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ABSTRACT

Therapeutic strategies for tumor control have traditionally assumed that maximizing reduction in tumor volume correlates
with clinical efficacy. Unfortunately, this rapid decrease in tumor burden is almost invariably followed by the emergence of
therapeutic resistance. Evolutionary based treatment strategies attempt to delay resistance via judicious treatments that
maintain a significant treatable subpopulation. While these strategies have shown promise in recent clinical trials, they often rely
on biological conjecture and intuition to derive parameters. In this study we experimentally measure the frequency-dependent
interactions between a gefitinib resistant non-small cell lung cancer (NSCLC) population and its sensitive ancestor via the
evolutionary game assay. We show that cost of resistance is insufficient to accurately predict competitive exclusion and that
frequency-dependent growth rate measurements are required. In addition, we show that frequency-dependent growth rate
changes may ultimately result in a safe harbor for resistant populations to safely accumulate, even those with significant cost of
resistance. Using frequency-dependent growth rate data we then show that gefitinib treatment results in competitive exclusion
of the ancestor, while absence of treatment results in a likely, but not guaranteed exclusion of the resistant strain. Finally, using
our empirically derived growth rates to constrain simulations, we demonstrate that incorporating ecological growth effects can
dramatically change the predicted time to sensitive strain extinction. In addition, we show that higher drug concentrations
may not lead to the optimal reduction in tumor burden. Taken together, these results highlight the potential importance of
frequency-dependent growth rate data for understanding competing populations, both in the laboratory and the clinic.

Introduction1

Given our current understanding of intratumoral heterogeneity, treatment resistance after continuous dose chemotherapy is an2

expected consequence. Genomic instability1, inherent to the development of most cancer2–5, results in the accumulation of a3

variety of aberrations within a single tumor population.6 While only a small subset of these randomly distributed changes will4

contribute directly to driving carcinogenesis, this diverse population comprised of phenotypically distinct subclones results in5

increased resilience of the overall tumor population across a wide range of external stressors.7–9
6

These distinct subclones do not live, grow, or reproduce in isolation. With this diverse cellular population comes a diverse7

range of intercellular interactions10, 11. Complex systems cannot often be fully described empirically, and their dynamics can be8

difficult to intuit from measurements of their parts. In these situations, mathematical models have historically played a role.9

Specifically, evolutionary game theory has been effective in predicting the evolutionary consequences of interactions in large10
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multicellular ecosystems, such as fisheries12 and game reserves.13 More recently, these evolutionary game theoretical models11

have been utilized to gain insight into phenotypic shifts that occur within tumor ecosystems.11, 14–17 As a consequence, we12

must understand both the absolute fitness advantages of particular subpopulations in the selecting environment (monoculture),13

as well as how competing clones modulate that advantage as a function of population frequency (co-culture).18 This frequency-14

dependent growth can transform the power of evolution19 and acts to shape treatment-naïve tumor ecosystems and influences15

inevitable development of resistance in post-treatment environments.20–23 As traditional treatment protocols continue to fail,16

more evolutionary-based treatments that rely on judicious treatment schedules and cooperative dynamics between populations17

have gained in popularity.10, 11, 24–31
18

Dynamic therapeutic protocols using models of this type have already made their way into the clinic with promising19

results.27 While this highlights the value of game theoretical models for treatment optimization, the specific model in this, and20

other clinical trials have been selected and parameterized mainly based on biological conjecture and intuition.32, 33 Instead, for21

each clinical condition, a different model and parameters would likely be needed to accurately capture intratumoral dynamics.22

As such, reproducibility of this initial success across different tissues and environmental contexts is contingent on our ability to23

measure subclonal interactions in the lab prior to transitioning to clinical practice. These interactions can greatly influence the24

evolutionary trajectory of the tumor; therefore, incorrect characterization could unintentionally worsen treatment outcomes.25

One such concept that is frequently assumed to be the driver of inevitable treatment resistance within these models is that of26

competitive release.34 This phenomenon was first described by Joseph Connell while studying the distribution of barnacles27

off the shore of Millport, Scotland, where it was observed that two species occupied two distinct horizontal zones on the28

shoreline.35 Connell determined that the upper species, Chthamalus stellatus, was competitively excluded from populating29

the lower region as a result of competitive interactions with the lower species, Balanus balanoides. Experimental removal30

of Balanus by Connell released Chthamalus from this competitive exclusion, which resulted in expansion into the lower31

horizontal zone. Similarly, in tumors, it is thought that selective killing of sensitive cells during therapy removes competitive32

restrictions on resistant populations, allowing for their outgrowth and subsequent therapeutic failure. While intuitive in theory33

and observed in bacteria36 and parasites37–39, empiric evidence of the dynamics that underlie this phenomenon in cancer have,34

to our knowledge, yet to be elucidated.35

As a population becomes increasingly resistant to a new treatment, it is common for that population to pay a ’fitness cost’36

to maintain that resistant mechanism, leading to a reduced growth rate when compared to the ancestor from which it was37

derived. This has led many researchers to suggest that the sensitive ancestor is likely to out-compete the resistant clone when38

selection is removed, and thus treatment holidays may be beneficial to the maintenance of a treatable cancer population27, 40. In39

some cases the fitness cost may be significant enough to result in competitive exclusion of the resistant strain upon treatment40

withdrawal. Instead, in this work we consider the importance of empirical, frequency-dependent growth rate measurements.41

Beginning with PC9, a model cancer system for EGFR TKI resistance in NSCLC, we show that competitive exclusion requires42

one population to out-compete (have a higher growth rate than) another population under all possible population frequencies.43
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We then measure these frequency-dependent growth rates for a gefitinib-resistant population and the ancestor from which it44

was derived and show that competitive exclusion is likely, but not guaranteed. We then show that the addition of gefitinib45

shifts the frequency-dependent growth rates such that the resistant strain will competitively exclude the ancestor at all tested46

concentrations. Finally, combining our empirically derived growth measurements with traditional competition simulations, we47

demonstrate that the inclusion of ecological effects can significantly alter the predicted time to exclusion of the ancestor, and48

thus alter the time required to reach an untreatable resistant tumor. In addition, we show that contrary to the maximal tolerable49

dose hypothesis, higher drug doses may not constrain tumor burden better than lower doses for our system.50

Box 1: Evolutionary Game Assay

Tracking individual subclones in heterotypic cultures:
To track differential growth dynamics of two populations in the same culture, each population was transduced with a
vector encoding a different heritable fluorescent protein. For this experiment, the resistant and parental cells were made
to stably express mCherry and EGFP respectively. The expression of these proteins was linked to nuclear localization
signal (NLS) repeats for localization of the fluorescent signal into each cell’s nuclei. This increases resolution and
accuracy of cell number counts at higher confluency. Once plated together in heterotypic culture, each subclone could
be tracked through time in their respective fluorescent channel using time-lapse microscopy systems (Fig 1A).

Translating image information into growth rates:
Cell number counts were extracted from each fluorescent image at each time point throughout the time series.
Exponential growth rates where determined via semi-log regression of change in cell number against change in time
(hours) using the Theil-sen estimator (Fig 1B).

Fitness functions - growth as a function of population composition:
To find the dependence of fitness on the frequency of subclonal interaction, least squares regressions were performed on
the growth rate against the initial proportion of parental in each well (Fig 1C). This regression was weighted against
the inverse of the errors ( 1

σ2 ) associated with each growth rate. The resulting linear equations describe growth as a
function of the initial proportion of the opposing subclone:

ŵP = Ap+B(1− p) (1)
ŵR =Cp+D(1− p) (2)

Game theoretical payoff matrix:
To clearly represent the fitness outcome of specific interactions, payoff matrices corresponding to each of the different
conditions can be derived from the resulting fitness functions (Fig 1D) For example, the fitness outcome of parental
cells interacting with one another occurs when p = 1, which translates to ŵP = A. Similarly, the fitness outcome of
when parental interacts with resistant occurs when p = 0, which translates to ŵP = B.

( P R
P A B
R C D

)
(3)

51
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Figure 1. Experimental design of measured evolutionary games. (A) A Gefitinib-resistant cell line (red) and its sensitive ancestor
(blue) were plated across a full spectrum of initial proportions (A, B, C, D...) and in a range of different different drugs and concentrations (1,
2, 3, 4...) in a 96 well plate. (B) Automated time-lapse microscopy imaging captures the composition of the population in each well every
four hours. The cell lines were labeled via lentiviral transduction in order to precisely quantify the growth rate of the two separate
populations. Cell number counts were extracted from each fluorescent image and plotted against elapsed time to derive growth rates in each
well for each population. (C) Extracted growth rates were then plotted as the frequency-dependent growth rate of each population (growth
rate as a function of ancestor population fraction). (D) Evolutionary game dynamics are quantified (fitness functions and associated payoff
matrices) using least squared regression and intercepts of p= 0 and p= 1.

Results52

Ecological interactions ameliorate some, but not the entire fitness cost associated with resistance, result-53

ing in competitive exclusion of the resistant population in the absence of treatment.54

We investigated the evolutionary games (frequency-dependent ecological interactions) between ancestral and gefitinib-resistant55

cell lines in the lung adenocarcinoma cell line PC9. To create the resistant line, we exposed the population to 1µM gefitinib for56

6 months. In parallel, the original ancestral PC9 cell line was propagated in a matched volume of DSMO for 6 months. A high57

initial dose of gefitinib was chosen to select for pre-existing resistant populations rather than drug tolerant subclones.41 We58

then used the game assay we have previously developed to quanitfy ecological interactions between populations.30. Briefly, we59

co-cultured the derived gefitinib-resistant cell line, with the DMSO-propagated ancestral cell line at varying ancestral population60
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Figure 2. Ecological interactions alter but do not ameliorate the resistant clones fitness cost and result in competitive exclusion of
the resistant strain in DMSO. A. Monotypic growth measurements are insufficient to predict competitive exclusion. The left and right panel
both depict a resistant strain with a significant fitness cost associated with its resistance. Red circle at p = 0 represents monotypic resistant
growth, while the blue circle at p = 1 represents monotypic ancestral growth. Left Panel: We see the ecological interaction is large enough
to overcome the fitness cost when co-cultured with a majority parental population, resulting in no competitive exclusion. Right Panel: While
there is significant ecological interaction, it is insufficient to overcome the fitness cost, resulting in complete competitive exclusion. B. Left
panel: Monocultures in DMSO shows significant difference in growth between subclones (p << 0.001), highlighting the cost associated
with the resistant phenotype. Right panel: Heterotypic cultures in DMSO reveal strong frequency-dependent interactions that modulate the
resistant populations growth, however these ecological forces are insufficient to completely overcome the monoculture fitness cost, leading to
competitive exclusion of the resistant subclone. The ancestor’s growth remains consistent at all frequencies. Plotted values were normalized
against mean monotypic parental growth in DMSO. Values in displayed game matrix have been scaled by a factor 10 for ease of comparison.

to resistant population ratios (Fig 1A) in a 96-well plate. Using an automated incubator (BioTek Biospa) and time-lapse61

microscopy setup, we imaged the wells every 4 hours. Cell lines were transduced with EGFP and mCherry fluorescent proteins62

that, when combined with image processing software, allowed for quantification of population-level cell counts, and therefore63

population growth rates (Fig 1B). Then, by combining the parallel experiments done at varying initial parental (ancestor)64

populations, we can plot the frequency-dependent growth rates for both the resistant and parental cell lines (Fig 1C). Finally,65

we can extract the payoff matrix that describes the evolutionary game dynamics as shown in Fig 1D.66
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In addition to the frequency-dependent growth rate measurements based on heterogeneous (mixed parental and resistant67

populations), we also performed the more standard measure, of the homogeneous, monotypic growth rates for both cell lines in68

DMSO. In this case, there is a substantial growth cost to the resistant phenotype, which grows at roughly three-fourths (75.6%)69

the rate of the monotypic ancestral PC9 population (Fig 2B, left panel). Fitness costs are often assumed in treatment resistant70

populations of EGFR driven NSCLC,42 however this feature may not be generalizable across all NSCLC types.30 While it is71

tempting to extrapolate this data and suggest these growth rate differences necessitate competitive exclusion of the resistant cell72

line due to its lower growth in DMSO, this is not necessarily so. Ecological interactions between the populations can ameliorate73

the fitness cost associated with resistance as shown in the left panel of cartoon plot, Fig 2A. The difference between the resistant74

and ancestor population’s frequency-dependent growth rate is known as the gain function. For competitive exclusion to occur,75

the value of the gain function cannot change sign for any population frequency. That is, if the gain function is positive (or76

negative), it must remain positive (or negative) for all population frequencies. If instead the gain function transitions from77

negative to positive, or vice versa, a fixed point will occur.43 If the fixed point is stable (negative to positive gain) then it will78

allow for co-existence of both populations, otherwise it will be a bifurcation for the population’s dynamics. Our experiments79

reveal the ancestor out-competes the resistant population at all population frequencies, likely resulting in a complete competitive80

exclusion of the resistant population (Fig 2B, right panel).81

Interestingly, however, the fitness cost of the resistant population is almost entirely ameliorated by ecological interactions82

occurring at high ancestral population frequencies. Because this interaction occurs at resistant population fractions near zero83

that are hard to reliably measure empirically, it is possible that the resistant population is not completely competitively excluded,84

and a fixed point may exist at this extreme. If this were to be the case, it could highlight one potential way a sensitive population85

may generate and maintain drug-resistant populations without losing population-level fitness, as the resistant strain with a86

significantly fitness cost could be maintained at low population frequency in the absence of drug.87

The addition of drug switches which population is competitively excluded.88

Next we sought to quantify the ecological interaction between the parental and resistant cell lines under the application of89

increasing gefitinib concentrations (Fig 3A). Interestingly, we see that as the concentration of gefitinib increases, the slopes90

of the frequency-dependent growth rates (and therefore, ecological interaction magnitude) also increases. We can quantify91

this more clearly by instead plotting the gain function, or the difference between the growth of the ancestor and resistant92

cell lines (Fig 3B). When visualized this way, it is immediately apparent that under treatment of DMSO the resistant strain93

is competitively excluded by the ancestral strain (blue line is completely above x-axis). In addition, we can conclude under94

the treatment of all tested gefitinib concentrations the cell line that is out-competed is reversed, and the ancestral strain is95

competitively excluded (all other lines are completely below the x-axis). Finally, we can see the slope changes from negative96

for DMSO to increasingly positive as the concentration of gefitinib increases. This depicts an increasing ecological interaction97

strength.98
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Figure 3. Increasing gefitinib concentration switches which population is competitively excluded from resistant to ancestor. A.
Frequency-dependent growth rates were measured for several concentrations of gefitinib for both gefitinib-resistant (red) and the sensitive
ancestor (blue). Growth values were normalized against the ancestor’s mean monotypic growth in DMSO. Under all concentrations tested we
see the resistant strain out-competing the ancestor at all population fractions, resulting in competitive exclusion of the ancestor. B. Gain
function (growth of resistant cell line - growth of ancestral cell line) for all seven tested concentrations of gefitinib. DMSO’s (blue) gain
function exists entirely above y = 0 signifying competitive exclusion of the resistant cell line. For all non-zero concentrations the game
dynamics shift to exist entirely below y = 0, indicating competitive exclusion of the ancestral strain.

Competition simulations reveal importance of ecological effects in ancestral extinction rates and tumor99

burden calculations.100

We built two kinds of mathematical models to explore the outcomes of ancestral extinction rates and tumour burden further. We101

extrapolated the derived fitness functions out through time using both replicator dynamics (eq. 9) and a practical derivative of102

the Lotka-Volterra (LV) equation (eq. 11) that allows for competitive exclusion of interacting species and better modelling of103

the timescales of extinction dynamics44. Both of these models attempt to predict population trends through time. The replicator104

dynamics does this while modelling only frequency change and not population size32. The LV model constrains the population105

to a strict user-chosen carrying capacity or maximum size. In vivo tumor growth likely falls somewhere in between, as nutrient106

availability and space constrains growth in a more fluid manner through mechanisms such as angiogenesis. For each model,107

relative time to extinction was determined for the range of doses, where extinction is defined as proportion of the population, p,108

falling below < 0.01. As expected, both models predict faster extinction of the sensitive population at higher doses (Fig 4A,B).109

While LV models can be quite sensitive to user-chosen carrying capacities, when the carrying capacities of both subclones110

are equal (Kp = Kr = Kmax), heterogeneity was maintained at identical time scales when compared to the replicator equations.111

To evaluate the impact of frequency-dependent growth, the results were contrasted between models run with monotypic112

culture growth parameters and those measured in heterotypic cultures (Fig 4C). Interestingly, the model predicts that as drug113

concentration increases, the monotypic growth rates increasingly overestimates the time to extinction of the ancestor population114

when compared to the more accurate heterotypic growth data. This is because the heterotypic data captures the accelerated rate115

of competitive exclusion that occurs as a result of ecological effects. That is, the difference between the resistant and parental116

growth rates is larger at every population fraction than the measured monotypic growth rates.117

Because the assumption of equal carrying capacity may not be true of in vivo contexts, we varied the relative carrying118
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Figure 4. Evaluation of growth models with empirically derived parameters highlights rapid acceleration of competitive release
via non-cell autonomous interactions and demonstrates persistence of qualitative features across the spectrum of models tested.
The same initial parameters were used for each model (p = 0.99). A. Replicator dynamics showing proportional shifts of both competing cell
populations over time in three gefitinib doses. B. Lotka-Volterra (LV) model of outgrowth in constrained environments with equal carrying
capacities (Kp = Kr). C. Time to extinction (defined as the proportion of the population, p, dropping below 0.01) across a range of gefitinib
doses was determined and compared between cell autonomous (monotypic) and non-autonomous (heteorotypic) growth. D. LV model with
unequal carrying capacities (Ki = Kmaxαi where αi = rmono/rmax). E. Estimates for changes in total tumor burden for relative LV model in
0.25µM and 1µM of gefitinib. Treatment with the lower dose of 0.25µM had a smaller initial response to therapy, but longer overall response
due to delayed parental extinction and maintenance of heterogeneity over a longer period of time.

capacity of the two population to be a ratio of the monotypic growth rates, scaled by their maximum rate in the absence of119

treatment (Fig 4D). Promisingly, these results are qualitatively identical to the results gathered from using equal carrying120

capacity LV models, and those predicted from replicator dynamics. However, clinical tumor burden is likely most correlated121

with the total tumor size, and not the size of a particular sub-population. With this is mind we show sample time traces of total122

tumor population over time in response to two drug concentrations (Fig 4E). Interestingly, we observe that while a lower drug123

concentration may lead to a smaller initial tumor decline than a larger drug concentration, the lower concentration leads to a124

prolonged heterogeneous, and therefore more sensitive, tumor state. This is the result of a lower dose of gefitinib prolonging125

the competition between ancestor and resistant populations, not allowing for a competition-free expansion by the resistant126

sub-population.127

8/13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2021. ; https://doi.org/10.1101/2020.09.18.303966doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.303966
http://creativecommons.org/licenses/by-nc/4.0/


Discussion128

Our work provides an extensive quantitative study of the frequency-dependent interactions between an experimentally derived129

gefitinib-resistant PC9 cell-line and its sensitive ancestor. We have shown that a fitness cost resulting from resistance may be130

insufficient to result in competitive exclusion of the resistant population in the absence of drug. Instead, frequency-dependent131

ecological interactions with the ancestral population may ameliorate the fitness cost, leading to a potential safe harbor for132

small resistant populations. As a result, future studies focused on competitive exclusion would benefit from an examination of133

frequency-dependent ecological interactions.134

In addition, our work also examined how the ecological interactions may shift under increasing gefitinib doses. Our results135

show a shift from competitive exclusion of the resistant population to a competitive exclusion of the ancestral population as136

gefitinib dose is increased. Then, with simulations we demonstrate that the inclusion of ecological effects can significantly137

alter calculations of ancestral extinction rate and temporal tumor burdens. Past work has shown how drug and tumor138

microenvironments can fluctuate in space45–47, suggesting that these ecological interactions are likely to fluctuate over space as139

well. Future experimental and modeling work will attempt to untangle these potential spatial contributions.140

In interpreting our work several limitations are to be kept in mind. Measuring frequency-dependent ecological interactions141

is extremely challenging. As such, our intention was not to produce a highly accurate, clinical model of ecological interactions142

that can inform current cancer treatments. Instead, we focus on measuring the ecological interaction between two competing143

populations, and how that may influence in vitro laboratory experiments. In beginning to understand this more idealized144

scenario we hope to understand more general principles that can be tested in more complex models of resistance and ecological145

interactions. With that said, it is our hope to build on this simple model to account for more complex interactions.146

While our work compliments recent studies on competitive exclusion and evolutionary game theory, it also raises interesting147

new questions for future work. For example, clinical tumors are highly heterogeneous. Extending this work to include three48
148

or more types will allow us to better model more clinically relevant resistance evolution. Finally, our results suggest that149

ecological effects are an important consideration in competition experiments, and continuing to show this empirically remains a150

priority going forward.151

Methods152

Cell lines: All cells were cultured in Roswell Park Memorial Institute (RPMI) media supplemented with 10% fetal bovine153

serum (FBS) and 1% penicillin/streptomycin.154

Parental and resistant cell lines were established from the same initial population of PC9 cells (Sigma-Aldrich 90071810).155

Resistant population was cultured in 1uM of gefitinib (Cayman 13166) for greater than 6 months, until a population of stably156

growing cells was observed. Resulting subpopulations exhibited noticeable visual morphological differences in culture. The157

parental population was cultured in parallel in matched volumes of dimethyl sulfoxide (DMSO) (Sigma-Aldrich 276855) for158

the same duration as a vehicle control.159

Resulting resistant and parental subclones underwent lentiviral transduction with plasmid vectors encoding EGFP- and160

mCherry- fluorescent proteins with attached nuclear localization sequence (plasmids were a gift from Andriy Marusyk’s lab at161

Moffitt Cancer Center). Derivative cell lines with heritable fluorescent protein expression were selected for in puromycin (MP162
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Biomedical 100552).163

Experimental design: Cells were harvested at 70-80% confluence, stained with trypan blue (Corning 25-900-CI), and164

manually counted with a hemocytometer (Bright-Line Z359629). Mono- and co-cultures of each subclone were seeded across a165

range of initial relative proportions in 96-well formats and allowed to attach for 18-24 hours.166

Wells were treated with the following drugs: gefitinib, paclitaxel (Cayman 10461), etoposide (Cayman 12092), pemetrexed167

(Cayman 26677), and lapatinib (Cayman 11493) as single agents. Plates were loaded into a BioSpa 8 Automated Incubator168

(BioTek Instruments). Time-lapse microscopy images were obtained for bright field, GFP, and mCherry via Cytation 5 Imaging169

Reader (BioTek) every 4 hours over the course of 5 days.170

Image Processing: Images were processed with Gen5 (BioTek) and the open-source software ImageJ.49 Image sets were171

duplicated, background subtracted, contrasted limited adaptive histogram equalization (CLAHE), and thresholded. Despeckle172

filter was applied to the now binary images, watershed segmentation was performed, and raw cell numbers were extracted from173

the resulting image sets.174

Evolutionary Game Assay: To quantify the dynamics in our in vitro environments, we utilized the experimental game assay175

developed by Kaznatcheev et al..30 Initial proportions were calculated for each well individually from the first image. Time176

series of raw cell numbers were normalized against initial number in each well. Linear regression was performed using the177

Theil-sen estimator on the semi-log cell change against time. The slope of the resulting linear function (with its corresponding178

95% confidence interval) was translated as the growth rate across the time series, which were normalized against the average of179

six parental monoculture wells that were run on each plate.180

To find the dependence of fitness on the frequency of subclonal interaction, least squares regressions were performed on the181

growth rate against the initial proportion of parental in each well. This regression was weighted against the inverse of the errors182

( 1
σ2 ) associated with each growth rate. The resulting linear equations describe fitness as a function of the initial proportion of183

the opposing subclone:184

ŵP = A+ kr (4)
ŵR = D+ kp (5)

The intercepts of these functions translate to monoculture fitness, which are the symmetric payoffs within a game matrix.185

The asymmetric payoffs can be translated as the fitness values when r and p are equal to 1:186

B = A+ k

C = D+ k

These linear equations can be rearranged to describe the fitness (ŵ) of a sub clone as a function of the initial proportion (p)187

of interacting cells within the population.188

ŵP = Ap+B(1− p)

ŵR =Cp+D(1− p)

Payoff matrices corresponding to each of the different conditions can be derived by setting p equal to one and zero for both189

equations. For example, the symmetric payoff for parental occurs when p = 1, which translates to ŵP = A.190

( P R
P A B
R C D

)
The errors associated with the on-diagonal payoffs are equivalent to the uncertainty of the intercept values, σA and σD191

for parental and resistant respectively. The errors associated with the off-diagonal payoffs were derived by propagating the192

uncertainty of both the intercept and slope through both the intercept and slope of (eq. 6):193
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σB = σA +σk (6)
σC = σD +σk (7)

Growth models: To synthesize hypothetical tumor growth using our measured frequency-dependent growth rates, we used194

two distinct models, one that allowed for infinite growth and one that limited total volume to a strict maximum. This was195

done to identify salient qualitative features that persisted across this spectrum of models, rather than make specific quantitative196

predictions.197

For infinite growth, replicator dynamics were chosen:198

ṗ = p(ŵP−〈w〉) (8)
ṙ = (1− p)(ŵR−〈w〉) (9)

where 〈w〉 denotes average population fitness (i.e., 〈w〉= pŵP +(1− p)ŵR).199

For growth that is strictly limited to a maximum, a Lotka-Volterra derivative50 was utilized that included frequency-200

dependent growth:201

dNp

dt
= rp

[
1−

Np

Kp
− Nrrr

Kprp

]
Np (10)

dNr

dt
= rr

[
1− Nr

Kr
−

Nprp

Krrr

]
Nr (11)

where rp and rr are non-cell autonomous growth rates determined by values of the game matrix such that:202

rp = A

(
Np

Np +Nr

)
+B

(
Nr

Np +Nr

)
(12)

rr =C

(
Np

Np +Nr

)
+D

(
Nr

Np +Nr

)
(13)

While this model is insensitive specific carrying capacity values, it is highly sensitive to the relative value of the carrying203

capacity. Given that both subclones occupy similar space in an in vitro environment, we first evaluated the condition where204

the carrying capacities were equal to one another (Kp = Kr). This assumption likely does not translate to in vivo conditions.205

Instead, the carrying capacities of each type would likely vary across different environments. To capture this phenomenon, the206

carrying capacity was also scaled for each condition:207

Ki = Kmaxαi (14)

where Kmax is the maximum carrying capacity across all conditions and αi is a weighting term that scales this maximum using208

a ratio of monoculture growth rate in the current condition against the maximum growth rate αi =
rmono
rmax

.209
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