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Abstract  

RNA hybridization based spatial transcriptomics provides unparalleled detection sensitivity. 
However, inaccuracies in segmentation of image volumes into cells cause misassignment of 
mRNAs which is a major source of errors. Here we develop JSTA, a computational framework for 
Joint cell Segmentation and cell Type Annotation that utilizes prior knowledge of cell-type specific 
gene expression. Simulation results show that leveraging existing cell type taxonomy increases 
RNA assignment accuracy by more than 45%. Using JSTA we were able to classify cells in the 
mouse hippocampus into 133 (sub)types revealing the spatial organization of CA1, CA3, and Sst 
neuron subtypes. Analysis of within cell subtype spatial differential gene expression of 80 
candidate genes identified 43 with statistically significant spatial differential gene expression 
across 61 (sub)types. Overall, our work demonstrates that known cell type expression patterns 
can be leveraged to improve the accuracy of RNA hybridization based spatial transcriptomics 
while providing highly granular cell (sub)type information. The large number of newly discovered 
spatial gene expression patterns substantiates the need for accurate spatial transcriptomics 
measurements that can provide information beyond cell (sub)type labels.  
 
Introduction 

Spatial transcriptomics has been employed to explore the spatial and cell-type specific gene 
expression to better understand physiology and disease1-7. Compared to other spatial 
transcriptomics methods, RNA hybridization based approaches provided the highest RNA 
detection accuracies with capture rates > 95%8. With the development of combinatorial 
approaches for RNA hybridization, the ability to measure the expression of hundreds to thousands 
of genes makes hybridization based methods an attractive platform for spatial transcriptomics 8-

13. Nonetheless, unlike dissociative approaches, such as single-cell RNA sequencing (scRNAseq) 
where cells are captured individually, RNA hybridization based approaches have no a priori 
information of which cell a measured RNA molecule belongs to. Segmentation of image volumes 
into cells is therefore required to convert RNA detection into spatial single-cell data. Assigning 
mRNA to cells remains a challenging problem that can substantially compromise the overall 
accuracy of combinatorial FISH approaches.  
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Generation of spatial single-cell data from imaging based spatial transcriptomics relies on 
algorithmic segmentation of images into cells. Current combinatorial FISH work uses watershed 
based algorithms with nuclei as seeds, and the total mRNA density to establish cell borders 12,13,14. 
Watershed algorithm was proposed more than 40 years ago15 and newer segmentation 
algorithms that utilize state of the art machine learning approaches have been shown to improve 
upon classical watershed approach 16-20. However, their performance is inherently bounded by 
the quality of the “ground truth” dataset used for training. In tissue regions with dense cell 
distributions, there is simply not enough information in the images to perform accurate manual 
labeling and create a sufficiently accurate ground truth training datasets. Therefore, there is an 
urgent need for new approaches that can combine image information with external datasets to 
improve image segmentation and thereby the overall accuracy of spatial transcriptomics.  

 
Due to the deficiency in existing image segmentation algorithms, a few segmentation free 

spatial transcriptomics approaches were proposed. pciSeq assigns cell types to nuclei based on 
proximity to mRNA of marker genes, circumventing the need for pixel level segmentation9. 
Similarly, SSAM creates cell type maps based on RNA distributions ignoring cellular boundaries21. 
However, both pciSeq and SSAM are limited to cell type information and do not create a 
segmentation map for the assignment of non-cell-type marker genes. Therefore while both pciSeq 
and SSAM leverage cell type catalogs to provide insights into the spatial distribution of different 
cell types they do not produce a high quality cell segmentation map, are limited to cell (sub)type 
label information, and fail to assign all mRNAs to cells.  

 
Here we present JSTA, a computational framework for jointly determining cell (sub)types and 

assigning mRNAs to cells by leveraging previously defined cell types through scRNAseq. Our 
approach relies on maximizing the internal consistency of pixel assignment into cells to match 
known expression patterns. We compared JSTA to watershed in assigning mRNAs to cells 
through simulation studies to evaluate their accuracy. Application of JSTA to MERFISH 
measurements of gene expression in the mouse hippocampus together with Neocortical Cell Type 
Taxonomy22 (NCTT) provides a highly granular map of cell (sub)type spatial organization and 
identified many spatially differentially expressed genes (spDEGs) within these (sub)types23. 
 
Results 
 
JSTA overview and method 

Our computational framework of JSTA is based on improving initial watershed segmentation 
by incorporating cell (sub)type probabilities for each pixel and iteratively adjusting the assignment 
of boundary pixels based on those probabilities (Figure 1a). 

 
To evaluate JSTA we chose to use the mouse hippocampus for two reasons. 1) the mouse 

hippocampus has high cell (sub)type diversity as it includes more than 35% of all cell (sub)types 
defined by the NCTT. 2) the mouse hippocampus has areas of high and low cell density. These 
two reasons make the mouse hippocampus a good test case for the hypothesis that external cell 
(sub)type specific expression data could be leveraged to increase the accuracy of spatial 
transcriptomics, as implemented in our approach. We performed Multiplexed Error Robust 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.18.304147doi: bioRxiv preprint 

https://paperpile.com/c/7qSPre/vUoE+tBhG
https://paperpile.com/c/7qSPre/pG6c
https://paperpile.com/c/7qSPre/jXRB
https://paperpile.com/c/7qSPre/vKlG+6XTW
https://paperpile.com/c/7qSPre/vKlG+6XTW
https://paperpile.com/c/7qSPre/4whk
https://paperpile.com/c/7qSPre/BSSh
https://paperpile.com/c/7qSPre/CZQf
https://paperpile.com/c/7qSPre/E5riY
https://doi.org/10.1101/2020.09.18.304147
http://creativecommons.org/licenses/by-nc/4.0/


Fluorescent In Situ Hybridization (MERFISH) of 163 genes which include 83 marker genes and 
80 non-marker genes previously implicated with biological importance in traumatic brain injury 
(Figure 1b). Combining this MERFISH dataset, DAPI stained nuclei, and the NCTT reference 
dataset using JSTA, we created a segmentation map that assigns all mRNAs to cells while 
simultaneously classifying all cells into granular (sub)types based on NCTT.  

 
In JSTA, we leverage the NCTT information to infer probabilities at the pixel level. However, 

learning these probabilities from NCTT is challenging for two reasons. 1) NCTT data was acquired 
with scRNAseq technology that has higher sparsity due to low capture rates and needs to be 
harmonized. 2) NCTT data provides expression patterns at the cell level and not the pixel level. 
We expect the mean expression among all pixels in a cell to be the same as that of the whole 
cell. Yet, variance and potentially higher distribution moments of the pixel level distribution are 
likely different from those of the cell level distribution due to sampling and biological factors such 
as variability in subcellular localization of mRNA molecules13. To address these issues JSTA 
learns the pixel level cell (sub)type probabilities using two distinct deep neural networks (DNN) 
classifiers, a cell level type classifier, and a pixel type classifier. Overall, JSTA learns three distinct 
layers of information: segmentation map, pixel level classifier, and cell level classifier.  

 
Learning of model parameters is done using a combination of NCTT and the MERFISH data. 

The cell type classifier is learned directly from NCTT data after harmonization. The other two 
layers are learned iteratively using expectation maximization (EM) approach24. Given the current 
cell type assignment to cells, we train a pixel level DNN classifier to output the cell (sub)type 
probability of each pixel. The inputs for the pixel level classifier are the local mRNA density of all 
marker genes at these pixels. The updated pixel classifier is used to assign probabilities to all 
border pixels. The new probabilities are then used to “flip” border pixels’ assignment based on 
their type probabilities. The updating of the segmentation map requires an update of the cell level 
type classification which triggers a need for an update of pixel level classifier training. This process 
is then repeated until convergence. Analysis of the mean pixel level cell (sub)type classification 
accuracy shows an increase in the algorithm’s classification confidence over time demonstrating 
that the NCTT external information gets iteratively incorporated into the tasks of cell segmentation 
and type annotation (Fig S1). For computational efficiency, we iterate between training, 
reassignment, and reclassification in variable rates. As this approach uses cell type information 
to improve border assignment between neighboring cells, in cases where two neighboring cells 
are of the same type, the border between them will stay the same as the initial watershed 
segmentation. The final result is a cell type segmentation map that is initialized based on 
watershed and adjusted to allow pixels to be assigned to cells to maximize consistency between 
local RNA density and cell type expression priors.      
 
Performance evaluations 
 
Performance evaluation using simulated hippocampus data  

To test the performance of our approach we utilized synthetic data generated based on the 
NCTT23 (Figure 2ab). Details on the synthetic generation of cell position, morphologies, type, and 
expression profiles are available in the methods section. Using this synthetic data we evaluated 
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the performance of JSTA in comparison to watershed at different cell type granularities. For 
example, two cells next to each other that are of subtypes CA1sp1 and CA1sp4 would add to the 
error in segmentation, but if the cell type resolution decreases to CA1 cells, these would be 
considered the same type, and misassignment of mRNA between these cells is no longer 
penalized. Evaluating the methods in this manner allows us to explore the trade-off between cell 
type granularity and mRNA assignment accuracy. Our analysis shows that JSTA consistently 
outperforms watershed at assigning spots to cells (Figure 2c). Interestingly, the benefit of JSTA 
was evident even with a small number of genes (Figure 2d).  With just 12 genes, the performance 
jumps to 0.50 at the highest cell type granularity, which is already higher than watershed’s 
accuracy; at a granularity of 16 cell types, the accuracy reached 0.62 (Figure 2cd). Overall the 
synthetic data showed that JSTA outperforms watershed approach, and at physiologically 
relevant parameters, can increase mRNA assignment accuracy by > 45%.   
 
Performance evaluation using empirical spatial transcriptomics of mouse hippocampus 

We next tested the performance of JSTA using empirical data and evaluated its ability to 
recover the known spatial distribution of coarse neuron types across the hippocampus (Figure 3). 
First, we subset the NCTT scRNAseq data to the shared cell type marker genes we have in our 
MERFISH data and harmonized the MERFISH and scRNAseq datasets25. Using the cell type 
annotations from the single-cell data, we trained a DNN to classify cell types. As expected, our 
classifier derived a cell type mapping agreeing with known spatial patterns in the hippocampus 
(Figure 3a). For example, CA1, CA3, and DG cells were found with high specificity to their known 
subregions (Figure 3b). We found that the gene expression of the segmented cells in MERFISH 
data highly correlated with their scRNAseq counterparts, and displayed similar correlation 
patterns between different cell types (Figure 3c) as seen in scRNAseq data (Figure 3d). These 
results show that our data and JSTA algorithm can recover existing knowledge on the spatial 
distribution of cell types and their gene expression patterns in the mouse hippocampus.   
 
Applications of JSTA for biological discovery 
 
JSTA identifies spatial distribution of highly granular cell (sub)types in the hippocampus 

A key benefit of JSTA is its ability to jointly segment cells in images and classify them into 
highly granular cell (sub)types. Our analysis of mouse hippocampus MERFISH data found that 
these subtypes, defined only based on their gene expression patterns, have high spatial 
localization in the hippocampus. From lateral to medial hippocampus, the subtypes transitioned 
spatially from CA1sp10 to CA1sp6 (Figure 4a). Likewise, JSTA revealed a non-uniform 
distribution of subtypes in the CA3 region. From lateral to medial hippocampus, the subtypes 
transitioned from CA3sp4 to CA3sp6 (Figure 4b). This gradient of subtypes reveals a high level 
of spatial organization and points to potentially differential roles for these subtypes.    
 
JSTA shows that spatially proximal cell subtypes are transcriptionally similar  

Next, we tested whether across different cell types spatial patterns match their expression 
patterns by evaluating the colocalization of cell subtypes and their transcriptional similarity. 
Indeed, spatially proximal CA1 subtypes showed high transcriptional similarity (Figure 5a, S2). 
For example, cells in the subtypes CA1sp3, CA1sp1, and CA1sp6 are proximal to each other and 
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show a high transcriptional correlation. Interestingly, this relationship was not bidirectional, and 
transcriptional similarity by itself is not necessarily predictive of spatial proximity. For example, 
subtypes CA1sp10, CA1sp7, and CA1sp4, show >0.95 correlation but are not proximal to each 
other. Similar findings were seen in the CA3 region as well (Figure 5b, S2).   
 

To test if this principle goes beyond subtypes of the same type we compared CA1 neurons 
and the Sst interneurons. We found that many Sst subtypes have high specificity in their 
localization and are transcriptionally related to their non Sst neighbors. Using permutation tests 
we found that subtypes Sst12, Sst19, Sst20, Sst28 subtypes are significantly colocalized with 
these same subtypes and are specific to the CA1 region (Figure 5cd, methods). Analysis of their 
transcriptional similarity showed that these subtypes are highly correlated in their gene expression 
to all CA1 subtypes (Figure 5e) but not to CA3 subtypes. These results show that both within a 
cell type and across cell types spatial proximity indicates similarity in expression patterns.  
 
JSTA identifies spatial differential gene expression (spDEGs) 

Given our results on the relationship between spatial localization and gene expression 
patterns across cell subtypes, we next tested whether spDEGs within the highly granular cell 
subtypes can be identified. We focused our analysis on the 80 genes in our dataset that were not 
cell marker genes used to classify cells into cell (sub)types. We identified spDEGs by determining 
if the spatial expression pattern of a given gene was statistically different from a null distribution 
by permuting the gene expression values. Importantly, the null model was restricted to the 
permutation of only the cells within that subtype. As a result our spDEGs analysis specifically 
identifies genes whose expression within a specific subtype has a spatial distribution that is 
different than random. We found that within hippocampal cell subtypes, many genes were 
differentially expressed based on their location (Figure 6). For example, Tox in CA1sp1 shows 
higher expression on the medial side of the hippocampus and decreases to the lateral side.  Leng8 
in subtype CA3sp3 is highly expressed closer to the CA1 region, and lower in the medial CA3. 
Hecw1 in the DG2 subtype has varying spatial distribution in the DG region. The lower portion of 
the DG has clusters of higher expression, while the upper portion has lower expression. These 
spatial differences in gene expression are not limited to neuronal subtypes. Astrocytes subtype 
“Astro1” shows spatial heterogeneity in expression of Thra, with large patches of high expression 
levels and other patches of little to no expression (Figure 6a). Overall, we tested for spDEGs in 
61 (sub)types with more than 40 cells. We found that all 61 of the tested hippocampal cell 
subtypes have spDEGs (Figure 6b, S3b), with more than 50% (43 of 80) of the tested genes 
showing non-random spatial pattern (Figure 6c, S3c). Certain genes also show spatial patterns in 
many subtypes (e.g., Thra S3ac), while others are more specific to a one or a few subtypes (e.g., 
Farp1, S3ac). 
 
Discussion 

Spatial transcriptomics provides the coordinates of each transcript without any information on 
the transcript cell of origin26. Here we present JSTA, a new method to convert raw measurements 
of transcripts and their coordinates into spatial single cell expression maps. The key distinguishing 
aspect of our approach is its ability to leverage existing scRNAseq based reference cell type 
taxonomies to simultaneously segment cells, classify cells into (sub)types and assign mRNAs to 
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cells. The unique integration of spatial transcriptomics with existing scRNAseq information to 
improve the accuracy of image segmentation and enhance the biological applications of spatial 
transcriptomics, distinguishes our approach from other efforts that regardless of their algorithmic 
ingenuity are bounded by the available information in the images themselves. As such, JSTA is 
not a generalist image segmentation algorithm rather a tool specifically designed to convert raw 
spatial transcriptomics data into single cell level spatial expression maps. We show the benefits 
of using a dedicated analysis tool through the insights it provides into spatial organization of 
distinct (sub)types in the mouse hippocampus and the hundreds of newly discovered cell 
(sub)type specific spDEGs. These insights into the molecular and cellular level structural 
architecture of the hippocampus demonstrates the types of biological insights provided by highly 
accurate spatial transcriptomics.  
 

The promise of single cell and spatial biology lends itself to intense focus on technological 
development and large scale data collection efforts. We anticipate that JSTA will benefit these 
efforts while at the same time benefit from them. On the technology side, we have demonstrated 
the performance of JSTA for one specific variant of spatial transcriptomics, MERFISH. However, 
the algorithm is extendable and could be applied to other spatial transcriptomics approaches that 
are based on in situ sequencing 27,28,29, spatial barcoding 4,30, and potentially any other spatial 
“omics” platforms 31–36. The benefits of JSTA are evident even with a small number of measured 
genes. This indicates that it is applicable to a broad range of platforms across all multiplexing 
capabilities. On the data side, as JSTA leverages external reference data, it will naturally increase 
in its performance as both the quality and quantity of reference cell type taxonomies improve37. 
We see JSTA as a dynamic analysis tool that could be reapplied multiple times to the same 
dataset each time external reference data is updated to always provide highest accuracy 
segmentation, cell (sub)type classification, spDEG identification.    
 

Due to the nascent status of spatial transcriptomics there are many fundamental questions 
related to the interplay between cell (sub)types and other information gleaned from dissociative 
technologies and tissue and organ architecture 38,39. Our results show that strong co-dependency 
between spatial position and transcriptional state of a cell in the hippocampus, these results mirror 
findings from other organs 40–42. This codependency supports the usefulness of the reference 
taxonomies that were developed without the use of spatial information. Agreements between cell 
type taxonomies developed solely based on scRNAseq and other measurement modalities, i.e. 
spatial position, corroborates the relevance of the taxonomical definitions created for mouse 
brain22. At the same time, the spatial measurements demonstrate the limitation of scRNAseq. We 
discovered many spatial expression patterns within most cell (sub)types that prior to these spatial 
measurements would have been considered biological heterogeneity or even noise but in fact 
they represent key structural features of brain organization. High accuracy mapping at the 
molecular and cellular level will allow us to bridge cell biology with organ anatomy and physiology 
pointing towards a highly promising future for spatial biology.  
 
Author Contributions 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.18.304147doi: bioRxiv preprint 

https://paperpile.com/c/7qSPre/IVNZ+CjmH
https://paperpile.com/c/7qSPre/gUlG
https://paperpile.com/c/7qSPre/8zCP+l2xR
https://paperpile.com/c/7qSPre/53iI+AG3Y+Kesc+CkW2+L9Hz+HMcQ
https://paperpile.com/c/7qSPre/jc0r
https://paperpile.com/c/7qSPre/WrYV+yALY
https://paperpile.com/c/7qSPre/Bp7S+pE2u+s4bD
https://paperpile.com/c/7qSPre/CZQf
https://doi.org/10.1101/2020.09.18.304147
http://creativecommons.org/licenses/by-nc/4.0/


RL, XY, RW developed the algorithm that was implemented by RL. DA and RF designed 
MERFISH probeset. ZH, RF performed MERFISH measurements and initial image analysis. GZ 
and FGP performed brain sample preparation.  
 
Competing Interests statement 
The authors declare no competing interest 
 
Acknowledgment  
The work was funded by NIH grant R01NS117148 and T32CA201160 
 
Source code  
https://github.com/wollmanlab/JSTA 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.18.304147doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.304147
http://creativecommons.org/licenses/by-nc/4.0/


Methods 
Tissue Preparation. B6 mouse was euthanized using carbon dioxide with cervical dislocation. 
Its brain was harvested and flash frozen in Optimal Cutting Temperature Compound (OCT) using 
liquid nitrogen. 15 um sections were prepared and placed on pretreated coverslips. 
 
Coverslip Functionalization. Coverslips were functionalized to improve tissue adhesion and 
promote gel attachment 43. Briefly, 40 mm No.1 coverslips were cleaned with a 50:50 mixture of 
concentrated 37% hydrochloric acid and methanol under sonication for 30 minutes. Coverslips 
were silanized to improve gel adhesion with 0.1% triethylamine and 0.2% allyltrichlorosiloxane in 
methanol under sonication for 30 minutes then rinsed once with chloroform then twice with 
ethanol. Silanization was cured at 70C for 1 hour. An additional coating of 2% 
aminopropyltriethoxysilane to improve tissue adhesion was applied in acetone under sonication 
for 2 minutes then washed twice with water and once with ethanol. Coverslips were dried at 70C 
for 1 hour then stored in a desiccator for less than 1 month.  
 
Probe Design and Synthesis. A total of 18 readout probes were used to encode the identity of 
each gene. Each gene was assigned 4 of the possible 18 probes such that each combination was 
a minimum hamming distance of 4 away from any other gene. This provides classification that is 
robust up to 2 bit errors. 80 to 120 encoder probes were designed for each target gene. Encoder 
probes contained a 30 bp region complementary to the transcript of interest with a melting point 
of 65C and less than 17 bp homology to off target transcripts including highly expressed ncRNA 
and rRNA. Probes also contained 3 of 4 readout sequences assigned to each gene. Sequences 
are available in supplementary material. Probes were designed using modified MATLAB code 
developed by the Zhuang Lab 43. Probes were ordered from custom arrays as a single strand 
pool. A T7 promoter was primed into each sequence with a limited cycle qPCR to allow 
amplification through in vitro transcription and reverse transcription43.   
 
Hybridization. Hybridization was performed using a modified MERFISH protocol 43. Briefly, 
Tissue sections were fixed in 4% PFA in 1xPBS for 15 minutes and washed 3 times with 1xPBS 
for 5 minutes each. Tissue was permeabilized with 1% Triton X-100 in 1xPBS for 30 minutes and 
washed 3 times with 1x PBS. Tissue was incubated in 30% formamide in 2xTBS at 37C for 10 
minutes. Encoding probes were hybridized at 5 nM per probe in 30% Formamide 10% dextran 
sulfate 1 mg/mL tRNA 1 uM poly T acridite anchor probed and 1% Murine RNAse inhibitor in 
2xTBS. A 30 uL drop of this encoding hybridization solution was placed directly on the coverslip 
and a piece of parafilm was placed on the coverslip to prevent evaporation. Probes were 
hybridized for 30-40 hours at 37C in a humidity chamber. Tissue was washed twice with 30% 
formamide in 2xTBS for 30 minutes each at 45C. Tissue was washed 3 times with 2xTBS. Tissue 
was embedded in a 4% polyacrylamide hydrogel with 0.5uL/mL TEMED 5uL 10% APS and 
200nm blue beads for 2 hours (Can expand if wanted). Tissue was cleared with 1% SDS, 0.5% 
Triton x-100, 1 mM EDTA, 0.8 M guanidine HCl 1% proteinase K in 2xTBS for 48 hours at 37C 
replacing clearing solution every 24 hours. Sample was washed with 2xTBS and mounted for 
imaging. Readout hybridization was automated using a custom fluidics system. Sample was 
rinsed with 2xTBS and buffer exchanged into 10% dextran sulfate in 2xTBS for hybridization. 
Hybridization was performed in 10% dextran sulfate in 2xTBS with a probe concentration of 3nM 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.18.304147doi: bioRxiv preprint 

https://paperpile.com/c/7qSPre/tkR0
https://paperpile.com/c/7qSPre/tkR0
https://paperpile.com/c/7qSPre/tkR0
https://paperpile.com/c/7qSPre/tkR0
https://doi.org/10.1101/2020.09.18.304147
http://creativecommons.org/licenses/by-nc/4.0/


per probe. Sample was washed with 10% dextran sulfate then 2xTBS. Sample chamber was filled 
with a 2mM pca 0.1& rPCO 2mM VRC 2mM Trolox in 2xTBS Imaging Buffer. Sample was imaged 
at 63X using a custom epifluorescent microscope. After imaging fluorophores were stripped using 
50mM TCEP in 2xTBS and the next round of readout probes were hybridized. 
 
Image Analysis. Image analysis was performed using custom python code44. To register multiple 
rounds of imaging together with sub pixel resolution, fiduciary markers were found and a rigid 
body transformation was performed. Images were preprocessed using hot pixel correction, 
background subtraction, chromatic aberration correction, and deconvolution. An 18 bit vector was 
generated for each pixel where each bit represented a different round and fluorophore. Each bit 
was normalized so that background approached 0 and spots approached 1. An L2 normalization 
was applied to the vector and the euclidean distance was calculated to the 18 bit gene barcode 
vectors. Pixels were classified if their euclidean distance was less than a 2 bit error away from 
the nearest gene barcode. Individual pixels that were physically connected were merged into a 
spot. Dim spots and spots that contained 1 pixel were removed.   
 
Nuclei Segmentation. Nuclei were stained using dapi and imaged after MERFISH acquisition. 
Each 2D image was segmented using cellpose with a flow threshold of 1 and a cell probability 
threshold of 045 CITE. 2D masks of at least 10um2 area were merged if there was at least 30 
percent overlap between frames. 3D masks that were present in less than 5 z frames (2um) were 
removed.  
 
Simulation. scRNAseq reference preparation. The NCTT was subset to the cells found in the 
hippocampus, and to the marker genes we had generated in our MERFISH data. Expression 
levels of simulated genes were taken from scRNAseq reference and were harmonized to 
qualitatively match the variance observed in measured in MERFISH data. These were then 
rounded to create a scaled counts matrix. For each of the 133 hippocampal cell types from the 
NCTT, we computed a mean vector and covariance matrix of  gene expression. We additionally 
computed the cell type proportions in the single cell data for later use in cell type assignment. 
 
Creating the cell map. Initially, the cell centers were placed in a 200 X 200 X 30 micron grid, 
equidistant from one another, with an average distance between cell centers of 4 microns. The 
cell centers were then moved around in each direction (x, y, z) based on a gaussian function with 
mean 0 and standard deviation 0.6. Pixels were then assigned to their closest center with a 
minimum distance of 5 microns and maximum distance of 7 microns. Cell’s with less than 30 
pixels were removed due to small unrealistic sizes. To create more realistic and non-round cells, 
we merged neighboring, touching cells twice. Each cell was assigned a (sub)type uniformly across 
all 133 types in our dataset. Nuclei were randomly placed within each cell with 20 pixels. Nuclei 
pixels placed on the border were removed. We simulated 10 independent replicates in each 
simulation study.  
 
Generating cell transcriptional profiles, and placing spots. Each cell’s gene expression profile was 
drawn from a multivariate gaussian using the mean vector, and covariance matrix computed from 
the scRNAseq reference. This vector and matrix are cell type specific, and each cell’s gene 
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expression profile is sampled from these cell type specific distributions. The mRNA spots were 
then placed inside of each cell, slightly centered around the nucleus, but mostly uniform 
throughout. 
 
Simulated data on limited genes. To perform feature selection and extract a limited number of 
important genes (4, 12, 20, 28, 36, 44), we used a random forest classifier with 100 trees to predict 
cell types in the reference dataset. The top n important features for classifying cell types were 
used. Other simulation parameters were the same as above.  
 
K-Nearest Neighbors (KNN) based Density Estimation Method. We used a KNN approach to 
estimate density for many genes at each point46. The volume required to reach the 5th spot was 
computed and used to compute the density estimation (Equation 1). Where  is the radius to the 
5th closest spot of that gene. We repeated this process for all genes. 
 

 
  
JSTA Overview. Expectation Maximization (EM) can be used to jointly classify the identity of an 
observation of interest, while learning the parameters that describe the class distributions. In EM, 
the object classes are initialized with a best guess. The parameters of the classifying function are 
learned from this distribution of initialized classes (M-step). The objects are reclassified according 
to the updated function parameters (E-step). These steps are repeated until the function 
parameters converge. JSTA is designed with an EM approach for reclassifying border pixels in 
the 3 dimensional grid of pixels based on their estimated  transcriptional densities. First, we 
initialize the spatial map with watershed, in euclidean space with a maximum radius. Next we 
classify cell types of the segmented cells based on the computed count matrix. We then randomly 
sample a fraction of the pixels’ gene expression vectors, and train a pixel classifier (M-step). The 
pixel classifier is used to reclassify the cell identity of pixels that are at the border between different 
cell types, or between a cell and empty space (E-step).  
 
Cell Type Classification. Data preparation. To match the distributions of both scRNAseq and 
MERFISH, we centered and scaled each cell across all genes. We then subsequently centered 
and scaled each gene across all cells.  
 
Cell type classifier. We parameterized the cell type classifier as a neural network, with 3 
intermediate layers with 3 times the number of input genes as nodes. We used a tanh activation 
function with L1 regularization (1e-4) allowing for the influence of negative numbers in the scaled 
values and parameter space sparsity47. Batch normalization was used on each layer48, and a 
softmax activation was used for the output layer49 (Table S1).  
 
Training the classifier. The network parameters were initialized with Xavier initialization50. The 
neural network was trained with two steps with learning rates of 5e-3 and 5e-4 for 20 epochs 
each, with batch size of 64, and the Adam optimizer was used 51. A 75/25 train validation split was 
used to tune the L1 regularization parameter and reduce overfitting. We used 75/25 to increase 
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the representation of lower frequency cell classes. Cross entropy loss was used to penalize the 
model and update parameters accordingly. 
 
Pixel Classification. Pixel classifier. We parameterized the pixel classifier as a neural network 
with 3 intermediate layers. Each layer was twice the size of the last to increase the modeling 
power of this network, and indirectly model the other genes not in the MERFISH dataset. Each 
layer used the tanh activation function and used an l2 regularizer (1e-3). Each layer was centered 
and scaled with batch normalization, and the output activation was an l2 regularized softmax 
function (Table S2).  
 
Training the classifier. Each time cell types are reclassified, a new network was reinitialized with 
Xavier initialization. The network was initially trained with learning rates or 1e-3 and 1e-4 for 25 
epochs. After the first round of classifying and flipping the assignment of pixels, the network was 
retrained on a new sample of pixels starting from the previous parameter values. This was then 
trained with a learning rate of 1e-4 for 15 epochs. All training was performed with the Adam 
optimizer and a batch size of 64. We used an 80/20 train validation split to help monitor any 
overfitting that might be occurring, and adjust the hyperparameter selection accordingly. We used 
cross entropy loss.  
 
Identifying border pixels. Border pixels are defined as pixels that are between two cells of different 
types, or between a cell and empty space. To enhance the smoothness of cells’ borders, we 
require a border pixel to have 5 of its surroundings be from a different cell, and 2 of its 
surroundings be from the same cell.  
 
Classifying pixels. The trained classifier was then used to estimate the cell type class of border 
pixels. The pixel classifier outputs a probability vector for each cell type, and the probabilities are 
scaled by a distance metric based on the distance to the cells’ nuclei that it could flip to. 
Probabilities less than 0.05 are set to 0. The classification is sampled from that probability vector 
subset to cell types of its neighbors, and renormalized to 1. If the subset probability vector only 
contains 0, the pixel identity is set to background. To balance the exploration and exploitation of 
pixel classification map, we anneal the probability of selecting a non-maximum probability cell 
type by multiplying the maximum probability by (1 + number of iterations run * 0.05). If this is 
selected as 0, complete stochasticity presides, and if it is large, the maximum probability will be 
selected. 
 
JSTA Formalization. Definitions and background. The gene expression level of  cells and  
pixels are described by the matrices  (cells) and  (pixels) which are  and  
matrices respectively, where is the number of genes. Likewise, cell type probability distributions 
of all cells or pixels can be described by matrices. These distributions for cells and pixels are  
and  respectively, represented as  and  matrices, where  is the number of cell 
types. We aim to learn  and , such that  and , accurately map from  to  and  to 
. We used the cross-entropy loss function for penalizing our models. 
 
Cell type classification. First, we learn the parameters of  by: 
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Where  is an  gene expression matrix representing the harmonized NCTT data and 

 is an  vector of cell types labels provided by NCTT. We then use the newly learned 
mapping to infer the cell type probability distributions in the initialized dataset  with: 
 

 
 
We classify each cell as the highest classification probability for that cell: 
 

 
 
Where  are the predicted cell types for each of the cells in the matrix . 
 
Joint pixel and parameter updates. We initialize the labels  for all pixels based on the current 
segmentation map that assigns pixels to cells.  We then learn the parameters of the mapping 
function  (maximization). Learning is performed by updating the parameters of the mapping 
function  with: 
 

 
 
The updated mapping function is then used to infer the probability of observing a type  given 
expression  in all pixels: 
 

 
 
The next step is to update  based on spatial proximity to cells of each type. Using the notation 
 for the vector of probabilities of a single pixel ( ) we next update the 

elements in the vector q based on neighborhood information. We scaled the values of  based 
on its distance from the nuclei and its neighbors.  is intermediate in the calculation that does not 
represent true probabilities.  
 

 
 
 
Where  is the distance from the nucleus of the closest cell of cell type ,  is the distance 
threshold for which a pixel should automatically be assigned to that nucleus. The values 10 and 
5 were determined empirically to modify the sharpness of probability decline based on distance. 
10 was chosen to be much bigger than probabilities produced by  and 5 was chosen to allow 
the probability to decay to half over .  
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We then only kept probabilities for cell types of neighboring cells: 
 

 
 
We then used the intermediate q’ to recalculate the pixel type probabilities: 
 

 
 
The updated values per cell ( ) are then used to update the probability matrix . The type per 
pixel ( ). The assignment of pixel to cells is then stochastically assigned according to: 
the inferred probability  per pixel basis.  
 

 
 
We then repeat updating  and  until convergence. 
 
   
 
Segmentation. Density estimation. The 3 dimensional space was broken into a grid of pixels with 
the edge of each pixel 2 microns in length (1 micron in simulation). The density was estimated at 
the center of each pixel, for each gene. The volume required to reach 5 mRNA molecules was 
used as the denominator of the density estimation. 
 
Segmentation with JSTA. The cell assignment map was initialized with watershed on the distance 
transform with a maximum distance from the nucleus of 2 microns. The cells were only classified 
once. The pixel classifier was trained 6 times (5 in simulation) on 10% of the pixels excluding 
pixels without assignment. After each training step, we reassigned pixels for 10 iterations (5 in 
simulation). The lowest probability kept in the predicted pixel assignment vector was 0.05 (0.01 
in simulation. 
 
Segmentation with watershed. The overall gene density was the sum of each gene in a given 
pixel. To smooth the range of the density, we log2 transformed the density values. Log 
transformed density values less than 1 were masked. The segmentation used the nuclei locations 
as seeds and watershed from the skimage python package, with compactness of 10. Using 
compactness of 10 was the highest performing value for watershed. A watershed line was used 
to separate cells from one another.  
 
Evaluation of Segmentation in Simulated data. mRNA spot call accuracy was evaluated at 
different taxonomic levels. For a given cell the accuracy was defined as the number of mRNA 
spots correctly assigned to that cell divided by the total number of mRNA spots assigned to that 
cell. To match the algorithm's ability to segment based on cell type information, RNAs that were 
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assigned to a neighboring cell of the same (sub)type were also considered correct assignment. 
The overall segmentation accuracy was the mean accuracy across all cells in a given sample. To 
evaluate accuracy at different levels, we utilized the NCTT dendrogram. We used dendrogram 
heights at 0 through 0.8 with a step size of 0.05 (133, 71, 32, 16, 11, 8, 5, 4, 3, 2 cell types).    
 
Correlation of Segmented MERFISH with scRNAseq. The NCTT scRNAseq data was subset 
to the marker genes in our MERFISH dataset. Cells in the segmented MERFISH dataset were 
assigned to canonical hippocampus cell types (Astrocyte, CA1 pyramidal neuron, CA2 Pyramidal 
neuron, CA3 Pyramidal, Dentate Gyrus, Inferior temporal cortex, Macrophage, Oligodendrocyte, 
Subiculum, Interneuron) based on their high resolution cell type classification. In each cell type 
the average expression in each gene was calculated. Only genes were kept that had an average 
expression of at least 5 counts in one of the cell types. Values were centered and scaled across 
all cell types. The Pearson correlation was computed for each gene for the matching cell types 
between scRNAseq and MERFISH.  
 
Distribution of High Resolution Celltypes in the Hippocampus. CA1 and CA3 subtypes were 
projected onto the lateral medial axis. The smoothed density across this dimension was plotted 
for each of the subtypes. 
 
Colocalization of High Resolution Celltypes. Significant colocalization of subtypes was 
determined through a permutation test. First, the 20 nearest cell types around each cell were 
determined. We counted the number of cells from each type that surround each cell type and 
computed the fraction of neighbors coming from each subtype. This created a matrix with the 
fraction of colocalizations per cell between each cell type combination. We then permuted the 
labels of the cell types 1000 times, and recomputed this interaction matrix to create a null 
distribution. For each cell type colocalization, we determined the percentage of colocalizations in 
the null distribution that are higher than the true colocalization number to create a p-value for each 
colocalization. We corrected for multiple testing with the benjamini hochberg procedure and 
determined significance using FDR < 0.05. 
 
Identification of Spatial Differential Gene Expression (spDEGs). spDEGs were calculated in 
cell types with more than 40 cells. Within each cell type, we computed a local expression of each 
non-marker gene for each cell. The local expression was the mean expression of a gene in the 
cell and its 9 nearest neighbors. We then built a null distribution by permuting gene expression 
values within the cell type, and repeating the local expression process for 100 permutations. 
Determining if a gene was spatially differentially expressed, we compared the null distribution 
within a cell type with the true distribution of local expression using a chi squared test. We 
corrected for multiple testing with benjamini hochberg procedure and determined significance 
using FDR < 0.05.  
 
Python packages used. 
python (3.8.3), numpy (1.18.5), pandas (1.0.5), matplotlib (3.2.2), scipy (1.5.0), scikit-learn 
(0.23.1), scikit-image (0.16.2), tensorflow (2.2.0). seaborn (0.10.1) 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.18.304147doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.304147
http://creativecommons.org/licenses/by-nc/4.0/


References 

1. Burgess, D. J. Spatial transcriptomics coming of age. Nature reviews. Genetics vol. 20 317 

(2019). 

2. Thrane, K., Eriksson, H., Maaskola, J., Hansson, J. & Lundeberg, J. Spatially Resolved 

Transcriptomics Enables Dissection of Genetic Heterogeneity in Stage III Cutaneous 

Malignant Melanoma. Cancer Res. 78, 5970–5979 (2018). 

3. Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral 

sclerosis. Science 364, 89–93 (2019). 

4. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial 

transcriptomics. Science 353, 78–82 (2016). 

5. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by 

MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene 

expression. Proc. Natl. Acad. Sci. U. S. A. 116, 19490–19499 (2019). 

6. Chen, X. et al. High-Throughput Mapping of Long-Range Neuronal Projection Using In Situ 

Sequencing. Cell 179, 772–786.e19 (2019). 

7. Asp, M. et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the 

Developing Human Heart. Cell 179, 1647–1660.e19 (2019). 

8. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA 

profiling by sequential hybridization. Nature methods vol. 11 360–361 (2014). 

9. Qian, X. et al. Probabilistic cell typing enables fine mapping of closely related cell types in 

situ. Nat. Methods 17, 101–106 (2020). 

10. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 

10, 857–860 (2013). 

11. Lubeck, E. & Cai, L. Single-cell systems biology by super-resolution imaging and 

combinatorial labeling. Nat. Methods 9, 743–748 (2012). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.18.304147doi: bioRxiv preprint 

http://paperpile.com/b/7qSPre/imw6
http://paperpile.com/b/7qSPre/imw6
http://paperpile.com/b/7qSPre/imw6
http://paperpile.com/b/7qSPre/imw6
http://paperpile.com/b/7qSPre/JtL8
http://paperpile.com/b/7qSPre/JtL8
http://paperpile.com/b/7qSPre/JtL8
http://paperpile.com/b/7qSPre/JtL8
http://paperpile.com/b/7qSPre/JtL8
http://paperpile.com/b/7qSPre/JtL8
http://paperpile.com/b/7qSPre/JtL8
http://paperpile.com/b/7qSPre/hKwR
http://paperpile.com/b/7qSPre/hKwR
http://paperpile.com/b/7qSPre/hKwR
http://paperpile.com/b/7qSPre/hKwR
http://paperpile.com/b/7qSPre/hKwR
http://paperpile.com/b/7qSPre/hKwR
http://paperpile.com/b/7qSPre/hKwR
http://paperpile.com/b/7qSPre/hKwR
http://paperpile.com/b/7qSPre/8zCP
http://paperpile.com/b/7qSPre/8zCP
http://paperpile.com/b/7qSPre/8zCP
http://paperpile.com/b/7qSPre/8zCP
http://paperpile.com/b/7qSPre/8zCP
http://paperpile.com/b/7qSPre/8zCP
http://paperpile.com/b/7qSPre/8zCP
http://paperpile.com/b/7qSPre/8zCP
http://paperpile.com/b/7qSPre/db1o
http://paperpile.com/b/7qSPre/db1o
http://paperpile.com/b/7qSPre/db1o
http://paperpile.com/b/7qSPre/db1o
http://paperpile.com/b/7qSPre/db1o
http://paperpile.com/b/7qSPre/db1o
http://paperpile.com/b/7qSPre/db1o
http://paperpile.com/b/7qSPre/Cl8G
http://paperpile.com/b/7qSPre/Cl8G
http://paperpile.com/b/7qSPre/Cl8G
http://paperpile.com/b/7qSPre/Cl8G
http://paperpile.com/b/7qSPre/Cl8G
http://paperpile.com/b/7qSPre/Cl8G
http://paperpile.com/b/7qSPre/Cl8G
http://paperpile.com/b/7qSPre/Cl8G
http://paperpile.com/b/7qSPre/q9s6
http://paperpile.com/b/7qSPre/q9s6
http://paperpile.com/b/7qSPre/q9s6
http://paperpile.com/b/7qSPre/q9s6
http://paperpile.com/b/7qSPre/q9s6
http://paperpile.com/b/7qSPre/q9s6
http://paperpile.com/b/7qSPre/q9s6
http://paperpile.com/b/7qSPre/q9s6
http://paperpile.com/b/7qSPre/wzyy
http://paperpile.com/b/7qSPre/wzyy
http://paperpile.com/b/7qSPre/wzyy
http://paperpile.com/b/7qSPre/wzyy
http://paperpile.com/b/7qSPre/4whk
http://paperpile.com/b/7qSPre/4whk
http://paperpile.com/b/7qSPre/4whk
http://paperpile.com/b/7qSPre/4whk
http://paperpile.com/b/7qSPre/4whk
http://paperpile.com/b/7qSPre/4whk
http://paperpile.com/b/7qSPre/4whk
http://paperpile.com/b/7qSPre/4whk
http://paperpile.com/b/7qSPre/ir2g
http://paperpile.com/b/7qSPre/ir2g
http://paperpile.com/b/7qSPre/ir2g
http://paperpile.com/b/7qSPre/ir2g
http://paperpile.com/b/7qSPre/ir2g
http://paperpile.com/b/7qSPre/ir2g
http://paperpile.com/b/7qSPre/ir2g
http://paperpile.com/b/7qSPre/ir2g
http://paperpile.com/b/7qSPre/wJDh
http://paperpile.com/b/7qSPre/wJDh
http://paperpile.com/b/7qSPre/wJDh
http://paperpile.com/b/7qSPre/wJDh
http://paperpile.com/b/7qSPre/wJDh
http://paperpile.com/b/7qSPre/wJDh
https://doi.org/10.1101/2020.09.18.304147
http://creativecommons.org/licenses/by-nc/4.0/


12. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially 

resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015). 

13. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. 

Nature 568, 235–239 (2019). 

14. Najman, L. & Schmitt, M. Watershed of a continuous function. Signal Processing vol. 38 99–

112 (1994). 

15. Beucher S, L. C. Use of Watersheds in Contour Detection. International Workshop on image 

processing: Real-time Edge and Motion detection/estimation (1979). 

16. Vu, Q. D. et al. Methods for Segmentation and Classification of Digital Microscopy Tissue 

Images. Front Bioeng Biotechnol 7, 53 (2019). 

17. Al-Kofahi, Y., Lassoued, W., Lee, W. & Roysam, B. Improved automatic detection and 

segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57, 841–

852 (2010). 

18. Chalfoun, J. et al. FogBank: a single cell segmentation across multiple cell lines and image 

modalities. BMC Bioinformatics 15, 431 (2014). 

19. Hilsenbeck, O. et al. fastER: a user-friendly tool for ultrafast and robust cell segmentation in 

large-scale microscopy. Bioinformatics 33, 2020–2028 (2017). 

20. Sun, S. Automated and interactive approaches for optimal surface finding based 

segmentation of medical image data. doi:10.17077/etd.o2bmvzlw. 

21. Park, J. et al. Segmentation-free inference of cell types from in situ transcriptomics data. 

doi:10.1101/800748. 

22. Yuste, R. et al. A community-based transcriptomics classification and nomenclature of 

neocortical cell types. Nat. Neurosci. (2020) doi:10.1038/s41593-020-0685-8. 

23. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 

445, 168–176 (2007). 

24. Chen, K. H. Spatially Resolved, Highly Multiplexed RNA Profiling in Single Cells. (2015). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.18.304147doi: bioRxiv preprint 

http://paperpile.com/b/7qSPre/vUoE
http://paperpile.com/b/7qSPre/vUoE
http://paperpile.com/b/7qSPre/vUoE
http://paperpile.com/b/7qSPre/vUoE
http://paperpile.com/b/7qSPre/vUoE
http://paperpile.com/b/7qSPre/vUoE
http://paperpile.com/b/7qSPre/tBhG
http://paperpile.com/b/7qSPre/tBhG
http://paperpile.com/b/7qSPre/tBhG
http://paperpile.com/b/7qSPre/tBhG
http://paperpile.com/b/7qSPre/tBhG
http://paperpile.com/b/7qSPre/tBhG
http://paperpile.com/b/7qSPre/tBhG
http://paperpile.com/b/7qSPre/tBhG
http://paperpile.com/b/7qSPre/pG6c
http://paperpile.com/b/7qSPre/pG6c
http://paperpile.com/b/7qSPre/pG6c
http://paperpile.com/b/7qSPre/pG6c
http://paperpile.com/b/7qSPre/jXRB
http://paperpile.com/b/7qSPre/jXRB
http://paperpile.com/b/7qSPre/jXRB
http://paperpile.com/b/7qSPre/jXRB
http://paperpile.com/b/7qSPre/vKlG
http://paperpile.com/b/7qSPre/vKlG
http://paperpile.com/b/7qSPre/vKlG
http://paperpile.com/b/7qSPre/vKlG
http://paperpile.com/b/7qSPre/vKlG
http://paperpile.com/b/7qSPre/vKlG
http://paperpile.com/b/7qSPre/vKlG
http://paperpile.com/b/7qSPre/vKlG
http://paperpile.com/b/7qSPre/6XTW
http://paperpile.com/b/7qSPre/6XTW
http://paperpile.com/b/7qSPre/6XTW
http://paperpile.com/b/7qSPre/6XTW
http://paperpile.com/b/7qSPre/6XTW
http://paperpile.com/b/7qSPre/6XTW
http://paperpile.com/b/7qSPre/6XTW
http://paperpile.com/b/7qSPre/d2ul
http://paperpile.com/b/7qSPre/d2ul
http://paperpile.com/b/7qSPre/d2ul
http://paperpile.com/b/7qSPre/d2ul
http://paperpile.com/b/7qSPre/d2ul
http://paperpile.com/b/7qSPre/d2ul
http://paperpile.com/b/7qSPre/d2ul
http://paperpile.com/b/7qSPre/d2ul
http://paperpile.com/b/7qSPre/1oWC
http://paperpile.com/b/7qSPre/1oWC
http://paperpile.com/b/7qSPre/1oWC
http://paperpile.com/b/7qSPre/1oWC
http://paperpile.com/b/7qSPre/1oWC
http://paperpile.com/b/7qSPre/1oWC
http://paperpile.com/b/7qSPre/1oWC
http://paperpile.com/b/7qSPre/1oWC
http://paperpile.com/b/7qSPre/9KJe
http://paperpile.com/b/7qSPre/9KJe
http://dx.doi.org/10.17077/etd.o2bmvzlw
http://dx.doi.org/10.17077/etd.o2bmvzlw
http://paperpile.com/b/7qSPre/BSSh
http://paperpile.com/b/7qSPre/BSSh
http://paperpile.com/b/7qSPre/BSSh
http://paperpile.com/b/7qSPre/BSSh
http://dx.doi.org/10.1101/800748
http://dx.doi.org/10.1101/800748
http://paperpile.com/b/7qSPre/CZQf
http://paperpile.com/b/7qSPre/CZQf
http://paperpile.com/b/7qSPre/CZQf
http://paperpile.com/b/7qSPre/CZQf
http://paperpile.com/b/7qSPre/CZQf
http://paperpile.com/b/7qSPre/CZQf
http://dx.doi.org/10.1038/s41593-020-0685-8
http://dx.doi.org/10.1038/s41593-020-0685-8
http://paperpile.com/b/7qSPre/E5riY
http://paperpile.com/b/7qSPre/E5riY
http://paperpile.com/b/7qSPre/E5riY
http://paperpile.com/b/7qSPre/E5riY
http://paperpile.com/b/7qSPre/E5riY
http://paperpile.com/b/7qSPre/E5riY
http://paperpile.com/b/7qSPre/E5riY
http://paperpile.com/b/7qSPre/E5riY
http://paperpile.com/b/7qSPre/b4g6
http://paperpile.com/b/7qSPre/b4g6
http://paperpile.com/b/7qSPre/b4g6
https://doi.org/10.1101/2020.09.18.304147
http://creativecommons.org/licenses/by-nc/4.0/


25. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic 

preoptic region. Science 362, (2018). 

26. Lee, J. H. Quantitative approaches for investigating the spatial context of gene expression. 

Wiley Interdiscip. Rev. Syst. Biol. Med. 9, (2017). 

27. Turczyk, B. M. et al. Spatial Sequencing: A Perspective. J. Biomol. Tech. 31, 44 (2020). 

28. Lee, J. H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling 

in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015). 

29. Lee, J. H. et al. Highly Multiplexed Subcellular RNA Sequencing in Situ. Science 343, 1360–

1363 (2014). 

30. Salmén, F. et al. Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling in 

mammalian tissue sections. Nat. Protoc. 13, 2501–2534 (2018). 

31. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. 

Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019). 

32. Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-

embedded cancer tissue. Proc. Natl. Acad. Sci. U. S. A. 110, 11982–11987 (2013). 

33. Lin, J.-R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using 

a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015). 

34. Goltsev, Y. et al. Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed 

Imaging. Cell 174, 968–981.e15 (2018). 

35. Lin, J.-R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors 

using t-CyCIF and conventional optical microscopes. Elife 7, (2018). 

36. Keren, L. et al. A Structured Tumor-Immune Microenvironment in Triple Negative Breast 

Cancer Revealed by Multiplexed Ion Beam Imaging. Cell 174, 1373–1387.e19 (2018). 

37. HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular 

Atlas Program. Nature 574, 187–192 (2019). 

38. Mukamel, E. A. & Ngai, J. Perspectives on defining cell types in the brain. Curr. Opin. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.18.304147doi: bioRxiv preprint 

http://paperpile.com/b/7qSPre/3KU7
http://paperpile.com/b/7qSPre/3KU7
http://paperpile.com/b/7qSPre/3KU7
http://paperpile.com/b/7qSPre/3KU7
http://paperpile.com/b/7qSPre/3KU7
http://paperpile.com/b/7qSPre/3KU7
http://paperpile.com/b/7qSPre/3KU7
http://paperpile.com/b/7qSPre/3KU7
http://paperpile.com/b/7qSPre/2ZTf
http://paperpile.com/b/7qSPre/2ZTf
http://paperpile.com/b/7qSPre/2ZTf
http://paperpile.com/b/7qSPre/2ZTf
http://paperpile.com/b/7qSPre/2ZTf
http://paperpile.com/b/7qSPre/2ZTf
http://paperpile.com/b/7qSPre/IVNZ
http://paperpile.com/b/7qSPre/IVNZ
http://paperpile.com/b/7qSPre/IVNZ
http://paperpile.com/b/7qSPre/IVNZ
http://paperpile.com/b/7qSPre/IVNZ
http://paperpile.com/b/7qSPre/IVNZ
http://paperpile.com/b/7qSPre/IVNZ
http://paperpile.com/b/7qSPre/CjmH
http://paperpile.com/b/7qSPre/CjmH
http://paperpile.com/b/7qSPre/CjmH
http://paperpile.com/b/7qSPre/CjmH
http://paperpile.com/b/7qSPre/CjmH
http://paperpile.com/b/7qSPre/CjmH
http://paperpile.com/b/7qSPre/CjmH
http://paperpile.com/b/7qSPre/CjmH
http://paperpile.com/b/7qSPre/gUlG
http://paperpile.com/b/7qSPre/gUlG
http://paperpile.com/b/7qSPre/gUlG
http://paperpile.com/b/7qSPre/gUlG
http://paperpile.com/b/7qSPre/gUlG
http://paperpile.com/b/7qSPre/gUlG
http://paperpile.com/b/7qSPre/gUlG
http://paperpile.com/b/7qSPre/gUlG
http://paperpile.com/b/7qSPre/l2xR
http://paperpile.com/b/7qSPre/l2xR
http://paperpile.com/b/7qSPre/l2xR
http://paperpile.com/b/7qSPre/l2xR
http://paperpile.com/b/7qSPre/l2xR
http://paperpile.com/b/7qSPre/l2xR
http://paperpile.com/b/7qSPre/l2xR
http://paperpile.com/b/7qSPre/l2xR
http://paperpile.com/b/7qSPre/53iI
http://paperpile.com/b/7qSPre/53iI
http://paperpile.com/b/7qSPre/53iI
http://paperpile.com/b/7qSPre/53iI
http://paperpile.com/b/7qSPre/53iI
http://paperpile.com/b/7qSPre/53iI
http://paperpile.com/b/7qSPre/AG3Y
http://paperpile.com/b/7qSPre/AG3Y
http://paperpile.com/b/7qSPre/AG3Y
http://paperpile.com/b/7qSPre/AG3Y
http://paperpile.com/b/7qSPre/AG3Y
http://paperpile.com/b/7qSPre/AG3Y
http://paperpile.com/b/7qSPre/AG3Y
http://paperpile.com/b/7qSPre/AG3Y
http://paperpile.com/b/7qSPre/Kesc
http://paperpile.com/b/7qSPre/Kesc
http://paperpile.com/b/7qSPre/Kesc
http://paperpile.com/b/7qSPre/Kesc
http://paperpile.com/b/7qSPre/Kesc
http://paperpile.com/b/7qSPre/Kesc
http://paperpile.com/b/7qSPre/CkW2
http://paperpile.com/b/7qSPre/CkW2
http://paperpile.com/b/7qSPre/CkW2
http://paperpile.com/b/7qSPre/CkW2
http://paperpile.com/b/7qSPre/CkW2
http://paperpile.com/b/7qSPre/CkW2
http://paperpile.com/b/7qSPre/CkW2
http://paperpile.com/b/7qSPre/CkW2
http://paperpile.com/b/7qSPre/L9Hz
http://paperpile.com/b/7qSPre/L9Hz
http://paperpile.com/b/7qSPre/L9Hz
http://paperpile.com/b/7qSPre/L9Hz
http://paperpile.com/b/7qSPre/L9Hz
http://paperpile.com/b/7qSPre/L9Hz
http://paperpile.com/b/7qSPre/L9Hz
http://paperpile.com/b/7qSPre/L9Hz
http://paperpile.com/b/7qSPre/HMcQ
http://paperpile.com/b/7qSPre/HMcQ
http://paperpile.com/b/7qSPre/HMcQ
http://paperpile.com/b/7qSPre/HMcQ
http://paperpile.com/b/7qSPre/HMcQ
http://paperpile.com/b/7qSPre/HMcQ
http://paperpile.com/b/7qSPre/HMcQ
http://paperpile.com/b/7qSPre/HMcQ
http://paperpile.com/b/7qSPre/jc0r
http://paperpile.com/b/7qSPre/jc0r
http://paperpile.com/b/7qSPre/jc0r
http://paperpile.com/b/7qSPre/jc0r
http://paperpile.com/b/7qSPre/jc0r
http://paperpile.com/b/7qSPre/jc0r
http://paperpile.com/b/7qSPre/WrYV
http://paperpile.com/b/7qSPre/WrYV
https://doi.org/10.1101/2020.09.18.304147
http://creativecommons.org/licenses/by-nc/4.0/


Neurobiol. 56, 61–68 (2019). 

39. Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. 25, 1491–

1498 (2015). 

40. Egozi, A., Bahar Halpern, K., Farack, L., Rotem, H. & Itzkovitz, S. Zonation of Pancreatic 

Acinar Cells in Diabetic Mice. Cell Rep. 32, 108043 (2020). 

41. Moor, A. E. et al. Spatial Reconstruction of Single Enterocytes Uncovers Broad Zonation 

along the Intestinal Villus Axis. Cell 175, 1156–1167.e15 (2018). 

42. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the 

mammalian liver. Nature 542, 352–356 (2017). 

43. Moffitt, J. R. & Zhuang, X. Chapter One - RNA Imaging with Multiplexed Error-Robust 

Fluorescence In Situ Hybridization (MERFISH). in Methods in Enzymology (eds. Filonov, G. 

S. & Jaffrey, S. R.) vol. 572 1–49 (Academic Press, 2016). 

44. wollmanlab. wollmanlab/PySpots. https://github.com/wollmanlab/PySpots. 

45. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for 

cellular segmentation. 2020.02.02.931238 (2020) doi:10.1101/2020.02.02.931238. 

46. Wasserman, L. All of Nonparametric Statistics. (Springer Science & Business Media, 2006). 

47. Bach, F., Jenatton, R., Mairal, J. & Obozinski, G. Optimization with Sparsity-Inducing 

Penalties. arXiv [cs.LG] (2011). 

48. Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network Training by 

Reducing Internal Covariate Shift. arXiv [cs.LG] (2015). 

49. Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep learning. vol. 1 (MIT press 

Cambridge, 2016). 

50. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural 

networks. in Proceedings of the thirteenth international conference on artificial intelligence 

and statistics 249–256 (2010). 

51. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG] (2014). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2020. ; https://doi.org/10.1101/2020.09.18.304147doi: bioRxiv preprint 

http://paperpile.com/b/7qSPre/WrYV
http://paperpile.com/b/7qSPre/WrYV
http://paperpile.com/b/7qSPre/WrYV
http://paperpile.com/b/7qSPre/WrYV
http://paperpile.com/b/7qSPre/yALY
http://paperpile.com/b/7qSPre/yALY
http://paperpile.com/b/7qSPre/yALY
http://paperpile.com/b/7qSPre/yALY
http://paperpile.com/b/7qSPre/yALY
http://paperpile.com/b/7qSPre/yALY
http://paperpile.com/b/7qSPre/Bp7S
http://paperpile.com/b/7qSPre/Bp7S
http://paperpile.com/b/7qSPre/Bp7S
http://paperpile.com/b/7qSPre/Bp7S
http://paperpile.com/b/7qSPre/Bp7S
http://paperpile.com/b/7qSPre/Bp7S
http://paperpile.com/b/7qSPre/pE2u
http://paperpile.com/b/7qSPre/pE2u
http://paperpile.com/b/7qSPre/pE2u
http://paperpile.com/b/7qSPre/pE2u
http://paperpile.com/b/7qSPre/pE2u
http://paperpile.com/b/7qSPre/pE2u
http://paperpile.com/b/7qSPre/pE2u
http://paperpile.com/b/7qSPre/pE2u
http://paperpile.com/b/7qSPre/s4bD
http://paperpile.com/b/7qSPre/s4bD
http://paperpile.com/b/7qSPre/s4bD
http://paperpile.com/b/7qSPre/s4bD
http://paperpile.com/b/7qSPre/s4bD
http://paperpile.com/b/7qSPre/s4bD
http://paperpile.com/b/7qSPre/s4bD
http://paperpile.com/b/7qSPre/s4bD
http://paperpile.com/b/7qSPre/tkR0
http://paperpile.com/b/7qSPre/tkR0
http://paperpile.com/b/7qSPre/tkR0
http://paperpile.com/b/7qSPre/tkR0
http://paperpile.com/b/7qSPre/tkR0
http://paperpile.com/b/7qSPre/4YiP
http://paperpile.com/b/7qSPre/4YiP
http://paperpile.com/b/7qSPre/4YiP
http://paperpile.com/b/7qSPre/hvrd
http://paperpile.com/b/7qSPre/hvrd
http://dx.doi.org/10.1101/2020.02.02.931238
http://dx.doi.org/10.1101/2020.02.02.931238
http://paperpile.com/b/7qSPre/cIUr
http://paperpile.com/b/7qSPre/cIUr
http://paperpile.com/b/7qSPre/cIUr
http://paperpile.com/b/7qSPre/cj9p
http://paperpile.com/b/7qSPre/cj9p
http://paperpile.com/b/7qSPre/cj9p
http://paperpile.com/b/7qSPre/cj9p
http://paperpile.com/b/7qSPre/qezO
http://paperpile.com/b/7qSPre/qezO
http://paperpile.com/b/7qSPre/qezO
http://paperpile.com/b/7qSPre/qezO
http://paperpile.com/b/7qSPre/pzjc
http://paperpile.com/b/7qSPre/pzjc
http://paperpile.com/b/7qSPre/pzjc
http://paperpile.com/b/7qSPre/pzjc
http://paperpile.com/b/7qSPre/Kxts
http://paperpile.com/b/7qSPre/Kxts
http://paperpile.com/b/7qSPre/Kxts
http://paperpile.com/b/7qSPre/Kxts
http://paperpile.com/b/7qSPre/Kxts
http://paperpile.com/b/7qSPre/AO7c
http://paperpile.com/b/7qSPre/AO7c
http://paperpile.com/b/7qSPre/AO7c
https://doi.org/10.1101/2020.09.18.304147
http://creativecommons.org/licenses/by-nc/4.0/


Figures 
 
Figure 1. Overview of JSTA and the spatial transcriptomics data used for performance 
evaluation.  a. JSTA overview. Initially, watershed based segmentation is performed and a cell 
level type classifier is trained based on the NCTT data. The cell level classifier then assigns cell 
(sub)types (red and blue in this cartoon example). Based on the current assignment of pixels to 
cell (sub)types, a new DNN is trained to estimate the probabilities that each pixel comes from 
each of the possible (sub)types given the local RNA density at each pixel. In this example, two 
pixels that were initially assigned to the “red” cells got higher probability to be of a blue type. Since 
the neighbor cell is of type “blue” they were reassigned to that cell during segmentation update. 
Using the updated segmentation and the cell type classifier cell types are reassigned. The tasks 
of training, segmentation, and classification are repeated over many iterations until convergence. 
b. Multiplexed Error Robust Fluorescent in situ hybridization (MERFISH) and DAPI stained nuclei 
in the mouse hippocampus. Each gene is represented by a different color. For the entire 
hippocampus (left), only the mRNA spots are shown with a scale bar of 500 microns. On the 
zoomed-in section (right), each gene is represented by a different color dot, and the DAPI intensity 
is displayed in white. The scale bar is 20 microns. 
 
Figure 2 Performance evaluation of JSTA using simulated data. a. Representative synthetic 
dataset of nuclei (black) and mRNAs, where each color represents a different gene. b. Ground 
truth boundaries of the cells. Each color represents a different cell. c. Average Accuracy of calling 
mRNA spots to cells at different cell type resolutions using 83 genes. Accuracy was determined 
by the assignment of each mRNA molecule to the correct cell type. JSTA (solid line) is more 
accurate than Watershed (dashed line) at assigning mRNA molecules to the correct cells (FDR < 
0.05). Statistical significance was determined with a Mann-Whitney test and false discovery rate 
correction. d. Accuracy of calling mRNA spots to cells when using JSTA to segment cells with a 
lower number of genes (8-44 genes tested). The color of the line gets progressively darker as the 
number of genes used increases. 
 
Figure 3 Segmentation of MERFISH data from the hippocampus using JSTA. a. High 
resolution cell type map of 133 cell (sub)types. Colors match those defined by NCTT. Scale bar 
is 500 microns. b. JSTA based classification of CA1 (green), CA3 (cyan), and DG (red) neurons 
matches their known domains. c. Correlation of 163 genes across major cell types between 
MERFISH measurements to scRNAseq data from NCTT. d. Correlation of same genes as in c 
between expression of types in scRNAseq data from NCTT. 
 
Figure 4 Spatial distribution of neuronal subtypes in the hippocampus. a. Cell subtype map 
of CA1 neurons in the hippocampus. Scale bar is 500 micron. Distribution of CA1 subtypes in the 
hippocampus, computed by projecting cell centers to the x axis. b. Cell subtype map of CA3 
neurons in the hippocampus. Distribution of CA3 subtypes in the hippocampus, computed by 
projecting the cell centers to the lateral to medial axis. 
 
Figure 5 Agreement between spatial proximity and gene coexpression in high granular cell 
subtypes in the Hippocampus. a-b. Relationship between the frequency of a (sub)type’s 
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neighbors and it’s transcriptional pearson correlation in CA1 subtypes (a) and CA3 subtypes (b). 
c. Cell type map in the hippocampus shows specific colocalization patterns between subset of 
Sst subtypes (purple) and CA1 neurons (green); these Sst subtypes do not colocalize with CA3 
neurons (cyan). d. Colocalization patterns of Sst subtypes with CA1 and CA3 subtypes. Sst 
subtypes that colocalize with the CA1 subtypes have high transcriptional similarity. Colocalization 
was defined as the percent of neighbors that are of that subtype (see methods) e Transcriptional 
correlation patterns between Sst subtypes and CA1 and CA3 neurons. Green, purple and cyan 
sidebars highlight the subset of Sst co-localized with CA1 (purple), CA1 (green) and CA3 (cyan).  
 
 
Figure 6 Identification of spatial differential gene expression (spDEGs). a. Normalized 
expression of Tox in CA1sp1, Leng8 in CA3sp3, Hecw1 in DG3, and Thra in Astro1. Scale bar is 
500 microns.  b. Histogram of the number of statistically significant spDEGs (Benjamini-Hochberg 
corrected FDR < 0.05) in each subtype. c. Histogram of the number of subtypes that have an 
spDEG for each gene. 
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Supplementary Figures 
 
Figure S1. Loss and accuracy of cell type (a-b) and pixel (c-d) classifier during training for the 
train (blue) and validation (orange) data sets. a-b. Cross entropy (a) loss and accuracy (b) during 
training cell type classifier. c-d. Cross entropy loss (c) and Accuracy (d) during training of the 
pixel classifier. Black lines indicate new training iteration after pixel reassignment.  
 
Figure S2. Correlation structure of cell types compared to their colocalization. Cell types with 
more than 10 cells were included. a. pearson correlation of 122 (sub)types across 83 marker 
genes. b. Frequency of neighbors between each of 122 (sub)types. Only significant (FDR < 0.05) 
colocalizations are shown. Labels and values are detailed in supplementary table 3 and 4. 
 
Figure S3. Identification of spatial differentially expressed genes (spDEGs). a. 43 genes across 
61 cell types show significant spDEGs. Heatmap values correspond to -log2(p-value). b. Number 
of spDEGs in each of the 61 cell types. c. Number of cell types with each of the 43 spDEGs.  
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Supplementary Tables 
 
Layer Type Num Nodes Activation Regularization 

Input 83 - - 

Dense 249 tanh L1 (5e-3) 

Batch Normalization - - - 

Dense 249 tanh L1 (5e-3) 

Batch Normalization - - - 

Output 133 softmax L1 (5e-3) 
Table S1. Cell type classifier architecture. The network was initialized with Xavier initialization. 
Learning rates of 5e-3 and 5e-4 for 20 epochs each. A batch size of 64 was used. The Adam 
optimizer was used to update parameters. Cross entropy loss was used. 
 
 
Layer Type Num Nodes Activation Regularization 

Input 83 - - 

Dense 166 tanh L1 (1e-3) 

Batch Normalization - - - 

Dense 166 tanh L1 (1e-3) 

Batch Normalization - - - 

Dense 332 tanh L1 (1e-3) 

Batch Normalization - - - 

Output 133 softmax L1 (1e-3) 
Table S2. Pixel classifier architecture. The network was initialized with Xavier initialization. Initially 
the model was trained for 25 epochs with 1e-4 and 1e-3 learning rate. Subsequent updates were 
done on 15 epochs with a learning rate of 1e-4. We used the Adam optimizer to update 
parameters. Cross entropy loss was used. 
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Figure 1. Overview of JSTA and the spatial transcriptomics data used for performance evaluation.  a. 
JSTA overview. Initially, watershed based segmentation is performed and a cell level type classifier is trained 
based on the NCTT data. The cell level classifier then assigns cell (sub)types (red and blue in this cartoon exam-
ple). Based on the current assignment of pixels to cell (sub)types, a new DNN is trained to estimate the probabili-
ties that each pixel comes from each of the possible (sub)types given the local RNA density at each pixel. In this 
example, two pixels that were initially assigned to the “red” cells got higher probability to be of a blue type. Since 
the neighbor cell is of type “blue” they were reassigned to that cell during segmentation update. Using the updat-
ed segmentation and the cell type classifier cell types are reassigned. The tasks of training, segmentation, and 
classification are repeated over many iterations until convergence. b. Multiplexed Error Robust Fluorescent in 
situ hybridization (MERFISH) and DAPI stained nuclei in the mouse hippocampus. Each gene is represented by 
a different color. For the entire hippocampus (left), only the mRNA spots are shown with a scale bar of 500 
microns. On the zoomed-in section (right), each gene is represented by a different color dot, and the DAPI inten-
sity is displayed in white. The scale bar is 20 microns.
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Figure 2 Performance evaluation of 
JSTA using simulated data. a. Repre-
sentative synthetic dataset of nuclei 
(black) and mRNAs, where each color 
represents a different gene. b. Ground 
truth boundaries of the cells. Each color 
represents a different cell. c. Average 
Accuracy of calling mRNA spots to cells 
at different cell type resolutions using 83 
genes. Accuracy was determined by the 
assignment of each mRNA molecule to 
the correct cell type. JSTA (solid line) is 
more accurate than Watershed (dashed 
line) at assigning mRNA molecules to the 
correct cells (FDR < 0.05). Statistical 
significance was determined with a 
Mann-Whitney test and false discovery 
rate correction. d. Accuracy of calling 
mRNA spots to cells when using JSTA to 
segment cells with a lower number of 
genes (8-44 genes tested). The color of 
the line gets progressively darker as the 
number of genes used increases.
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Figure 3 Segmentation of MERFISH data from the hippocampus using JSTA. a. High resolution cell type 
map of 133 cell (sub)types. Colors match those defined by NCTT. Scale bar is 500 microns. b. JSTA based 
classification of CA1, CA3, and DG neurons matches their known domains. c. Correlation of 163 genes 
across major cell types between MERFISH measurements to scRNAseq data from NCTT. d. Correlation of 
same genes as in c between expression of types in scRNAseq data from NCTT.
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Figure 4 Spatial distribution of neuronal subtypes in the hippocampus. a. Cell subtype map of CA1 neurons 
in the hippocampus. Scale bar is 500 micron. Distribution of CA1 subtypes in the hippocampus, computed by 
projecting cell centers to the x axis. b. Cell subtype map of CA3 neurons in the hippocampus. Distribution of CA3 
subtypes in the hippocampus, computed by projecting the cell centers to the lateral to medial axis.
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Figure 5 Agreement between spatial proximity and gene coexpression in high granular cell subtypes in 
the Hippocampus. a-b. Relationship between the frequency of a (sub)type’s neighbors and it’s transcriptional 
pearson correlation in CA1 subtypes (a) and CA3 subtypes (b). c. Cell type map in the hippocampus shows 
specific colocalization patterns between subset of Sst subtypes (purple) and CA1 neurons (green); these Sst 
subtypes do not colocalize with CA3 neurons (cyan). d. Colocalization patterns of Sst subtypes with CA1 and 
CA3 subtypes. Sst subtypes that colocalize with the CA1 subtypes have high transcriptional similarity. Colocal-
ization was defined as the percent of neighbors that are of that subtype (see methods) e Transcriptional correla-
tion patterns between Sst subtypes and CA1 and CA3 neurons. Green, purple and cyan sidebars highlight the 
subset of Sst co-localized with CA1 (purple), CA1 (green) and CA3 (cyan). 
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Figure 6 Identification of spatial differential gene expression (spDEGs). a. Normalized 
expression of Tox in CA1sp1, Leng8 in CA3sp3, Hecw1 in DG3, and Thra in Astro1. Scale 
bar is 500 microns.  b. Histogram of the number of statistically significant spDEGs (Benjami-
ni-Hochberg corrected FDR < 0.05) in each subtype. c. Histogram of the number of subtypes 
that have an spDEG for each gene.
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a b Figure S1. Loss and accuracy of 
cell type (a-b) and pixel (c-d) classi-
fier during training for the train (blue) 
and validation (orange) data sets. 
a-b. Cross entropy (a) loss and accu-
racy (b) during training cell type clas-
sifier. c-d. Cross entropy loss (c) and 
Accuracy (d) during training of the 
pixel classifier. Black lines indicate 
new training iteration after pixel reas-
signment. 
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Figure S2. Correlation structure of cell types compared to their 
colocalization. Cell types with more than 10 cells were included. a. 
pearson correlation of 122 (sub)types across 83 marker genes. b. 
Frequency of neighbors between each of 122 (sub)types. Only signifi-
cant (FDR < 0.05) colocalizations are shown. Labels and values are 
detailed in supplementary table 3 and 4.
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Figure S3. Identification of spatial differentially expressed genes (spDEGs). a. 43 genes across 61 cell 
types show significant spDEGs. Heatmap values correspond to -log2(p-value). b. Number of spDEGs in each 
of the 61 cell types. c. Number of cell types with each of the 43 spDEGs.
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