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Motivation: De Bruijn graphs can be constructed from short reads efficiently
and have been used for many purposes. Traditionally long read sequencing tech-
nologies have had too high error rates for de Bruijn graph-based methods. Recently,
HiFi reads have provided a combination of long read length and low error rate, which
enables de Bruijn graphs to be used with HiFi reads.
Results: We have implemented MBG, a tool for building sparse de Bruijn graphs
from HiFi reads. MBG outperforms existing tools for building dense de Bruijn
graphs, and can build a graph of 50x coverage whole human genome HiFi reads in
four hours on a single core. MBG also assembles the bacterial E. coli genome into
a single contig in 8 seconds.
Availability: Package manager: https://anaconda.org/bioconda/mbg and source
code: https://github.com/maickrau/MBG

1 Introduction

De Bruijn graphs have been used for a long time in sequence analysis for purposes such as
genome assembly [10, 1, 16, 4] and error correction [13, 7, 11]. Sparse de Bruijn graphs [17] are
a form of de Bruijn graph which use only a subset of k-mers and so reduce runtime and memory
use. Minimizer winnowing [14, 12] is a method of selecting a subset of k-mers from a sequence.
Minimizer winnowing has been applied to building sparse de Bruijn graphs [3]. Recently, HiFi
reads [15] have reached read lengths of thousands of base pairs with error rates comparable
or superior to shotgun sequenced short reads. The combination of long read lengths and low
error rates makes de Bruijn graphs an attractive idea for HiFi reads and might enable hybrid
methods for genome assembly and error correction to use HiFi reads. However, current tools
do not scale for building de Bruijn graphs with k-mer sizes in thousands.

Contributions. We have implemented the tool MBG (Minimizer-based sparse de Bruijn Graph)
for constructing sparse de Bruijn graphs. MBG selects k-mers by minimizer winnowing [14] and
builds the graph from those k-mers. This approach has previously been used in the ntJoin
scaffolder [3] for building graphs from assembled contigs to scaffold assemblies.

MBG can construct graphs with arbitrarily high k-mer sizes, and we show in the experiments
that k-mer sizes of thousands of base pairs are practical with real HiFi read data. MBG
outperforms existing de Bruijn graph construction tools in runtime, with a runtime of only a
few hours on a single core for constructing a graph of 50x coverage whole human genome HiFi
reads.
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2 Methods

We give a brief overview of the implementation here with detailed explanations of the in-
dividual steps in Appendix A. Since most errors in HiFi reads are homopolymer run length
errors [15], the input reads are homopolymer compressed by collapsing homopolymer runs into
one character. A rolling hash function [8] is then used to assign a hash value to each k-mer.
Minimizer winnowing [14] is then used to select the smallest k-mer in each window. The se-
lected k-mers are compressed by hashing them into 128-bit integers, which form the nodes of
the minimizer graph. Edges are added whenever two minimizers are adjacent to each other in
the reads. Transitive edges caused by sequencing errors are cleaned. Non-branching paths of
the graph are then condensed into unitigs. Finally, the 128-bit hashes are replaced with their
base pair sequences, and homopolymer runs are expanded. The graph is then written in the
GFA format [6].

3 Results

We built sparse de Bruijn graphs using HiFi read data. Details of the experimental setup are
in Appendix B. Table 1 shows the results.

Comparison to existing tools. We compared MBG to BCalm2 [2] for building graphs using
HiFi reads of E. coli. Note that N50 is not directly comparable between MBG and BCalm2
since the homopolymer compression step removes most errors and therefore greatly improves
N50. BCalm2 uses less memory than MBG with w = 1, but for w = 10 and higher MBG uses
less memory. MBG is faster for all tested values of k and w except k = 91 and w = 1 which
is slower than BCalm2 with k = 61. With w = 30 MBG is an order of magnitude faster than
BCalm2. With k = 2501 and w = 2500, MBG assembles E. coli correctly into a single contig
in 8 seconds on a single core.

Whole human genome HiFi. We ran MBG on whole human genome HiFi data from the
individual HG002. Runtime is between 2 and 7 hours on a single core with all parameter sets,
showing that MBG is fast and scales to large values of k. The limitation on increasing k even
higher is the error rate and read length of the HiFi reads.

4 Conclusion

We have implemented MBG, a tool for building sparse de Bruijn graphs from HiFi reads
using minimizer winnowing. The sparsification enables MBG to run orders of magnitude faster
than tools for building dense de Bruijn graphs. MBG uses a novel method to compress long
k-mers to constant sized hashes and enables k to scale arbitrarily high.

MBG can quickly build de Bruijn graphs of mammalian sized genomes, with runtimes ranging
from 2 to 6 hours on a single core. The memory use currently prevents MBG from being ran on
mammalian datasets on laptops and desktop computers. However, MBG fits comfortably in the
RAM of most computing servers. MBG enables small genomes such as E. coli to be assembled
in a few seconds and mammalian genomes in a few hours.
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A Methods

Homopolymer compression. Most errors in HiFi reads are homopolymer run length errors [15].
The sequences are first homopolymer compressed by collapsing homopolymer runs into one
character, reducing the error rate by an order of magnitude. The lengths of the homopolymer
runs are stored so that the original sequence can be reconstructed at the end.

Minimizer winnowing. MBG uses the rolling hash function from ntHash [8] to assign hash
values to each k-mer of the input reads. The runtime of the rolling hash function is independent
of k-mer size. In practice minimizer winnowing is the performance bottleneck of MBG, so we
chose the ntHash method since it is the fastest hash we are aware of.

Minimizer winnowing [14] is then applied to the k-mers given their hash values. The smallest
k-mer in each window is selected for later processing. Selected k-mers which appear in the input
data fewer times than a user given k-mer abundance cutoff are also discarded. Since the density
of random minimizers is w

2 [14], a window size of w will on average lead to a w
2 -fold sparsity of

selected k-mers.
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Compressing arbitrary sized k-mers by hashing. The selected k-mers are compressed by hash-
ing them into 128-bit integers. The 128-bit hashes are then used as the nodes of the graph. We
used the c++ standard library’s string hash function for building the hash. For a string s, the

lower 64 bits of the hash are taken from the standard library hash of s[1..
⌊
|s|
2

⌋
] and the upper

64 bits from the hash of s[
⌊
|s|
2

⌋
+ 1..|s|]. Note that hash quality is very important in this step.

Since a hash collision would lead to two different sequences being represented by the same node,
every k-mer must result in a unique hash to ensure correctness of the resulting graph.

Hash collisions. Given 128-bit random hashes, it is reasonable to assume that there are no
hash collisions. To estimate the probability of a hash collision, the birthday paradox can be
used. Given n k-mers to hash, and the size of the hash space d = 2128, the probability of

collision can be approximated with p ≈ 1 − e
−n2

2d . As of 1st July 2020, the size of the SRA
database is 42441459655506377 base pairs. If the entire database were concatenated to one
string and all of its k-mers for one k were hashed, there would be less than 4.3 ∗ 1016 k-mers
to hash. Applying the approximation of the birthday paradox to this number of k-mers gives

a hash collision probability of p ≈ 1 − e
−n2

2d < 1 − e
−1.9∗1033
2∗2128 < 1 − e−10−5

< 10−4 for hashing
the entire SRA database. The probability of hash collision for any realistic dataset is therefore
negligible assuming a random hash function. In addition, MBG checks for hash collisions during
runtime. We have not seen a hash collision so far.

Transitive edge cleaning. Because the minimizers are sampled from a window, a sequencing
error outside of a k-mer can affect whether the k-mer was chosen. That is, an error within a
window but outside of the chosen k-mer in the error-free window can cause a different k-mer to
be chosen in the error-containing window.

x1
x2

x3

x4 x5
x1

(x2)

w

w

Figure 1: An illustration of the transitive edge problem. The top sequence (solid black line) has
no errors and three k-mers, x1, x2 and x3, are selected from it. The area marked by
w is one window, from which x2 was selected in the error-free sequence. The bottom
sequence (solid black line) has a sequencing error (red cross). Due to the sequencing
error, k-mer x4 is selected from window w instead of x2. The k-mers selected from
the bottom sequence are x1, x4 and x5. Even though the bottom sequence contains
x2 without errors, x2 is not selected.

Figure 1 illustrates the problem. The error-free sequence has chosen k-mers x1, x2, and x3.
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The second sequence has a sequencing error outside of x2 but covered by each window that
selected x2, causing x2 to not be selected, and instead minimizers x4 and x5 are selected. If the
minimizers were used as-is, the graph would have an extra edge x1 → x4, and the correct edge
x2 → x4 would be missing.

To solve this, we look at all edges connecting minimizers. We build an edge sequence of the
two adjacent minimizers. Given k-mers m1 with sequence σ1 and m2 with sequence σ2, and an
overlap of b base pairs between them, the edge sequence is defined as s = σ1 + σ2[b..k], that is,
the concatenation of the two k-mers, taking into account not to duplicate the shared sequence
in the overlap. Then, we check all k-mers in the edge sequence. If a k-mer m3 inside the edge
sequence was selected as a minimizer during minimizer winnowing, we mark the edge (m1,m2)
as transitive, and add the edges (m1,m3) and (m3,m2) if they were not already present. Finally,
we remove all transitive edges and transfer their read coverage to the replacement edges. In the
example in Figure 1, this would remove the edge x1 → x4, add the new edge x2 → x4, and add
the coverage of the removed edge x1 → x4 to the edges x1 → x2 and x2 → x4.

Checking if a k-mer was selected as a minimizer takes O(k) time and checking all k-mers in
all edges would then take O(mk2) time for m minimizers. We improve the speed in practice by
first using the rolling hash from minimizer winnowing to limit which k-mers to check. The hash
values of the selected k-mers are stored, and then a k-mer within an edge sequence is checked
only if its hash value exists in the stored hash values. This check can be done in O(mk) time
for all k-mers in all edges. Empirically, more than 99.99% of k-mers that pass the rolling hash
check are also selected k-mers. This does not affect the theoretical runtime of the algorithm
but in practice it leads to a significant speedup.

Graph construction. The 128-bit hashes are used as the nodes of the graph. Edges are added
whenever two hashes are adjacent to each other in a read. The constructed graph is then
processed by condensing non-branching paths into unitigs. After this, unitigs are filtered based
on a user given unitig abundance cutoff. Unitigs whose average coverage is less than the cutoff
are discarded. In addition, edges whose coverage is less than the cutoff are also discarded. After
unitig and edge removal the non-branching paths are again condensed into unitigs. The 128-bit
hashes are transformed back to base pair sequences and homopolymer runs are decompressed.
Finally, the graph is written in GFA format [6].

Storing sequences. The base pair sequences of the selected k-mers are stored in memory as a
store that contains a list of contiguous blocks. When a k-mer is added to the store, if the k-mer
has overlap with the most recently added k-mer, the non-overlapping part is appended to the
contiguous block. That is, the overlapping part is only stored once. If the k-mer does not overlap
with the most recently added k-mer, a new block is started. The lengths of the homopolymer
runs are stored similarly using 16-bit integers. In practice this means that adjacent k-mers
from the same read can be stored efficiently without duplicating the overlapping sequences, and
moving from one read to another will almost certainly start a new contiguous block.

Homopolymer run length consensus. When storing the sequences, homopolymer run lengths
are also stored. Each stored base pair also has a sum of run lengths s and a base pair count
c. When a k-mer is read from the input, for every base pair in the k-mer, the base pair count
c of the associated base pair is incremented by one, and the homopolymer run length of the
k-mer is added to the sum of run lengths s. The run length consensus of each base pair is taken
from the average s

c rounded to the nearest integer. The run length consensus can optionally be
disabled to reduce memory use, which is intended for the case when the input reads are already
homopolymer compressed.

Runtime. Assuming no sequencing errors and given a genome size g, genomic coverage c, k-
mer size k and window size w, the number of selected minimizers is m with O(m) = O( g

w )
assuming the minimizer winnowing hash is random. The runtime of minimizer winnowing is
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O(gc). Hashing the selected k-mers is O(kcm) = O(kcgw ). Cleaning transitive edges requires

O(km) = O(kgw ) for the selected minimizers, and O(kmk) = O(k
2g
w ) for k-mers which share their

rolling hash value with a selected minimizer. Graph construction is O(m) = O( g
w ). In total

the runtime is O(k
2g
w + kcg

w + gc). In practice the k2g
w term has a tiny constant factor and the

runtime is dominated by the O(kcgw ) term.
Assuming no sequencing errors and a constant read length r > k + w, the memory use of

MBG is O(g + mk
r−k−w +m) = O(g + gk

w(r−k−w) + g
w ). In practice increasing w reduces memory

use significantly.

B Experimental setup

We used MBG version 1.0.1 from Bioconda. We used BCalm2 version 2.2.3 from Bioconda.
All experiments were ran on a computing server with 48 Intel(R) Xeon(R) E7-8857 v2 CPUs
and 1.5Tb of RAM. BCalm2 was given one thread in the command line invocation, and MBG
is single threaded. Runtime and memory use was measured with “/usr/bin/time -v” in all
experiments.

Comparison to existing tools. We compared MBG to BCalm2 [2] for building graphs. We
used HiFi data from E. coli1, containing 290x coverage HiFi reads. We randomly downsampled
the reads to 29x coverage. We varied the window size parameter w for MBG from 1, resulting
in a de Bruijn graph, to 30, sparsifying the k-mer set by a factor of 15 on average. The k-mer
abundance threshold was set to 3 for BCalm2, and the unitig average abundance threshold was
set to 3 for MBG.

Due to the average density of random minimizers of w/2, and the homopolymer compression
reducing the average length of sequence by 1/4, the results for a de Bruijn graph with k-mer
size kDBG are most closely comparable to a sparse de Bruijn graph with kMBG = 3

4kDBG − w
2 .

We tried different values of kMBG and w which result in similar graph quality as predicted by
the above equation, and which match the kDBG given to BCalm2.

We limited kDBG in the comparison to at most 127 since that was the highest k supported
by the version of BCalm2 we used. We also included one block with parameters more suitable
for MBG.

Since the N50 of the k = 2001 and k = 2501 graphs matches the E. coli genome size,
we evaluated their correctness by running QUAST [5] on the E. coli K-12 substring MG1665
reference genome2, and a de novo HiCanu [9] assembly of the same HiFi reads. The results
were the same for k = 2001 and k = 2501 graphs produced by MBG. When compared to the
reference genome, QUAST reported 8 misassemblies for both the MBG contigs and the HiCanu
de novo assembly, all at the same locations. On the other hand the MBG contigs and the
HiCanu de novo assembly were structurally consistent with each others. We suspect that the
difference is due to the sequenced strain having differences to the strain used for constructing
the reference genome. The MBG contigs had a substitution error rate of 7.8∗10−6 for k = 2501
and 6.7 ∗ 10−6 for k = 2001, and an indel error rate of 5.0 ∗ 10−4 for k = 2501 and 4.5 ∗ 10−4 for
k = 2001. Nearly all of the errors are incorrect homopolymer run lengths. With homopolymer
compressed reference and contigs, the error rate drops to just 3 substitution and 3 indel errors
over the entire E. coli genome, for a total error rate of 1.8 ∗ 10−6.

Whole human genome HiFi. We ran MBG on whole human genome HiFi data from the
individual HG002. We used HiFi reads from the Human Pangenome Reference Consortium
HG002 data freeze v1.0 [15]3. The reads contain 50x coverage HiFi reads with sizes ranging
from 15kbp to 25kbp.

1SRA accession number SRR10971019
2GenBank accession U00096.2
3Libraries m64012 190920 173625, m64012 190921 234837, m64015 190920 185703, m64015 190922 010918,
m64011 190712 225711, m64011 190726 220327
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