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Abstract

Setosphaeria turcica is a major fungal pathogen of maize and causes the foliar disease Northern corn leaf blight

(NCLB). It originates from tropical regions and expanded into Central Europe since the 1980s, simultaneously with a

rapid increase of maize cultivation area in this region. To investigate evolutionary processes influencing the rapid

expansion of S. turcica we sequenced 121 isolates from Central Europe, Western Europe and Kenya. Population

genetic inference revealed five genetically distinct clusters that differ by their geographic distribution and emergence

dates. One genetically diverse cluster is restricted to Kenya, and the four European clusters consist of three distinct

clonal lineages with low genetic diversity and one genetically diverse cluster with several clonal sublineages.

A comparison of two different coalescent models for genetic diversity in the most frequent and geographically

widespread clonal lineage in Europe supported a model of neutral, strongly exponential population growth over

models accounting for different types of selection. In contrast to Kenyan isolates, European isolates did not show

sexual recombination despite the presence of both mating types MAT1-1 and MAT1-2 in Europe. Within clonal

lineages phenotypic variation in virulence to different monogenic resistances likely originated from repeated de

novo mutations in virulence genes of S. turcica. k-mer based association mapping between genetic clusters did not

identify genomic regions associated with pathogen races but few genomic regions that are significantly differentiated

between two clonal lineages and contain putative effector genes. Our results suggest that the rapid colonization of

Europe by different clonal lineages of S. turcica was not driven by selection of virulent races but reflects a neutral

demographic process of fast pathogen population growth fostered by a rapid expansion of the maize cultivation area

in this region.
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Introduction19

Modern agricultural practice is characterized by reduced crop rotation, large field sizes of monocultures, high20

chemical inputs and cultivation of resistant varieties. These factors influence both short-term epidemics and a long-21

term evolution of resistant pathogen strains that may rapidly expand over large geographic areas (1). In addition,22

climate warming favors the spread and adaptation of pathogen species to new environments and geographic regions23

(2). These factors contribute to rapid crop-pathogen co-evolution, whose understanding is essential to improve24
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management practices and plant breeding to maintain food security in a rapidly changing world (3). Global pathogen25

monitoring systems for plant pathogens identify the origin and expansion of new pathogen strains (4) to support26

resistance breeding and adaptation of crop management practices. Disease monitoring is greatly facilitated by27

genome sequencing to characterize pathogen diversity (5) although a sequence-based prediction of virulence types28

remains challenging due to a rapid evolution of pathogen genomes (6–10). Sequencing data were used to track the29

epidemiology and demographic history of pathogens (e.g., 11–13) and to reconstruct introductions (14). However,30

the relative importance of demographic effects versus selection-driven adaptation to cultivation conditions or plant31

resistance genes is still little understood. Therefore, a characterization of demography and selection to evaluate32

the evolutionary potential of pathogen species (15) will contribute to developing evolution-informed, durable33

crop management strategies to avoid rapid breaking of host resistance genes and reduce chemical inputs in plant34

protection (16).35

The hemibiotrophic fungal pathogen Setosphaeria turcica (Luttrell) Leonard and Suggs (teleomorph Exserohilum36

turcicum, formerly known as Helminthosporium turcicum) is the most important leaf pathogen of maize. It causes37

Northern corn leaf blight (NCLB), whose symptoms are long, elliptical stripes of necrotic tissues (lesions) on maize38

leaves, which limits the photosynthetic productivity and causes yield reduction (17). NCLB is a worldwide disease39

with a high incidence in the tropics, where it is a major cause of yield loss in maize. The most important methods for40

controlling the disease are breeding resistant varieties (18) and adapted management practices including fungicide41

applications. Additional management practices, such as biological control, are being studied (19, 20). S. turcica shows42

asexual and sexual reproduction, which requires mating of two strains with different MAT1-1 and MAT1-2 alleles at43

the MAT1 mating type locus. Worldwide surveys of genetic diversity of S. turcica showed that sexual reproduction44

is restricted to regions with a warm climate (17). Genetic diversity was higher in populations from Mexico in45

comparison to Kenya, China and Europe suggesting that S. turcica originated in Mexico and recently arrived in46

Europe (21). NCLB was first reported in Italy in 1876, followed by South-Western France around 1900. Until the 1980s,47

NCLB was mainly restricted to the warmer regions of Southern Europe and the Balkans, but between 1988 and 199248

the disease crossed the Alps, and in 1995 it was reported in the Upper Rhine Valley in South Germany. Afterwards it49

rapidly expanded throughout the maize cultivation regions in Northwestern Europe. In response to the expansion of50

NCLB in Europe, breeders improved commercial varieties by selecting for polygenic, quantitative resistances and by51

introgression of monogenic, race-specific resistance genes from genetic resources. The four main resistance genes52

introgressed are Ht1, Ht2, Ht3 and Htn1 (22). Different races of S. turcica are defined by their infection ability of a53

differentiation set of varieties harboring one of the four Ht genes. Race monitoring of more than 500 isolates revealed54

that S. turcica races are unequally distributed throughout Europe (23). Such a distribution raises the question whether55

the rapid expansion reflects a neutral demographic process like a repeated and independent introduction of different56

strains that were rapidly distributed by seed trade and agricultural practices, or a selection-driven adaptation to57

resistant host varieties that favored the rapid expansion of novel, virulent pathogen strains throughout Europe.58

We investigated both hypotheses by characterizing the genomic diversity of S. turcica isolates collected from natural59

infections of different susceptible maize varieties (lacking any known Ht genes) that were cultivated throughout60

Europe in 2011 and 2012. Using phylogenetic analyses and coalescence models we identify different clonal lineages61
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throughout Central and Western Europe that are distinct from Kenyan isolates used for comparison. The overall62

genetic diversity of the most widespread European clonal lineage was not shaped by strong selection exerted by host63

resistance genes, but reflects a neutral, exponential growth.64

Results65

Read mapping and variant discovery. We sequenced a sample of 166 isolates (157.2 GB raw sequence) from 1166

different countries (Dataset S1) and subsequently removed 37 isolates because of low coverage or a high proportion67

of reads not mapping to the reference genome. Eight samples were technical replicates of the same isolate to estimate68

the sequencing error rate. After excluding low quality samples and replicates we obtained a final sample of 12169

isolates with an average read coverage of 14.9x and a range from 5.5x to 44.7x coverage. After mapping and calling70

SNPs with both GATK and samtools-bcftools, we identified 55,534 SNPs by both methods and retained 23,209 SNPs71

after filtering (Materials and Methods). SNPs with a maximum of 35% of missing data were imputed by multiple72

correspondence analysis (MCA) (24). The median number of SNPs differing between the eight technical replicates73

was 9.5 corresponding to 99.96% identity between replicates (SI Appendix, Table S1). To polarize SNPs into ancestral74

and derived variants we included Bipolaris sorokiniana and Bipolaris maydis as outgroups (25, 26). This data set was75

expanded by two Setosphaeria turcica reference genomes obtained from isolates Et28A and NY001 collected in the76

United States, which resulted in a total sample of 123 isolates. The data derived from this sample consisted of 4,25777

polarized SNPs, corresponding to 18.3% of non-polarized SNP data.78

Presence of different clonal lineages. To determine the genetic relationship of S. turcica isolates we clustered the79

original 121 samples with ADMIXTURE into K = 5 clusters (Fig. 1B). Five isolates had ancestry coefficients of <70%80

and were not assigned to clusters. All clusters defined by ADMIXTURE were supported by a rooted Neighbor-Joining81

tree based on polarized SNPs, a principal component analysis (PCA) and Community Oriented Network Estimation82

((CONE), 27) (Fig. 1A-D). Three of the five ancestral clusters, which we named ’Big Clonal’ (47 isolates), ’Small83

Clonal’ (16 isolates) and ’French Clonal’ (9 isolates), showed very short internal branches and the two remaining84

clusters, ’Diverse’ (17 isolates) and ’Kenyan’ (27 isolates), showed long internal branches in the phylogenetic tree.85

The NJ tree, PCA and Neighbor-Net reveal a close relationship of the French Clonal cluster with the Kenyan isolates86

and a strong differentiation from the other three European clusters (Fig. 1A,C,E and SI Appendix, Fig. S1). All five87

clusters, however, appear to have arisen by sexual recombination as indicated by reticulate patterns at the base of88

each clade in the Neighbor-Net (Fig. 1E).89

We also observed genetic differentiation within clusters. ADMIXTURE identified two distinct subclusters within90

the Kenyan cluster (K = 7), the Diverse cluster (K = 6), and the Big Clonal cluster (K = 8; SI Appendix, Fig. S1).91

CONE identified four connected subclusters within the Big Clonal cluster and two disconnected subclusters in the92

Diverse cluster (Fig. 1D). The latter may consist of distinct clonal lineages that originated by recombination as shown93

by the Neighbor-Net. In contrast, no recombination is evident within the Big Clonal cluster and its subclusters, which94

therefore reflect evolutionary lineages of independent mutations.95

To test whether the four European genetic clusters are geographically clustered, we analysed the spatial auto-96

correlation with Moran’s I using ADMIXTURE ancestry coefficients (K = 5; Fig. 2A). Correlograms of Moran’s I97
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Fig. 1. A) Rooted Neighbor-Joining tree from the polarized SNP dataset, branches are colored according to the observed ADMIXTURE clusters, dark

blue indicates the two reference genomes (NY001 and Et28A), * sign indicates the subclusters within the major clusters (two subclusters in Kenyan and

four in the Diverse cluster). Rhombuses in tip nodes are colored according to the mating type. B) Individual ancestry coefficients from ADMIXTURE for

K=5 in the same order as the rooted NJ Tree. White gaps correspond to the two reference genomes which were not analysied in ADMIXTURE. NA show

admixed individuals with no cluster assigned. C) First two axes of a PCA colored according to the five observed ADMIXTURE clusters. D) Population

network created with CONE colored according the phenotyped race (NA in white for unknown race). Background color highlights the five ADMIXTURE

classification clusters. E) Neighbor-Net created with SplitsTree colored according to the five observed ADMIXTURE clusters.

indicate a wide geographic distribution and absence of geographic clustering of the Diverse and Big Clonal clusters98

(Fig. 2B). In contrast, the French Clonal cluster is strongly clustered in France and the Small Clonal cluster at99

sampling locations within and between the Upper Rhine Valley and the border between Northwestern Austria and100

Southeastern Germany.101

Mating type and recombination. Sexual reproduction in S. turcica is controlled by the MAT1 locus with the MAT1-1102

and MAT1-2 ideomorphs (28, 29), which are highly dissimilar alleles. Sequence reads from MAT1-2 isolates do103

not map to a MAT1-1 reference (and vice versa) resulting in an alignment gap. To determine the mating type of104

isolates we assembled all unmapped reads de novo into contigs and compared them with BLAST to a database of105

S. turcica sequences that included both MAT1-1 and MAT1-2 alleles. Isolates were classified as either MAT1-1 or106

MAT1-2 because all reads and contigs mapped to only one of the two mating types. Three clusters (Big Clonal,107

Small Clonal and French Clonal) are fixed for one mating type, whereas the Kenyan and Diverse clusters each have108

approximately 1:1 ratios of the two mating types, consistent with a history of sexual reproduction (Table 1). The109

presence of different mating types as indicator of sexual reproduction is supported by the Phi recombination test,110

which identifed past recombination events in the Kenyan and Diverse, but not in the other three clusters (Table111
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Fig. 2. A) Geographic origin of European isolates. Pie charts indicate ancestry coefficients for K = 5 to show the geographic distribution of the five

major genetic clusters. Geographically close isolates are shifted to avoid overlaping of pie charts. B) Correlogram of Moran’s I of the European ancestry

coefficient along different distance classes. In red, p-value of Moran’s I < 0.05

1). The test also detected recombination within the two Kenyan subclusters, of which each harbors both mating112

types in roughly equal proportions (Fig. 1A). We found no recombination within the four lineages of the Diverse113

cluster, consistent with the fixation one mating type within each lineage of this cluster. A permutation test on the114

standardized index of association, rd, rejected the null hypothesis of random association of alleles in all five clusters,115

suggesting that despite past episodes of sexual reproduction, the Diverse and Kenyan clusters also show high rates116

of asexual reproduction in recent time.117

The geographic distribution of the two mating types is correlated with the geographic distribution of the four118

European clusters as the mating type is fixed within each of the three European clonal lineages. However, mating119

types of the Diverse cluster are unequally distributed with a higher proportion of MAT1-1 in the Southeastern part120

and a higher proportion of MAT1-2 in the Northwestern part of its sampling area (SI Appendix, Fig. S2)121

Differences in genetic diversity between clusters. Consistent with their different histories of sexual and asexual122

reproduction, the five clusters also differ by their level of nucleotide variation (Table 1, Fig. 3A). Nucleotide diversity,123

π and Watterson’s estimator, θW , are higher among the 26 isolates from Kenya (Genome-wide π = 6.631× 10−5, per124

base pair) than among the 94 isolates from Europe (5.365× 10−5). Both clusters harbor a high proportion of SNPs not125

present in the other cluster because only 4,647 SNPs segregate in both clusters, corresponding to 33% and 39% of the126

SNPs of the Kenyan and European clusters, respectively.127

SNP-based genetic diversity differs between the four European clusters (Table 1A). The Diverse cluster shows128

10 to 30 fold higher genetic diversity compared to the three clonal lineages. Its genetic diversity is 82% of the total129

European and 65% of Kenyan samples, respectively. Similar differences between the clusters are observed with130
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Table 1. Diversity and reproduction type statistics of Kenyan and European isolates

Cluster n S π θW Tajima’s D MAT1-1 : MAT1-2 Phi (p-value) rd (p-value)

Kenya 26 11,880 6.631× 10−5 7.852× 10−5 -0.62 11 : 15 0.0000 0.001

Europe 94 14,094 5.365× 10−5 6.949× 10−5 -0.78 29 : 65 - -

Small Clonal 16 393 1.52× 10−6 2.99× 10−6 -2.15 16 : 0 0.4873 0.001

French Clonal 9 215 1.47× 10−6 2× 10−6 -1.38 0 : 9 0.1034 0.001

Diverse 17 5,631 4.445× 10−5 4.201× 10−5 0.25 10 : 7 0.0000 0.001

Big Clonal 47 1,514 3.11× 10−6 8.65× 10−6 -2.36 0 : 47 0.9229 0.001

Diversity statistics: S: number of segregating sites, π: nucleotide diversity per bp, θW : Watterson’s estimator per bp, D: Tajima’s D. Results are rounded to the

number of presented digits. Reproduction type statistics: MAT1-1 : MAT1-2 as matying type counts. Phi (p-value): p-value of the Phi recombination test. rd

(p-value): p-value of the standarized test of random association of alleles.

0

10

20

30

Big
Clonal

Small
Clonal

French
Clonal

Diverse Kenya

N
uc

le
ot

id
e 

di
ve

rs
ity

 (
π)

0.0

0.5

1.0

1.5

Big
Clonal

Small
Clonal

French
Clonal

A

0.00

0.25

0.50

0.75

1.00

Big
Clonal

Small
Clonal

French
Clonal

Diverse Kenya

H
ap

lo
ty

pe
 d

iv
er

si
ty

B

−2

−1

0

1

2

Big
Clonal

Small
Clonal

French
Clonal

Diverse Kenya

Ta
jim

a'
s 

D

C

0.00

0.25

0.50

0.75

1.00

Small Clonal 
 French Clonal

Big Clonal 
 French Clonal

Big Clonal 
 Small Clonal

French Clonal 
 Diverse

Small Clonal 
 Kenya

Big Clonal 
 Kenya

French Clonal 
 Kenya

Small Clonal 
 Diverse

Big Clonal 
 Diverse

Diverse 
 Kenya

F
S

T

D

Fig. 3. Levels of genetic diversity in five different genetic clusters defined by ADMIXTURE k = 5. A) Nucleotide diversity π per bp (in units of 10−6),

B) haplotype diversity, C) Tajima’s D, and D) pairwise Fst calculated in windows of 250kb. The inset plot in (A) zooms into the y axis for the three first

clusters (same units).

haplotype diversity (Fig. 3B). Tajima’s D values of the Big and Small Clonal clusters are highly negative (< 2) and131

less negative in the French Clonal cluster (-1.4; Table 1, Fig. 3C). The negative Tajima’s D values of the clonal lineages132

indicate a genome-wide excess of rare alleles that may be caused by demographic effects like population growth133

following recent emergence or genome-wide purifying selection. The first explanation was proposed for similar134

patterns in clonal lineages of other plant pathogens (e.g., 13). Genetic differentiation of SNPs was measured as135

Fst and was highest between clonal lineages and smaller between the clonal lineages and the Diverse and Kenyan136

clusters, respectively (Fig. 3D).137

The five clusters also differ in the distribution of genetic diversity along the genome. The Big Clonal, Small Clonal138

and French Clonal clusters have numerous genomic regions devoid of any genetic variation, whereas variation139

is more uniformly distributed in the Diverse and Kenyan clusters (SI Appendix, Figs. S3, S4 and S5). The lack of140

diversity is particularly strong for the Small Clonal and French Clonal clusters, because only 3% (Small Clonal)141
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Table 2. McDonald-Kreitman test

Cluster πN/πS Pn/Ps Dn/Ds NI p-value

Big Clonal 0.747 (1.30× 10−6/1.80× 10−6) 1.648 (201/122) 1.366 (168/123) 1.206 0.283429

Small Clonal 2.123 (8.00× 10−7/4.00× 10−7) 5.455 (60/11) 1.480 (182/123) 3.686 0.000055

French Clonal 0.299 (4.00× 10−7/1.30× 10−6) 2.818 (31/11) 1.653 (390/236) 1.705 0.185753

Kenya 0.506 (2.47× 10−5/4.88× 10−5) 1.734 (1278/737) 1.395 (113/81) 1.243 0.161458

πN/πS is the ratio of non-synonymous to synonymous nucleotide diversity; P: population polymorphisms; D: fixed derived mutations (reference Et28A as

outgroup); n: non-synonymous mutations, s: synonymous mutations; NI: Neutrality Index, calculated as (Pn/Ps)/(Dn/Ds); p-value: Fisher’s exact test p-value

and 1% (French Clonal) of all 100 kb windows on the 15 longest scaffolds of the reference genome segregate for142

five or more SNPs. For the clonal lineages, most windows reflect the genome-wide negative Tajima’s D values143

and there are no visible outliers with highly negative Tajima’s D values that may reflect strong localized selective144

sweeps (SI Appendix, Fig. S6). In contrast, both the Big and Small Clonal clusters have windows with highly positive145

Tajima’s D values (e.g. on scaffolds 4 and 10), which may indicate mapping errors caused by structural variants or146

strong balancing selection (SI Appendix, Table S2). However, these regions contain only very few (≤ 5) SNPs and, for147

the Big Clonal cluster, outlier Tajima’s D values do not deviate significantly from a neutral model of a constant or148

exponentially growing population (SI Appendix, Text A, Table S3).149

Tests of selection. To investigate whether the genetic clusters were affected by positive or purifying selection, we150

applied the McDonald-Kreitman (MK) test and compared synonymous and non-synonymous variation among151

isolates relative to the reference genome Et28A (Table 2). Although ratios of non-synonymous and synonymous152

substitutions (Dn/Ds) are usually used for interspecific comparisons, they can also be interpreted for well separated153

clonal lineages (30). The Et28A reference clusters with the Diverse cluster, thus they are not well separated and154

we did not perform the analysis for the Diverse cluster. The ratio of synonymous to non-synonymous nucleotide155

diversity (πN/πS) estimates the fraction of effectively neutral mutations among all mutations (31) under Ohtas’s156

nearly neutral model (32). The Big Clonal, French Clonal and Kenyan clusters show πN/πS ratios below 1 indicating157

that a majority of mutations are non-neutral or nearly neutral. Variation in the Small Clonal cluster differs from158

a nearly neutral model with a ratio πN/πS = 2.1 and a much higher ratio of non-synonymous to synonymous159

mutations, Pn/Ps = 5.5 than the other clusters (Table 2). However, with the exception of the Small Clonal Cluster160

(p < 0.0001), a MK test does not reject the null hypothesis of neutral evolution indicating that purifying selection has161

no significant effect on the fate of mutations in four of the five genetic clusters of our sample, which is unexpected162

given the πN/πS ratios observed.163

Inference of split times. To investigate the demographic history of European isolates we included the two North164

American isolates Et28A and NY001 and used the polarized SNP data.A rooted tree revealed a close relationship of165

the American and European isolates (Fig. 1A), which was independently confirmed by merging our resequencing166

data with genotyping by sequencing (GBS) data of 13 North American isolates (33) resulting in a set of 280 genome-167

wide SNPs (SI Appendix, Fig. S7). The resulting phylogenetic tree and PCA plot (SI Appendix, Fig. S7) of the merged168

dataset are essentially identical to the analyses of European isolates based on the complete sequencing data. Both169
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methods group the North American isolates with the Diverse cluster, consistent with the tree in Fig. 1A.170

To test whether European clonal lineages split before or after their introduction to Europe we estimated divergence171

times between the five clusters (times back to the most recent common ancestor, MRCA, of a pair of clusters) and172

emergence times of clonal lineages within clusters (times back to the MRCA of each cluster) using BEAST (Fig. 4A173

and SI Appendix, S8). The three clonal clusters diversified quite recently with posterior mean emergence of the most174

recent common ancestor in the year 1985 for the Big Clonal (1978-1990 include ≥ 95% posterior mass with highest175

posterior density, 95%HPI), 1998 for the Small Clonal (1993-2001, 95%HPI) and 1999 for the French Clonal (1995-2002,176

95%HPI) clusters. Split times between clusters are more distant and range from the year 1609 between Small Clonal177

and Big Clonal (1480-1809, 95%HPI), 1503 between the ancestors of Big Clonal, Small Clonal and the Diverse cluster178

(1456-1667, 95%HPI) to 1198 between the ancestors of the Big Clonal, Small Clonal, North American reference isolates179

and French Clonal (975-1368, 95%HPI). The Diverse cluster emerged much later than the clonal clusters in 1520180

(1386-1624, 95%HPI) and the nodes of its genealogical tree are more spread over time. Split times and tree topology181

of the BEAST analysis agree with the phylogeny in Fig. 1A and support a much closer pairwise relationship of Big182

Clonal and Small Clonal than to the French Clonal cluster. Including non-clonal lineages in analyses to estimate183

split and emergence times may introduce a bias due to reticulate events (13). To test for such a bias, we included184

only the Big Clonal, Small Clonal, and French Clonal clusters with and reference genome in a BEAST analysis. We185

obtained the same phylogeny as in Figure 4A and split time estimates that are slightly more in the past (SI Appendix,186

Table S4 and SI Appendix, Figs. S9 and S10). This comparison shows that time estimates are robust with respect to the187

mode of reproduction. We then investigated whether the global expansion of maize cultivation after the beginning of188

the Columbian exchange in 1492 and the strong increase of maize cultivation in Europe during recent decades was189

accompanied by an increase of the effective pathogen population size, Ne. After adding global population size as190

parameter to the phylogentic model for BEAST median, posterior estimates of Ne changed substantially over time191

(Fig. 4B and SI Appendix, Figure S8). Estimates of Ne based on the European samples, three samples from Kenyan192

cluster and the North American reference sequence indicate a long phase of population growth since the time of193

the most recent common ancestor (MRCA) of the European samples about 825 years ago until a period between194

1859 and 1900, followed by a population decline until 1999, when population size Ne was lower than at the time of195

the MRCA. This decline was then followed by a very recent epoch of a strong population growth for 20 years until196

the last sampling date 2012. A recent, rapid growth is consistent with strongly negative genome-wide Tajima’s D197

values within the three European clonal clusters. A decline of Ne followed by recent strong growth was confirmed by198

analysing only Big Clonal, Small Clonal, and French Clonal clusters together with the reference genome (SI Appendix,199

Figs. S9 and S10).200

Neutral versus selection-driven population dynamics. The low genetic diversity and genome-wide excess of rare201

polymorphisms within clonal lineages may reflect rapid population growth or result from recurrent, short phases in202

which newly emerged genotypes with a skewed offspring distribution become dominant. Among predominately203

asexually reproducing fungal pathogens, following processes may lead to a skewed offspring distribution even204

without population size changes: (i) rapid selection of newly emerged genotypes with a very high fitness coefficient205

(34), (ii) a large number of offspring originating by chance from a single parental genotype analogous to sweepstake206
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Fig. 4. A) Dated phylogeny obtained with BEAST, using all European isolates, reference genome Et218A (in dark blue) and three samples from Kenyan

cluster. Time is given as years before 2012, the year of the most recent sampling. Horizontal gray bars show the 95 % highest posterior density intervals

(95% HPI) for split times. B) Extended Bayesian skyline plot obtained with BEAST for the analysis from (A). The inset zooms into the most recent past.

Time runs backwards from 2012. The dashed line shows the median posterior population size, while the gray area shows the 95% HPI.

reproduction in marine species (35, 36), or (iii) a large number of offspring from genotypes that evolved virulence207

against monogenic resistance genes present in maize varieties (boom-bust cycles) (37). Genealogies in these cases208

can be modeled as multiple-merger coalescents. We compared these models with a standard Wright-Fisher type209

reproduction with growing population sizes, modeled via a bifurcating Kingman coalescent with exponential growth.210

For the Big Clonal and Kenyan clusters we compared both coalescent models using SNPs segregating within this211

cluster on the five largest scaffolds of the current S. turcica reference genome using a Random Forest Approximate212

Bayesian Computation (RF-ABC) approach for model comparison and parameter estimation. In the other clusters213

we observed high prior error rates and low posterior probabilities and considered these results not as robust (SI214

Appendix, Table S5). Table 3 shows the results of the RF-ABC analysis. For the Big Clonal cluster, it provides strong215

support for a bifurcating Kingman coalescent with strong exponential growth over a multiple merger coalescent,216

which refutes strong selection without growth or sweepstake reproduction. The Kingman coalescent is also preferred217

for the Kenyan cluster, but with much smaller growth rates. All scaffolds in the Big Clonal and in the Kenyan cluster218

show ’positive’ (≥ 3 odds ratio) to ’strong’ support (≥ 20 odds ratio, only for Big Clonal) for an exponential growth219

model over a multiple merger model according to the Kass-Raftery scale (38). Simulations showed that the observed220

genetic diversity in both the Kenyan and Big Clonal clusters are obtained with the best-fitting model (SI Appendix,221

Text B, Figs. S11 and S12).222

Although our analyses reject the hypothesis that skewed offspring distribution alone shapes genetic diversity223

for the Big Clonal and Kenyan clusters, a combination of exponential growth with skewed offspring distributions224

explains the data similarly well as neutral population growth (SI Appendix, Text C).225
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Table 3. RF-ABC model selection results

Cluster SNP Mean Post. prob. Odds Fitted

count OOB Exp. growth ratio rate g

Big Clonal 92-128 21-22% 83 - 98% 4.9-49 181-630

Kenya 683-1007 20% 75.2 - 84.3% 3-5.4 5.5-8.5

Mean OOB is the out-of-bag prior error rate for model classes, averaged over all model classes. Post. prob. exp. growth gives the posteror probability of the

exponential growth model. Fitted parameter g: Posterior median of the exponential growth parameter in coalescent units, where one unit represents 2N

generations. For each variable, we report the range of values for the five biggest scaffolds. For the transformation of posterior probabilities into odds ratios for a

comparison of exponential growth vs. any other genealogy model used, see Materials and Methods.

Different pathogen races within clonal lineages. To test whether isolates within clonal lineages belong to the same226

or different races, we identified 62 isolates in our sample whose race was determined in a race monitoring of 542227

European S. turcica isolates collected in 2011 and 2012 from the major maize growing regions in Europe (23). The228

monitoring revealed that race 0 was the most dominant with 45% of isolates, followed by race 1 (22%), 3 (15%) and229

3N (14%). Only 4% of isolates were virulent against two or more resistance genes (races 13, 123, 23, 2, 23N, 12, 1N230

and 13N). Mapping the race type of the 62 isolates onto the CONE network reveals that Big and Small Clonal clusters231

harbor four races each and the French Clonal cluster three races (Fig. 1D). Single, independent de novo mutations232

in pathogen effector genes are sufficient to create new races and may explain the diversity of races within clonal233

lineages. Alternatively, the presence of the same races in different lineages may reflect shared polymorphisms that234

originated in ancestral populations although such an explanation seems unlikely given the low genetic diversity235

within clonal lineages (Table 1).236

Identification of divergent regions and structural variants. The differences in SNP allele frequencies between clonal237

lineages suggests that highly divergent genomic regions and presence absence structural variants (PAVs) also238

contribute to genomic differentiation. We therefore used sequence read coverage and k-mer frequencies to identify239

highly divergent regions and PAVs. First, we calculated for each isolate its sequence coverage of the reference genome240

in 43,443 windows of 1 kb length and expressed coverage as percent bases covered by at least one sequence read241

in each window. Windows with low coverage indicate a high proportion of mapping gaps in the reference and242

windows with a highly variable coverage between isolates pinpoint structural variants. Using the top 2.5% windows243

(n = 1, 012) with the most variable sequence coverage between isolates, we constructed a NJ tree from a pairwise244

Euclidean distance matrix of reference sequence coverage (SI Appendix, Fig. S13) to cluster isolates with similar245

variation in coverage. The topology of the resulting tree is highly similar to the rooted SNP-based tree indicating that246

highly variable regions and PAVs reflect similar genealogical process than SNP allelic variation.247

To identify genomic regions that differentiate pairs of clonal clusters we used HAWK (39), which identifies k-mers248

whose frequency differs between clusters. Among all pairwise comparisons (see Methods), we obtained different249

k-mer frequencies only between the Big Clonal vs. Small Clonal clusters. Among 6,341 k-mers that differentiate250

the two clusters, 3,048 are associated with the Big and 3,293 with the Small Clonal cluster. We de novo assembled251

both k-mer clusters independently into longer sequence contigs and found that 93% of assembled k-mers mapped252
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to few, distinct regions of the reference genome, suggesting that a small number of genomic regions contribute to253

genomic differences between the two clusters. Assembled k-mers mapped to only 1,167 (12.73 %) 10kb windows of254

the reference genome. There were only 30 windows (0.33% of all windows) that collected the top 2.5% k-mer counts255

with at least 9.85 mapped k-mers per window. Among all mapped k-mers, 25% map to these 30 windows, which256

tend to be highly repetitive. A majority of 22 out of 30 windows (73%) is highly repetitive with ≥ 50% repetitive257

elements and no window contains gene-rich regions.258

To identify proteins that may differentiate the Big and Small Clonal clusters, we conducted a BLASTX analysis259

against a non-redundant BLAST protein database with the remaining unmapped k-mers. For both clusters, ’hy-260

pothetical protein’ was the most frequent annotation of proteins among the five best hits with a cutoff e-value of261

< 0.001, followed by the mating type MAT1-2 for the Big Clonal cluster. The latter finding is a positive control of262

the k-mer mapping approach because Big Clonal has MAT1-2, which does not map to the reference genome Et28A,263

and Small Clonal has MAT1-1, which maps to the reference genome. For the Small clonal cluster, the second most264

frequent BLAST hit was ’polyketide syntase protein’, which is potentially associated with pathogen virulence (25).265

We also used the race assignment to identify k-mers associated with race-specific genes, however no significant266

and robust outcome was found (Table S6). This negative result may either reflect a too small sample size or genetic267

differences of single or few variants that are not uncovered by the analysis of k-mers.268

Discussion269

Our work confirms earlier studies of S. turcica genetic diversity and mode of reproduction in Europe and Africa270

(21, 40). Isolates originating from Kenya form a single cluster with high genetic diversity, equal frequency of both271

mating types and genomic patterns of recombination consistent with a higher rate of sexual reproduction of S. turcica272

in tropical climates. In contrast, European isolates are composed of four distinct clusters, which differ by their relative273

frequency and geographic distribution. Three clusters (Big Clonal, Small Clonal, French Clonal) represent single274

clonal lineages, whose genetic diversity is very low, do not show evidence of recent recombination, and are fixed for275

one of the two mating types. The fourth cluster (Diverse) consists of diverse clonal lineages that, taken together, have276

a high level of genetic diversity, evidence of past recombination and an equal frequency of both mating types. These277

three characteristics in combination with low FST values between the Diverse vs. the Big Clonal and Small Clonal278

clusters, respectively, suggest that the Diverse cluster is a source of genetic diversity from which clonal lineages279

emerged previous to the arrival of S. turcica in Europe. The two North American isolates Et28A and NY001 cluster280

with the Diverse cluster and are highly similar to different European isolates indicating the close connection between281

European and American samples that may reflect an American origin of the Big Clonal, Small Clonal and Diverse282

clusters. In contrast, the French Clonal cluster is closely related to the Kenyan cluster and therefore likely has the283

same origin. A previous study interpreted the presence of African alleles in an isolate from Southwestern France of S.284

turcica as recent migration (21). This is not supported by our analysis because the split time of Kenyan and French285

Clonal clusters predates the arrival of S. turcica in Europe, and their close relationship reflects a common ancestry286

instead of recent migration.287

Our divergence time estimates suggest that individual lineages within each of the three Big Clonal, Small Clonal288
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and French Clonal clusters emerged less than 40 years ago. Although these very recent emerge times are based on289

a limited sample we consider them reliable (41) (SI Appendix, Text D). In contrast, the divergence times of the five290

clusters identified in our sample are more distant and range between 816 to 360 years ago (Fig. 4), which predates291

the introduction of S. turcica into Europe and strongly suggests these clusters originated outside Europe and were292

independently introduced. The clonal sublineages within the Diverse cluster originated between 370 to 50 years ago293

and are separated by sexual recombination events, which are unlikely under European climatic conditions. For this294

reason, they were likely independently introduced into Europe.295

Evolutionary forces determining pathogen demography. Although multiple crop pathogens expanded globally in296

short time, only few studies analysed the evolutionary forces determining expansions, in particular the role of297

selection on plant pathogens, using explicit population genetic modeling (42). We employed Approximate Bayesian298

Computation (ABC) to compare two coalescent models and to differentiate between a neutral model of exponential299

growth and a selection-based model of the S. turcica expansion in Europe. Simulations of models with asexual300

reproduction demonstrate a high power of ABC to differentiate between neutral and selection-driven demographies301

with suitable summary statistics (43). The Big Clonal cluster is particularly interesting for such an analysis because302

it is the most successful cluster in terms of sample frequency and geographic distribution in Europe. Its large303

sample size provides better statistical power and a restriction of ABC to clusters without a strong internal population304

structure removes a bias in distinguishing among genealogy models (44). The ABC analysis of the Big Clonal cluster305

(Table 3) reveals a recent population size increase and in addition that observed genetic diversity in this cluster is306

not consistent with a history of rapid selection or boom-bust cycles caused by host-pathogen coevolution without307

population growth. In other fungal crop pathogens such as Zymoseptoria tritici random fluctuations in fecundity and308

a potential for very large offspring numbers per individual have been proposed (36), which should lead to a multiple309

merger genealogy if it is strong enough. Our results exclude such a model as sole explanation for the observed310

diversity in the Big Clonal Cluster or indicate that fecundity differences in the pathogen are too small to affect the311

shape of the genealogy. Instead, observed diversity within this cluster can be explained by just assuming neutral312

population growth. These analyses do not exclude the possibility that an exponential increase of Ne in the Big Clonal313

cluster results from a relative fitness advantage caused by adaptive de novo mutations or a favourable combination of314

adaptive mutations achieved via sexual recombination in the founders of the cluster. In addition, a more complex315

pattern of neutral population growth on top of selection processes or sweepstake reproduction can also not be ruled316

out. Since the Kenyan cluster also supports a neutral coalescent model with a low rate of population growth there is317

no reason to expect multiple mergers as standard gene genealogies in S. turcica. The absence of interpretable results318

for the ABC analyses for the Small Clonal and French Clonal clusters likely results from too small sample sizes.319

Tests of neutrality based on comparisons of non-synonymous and synonymous genetic diversity (Table 2) do320

not contradict a model of neutral evolution as main driver of genetic diversity for the Big Clonal, French Clonal321

and Kenyan clusters.Although there is an excess of non-neutral diversity in these clusters, it is not strongly selected322

against as indicated by non-significant MK test results. This seems contradictory at first, but may have several323

explanations: clonality preventing efficient selection against deleterious mutants, a surplus of beneficial founder324

mutations offsetting the effect of purifying selection (this may need many such mutations and thus be unlikely) or325
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simply an underpowered MK test. Nevertheless, it shows that even if there is purifying selection, it is not a main326

driver of genetic diversity within these clusters. The Small Clonal cluster, however, may have a different evolutionary327

history because the significant MK test result for purifying selection contrasts with an excess of non-synonymous328

diversity, which suggests that evolution in this cluster does not follow a nearly-neutral model. Overall S. turcica329

genetic clusters do not provide evidence for strong purifying selection, which is in contrast to the rice fungal pathogen330

Magnaporthe oryzae (11). Taken together, absence of selection as main driver for the genetic diversity of the Big Clonal331

cluster and a close temporal coincidence of S. turcica population growth with an expansion of maize cultivation in332

Europe leads us to propose that the expansion of this cluster was not driven by rapid evolutionary adaptation to333

European maize varieties or the environment.334

Limited evidence for host-pathogen co-evolution in Europe. Our sample of isolates was collected in 2011 and 2012335

and represents a snapshot in time and space that is restricted to Europe and Kenya. Both factors limit further336

interpretations of our results and lead to questions about the role of S. turcica - maize coevolution within and outside337

Europe. First, the demographic analysis suggests an independent and recent single introduction of the French Clonal,338

Small Clonal and Big Clonal clusters into Europe(Table 3), although our results are also consistent with independent,339

repeated introductions of the same clonal lineages. For example, the clonal lineages within the Diverse cluster340

originated by sexual recombination over an extended period of time (Fig. 4). Since sexual recombination is unlikely341

under European climatic conditions, the lineages likely originated outside Europe and were then subsequently342

introduced. Further evidence for repeated introductions is the high genetic similarity among European and North343

American isolates suggesting recent exchange or a common origin in a different region, such as Mexico, because344

European isolates were more similar to Mexican than to Kenyan isolates (21). Additional samples from putative345

regions of origin such as Central America and tropical Africa are required to resolve this issue.346

A second question refers to the effects of maize resistance genes on S. turcica evolution and epidemiology. There is347

no association between the five genetic clusters and the distribution of S. turcica races among these clusters. This348

observation and a high proportion of race 0 (i.e., non-virulent against four tested Ht genes) isolates in all five clusters349

shows that race-specific virulence did not generate new pathogen lineages with a strongly increased fitness. In350

combination with the evidence for neutral evolution of genetic variation in the European isolates, we conclude that351

strong selection against qualitative or quantitative maize resistances had very little or no effect on genetic diversity352

in Europe. However, future studies should associate the genetic diversity of host and pathogen genomes using joint353

association analysis (e.g., 45) to elucidate the role of genotype by genotype (GxG) effects in the spatial and temporal354

dynamics of host-pathogen interactions. Such information will contribute to avoid breakdown of resistance genes355

and achieve long-term resistance management (46).356

A third question refers to the evolution or new races, because the presence of multiple races within the five S.357

turcica clusters suggests a rapid and repeated breakdown of Ht-based monogenic resistances in maize varieties (Fig.358

1D). Since selection against host resistance does not seem to affect the evolutionary dynamics of S. turcica, a frequent359

origin of new races may be facilitated by a high mutation rate, which we estimated as posterior mean substitution360

rate of 10−4 substitutions per year per site using BEAST. This rate is much higher than in Magnaporthe oryzae, where it361

was estimated to be in the order of 10−8 (11)). We used k-mer based association analysis to identify genomic regions362
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that may contribute to resistance breakdown, but did not find k-mers that are significantly associated with race363

type, possibly because of a small sample size for each race. In contrast, a k-mer analysis of the complete sample364

unambiguously identified the mating type gene and several genomic regions that differentiate clonal groups and365

harbor genes with putative roles in pathogenicity.366

In conclusion, our analyses indicates a rapid spread of different S. turcica clonal lineages in Central and Western367

Europe in the absence of both recombination and strong selection for pathogen virulence. Monitoring of pathogen368

diversity on larger geographical scales and over time is required to fully understand forces influencing pathogen369

epidemiology and evolution, and the evolution of pathogen races. However, our work shows that large scale370

sequencing and population genomic analysis provide useful information to develop breeding programs informed by371

host-pathogen evolution and to control plant pathogens by improved agricultural management.372

Materials and Methods373

Cultivation of fungal isolates. The origin and sampling information of isolates is described in Dataset S1 Lyophilized374

isolates were transferred to Becton Dickinson BBD Potato Dextrose Agar plates and incubated for at least 10 days375

at 25°C and a 12h light / 12hr dark cycle until plates were completely covered by mycelia. This fungal tissue was376

scraped from the surface with a spatulum and collected in a 2 ml plastic reaction tube.377

DNA extraction and NGS sequencing. After adding six ceramic beads (2.8 mm diameter; MoBio, USA) to each378

tube, the tissue was ground in a Retsch mixer mill (MM400) for 30 sec at a speed of 30 sec-1. The DNA was379

then extracted with the Micro AX Blood Gravity KI (A&A Biotechnology, Poland; Cat. No. 101-100) according to380

manufaturer’s instructions and diluted to a concentration of 2.5 ng µl-1 EB buffer. Whole genome equencing libraries381

were generated using a multiplex tagmentation protocol (47) with minor modifications. Our detailed protocol is382

available at protocols.io at and the assignment of barcodes to isolates as detailed in Dataset S1. The libraries were383

paired-end sequenced (2 x 100 bp) on a HiSeq 2500 Illumina sequencer (Macrogen, Korea) in three batches of 24, 96384

and 46 isolates, respectively.385

Read mapping and variant calling. Raw Illumina reads were processed for sequence quality using Trimmomatic386

v0.36 (48) with arguments ILLUMINACLIP:NexteraPE-PE2:30:10:8 CROP:98 HEADCROP:8 LEADING:28 TRAILING:28387

SLIDINGWINDOW:15:28 MINLEN:40 AVGQUAL:30. Read pairs for which both forward and reverse passed quality388

control were kept for further analysis. Trimmed reads were mapped with BWA v0.7.12-r1039 (49) against the389

Setosphaeria turcica reference genome Et28A v1.0 (race 23N strain 28A) (25, 26). The reference consists of 403390

scaffolds and was obtained from EnsemblFungi version 39 (50). PCR duplicates were removed with MarkDuplicates391

from Picard tools (http://broadinstitute.github.io/picard/) and mapped reads locally realigned with GATK v3.7-0 (51).392

Mean percentage of mapped reads and mean coverage were calculated with Qualimap v2.2.1 (52). Samples with393

low percentage of mapping reads (<83%) and/or low coverage (<5X) were excluded to avoid the analysis of394

contaminated samples. For variant calling we used two different methods an only kept variants identified by395

both methods. Genotypes were called for each sample eith GATK HaplotypeCaller (–emitRefConfidence GVCF396

–min_base_quality_score 28 –min_mapping_quality_score 20 -ploidy 1), and genotypes were merged with397
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GenotypeGVCFs (–ploidy 1). As second method samtools mpileup (53, 54) (-t DP -t SP -t AD -g -C 50 -A -E398

-q 20 -Q 28) was used with bcftools (55) (-mv –ploidy 1). Insertion-deletion (INDEL) variants were excluded with399

vcftools (56) (-remove-indels). We kept overlapping SNPs between GATK and samtools-bcftools methods using400

bcftools isec. SNPs were filtered for minimum read depth of 3 and a maximum of 100, minimum proportion of reads401

supporting a genotype call of 0.8, maximum percentage of missing data per SNP of 35%. Monomorphic positions402

within the sample set and also all non bi-allelic SNPs were excluded. Missing genotypes were imputed with multiple403

correspondance analysis (MCA) using five components with the function ‘imputeMCA‘ of the missMDA (57) R404

package. The number of differences between imputed replicates were counted to estimate the error in the final SNP405

dataset.406

Variant polarization. To polarize alleles we used the reference genomes of two closely related species, Bipolaris407

sorokiniana ND90Pr (25, 26) and Bipolaris maydis ATCC 48331 (25, 26) that were both obtained from EnsemblFungi.408

Outgroup genomes were aligned with Setosphaeria turcica reference genome using TBA (58). Genotype calling from409

the alignment was done with MafFilter (59) with VcfOutput option using Setosphaeria turcica scaffolds for variant410

location and alignments larger than 500 bp. Only bi-allelic variants shared with both outgroup species were kept.411

Ancestrality of the alleles was assigned to the allele of the outgroup species and genotypes of the 130 samples (129412

isolates and S. turcica reference genome) were polarized accordingly. Additionally, we included the draft genome of413

S. turcica (race 1 strain NY001; JGI Fungal Program (60, 61) under GOLD Project ID Gp0110874), originally collected414

in Freeville, New York in 1983 (62) as additional sample to the polarized SNP dataset.415

Mating type assignment. The S. turcica Et28A reference genome is of mating type MAT1-1. Since alleles for the416

MAT1-1 and MAT1-2 mating types are highly divergent, MAT1-2 reads did not map to the MAT1 locus of the417

reference genome. For this reason, isolates with a mapping gap on the MAT1 locus were candidates for MAT1-2418

type. Confirmation of the mating type was done with a de-novo alignment of the unmapped reads with MegaHit (63)419

and posterior blasting with BLAST (64, 65) to a nucleotide database of S. turcica (which included the sequences of420

MAT1-1 and MAT1-2). MAT1-1 type was assigned to samples that had reads mapping to the MAT1-1 sequence from421

Et28A reference genome and MAT1-2 type was assigned to samples that had a mapping gap at the MAT1-1 sequence422

and that the unmapped reads had a blast hit for the MAT1-2 sequence.423

Population structure. To asses population structure we conducted Principal Component Analysis (PCA), maximum424

likelihood estimation of individual ancestries with ADMIXTURE (66) and population network estimation with425

community detection using neighborhood selection implemented in CONE (27). PCA was calculated with the426

glPca function of the adegenet (67, 68) R package. To run ADMIXTURE we used a pruned SNP dataset (LD cutoff427

r2 >0.2 and minor allele frequency >0.05) and performed 20 independent ADMIXTURE runs with K from one428

to 15 and setting the –cv argument to compute cross validation errors. We used K = 5 clusters to explain the429

data because higher values did not significantly reduce cross-validation error (Fig. S14) and produced always the430

same composition of clusters with K = 5 in 20 independent runs. To merge the different admixture runs we used431

the CLUMPAK main pipeline (69) and kept the MajorGcluster output to plot the results. Population networks432

were estimated using R scripts for haploid data provided by CONE authors (27). The optimal value for the tuning433
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parameter was chosen with StARS using 40 subsamples of each of 1,777 SNPs, and 40 different values for the434

tuning parameter ranging from 0.5 to 0.005. Neighborhood selection was carried out with the whole dataset and435

selected tuning parameters. A population graph was constructed with the Fruchterman-Reingold algorithm and the436

Walktrap algorithm was used for community detection. An unrooted Neighbor-joining tree was built from Euclidean437

distances and Neighbor-net was calculated with SplitsTree v4.14.6 (70) using Hamming distances calculated from the438

unpolarized SNP dataset. A rooted Neighbor-joining tree was constructed with polarized SNP data that included the439

two references genomes of US-American origin. A correlogram on Moran’s I (71) was used to test the European440

spatial autocorrelation along different distance classes of equal frequency. As quantitative variable we used the441

individual’s ancestry coefficient of each ADMIXTURE cluster with K = 5. To calculate the number of distance bins,442

Sturges method was used as implemented in the correlog function (used to calculate the correlogram) from the443

pgirmess R package (72, 73), which uses moran.test function from spdep R package (74).444

Diversity statistics. Numbers of segregating sites S, genome-wide nucleotide diversity π, Watterson’s estimator θW445

and Tajima’s D were calculated for the two sets of European and of Kenyan isolates, as well as for the subpopulations446

within them. The single isolate from Turkey within the Kenyan cluster (WGRS-Test_23) has a strong effect on its447

diversity measures because it contributes 886 additional SNPs (7% of the total). Since this sample is geographically448

separated from Kenya, we excluded it from the subsequent analysis of the Kenyan cluster. Both π and θW are449

reported per base pair by dividing genomewide values by the maximum number of bases aligned to the reference450

across all sampled isolates (which are 39,649,104 of 43,013,545). For the 15 biggest scaffolds, an additional sliding451

window analysis for windows of size 100k bp was performed. We computed π, θW , Tajima’s D and the haplotype452

diversity per window for all groups with the R package PopGenome (75).453

MK test. To calculate the McDonald–Kreitman (MK) test we first ran SnpEff version 4.3t (76) with the −classic454

output style and Setosphaeria_turcica_et28a genome version on vcf subsets that included i) only population poly-455

morphisms and ii) only fixed derived mutations. We used reference Et28A as outcluster, and excluded posi-456

tions were Et28A and the sample WGRS_62 (closest sample to Et28A) were different . We counted the number457

of non-synonymous mutations as those classified as NON_SYNONYMOUS, STOP_GAINED, START_LOST or458

STOP_LOST, and the number of synonymous mutations as those classified as SYNONYMOUS_CODING, SYN-459

ONYMOUS_START or SYNONYMOUS_STOP. Thereafter Neutrality Index (NI) was calculated as (Pn/Ps)
(Dn/Ds)

, where460

P are polymorphisms, D substitutions, s synonymous mutations and n non-synonymous mutations. Fisher’s ex-461

act test P-value was computed using the 2x2 contingency table of the four type of mutations. πN/πS ratio was462

calulated as (∑I
i=1 πni Ni/ ∑I

i=1 Ni)/(∑I
i=1 πsiSi/ ∑I

i=1 Si), where I is the number of scaffolds, Ni is the number of463

non-synonymous sites in scaffold i, Si the number synonymous sites in scaffold i and πni, πsi are the non-synonymous464

or synonymous nucleotide diversities per non-synonymous or synonymous site in scaffold i. All πni, πsi, Ni and Si465

were obtained from population_summary.txt output file after running SnpGenie (77) .466

Analysis of reproduction type. The reproduction type (clonal vs. sexual) was analyzed with three approaches. First,467

we calculated the mating type ratio for each population. A 1:1 ratio of the mating type is a strong indicator for468

sexual reproduction whereas a significant skewed ratio indicates clonal reproduction (78, 79). Second, we tested469
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for recombination using the Phi test (80) as implemented in SplitsTree and third, we tested the null hypothesis of470

random association of alleles by 999 permutation tests of the standarized index of association (rd̄) with poppr (81).471

Demographic signals in clonal subpopulation. For the five clusters Big Clonal, Small Clonal, French Clonal, Diverse472

and Kenyan, we performed model selection between sweepstake reproduction (genealogies modelled by Dirac- and473

Beta-n-coalescents) or rapid selection (Bolthausen-Sznitman n-coalescent) in a fixed-size population and standard474

reproduction (Kingman’s n-coalescent) in a fixed-size or an exponentially growing population. Additionally, we475

performed parameter estimation within the best-fitting model class. Model selection and parameter estimation476

is performed via random-forest based Approximate Bayesian Computation (82, 83) using quantiles of summary477

statistics for unpolarized data as described in (84). For the analysis, we treat each scaffold as a single non-recombining478

locus and run it on the 5 biggest scaffolds. We consider Beta(2− α, α)-n-coalescents with α ∈ [1, 2) (α = 1 denotes the479

Bolthausen-Sznitman n-coalescent), Dirac n-coalescents with parameter p ∈ (0, 1) and, for Kingman’s n-coalescent,480

exponential growth rates in [0, 2500). We set a uniform prior on p for Dirac-n-coalescents, while for Beta-n-coalescents,481

we set α = 1 with a probability of 5% and in all other case draw α uniformly from (1, 2). For Kingman’s n-coalescent482

with exponential growth, the prior distribution on the parameters chooses growth rate g = 0 with probability 0.02,483

and with probability 0.98 an auxiliary paramter g′ is chosen uniformly from (log(0.5), log(2500)) which is then484

transformed to g = exp(g′). In other words, we use an uniform prior on the log scale on (0, 2500) with an additional485

spike at g = 0.486

The scaled mutation rate θ is set to the generalized Watterson estimator θW = 2S/E(Ln), where Ln is the expected487

total length of the underlying genealogy model, but with a random fluctuation around this estimate, as in Scenario 3488

in (84) (binomial prior with 11 steps in [θW/5, 5θW ] with log-equidistant). As statistics, we use the (.1, .3, .5, .7, .9)-489

quantiles of the branch length of the neighbor-joining tree reconstructed from the genetic data, of the Hamming490

distances and of the linkage disequilibrium statistic r2, as well as the number of segregating sites S, nucleotide491

diversity π and the folded site frequency spectrum, where all minor allele counts above 15 are summed up as a single492

statistic. We do not correct for unequal isolation times. While the effect of serial sampling may affect distinguishing493

multipler merger coalescents from Kingman’s coalescent with exponential growth (85), its effect is neglectable if the494

model selection points to Kingman’s coalescent with exponential growth. Each model class is simulated 175,000495

times and the random forest is built from 500 trees. All simulations are performed as described in (84), the ABC496

parameter estimation and model selection are performed using the R package abcrf. An estimated lower bound for497

odds ratio/Bayes factors of the best fitting model to any other model (equivalent here due to a flat prior on the three498

model classes) is given by BF = P(model|Data)
1−P(model|Data) , i.e. we treat the posterior probability of any one other model as the499

posterior probability that the best fitting model is not the true model.500

Phylogenetic dating with BEAST. We ran BEAST2 (86) on the non-polarized variants for all European isolates but501

WGRS_5, three Kenyan isolates (WGRS_26, WGRS_29 and WGRS-Test_23) and the American reference genome502

(setup ’full’) and separately for the clonal Big Clonal (excluding WGRS_5), Small Clonal and French Clonal clusters,503

and the American reference genome (setup ’clonal’). Sample WGRS_5 was excluded because according to given504

information it is a sample from Kenya, but according to population structure analyses that seem not possible as it is505
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clearly a clonal isolate from Big Clonal cluster. Therefore, because of the uncertanty of the origin of this sample, we506

decided to exclude it from any analysis using any geographic information.507

The Kenyan and Diverse clusters were excluded from the second analysis to omit most recombination signals that508

were not incorporated in the BEAST approach, following (13). However, we added the reference, because the clonal509

lineages covered only a narrow window of sampling time differences (in time and mutations) between individuals510

and showed more noisy posterior estimates for split times, see SI Appendix Table S4 and Text E for more details.511

Each isolate was timed relative to its time of isolation. As site model, we used a Γ model with four categories and512

estimated the proportion of invariant site, starting with a proportion of 0.8. We used the HKY model for mutation,513

estimating the frequencies and assumed used a strict molecular clock. Test runs with a relaxed exponential molecular514

clock with two discrete rates and with the different mutation model GTR showed only very small changes, which515

indicated that potentially shorter generation times of S. turcica in warmer climates need not to be accounted for. Since516

only in-species samples are included, we the tree modeled with a coalescent, i.e the Coalescent Extended Bayesian517

Skyline. As starting tree, we used the cluster tree estimated via NJ2. All other model settings were kept at the default518

values. The MCMC parameters were 225 million cycles (every 100th trace and 1,000th tree stored) with a 10 million519

pre-burnin period (300 million for running on only clonal lineages and reference). For tree annotation, we used a 10520

% burn-in. After several pilot runs to adjust parameters, we conducted analyses with the above parameters. Effective521

Sample Size (ESS) scores that describes the correspondence the posterior distribution approximated by BEAST to the522

number of independent posterior, >100 for all non-population size parameters for the ’full’ setup and >200 for the523

’clonal’ setup. Several population size parameter scored between 45 and 100 for the ’full’ setup and for the ’clonal524

setup’ all but three sizes were >200 with a minimum ESS of 172.525

Variation in sequence coverage. To use variation in sequence coverage as phylogenetic signal, we calculated526

variation of coverage in 1kb windows in each isolate. The most variable 2.5% windows were used to calculate a527

pairwise distance matrix of variance in coverage between all samples, from which a Neighbor-Joining tree was528

constructed.529

Reference-free association mapping. To characterize sequence reads that did not map to the reference, we conducted530

reference-free association study based on k-mers using the HAWK (Hitting Associations With K-mers) pipeline (39).531

It identifies k-mers with significantly different frequencies between two clusters, and then assembles significant532

k-mers into longer sequences. We ran HAWK between pairs of different clusters identified by admixture, and533

between pairs of races independent of their assignment to populations: race 1 vs. race 0, race 0 vs. all, race 1 vs. all,534

race 3 vs. all, race 3N vs. race 0, race 3N vs. all, race 3 vs. race 1 and 0, race 3N vs. race 1 and 0, race 3 and 3N vs535

race 0 and 1. Race 1 vs. race 0 was also analysed for samples from the Big Clonal cluster only. Races included in the536

analysis were race 0, 1, 3 and 3N. Numbers of other races were too low for meaningful comparisons. Significantly537

differentiated k-mers were mapped against the reference genome to test for their presence in the reference genome538

and to characterize the extent of clustering in some regions. Repetitive elements in windows with high number of539

k-mers mapped were searched with the protein-based RepeatMasking (87). Gene-rich or gene-poor regions were540

determined for windows with high numbers of mapped k-mers by counting genes in these regions. Remaining541
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unmapped assembled k-mers were compared against the NCBI non-redundant protein database using BLASTX to542

identify putative protein sequences.543

Data Availability. Raw sequence data of the 121 isolates generated in this study is available in the European Nucleotide544

Archive (ENA) under the project ID PRJEB37432. Scripts for analysing the data can be downloaded at DOI:545

10.5281/zenodo.4036236. Geographic and phenotypic information of the isolates is in the SI Appendix (Dataset S1).546
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