = 0.71), and FDR correlates with FDR* only moderately (ρ = 0.61).615

The choice of the metric should depend on downstream application of the clonal616

tree. While zero-aware phylogenetic methods are judged to be dramatically better than617

normal phylogenetic methods based on most criteria, they are only slightly better618

according to the triplet-based criteria. The triplet metrics do not penalize trees heavily if619

they are more resolved than the true tree or if they move internal nodes to leaves. Thus,620

when downstream usage is robust to extra resolution and extra terminal edges, triplet621
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metrics offer a good way to measure topological accuracy. On the other extreme, PD and622

MD are very sensitive to the tree resolution and internal placement, so much so that they623

often evaluate inferred phylogenetic trees to be much worse than random trees (Fig. S5)624

because these trees generate fully resolved trees and put samples at leaves. Thus, we don’t625

find PD and MD to be reliable metrics of topological accuracy. RF distance is in between:626

it penalizes extra resolution more than triplet metrics but less than path-based metrics. It627

does distinguish zero-aware and phylogenetic methods but rarely evaluates any methods to628

be worse than random (Fig. S5). Overall, dividing the observed error along two629

(potentially contradictory) axes such as FNR and FDR is recommended because this630

evaluation provides more insight into reasons behind error.631

Comparison to outer simulation models632

Several simulation tools capable of benchmarking reconstruction methods have been633

recently developed. Some of these tools are not comparable to our effort because of various634

limitations. The recent immuneSIM by Weber et al. (2020) generates mutations but does635

not model the clonal tree or the selection process. Methods of Amitai et al. (2017) and636

Reshetova et al. (2017) are based on the two-step simulation paradigm and only generate637

clonal trees under selection, leaving sequences generation to other methods. The most638

relevant method to ours are bcr-phylo by Davidsen and Matsen (2018) and gcdynamics by639

Childs et al. (2015), which simulate clonal trees of antibody-coding sequences under AM.640

Both bcr-phylo and gcdynamics have similarities and differences to our method (Table 6).641

For example, they both support multiple targets but only one round of simulations.642

Although our model is capable of multiple targets, for simplicity, DIMSIM uses one target643

per round of infection. However, the advantage of DIMSIM is that, unlike the two other644

methods that only simulate activated cells, it also simulates memory cells; as a result, it645

can simulate multiple rounds of infection by an evolving antigen with changing targets646

while considering memory built from previous infections. Moreover, DIMSIM simulates in647
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Table 6. A comparison of Most relevant tools for AM simulation.

DIMSIM bcr-phylo gcdynamics
this paper Davidsen and Matsen (2018) Childs et al. (2015)

Targets Single-target (per round) Multi-target (1 round) Multi-target (1 round)
Rounds Yes No No
Affinity BLOSUM distance Hamming distance Random energy landscape
Mutation Updated Yaari et al. (2013) Yaari et al. (2013) i.i.d
Scalability Up to millions of cells Thousands of cells Thousands of cells
Cell type Activated & Memory Activated Activated
Germinal Centers Combined (single) Combined (single) Multiple (in competition)
Time Continuous Discrete generations Discrete generations
Isotype No Yes No
Birth/Death rate Polynomial fraction of Neutral: independent of total affinity A function of affinity

individual and total affinity Kinetic: function of affinities

continuous time whereas the other tools simulate under discrete generations. All three648

methods use sequences to define affinity, albeit differently: DIMSIM using BLOSUM649

distance, brc-phylo using hamming distance, and gcdynamics using random energy650

landscape. A main feature of DISMSIM is that its birth/death rates are polynomial651

fractions of individual and total affinity; this choice enables it to speed up the simulation,652

allowing it to scale up to millions of cells, unlike the other two methods. Advantages of the653

other tools include the fact that only brc-phylo simulates isotype switching and only654

gcdynamics distinguishes intra- versus inter- germinal center competitions.655

Limitations of the study656

Our study has limitations that should be kept in mind.657

In our simulations, we did not add errors to sequence data used as input to clonal658

tree reconstruction methods. Real Rep-Seq samples undergo extensive PCR and thus might659

contain both sequencing and amplification errors. We assumed that error elimination is660

already performed (to perfection) prior to reconstruction using existing methods (e.g.,661

Vander Heiden et al., 2014; Safonova et al., 2015; Bolotin et al., 2015; Shlemov et al.,662

2017). We also simulated only substitution SHMs but no insertions and deletions. We note663

that, in these shortcoming, our study is not different from most phylogenetics simulations664

that also fail to incorporate indels and many forms of errors in input, such as alignment665
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error, orthology error, and assembly error. Nevertheless, the impact of the error on various666

methods and the overall accuracy should be tested in future work. Similarly, the efficacy of667

methods that simultaneously filter errors and build clonal trees (e.g., Safonova and668

Pevzner, 2019; Lee et al., 2017) should be subject of future research.669

In our AM model, we had to adopt several arbitrary assumptions in order to670

simulate the selective pressure. For example, absent of a good model of receptor binding,671

we assumed the affinity grows gradually as the AA sequence becomes more similar to the672

target sequence (i.e., the best possible antibody for an antigen). The idea that AM occurs673

by mutational diffusion along one or more preferred paths in the genotype space has been674

supported by Kepler et al. (2014). Nevertheless, our i.i.d model is certainly a simplification675

without a clear empirical support. Moreover, we assumed the existence a target antibody676

sequence. The literature has increasingly documented highly convergent immune responses677

to the same epitope across individuals and conditions (Henry Dunand and Wilson, 2015;678

Robbiani et al., 2020). This observation gives us reason to think the existence of target679

sequences is not a bad assumption; nevertheless, the choice of a single target may not be680

realistic. To model the change in the target as the viruses evolve across seasons, we chose681

targets with evolutionary divergence levels that mimic divergence levels of the antigen,682

albeit with some scaling factor. While we believe this choice is sensible, again, we have no683

evidence to back up this model on empirical grounds. It is conceivable that two antigens684

with high evolutionary distance are neutralized by similar antibodies, or that, antigens685

that are very similar require very distant antibodies. Finally, our 5-mer mutation model,686

while based on the empirical model of Yaari et al. (2013), still fails to capture some of the687

complexities of the real antibody evolution. For example, we concentrated substitutions on688

the CDR region, but other regions are known to also accumulate mutations (Safonova and689

Pevzner, 2019; Kirik et al., 2017; Ovchinnikov et al., 2018). Other B cell specific models690

(e.g., Elhanati et al., 2015) including those that seek to tease out the effects of selection691

from background mutations (e.g., McCoy et al., 2015) and per-position mutability models692
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(Kepler et al., 2014) can be incorporated in the future.693

For all these shortcomings in modelling, we offer several responses. The framework694

is designed to be flexible and can easily incorporate more complex models if a better695

understanding of processes behind antibody-antigen affinity is achieved (e.g., Luo and696

Perelson, 2015) and is formalized in mathematical models. Thus, our work should be697

considered a first step that will enable better modeling in future. We also remind the698

reader that our objective was to simulate so that we can benchmark various tools for699

reconstructing clonal trees. Thus, as long as our modelling choices did not distort the700

comparison of methods, some model misspecification can be tolerated. We observed that701

the choice of the best method was not sensitive to many parameter choices.702

Beyond model simplifications, we also chose to simulate parts of the complex703

immune system response, but not others. For example, we simulated one clonal lineage704

involved in an immune response. As such, we ignored the important VDJ recombination705

step and sought to simply simulate a VDJ recombinant that is effective in fighting a706

specific antigen. Even then, we simulated only one clonal lineage at a time, a limitation707

that can be easily lifted in the future by starting from multiple root sequences with708

different VDJ settings and assigning to each a different target sequence. Note that our tool709

can be easily combined with methods of simulating VDJ recombination such as710

IGoR (Marcou et al., 2018). Neither did we simulate light chains, which are often not711

captured in Rep-Seq sequencing data, but we note that extending the methodology to light712

chains, given better understanding of their evolution, will be possible.713

Finally, while we tested several reconstruction methods, we were not able to test714

others. We are unable to install SAMM (Davidsen and Matsen, 2018) and GCtree (DeWitt715

et al., 2018) due to their dependencies, and we were unable to find an implementation of716

the IgTree (Barak et al., 2008) method.717
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Applications of the framework718

The framework we designed for simulation of clonal trees can be extended for719

simulating other forms of micro-evolutionary scenarios. While the current implementation720

is geared towards AM simulations, our proposed algorithm enables forward-time simulation721

of very large numbers of entities under models that allow dependence between sequences722

and rates of birth, death, or transformation. The ability to simulate a very large number of723

entities combined with rates that change with properties of entities give use the necessary724

ingredients to simulate under complex models of evolution that consider selective pressure.725

Thus, our framework can be adopted for other forms of micro-evolutionary simulation such726

as the evolution of a virus within a host and accumulation of SHMs in tumor evolution.727

Such a possibility would become most intriguing if it can also model co-evolution of728

different types of entities (e.g., antibodies and viruses). While we did not simulate729

co-evolution here, we believe the framework is capable of performing such simulations by730

simply creating entity types (just like we had cell types) and making the BDT rates a731

function of properties across different cell types. Another promising direction for732

extensions of this work is to integrate the sequence evolutionary models with733

network-based disease transmissions models (e.g., Ratmann et al., 2017; Moshiri et al.,734

2019) to enable more accurate simulations of disease spread and evolution.735

Availability736

DIMSIM simulation framework and relate code is publicly available at737

https://github.com/chaoszhang/immunosimulator. All the data are available at738

https://github.com/chaoszhang/DIMSIM-data.739
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Hurley, A., Hoffmann, H.-H., Millard, K. G., Kost, R. G., Cipolla, M., Gordon, K.,891

Bianchini, F., Chen, S. T., Ramos, V., Patel, R., Dizon, J., Shimeliovich, I., Mendoza,892

P., Hartweger, H., Nogueira, L., Pack, M., Horowitz, J., Schmidt, F., Weisblum, Y.,893

Michailidis, E., Ashbrook, A. W., Waltari, E., Pak, J. E., Huey-Tubman, K. E.,894

Koranda, N., Hoffman, P. R., West, A. P., Rice, C. M., Hatziioannou, T., Bjorkman,895

P. J., Bieniasz, P. D., Caskey, M., and Nussenzweig, M. C. 2020. Convergent antibody896

responses to SARS-CoV-2 in convalescent individuals. Nature.897

Robinson, D. and Foulds, L. 1981. Comparison of phylogenetic trees. Mathematical898

Biosciences , 53(1-2): 131–147.899

Robinson, W. H. 2015. Sequencing the functional antibody repertoirediagnostic and900

therapeutic discovery. Nature Reviews Rheumatology , 11(3): 171–182.901

Rogozin, I. and Kolchanov, N. 1992. Somatic hypermutagenesis in immunoglobulin genes.902

ii. influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta,903

1171(1): 11–18.904

Rogozin, I. B. and Diaz, M. 2004. Cutting edge: DGYW/WRCH is a better predictor of905

mutability at G:C bases in Ig hypermutation than the widely accepted RGYW/WRCY906

motif and probably reflects a two-step activation-induced cytidine deaminase-triggered907

process. J. Immunol., 172(6): 3382–3384.908

Safonova, Y. and Pevzner, P. A. 2019. IgEvolution: clonal analysis of antibody repertoires.909

bioRxiv , page 725424.910

Safonova, Y., Bonissone, S., Kurpilyansky, E., Starostina, E., Lapidus, A., Stinson, J.,911

DePalatis, L., Sandoval, W., Lill, J., and Pevzner, P. A. 2015. IgRepertoireConstructor:912

a novel algorithm for antibody repertoire construction and immunoproteogenomics913

analysis. Bioinformatics , 31(12): i53–i61.914

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.17.302505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.302505
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 REFERENCES

Shapiro, G. S., Ellison, M. C., and Wysocki, L. J. 2003. Sequence-specific targeting of two915

bases on both DNA strands by the somatic hypermutation mechanism. Mol. Immunol.,916

40(5): 287–295.917

Shlemov, A., Bankevich, S., Bzikadze, A., Turchaninova, M. A., Safonova, Y., and Pevzner,918

P. A. 2017. Reconstructing Antibody Repertoires from Error-Prone Immunosequencing919

Reads. The Journal of Immunology , 199(9): 3369–3380.920

Smith, D. S., Creadon, G., Jena, P. K., Portanova, J. P., Kotzin, B. L., and Wysocki, L. J.921

1996. Di- and trinucleotide target preferences of somatic mutagenesis in normal and922

autoreactive B cells. J. Immunol., 156(7): 2642–2652.923

Sok, D., Laserson, U., Laserson, J., Liu, Y., Vigneault, F., Julien, J.-P., Briney, B., Ramos,924

A., Saye, K. F., Le, K., Mahan, A., Wang, S., Kardar, M., Yaari, G., Walker, L. M.,925

Simen, B. B., St. John, E. P., Chan-Hui, P.-Y., Swiderek, K., Kleinstein, S. H., Alter,926

G., Seaman, M. S., Chakraborty, A. K., Koller, D., Wilson, I. A., Church, G. M.,927

Burton, D. R., and Poignard, P. 2013a. The Effects of Somatic Hypermutation on928

Neutralization and Binding in the PGT121 Family of Broadly Neutralizing HIV929

Antibodies. PLoS Pathogens , 9(11): e1003754.930

Sok, D., Laserson, U., Laserson, J., Liu, Y., Vigneault, F., Julien, J.-P., Briney, B., Ramos,931

A., Saye, K. F., Le, K., Mahan, A., Wang, S., Kardar, M., Yaari, G., Walker, L. M.,932

Simen, B. B., St John, E. P., Chan-Hui, P.-Y., Swiderek, K., Kleinstein, S. H., Alter, G.,933

Seaman, M. S., Chakraborty, A. K., Koller, D., Wilson, I. A., Church, G. M., Burton,934

D. R., and Poignard, P. 2013b. The effects of somatic hypermutation on neutralization935

and binding in the PGT121 family of broadly neutralizing HIV antibodies. PLoS936

pathogens , 9(11): e1003754–e1003754.937

Stadler, T., Vaughan, T. G., Gavryushkin, A., Guindon, S., Kühnert, D., Leventhal, G. E.,938

and Drummond, A. J. 2015. How well can the exponential-growth coalescent939

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.17.302505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.302505
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 45

approximate constant-rate birthdeath population dynamics? Proceedings of the Royal940

Society B: Biological Sciences , 282(1806): 20150420.941

Stamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis942

of large phylogenies. Bioinformatics , 30(9): 1312–1313.943

Stern, J. N. H., Yaari, G., Vander Heiden, J. A., Church, G., Donahue, W. F., Hintzen,944

R. Q., Huttner, A. J., Laman, J. D., Nagra, R. M., Nylander, A., Pitt, D., Ramanan, S.,945

Siddiqui, B. A., Vigneault, F., Kleinstein, S. H., Hafler, D. A., and O’Connor, K. C.946

2014. B cells populating the multiple sclerosis brain mature in the draining cervical947

lymph nodes. Science Translational Medicine, 6(248): 107–248.948

Tonegawa, S. 1983. Somatic generation of antibody diversity. Nature, 302(5909): 575–581.949

Vander Heiden, J. A., Yaari, G., Uduman, M., Stern, J. N., OConnor, K. C., Hafler, D. A.,950

Vigneault, F., and Kleinstein, S. H. 2014. pRESTO: a toolkit for processing951

high-throughput sequencing raw reads of lymphocyte receptor repertoires.952

Bioinformatics , 30(13): 1930–1932.953

Walsh, H. E., Kidd, M. G., Moum, T., and Friesen, V. L. 1999. Polytomies and the power954

of phylogenetic inference. Evolution, 53(3): 932–937.955

Watson, C. T., Glanville, J., and Marasco, W. A. 2017. The Individual and Population956

Genetics of Antibody Immunity. Trends in Immunology , 38(7): 459–470.957

Weber, C. R., Akbar, R., Yermanos, A., Pavlović, M., Snapkov, I., Sandve, G. K., Reddy,958
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APPENDIX981

Supplementary Materials982

Supplementary methods983

Derivation of Equation (1)984

ΛB(xi,S)

λ
=

ΛB(xi,S)∑
j∈S(ΛB(xj,S) + ΛD(xj,S) + ΛT (xj,S))

=

∑
α,β∈Γ Bα,βSβxαi∑
α,β∈Γ Pα,βS

βθα
=
∑
α,β∈Γ

(
Bα,βSβxαi

1∑
ᾱ,β̄∈Γ Pᾱ,β̄S

β̄θᾱ

)
=
∑
α,β∈Γ

(
(
Bα,βSβxαi
Pα,βSβθα

)(
Pα,βS

βθα∑
ᾱ,β̄∈Γ Pᾱ,β̄S

β̄θᾱ
)
)

=
∑
α,β∈Γ

(
(
Bα,β
Pα,β

)(
xαi
θα

)(
Pα,βS

βθα∑
ᾱ,β̄∈Γ Pᾱ,β̄S

β̄θᾱ
)
)

.

(S1)

Somatic hypermutagenesis frequency models for K5 and f985

Our model is based on an empirical frequency K5(s, s1, s2, s3, s4, s5) matrix that986

counts the number of times 5-mer (s1, s2, s3, s4, s5) converts to (s1, s2, s, s4, s5) in one cycle987

of cell division during hyper-mutation. Given the matrix, we define988

f(s, s1, s2, s3, s4, s5) =

{
K5(s, s1, s2, s3, s4, s5) µ

RateEmp
s 6= s3

1−
∑

s′∈{A,C,G,T}−{s}K
5(s′, s1, s2, s3, s4, s5) s = s3

(S2)

where989

RateEmp = 1−
∑

s1,s2,s3,s4,s5∈{A,C,G,T}K
5(s3, s1, s2, s3, s4, s5)∑

s,s1,s2,s3,s4,s5∈{A,C,G,T}K
5(s, s1, s2, s3, s4, s5)

. (S3)

Somatic hypermutagenesis of antibodies is the result of activation-induced990

deaminase (AID) enzyme activity that changes a random C:G base into a U:G base in B991

cell DNA. U:G mismatch can be repaired using UDG (uracil-DNA glycosylase) or MMR992

(DNA mismatch repair) machinery that forms diversity of hypermutations (Peled et al.,993

2008). Certain biological mechanisms of SHM occurrences were studied extensively. For994
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example, Rogozin and Kolchanov (1992) observed specific hot/cold-spot DNA motifs for995

SHMs in immunoglobulin genes. Particularly, WRCY/RGYW where W = {A, T}, Y =996

{C, T}, R = {G, A} and later predicted more general WRCH/DGYW with H = {A, C,997

T} and D = {A, G, T} motifs are hot-spots for SHMs caused by weak hydrogen-bounds998

(Rogozin and Diaz, 2004). SYC/GRS (S = C, G) is a cold-spot motif caused by strong999

hydrogen-bounds (Bransteitter et al., 2004). The locality of AID enzyme activity has been1000

emphasized. (Smith et al., 1996; Shapiro et al., 2003).1001

To simulate SHM we modified a model proposed by Yaari et al. (2013). The model1002

extends the notion of hot/cold-spots and suggests that a certain hierarchy of mutabilities1003

exists following Smith et al. (1996) and Shapiro et al. (2003). The model is based on the1004

mutability of a central base in each 5-mer of an antibody heavy chain and consists of two1005

parts: a targeting model identifying if a mutation occurs in the variable part of an antibody1006

and a substitution model providing an insight into what is this mutation. In order to avoid1007

selection bias, the authors considered 5-mers where only synonymous substitutions of the1008

central base are possible and inferred probabilities for other 5-mers. Unfortunately,1009

synonymous substitutions constitute only a fraction of possible mutations. To overcome1010

this issue Yaari et al. (2013) proposed a special inference method to estimate parameters1011

for the rest of 5-mers. Parameters for targeting and substitution models were inferred for1012

468 and 740 5-mers, respectively. However, the accuracy of this procedure was shown to be1013

sub-optimal (Yaari et al., 2013, Table 2). Additionally, some of the datasets that were used1014

to estimate the parameters are derived from an error-prone 454 sequencing technology.1015

We re-estimated the parameters of this model and considered all 5-mers without1016

limiting our scope to synonymous mutations. We also utilized three up-to-date repertoire1017

sequencing datasets (all data was produced using the Illumina MiSeq platform):1018

i) PRJNA349143. Time series of three individuals during influenza vaccination, both1019

before and after vaccination. ii) PRJNA395083. Bulk unsorted PBMC from peripheral1020

blood of several healthy donors. iii) A dataset of paired end sequences, added to increase1021

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.17.302505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.302505
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 49

power. While the last dataset we used is not publicly available, we make the resulting1022

k-mer model available publicly at1023

https://github.com/chaoszhang/immunosimulator/blob/master/kmerFreq.txt.1024

From each dataset we obtained a matrix of the size 1024× 4, where each row1025

corresponds to a distinct 5-mer and contains # nonmutated occurrences of this 5-mer and1026

three possible # nucleotide substitution occurrences. To calculate this matrix for a given1027

dataset, we found the closest V gene for every read and record the number of observed1028

5-mers in the gene and their corresponding mutated copies across the read. For any 5-mer1029

K, the corresponding row of a constructed matrix can be viewed simultaneously as a value1030

of Binomial and Multinomial distributions. Binomial distribution represents the number1031

of occurred mutations among all occurrences of the 5-mer K, while Multinomial1032

distribution indicates the number of mutations to specific bases among all occurred1033

mutations. The parameters of these distributions indicate the mutability and substitution1034

profiles for each 5-mer K. The 5-mer frequencies were combined across all these datasets to1035

obtain the final matrix, available at1036

https://github.com/chaoszhang/immunosimulator/blob/master/kmerFreq.txt.1037

Default parameters1038

Here we provide the actual default values used for several parameters that did not1039

fit in Table 1.1040
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BLOSUM. The BLOSUM matrix table (Table S1) is obtained from1041

ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100.1042

Table S1. BLOSUM table

A R N D C Q E G H I L K M F P S T W Y V

A 8 -3 -4 -5 -2 -2 -3 -1 -4 -4 -4 -2 -3 -5 -2 1 -1 -6 -5 -2
R -3 10 -2 -5 -8 0 -2 -6 -1 -7 -6 3 -4 -6 -5 -3 -3 -7 -5 -6
N -4 -2 11 1 -5 -1 -2 -2 0 -7 -7 -1 -5 -7 -5 0 -1 -8 -5 -7
D -5 -5 1 10 -8 -2 2 -4 -3 -8 -8 -3 -8 -8 -5 -2 -4 -10 -7 -8
C -2 -8 -5 -8 14 -7 -9 -7 -8 -3 -5 -8 -4 -4 -8 -3 -3 -7 -6 -3
Q -2 0 -1 -2 -7 11 2 -5 1 -6 -5 2 -2 -6 -4 -2 -3 -5 -4 -5
E -3 -2 -2 2 -9 2 10 -6 -2 -7 -7 0 -5 -8 -4 -2 -3 -8 -7 -5
G -1 -6 -2 -4 -7 -5 -6 9 -6 -9 -8 -5 -7 -8 -6 -2 -5 -7 -8 -8
H -4 -1 0 -3 -8 1 -2 -6 13 -7 -6 -3 -5 -4 -5 -3 -4 -5 1 -7
I -4 -7 -7 -8 -3 -6 -7 -9 -7 8 2 -6 1 -2 -7 -5 -3 -6 -4 4
L -4 -6 -7 -8 -5 -5 -7 -8 -6 2 8 -6 3 0 -7 -6 -4 -5 -4 0
K -2 3 -1 -3 -8 2 0 -5 -3 -6 -6 10 -4 -6 -3 -2 -3 -8 -5 -5
M -3 -4 -5 -8 -4 -2 -5 -7 -5 1 3 -4 12 -1 -5 -4 -2 -4 -5 0
F -5 -6 -7 -8 -4 -6 -8 -8 -4 -2 0 -6 -1 11 -7 -5 -5 0 4 -3
P -2 -5 -5 -5 -8 -4 -4 -6 -5 -7 -7 -3 -5 -7 12 -3 -4 -8 -7 -6
S 1 -3 0 -2 -3 -2 -2 -2 -3 -5 -6 -2 -4 -5 -3 9 2 -7 -5 -4
T -1 -3 -1 -4 -3 -3 -3 -5 -4 -3 -4 -3 -2 -5 -4 2 9 -7 -5 -1
W -6 -7 -8 -10 -7 -5 -8 -7 -5 -6 -5 -8 -4 0 -8 -7 -7 17 2 -5
Y -5 -5 -5 -7 -6 -4 -7 -8 1 -4 -4 -5 -5 4 -7 -5 -5 2 12 -5
V -2 -6 -7 -8 -3 -5 -5 -8 -7 4 0 -5 0 -3 -6 -4 -1 -5 -5 8

Ψ̂ and ζ0. The starting sequence Ψ̂ is set to be CAGGTGCAGCTGCAGGAGTCGGGCCCAGG1043

ACTGGTGAAGCCTTCACAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGCAGTGGTGGTTACTA1044

CTGGAGCTGGATCCGCCAGCACCCAGGGAAGGGCCTGGAGTGGATTGGGTACATCTATTACAGTGGGAGCACCTA1045

CTACAACCCGTCCCTCAAGAGTCGAGTTACCATATCAGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAG1046

CTCTGTGACTGCCGCGGACACGGCCGTGTATTACTGTGCGAGAGCGCGCGTCAATAGGGATATTGCGTACGGCAA1047

CTGGTTCGACCCCTGGGGCCAGGGGACCCTGGTCACCGTCTCCTCA and thus ζ0 is QVQLQESGPGLVKPSQT1048

LSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADT1049

AVYYCARARVNRDIAYGNWFDPWGQGTLVTVSS.1050

ηi, ζi, and ti. Are given in Table S2.1051
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Table S2. Flu accession number, CDRs of target sequences, and starting day of infection

i Accession Number Target CDR1 Target CDR2 Target CDR3 Day

1 AAK70482.1 SGGYY IGYIYYSGSTYYNPSL ARARVNRDIAYGNWFDP 0
2 AAK70478.1 CWWVP WWCHCGWCNVXXNIXF ARARVNREXAYGNWFZA 182
3 ABL76892.1 WWWXX XGYVYYSGSDYYDPSL VKVKVNKEVVYGNWFEA 365
4 AFP83103.2 WWWAB TBYVYYSGSDYYDXSL VKVKINKEVVYGNWFEA 398
5 AFP83094.2 WWWGX TGYVYYSGSDYYDXSL VKVKVNKEVVYGNWFEQ 431
6 AFP83095.2 WWCPP WWCHCAWXBTXXBISL ARARVNRELAYGNWFEA 464
7 AFP83197.2 WWCPP WWCHCZWYZVXXBISF ARARVNRELAYGNXFEA 497
8 AFP83098.2 WWWAX AGYVYYSGTDYYDBSL VKVKINKEVVYGBWFEZ 530
9 AFP83100.2 WWWPK SXHVYYSGSDYYDXSL VKVKVNKEVVYGNWFEA 564
10 AAO38870.2 WWCPP WWCHCCWXBVXYBXSY ARARVNRELAYGNWFZA 597
11 AFP83199.2 WWLPP WWCHCEWLHVXXXIXY ARARVNRELAYGNWFZA 630
12 ABL76881.1 WLWCG KXYVYYSGSQFYDASL VKVKLNKEVVYGNWFZL 663
13 AFP83097.2 WCWCG CRWVYYXXSDYYDIXL VKVKINKEVVYGDWFEQ 696
14 AFP83202.2 WXYXY TGYVYYSGSDYYDPSL VKVKMNKEVVYGNWFEA 730
15 AFP83201.2 WWVPP WWCNCCWFBTXXXLSF ARARVNRELAYGNWFEA 763
16 AFP83118.2 WYYXD TGYVYYSGSDYYBPSL VKVKLNKEVVYGNWFZK 796
17 AFP83200.2 WWCPP WWCHCCYIBVXXBXSY ARARVNRELAYGNWFZA 829
18 AFP83107.2 WWCPP WWCHCCYVBTXXBXSF ARARVNRELAYGNWYZA 862
19 AFP83112.2 WFWDG XKWVYYSGSDYYDXSL VKVKINKZVVYGNWFEQ 895
20 AFP83115.2 WWCPP WWCHCCQIBTXXBXSF ARARVNRELAYGNWFZG 929
21 AFP83114.2 WPWGD XGYVHYSRSDYYDPSL VKVKXNKZVVYRNWFEP 962
22 AFP83110.2 WWCPD WWCHCCWIDWXXBXXY ARARVNRZLAYRNWFEA 995
23 AFP83105.2 WYWGN GCXLYYSGSDYYDPSL IKVKIDKELVYGDWFZV 1028
24 AFP83106.2 WWCPP WWCHCCWVWWNEGLXB GXXRXXRDLAYGNWYXA 1061
25 AFP83127.2 WFWBG TGYLYYSGSDYYDASL IKVKXNKELVYGNWFET 1095
26 AFP83124.2 WCWCG BGYLYYSGSDYYBFSL IKVCIBKEMVYGBWFET 1216
27 AFP83130.2 WWHPP WWCHCCWRBCXXXXSF ARARVNRSLAYGNWFEA 1338
28 AFP83134.2 WBYXY TGYVYYSGSDYYBPSL VKVKMNKEVVYGNWFEA 1460
29 AFP83131.2 WWHPP WWCHCCWRBLXXXXSF ARARVNRZLAYGNWFEA 1581
30 AFP83135.2 PPYGD PGKVYYSRSDYYDDSL IKVKXNKYVVYRNWFEK 1703
31 AFP83150.2 HPYGD PGBVYYSRSDYYDBSL VKVKINKZVVYRNWFEK 1825
32 AFP83206.2 HPYGD PPHCYYSRSDYYDBSL VKVKXNKFVVYRNWFEZ 1946
33 AFP83147.2 HPYGD PGHVYYSRSDYYDPSL IKVKINBXVVYRNWFEK 2068
34 AFP83154.2 WXXAY PGYVYYSGSDYYDPSL VKVKMNKEVVYGNWFEP 2190
35 AFP83155.2 LPYGD PGHVYYSRSDYYDDSL VKVKLBKIVVYRNWFEK 2281
36 AFP83160.2 HPYGD PGHVYYSRSDYFDDSL VKVKXNKZVVYRNWFEK 2372
37 AFP83159.2 HPYGD PGHVYYSHSDYYDDSL IKVKXNKZVVYRNWFEK 2463
38 AFP83166.2 WEHGY XGYVYYSGSDYYDPSC VKVKMNKEVVYGNWFEP 2555
39 AFP83173.2 WBIMY LGFVYYSGSDYYBPSL VKVKMNKZVVYGNWFZA 2920
40 AFP83163.2 WPIFY LGYVYYSGSBYYBPSL VKVKMNKZIVYGNWFZA 3011
41 AFP83170.2 YZIMY LGYVYYSASDYYBPSL VKVKMNKEIVYGNWFEA 3102
42 AFP83174.2 YPIMY SGYVYYSGSDYYBPSL VKVKMNKEVVYGBWFEA 3193
43 AFP83184.2 ZSZYY TDYVYYSGIDYYTPSL VKVKMNKEVVYDYWFEP 3285
44 AFP83185.2 BBGYY TDYVYYSGIDYYYPSL VKVKMTKEVVYDYWFZP 3345
45 AFP83181.2 EBAYY TDYVYYSGVDYYEPSL VKVKMNKEVVYDYWFEP 3406
46 AFP83208.2 WDIPY LGYVYYSASDYYBPSL VKVKMNKZVVYGNWFZA 3467
47 AFP83178.2 FKIMY LGYVYYSGSDYYDPSL VKWKMBKZVYYGNWFZA 3528
48 AFP83177.2 YEIMW LGFVYYSGSDYYBPSL VKVKMNKZAVYGNWFZA 3589
49 AJK04689.1 DDGYY TDYVYYSGIDYYEPSL VKMKMAKZTVYDYWFZP 3650
50 AJK04818.1 EBFYY TDYVYYSGVDYYCPSI VKVKMBKEVVYDYWLEP 3832
51 AJK04119.1 ZDPYY TDYVYYSGIDYYBPSL VKVKMRKEVVYDHWFEP 4015
52 AFP83190.2 DDDYF TDYVYYSGIDYYWPSL VKVKMTKZVVYDYWFZP 4075
53 AJK05467.1 DDRYY TDYIYYSGIDYYKPSL VKVKMSKZVVYDYWFZP 4136
54 AJK05084.1 DDGYY TDYIFYSGITYYVPXL VKVKMSKEVIYDHWFZP 4197
55 AJK04964.1 DDGYY CDYXFYSGIDYYSPSC VKVKMSKEVVYDYWFEP 4258
56 AJK05278.1 EDFYY TDYVWYTGIDYYXPXL VKVKMVKXVVXDYWFZP 4319
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Supplementary Tables and Figures1052

Table S3. Birth, death, and transformation rate functions as polynomials.

Rate functions Infected stage Dormant stage

ΛB(xi,S) λbgi 0

ΛD(xi,S) λb(1−ρp−ρm)

C
( gi
ai

)σ + (ρpλb − λ′d)gi + λ′d (λd − λ′d)gi + λ′d
ΛT (xi,S) ti 0
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Fig. S1. a) Log average affinity of activated cells to current infection target at the end of the infection, the number
of activated cells at the end of the infection, and the duration of infection by novelty of the target of one simulation
under default conditions, showing the last five rounds as examples. b) Average affinity of activated cells to current
infection target, the number of activated cells, and the number of memory cells by time after infection starts for the
last five infections of one simulation under default conditions. Lines are fitted using the LOWESS (locally weighted
scatterplot smoothing) algorithm. c) Number of memory cells and novelty of infections by time. Dormant stages are
indicated by dotted lines.
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Fig. S2. Top: FNR* and FPR* rates excluding singletons by reconstruction methods on simulations under default
conditions; Bottom: Normalized Robinson-Foulds cluster distance with and without singletons (RF and RF *),
MD and PD.
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Fig. S3. Impact of selective pressure A (a) and mutation rate µ (b) on tree inference error by FDR* and FNR*.
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Fig. S4. Impact of selective pressure A (left) and mutation rate µ (right) on sequence-based branch length
properties on true trees. µ = 5× 10−4 in (a-d) and A = 0.1 in (e-h).
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Fig. S5. For varying levels of selective pressure (A), rate of hypermutation (µ), and reconstruction methods, we
show MD error (left), and RF error (right). Under some conditions, reconstructed trees from phylogenetic methods
are worse than random permuting labels of true tree because both MD and RF (to a lesser degree) severely
penalizes resolution of multifurcated nodes.
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Fig. S6. a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discordance (MD), triplet edit
distance (TED), and triplet discordance (TD) by BLOSUM weight multiplier of framework region (wf ) and
reconstruction methods. c) Properties of true (black) and reconstructed trees by BLOSUM weight multiplier of
framework region (FR). d) Properties of true trees.
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Fig. S7. a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discordance (MD), triplet edit
distance (TED), and triplet discordance (TD) by germinal center capacity (C) and reconstruction methods. c)
Properties of true (black) and reconstructed trees by carrying capacity of germinal center of FR. d) Properties of
true trees.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.17.302505doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.302505
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 59

0.1 0.2 0.3 0.4 0.5 0.6
False Discovery Rate

0.1

0.2

0.3

0.4

0.5

0.6

Fa
lse

 N
eg

at
iv

e 
Ra

te

Mean-life of Memory Cells
IgPhyML
IgPhyML*
RAxML
RAxmL*
Immunitree
MST
BRILIA
control
0.5 year
1 year
2 years
4 years
8 years
16 years

0.4

0.6

0.8

RF Cluster Distance

0.5

1.0

MRCA Discordance

0.5 1 2 4 8 16
Mean-life of Memory Cells (yr)

0.25

0.50

0.75

1.00
Triplet Edit Distance

0.5 1 2 4 8 16
Mean-life of Memory Cells (yr)

0.5

1.0

Triplet Discordance

0.30

0.35

Balance (cherry)

0.0

0.2

0.4
Internal Samples (%)

0.5 1 2 4 8 16
Mean-life of Memory Cells (yr)

0.6

0.8

1.0
Bifurcation Index

0.5 1 2 4 8 16
Mean-life of Memory Cells (yr)

10

20
Depth of Samples (mean)

60

80
Accumulated Mutations (avg)

6.5

7.0

Mutations per Branch

0.5 1 2 4 8 16
Mean-life of Memory Cells (yr)

0.13

0.14

Single Mutation (%)

0.5 1 2 4 8 16
Mean-life of Memory Cells (yr)

2000

2200

2400
Accumulated Mutations (sum)

Fig. S8. a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discordance (MD), triplet edit
distance (TED), and triplet discordance (TD) by mean memory cell life-time (1/λ′

d) and reconstruction methods. c)
Properties of true (black) and reconstructed trees by memory cell life (mean). d) Properties of true trees.
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Fig. S9. a) a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discordance (MD), triplet edit
distance (TED), and triplet discordance (TD) by fraction of activated cells turning into plasma cell per cell division
(ρp).
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Fig. S10. a) a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discordance (MD), triplet edit
distance (TED), and triplet discordance (TD) by BLOSUM score ratio of antibody-coding sequences to antigen
sequences (κ)
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Fig. S11. a) a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discordance (MD), triplet edit
distance (TED), and triplet discordance (TD) by BLOSUM score of activated cell antibody-coding sequences that
leads to cure (∆′0).
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Fig. S12. Correlations of evaluation metrics. For each replicate of each simulation condition, we compute
Spearman’s rank correlation coefficient of reconstruction method for each pair of evaluation metrics. Here, we show
the average coefficient over all replicates of all simulation conditions.
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Supplementary Algorithms1053

Algorithm S1 Simulating the next event and update time and S accordingly. Before

running this procedure, we have computed S and θα =
∑

i∈S xαi for all α from the previous

calls to this function (i.e., previous time steps). For each α, we have also built an interval

tree Tα on leafset S and each node v storing the summation of xαi for each leaf i under v.
procedure SampleTree(α, v)

if v is a leaf node then
return v

else
L← the sum of xαi for each leaf i under left child of v
R← the sum of xαi for each leaf i under right child of v
O ← the outcome of a flip of a biased coin with probability of being head L

L+R

if O = Head then
return SampleTree(α, the left child of v)

else
return SampleTree(α, the right child of v)

procedure SimulatingOneEvent

time ← time + a random sample from exponential distribution where λ =
∑
α,β∈Γ(Pα,βSβθα)∑

β∈Γ QβSβ

(α, β)← a random sample from distribution Pr(α, β) =
Pα,βSβθα∑

ᾱ,β̄∈Γ(Pᾱ,β̄Sβ̄θᾱ)

i← SampleTree(α, the root of Tα)

E ← a sample from Pr(E = Birth) =
Bα,β
Pα,β

, P r(E = Death) =
Dα,β
Pα,β

, P r(E = Transformation) =
Tα,β
Pα,β

if E = Birth then
(j, k)← a sample from distribution of outcomes of birth event of i
S← S + xj + xk
S ← S ∪ {j, k}
for α ∈ Γ do

θα ← θα + xαj + xαk
add leaves j and k to Tα while keeping the tree balanced using Algorithm S2

if E = Transformation then
j ← a sample from distribution of outcomes of transformation event of i
S← S + xj
S ← S ∪ {j}
for α ∈ Γ do

θα ← θα + xαj
add leaf j to Tα while keeping the tree balanced using Algorithm S2

S← S− xi
S ← S − {i}
for α ∈ Γ do

θα ← θα − xαi
remove leaf i from Tα, making the leaf ready for future additions using Algorithm S2
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Algorithm S2 Exact algorithm for inserting or removing a leaf from tree Tα keeping

it balanced. Tα is represented by a full binary tree where each leaf is labeled with either one

particle or ∅ and each node v has weight wv equal to the sum of xαi for all leaves under v

with label (i) not being ∅. Assuming a stack Sα keeps all leaves with label ∅.
procedure AddWeight(Tα, i, v, u)

wu ← wu + xαi
if v is under left subtree of u then

AddWeight(Tα, i, v, the left child of u)

if v is under right subtree of u then
AddWeight(Tα, i, v, the right child of u)

procedure InsertLeaf(Tα, i)
if Sα is empty then

H ← the height of Tα
T ′ ← Tα
Tα ← a full binary tree of height H + 1, all leaves labelled ∅, and all nodes having weight 0
replace the left subtree of the root of Tα with T ′

the weight the root of Tα ← the weight of the left child of the root of Tα
push all leaves under right child of the root of Tα into Sα

v ← pop one element from Sα
label of v ← i
AddWeight(Tα, i, v, the root of Tα)

procedure ReduceWeight(Tα, i, v, u)
wu ← wu + xαi
if v is under left subtree of u then

ReduceWeight(Tα, i, v, the left child of u)

if v is under right subtree of u then
ReduceWeight(Tα, i, v, the right child of u)

procedure RemoveLeaf(Tα, i)
v ← leaf of Tα with label i
label of v ← ∅
push v onto Sα
ReduceWeight(Tα, i, v, the root of Tα)
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Algorithm S3 Heuristics for choosing target sequences to minimize the objective

function (3).
for i← 2 to r do

for q ∈ CDR do
C

(q)
i ← 0

ζ
(q)
i ← ζ

(q)
1

for p← 1 to Lη do
t← Poisson(κ)
for u← 1 to t do

q ← a uniform random element of CDR where η
(p)
1 = ζ

(q)
1

for i← 2 to r do
if η

(p)
i 6= η

(p)
1 then

C
(q)
i ← C

(q)
i + 1

ζ
(q)
i ← η

(p)
i with probability 1/C(q)

i

b← True
while b = True do

b← False
for i← 2 to r do

for q ∈ CDR do
for s ∈ nucleotide alphabet do

if replacing ζ
(q)
i with s reduces the objective function then

b← True
ζ

(q)
i ← s

Algorithm S4 Let each label be uniformly randomly assigned an element in a finite

Abelian group with large enough order (e.g., 64-bit integers). To compute FNR, FDR, and

RF, we just need to compute |φ(R)| = |SR|, |φ(E)| = |SE|, and |φ(R) ∩ φ(E)| = |SR ∩ SE|,

where set ST for tree T can be computed by calling ComputeSet(T , the root of T ).
procedure ComputeSet(T, v)

w ← the element assigned to the label of v, if v has label; otherwise, w ← 0.
for u in the children of v do

w ← w+ ComputeSet(T, u)

add element w to set ST
return w
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