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Abstract The biomedical literature provides an extensive source of informa-
tion in the form of unstructured text. One of the most important types of
information hidden in biomedical literature is the relationships between hu-
man proteins and their phenotypes, which, due to the exponential growth of
publications, can remain hidden. This provides a range of opportunities for
the development of computational methods to extract the biomedical rela-
tionships from the unstructured text. In our previous work, we developed a
supervised machine learning approach, called PPPred, for classifying the va-
lidity of a given sentence-level human protein-phenotype co-mention. In this
work, we propose DeepPPPred, an ensemble classifier composed of PPPred
and three deep neural network models: RNN, CNN, and BERT. Using an ex-
panded gold-standard co-mention dataset, we demonstrate that the proposed
ensemble method significantly outperforms its constituent components and
provides a new state-of-the-art performance on classifying the co-mentions of
human proteins and phenotype terms.

Keywords Biomedical Relation Extraction, Human Phenotype Ontology,
Protein-Phenotype Relationships, Deep Learning, Ensemble Learning

Proteins are considered one of the most important biomolecules, which are
critical for the maintenance and development of life [3]. A cell’s full set of
expressed proteins–the proteome–is dynamic and multidimensional with these
proteins operating in a complex network and ensures the integrity of cellular
structure and function [17]. Errors in the underlying genetic sequence of the
protein often cause alterations in critical regions of a protein’s structure. Such
errors can alter the protein’s function-specific tertiary structure, which results
in changes to its phenotypes [10]. In the medical context, a phenotype is defined
as a deviation from normal physiology or behavior [35]. Well-known changes
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in phenotype are brought about by alterations in structure or regulation of
one or more proteins involved in important biological pathways, such as those
relevant to Alzheimer’s disease, cancer, cystic fibrosis, Huntington’s disease,
and type II diabetes, Parkinson’s disease [3,11,23]. Uncovering novel changes
in protein structure, function, and regulation–in addition to understanding
how these alterations lead to human disorders–is a popular field of research in
the biomedical community [3,5,11,23,38,34,10,17].

Fig. 1 An example of a bad co-mention in which the sentence does not convey a relationship
between the protein, i.e. “KIF4”, and the phenotype, i.e. “cancer”. (PMID: 20711700)

Human Phenotype Ontology (HPO) is a standardized vocabulary that cov-
ers a wide range of phenotypic abnormalities associated with human diseases
[14]. HPO contains several sub-ontologies, and its main sub-ontology is Pheno-
typic abnormalities that represents clinical abnormalities. Each sub-ontology
includes HPO terms and associated HPO identifiers (IDs), e.g. Parkinsonism,
HP:0001300. Each sub-ontology has a hierarchical structure where more gen-
eral terms appear at the top, and more specific terms are closer to the leaves.
Each pair of terms in the hierarchy are connected with a is-a relationship. In
this paper, we use phenotypes and HPO terms interchangeably. HPO website1

provides gold-standard annotations for a large collection of human proteins ac-
quired through biocuration. Biocuration is the process of extracting knowledge
from unstructured text and storing them in knowledge bases. It is usually per-
formed manually with the help of computational tools [1]. However, currently,
only a small portion of known human proteins have HPO annotations [14].
Nevertheless, researchers believe that many other human proteins are associ-
ated with diseases and should be annotated with HPO terms (Peter Robinson,
personal communication, 2015).

Expanding knowledge bases such as the HPO database through biocura-
tion is essential for potential future applications in medicine and healthcare.
However, biocuration is considered slow and resource-consuming. Thus, to fa-
cilitate the typically slower rate of human annotation, efficient and accurate
computational tools are required to expedite this process [1]. Consequently,
researchers who work in the area of biomedical relationship extraction have
shown interest in developing computational models to extract relationships
between proteins and phenotypes [40,15,9,13].

As a solution to the above, in a recent study [31], we proposed a novel
two-step approach for extracting human protein-HPO term relationships. The
first step was to extract protein-HPO co-mentions, which are co-occurrences

1 https://hpo.jax.org/app
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of protein names and phenotype names in a particular span of text, i.e., a sen-
tence, a paragraph, etc [28]. In our previous work, we developed ProPheno2,
which is an online and publicly accessible dataset comprising proteins, phe-
notypes (HPO terms), and their co-occurrences (co-mentions) in text. These
co-mentions are extracted from Medline abstracts and PubMed Central (PMC)
Open Access full-text articles by using a sophisticated knowledge-free Natu-
ral Language Processing (NLP) pipeline [30]. This dataset covers all terms
in the Phenotypic abnormality sub-ontology. However, a knowledge-free Nat-
ural Language Processing pipeline extracts every co-mention of proteins and
phenotypes, but not all protein-phenotype co-mentions imply that there is a
relationship between the two entities (see Fig. 1 for an example).

Therefore, in the second step of this two-step approach, extracted co-
mentions are filtered using a co-mention classifier that can distinguish between
good and bad co-mentions. We define a co-mention as a good co-mention if
there is enough evidence mentioned in the text indicating a relationship be-
tween the protein and the phenotype. In other words, a good co-mention is a
valid relationship between the two entities based on the meaning of the con-
text text. Fig. 2 depicts an example of a good co-mention of a protein and
a phenotype in a sentence. The combination of a co-mention extractor and
a co-mention classifier/ filter constitutes a complete relationship extraction
pipeline.

Fig. 2 An example of a good sentence-level protein-phenotype co-mention, which is ex-
tracted from the article PMID: 18596936.

In the same study, [31], we developed PPPred (Protein-Phenotype Predic-
tor), a co-mention classifier for classifying protein-phenotype co-mentions. We
first randomly selected a subset of co-mentions from the ProPheno database
and curated it with the assistance of biologists. This gold-standard dataset
was composed of 809 human protein-HPO term co-mentions annotated with
binary labels of good/ bad. Then, we used this dataset for developing predic-
tive models using traditional supervised machine learning techniques. PPPred
was based on Support Vector Machines (SVMs) and employed an extensive
collection of syntactic and semantic features. While PPPred significantly out-
performed other baseline methods according to our experimental results, there
was significant room for improvement.

In our current work presented in this paper, we first double the gold-
standard dataset by curating an additional set of 800+ co-mentions with the
assistance of two biologists. This allows us to apply data-hungry deep learning

2 http://propheno.cs.montana.edu
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techniques for the task of protein-phenotype co-mention classification. Next,
we develop three such deep learning models: a BERT (Bidirectional Encoder
Representations from) [8] model adapted for our tasks, and a CNN and an
RNN model specifically designed for this task. Finally, we create an ensemble
model composed of these three deep learning models and PPPred. Ensemble
learning has several advantages: 1) They generally provide higher performance
than their components. 2) Model selection for a problem can be tedious, but
ensemble methods combine several models so that the model selection may be
circumvented. 3) Learning a single model on very large data can be difficult
[27].

Our experimental results suggest that the proposed ensemble model can
outperform all its constituent deep learning models as well as PPPred. The
expanded dataset is also made publicly available3 [29] for the benefit of the
community. Additionally, we made available all our codes publicly available4.
To the best of our knowledge, this is the first study of developing deep learning
models for human protein-HPO term co-mention classification.

The rest of the paper is organized as follows. Section 1 provides a brief
background on the related work in this area. The proposed method is dis-
cussed in Section 2. Section 3 discusses the results of running this method
and compares the results with other methods and provides a discussion on the
results. Finally, Section 4 concludes the study and discusses future work and
open problems.

1 Related Work

The main approaches for biomedical relationship extraction include co-occurrence-
based methods, rule-based methods, and machine learning-based methods. Co-
occurrence methods look for any co-mention of the two entities of interest in
a particular span of text, e.g., sentence, paragraph, etc., and usually provide
low precision and high recall values [4]. Rule-based methods define linguistic
patterns and extract the relationships using the patterns [2,21,33,24,12]. The
rules can be derived from manually annotated corpora using machine learning
algorithms or defined manually by a domain expert. Several studies focus on
employing lexical analyzers and parsers to identify the relationships between
entities [37,41,44,7].

Machine learning-based approaches are also employed for the relationship
extraction from biomedical text [39,16,13,20]. The machine learning cate-
gory includes methods based on feature engineering, graph kernels, and deep
learning. Support Vector Machines (SVMs) have shown high performance in
biomedical relationship extraction, but they need feature engineering, which
is a skill-dependent task [45]. Kernel-based methods also require designing
suitable kernel functions. Deep neural network-based methods eliminate the

3 http://doi.org/10.5281/zenodo.3965127
4 https://github.com/mpourreza/DeepPPPred
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need for feature extraction and defining rules, and provide state-of-the-art on
various tasks in biomedical relationship extraction [45,26].

Deep neural networks have been widely used in biomedical relationship
extraction. For example, Liu et al. [19] classify drug-drug interaction (DDIs)
using CNNs with the help of word sequences and position sequences. Peng and
Lu [25] utilize word sequences, positions sequences, POS tags sequences, and
dependency vectors to classify protein-protein interatcions (PPIs) using two-
channel CNNs. Quan et al. [32] propose a multichannel CNN for extracting
various biomedical relationships. Lim and Kang [18] propose a tree-LSTM
model for chemical-protien interactions (CPIs) classification. Wang et al. [42]
present a dependency-based Bi-LSTM to classify DDIs. Corbett et al. [6] also
classify CPI relationships using LSTMs. Besides, Sahu and Anand [36] combine
Bi-LSTM with attention pooling to improve performance.

Furthermore, some researchers have combined RNNs and CNNs to create
hybrid models. Peng et al. [26] introduce an ensemble of SVMs, CNNs, and
RNNs, for the task of chemical-protein relationship extraction in BioCreative
VI. The majority voting and Stacking schemes are used for combining the
outputs of the three methods. While deep neural networks often show top
performance on biomedical relationship extraction tasks (e.g. [26]), the main
issue with deep neural networks is that they require large labeled datasets to
provide superior performance.

Despite a large number of studies conducted on extracting entity rela-
tionships from the biomedical literature (including a handful of methods for
extracting relationships between genes/proteins and phenotypes), the only
method designed explicitly for human protein-HPO term relationship extrac-
tion is PPPred, which is a traditional machine learning classifier that was
previously developed by our lab [31].

2 Methodology

2.1 Approach

Aligning with our previous work [31], we formulate the task of co-mention
classification as a supervised learning problem as described below.

Given a context C = w1w2..e1..w3..e2..wn−1wn composed of words wi and
the two entities e1 and e2, we define a mapping fR(·) as:

fR(T (C)) =

{
1 if e1and e2 are related according to R

0 otherwise,

where T (C) is a high-level feature representation of the context, e1 and e2
are the entities representing the protein and the phenotype, and R is the
relationship that represents the protein-phenotype relationship between the
two. An example is considered a positive example if the meaning of the context
suggests that the protein mentioned has this function (i.e., a good co-mention).
Otherwise, it is labeled as a negative example.
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In this work, the context C is a single sentence (i.e., the sentence con-
taining the mentions of the two entities). Fig. 2 depicts a sentence which is
labeled as a positive example (i.e., fR = 1) because it provides evidence for the
relationship between the two entities “JARID1C” (protein) and “aggression”
(phenotype). We model this problem as a supervised learning problem and use
binary classifiers for learning fR.

2.2 Data

In our previous work [31], we used ProPheno 1.0 [30], which is a dataset of
proteins-phenotype co-mentions extracted from the biomedical literature. This
dataset maps the proteins and phenotypes to the corresponding UniProt5 IDs
and HPO IDs. In that work, we randomly selected a dataset of 809 sentence-
level co-mentions of proteins and phenotypes from ProPheno. This dataset was
then annotated by two biologists to generate the gold-standard dataset. The
annotators were provided instructions to label a co-mention as good/ positive
if the sentence conveys that the protein and the phenotype has a relationship.
Otherwise, the co-mention was labeled bad/negative.

However, we observed that the above dataset was under-representative
of the problem [31]. Nonetheless, we have access to millions of co-mentions
through ProPheno [30]. Therefore, we annotated another random subset of
co-mentions from ProPheno consisting of 876 sentences. For the new dataset,
we did not include the most frequent proteins and phenotypes, which are “Neo-
plasm” (HP:0002664) and “Receptor tyrosine-protein kinase erbB-2”. The new
subset was also annotated by two biologists, and we combined the two sub-
sets, created a list of 1,685 annotated sentence-level co-mentions, and used this
combined dataset as the gold-standard data for this work. Subsequently, we
divided the list of sentences into three datasets, including training, validation,
and test sets. The training set is composed of 1,010 (60%) sentences, the vali-
dation set contains 337 (20%) sentences, and the test set comprises 337 (20%)
sentence-level co-mentions. The inter-annotator agreement is calculated using
Cohen’s Kappa statistic [22], and the corresponding value is 0.64, which shows
substantial agreement.

Tables 1, 2, and 3 demonstrate the distribution of classes in the training,
validation, and test sets, respectively. According to the Table 1, 27% of sen-
tences in the training set are extracted from the abstracts, and 73% are from
the full-text articles. Among the sentences from the abstracts, 57% are labeled
as “good” and 43% are labeled as “bad”. The distribution for the sentences
from the full-text articles is 70% and 30% “good” vs. “bad”, respectively. The
overall class distribution is 67% and 33% for “good” and “bad”, respectively.

Fig. 3 depicts the distribution of the depths of HPO terms in the annotated
co-mentions. The plots show that Good co-mentions and Bad co-mentions have
similar distributions for various depth levels. Fig. 4 also provides the distri-
bution of the lengths of the shortest dependency path between the proteins

5 https://www.uniprot.org
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Table 1 The class distribution in the training set

Good Bad Total
Sentences from abstracts 115 (57%) 118 (43%) 273 (27%)
Sentences from full-texts 519 (70%) 218 (30%) 737 (73%)
All sentences 674 (67%) 336 (33%) 1,010

Table 2 The class distribution in the validation set

Good Bad Total
Sentences from abstracts 47 (49%) 49 (51%) 96 (28%)
Sentences from full-texts 172 (71%) 69 (29%) 241 (72%)
All sentences 219 (65%) 118 (35%) 337

Table 3 The class distribution in the test set

Good Bad Total
Sentences from abstracts 89 (63%) 52 (37%) 141 (42%)
Sentences from full-texts 134 (68%) 62 (32%) 196 (58%)
All sentences 223 (66%) 114 (34%) 337

and phenotypes in the sentences. These plots also state that Good and Bad
co-mentions are distributed similarly in the dataset.

Fig. 3 Distribution of depth of HPO terms in the annotated co-mention data

Tables 4 and 5 show the most frequent phenotypes and proteins in the
dataset, respectively. According to the tables, 25% of the sentences discuss
the HPO term “Neoplasm” (HP:0002664) (other names: “Cancer” or “Tu-
mour”), and 9% of the sentences mention the protein “Receptor tyrosine-
protein kinase erbB-2” (P04626). Table 6 also demonstrates the most frequent
protein-phenotype pairs mentioned in the dataset. We observe that 6% of the
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Fig. 4 Distribution of length of shortest dependency path between the proteins and phe-
notypes in the annotated co-mention data.

co-mentions in the dataset mention above protein-phenotype pair, which shows
this pair is a well-studied protein-phenotype pair.

Table 4 Most frequent HPO terms mentioned in the dataset

HPO ID HPO Term Depth Frequency
1 HP:0002664 Neoplasm 2 424
2 HP:0003002 Breast carcinoma 5 138
3 HP:0001909 Leukemia 4 78
4 HP:0002861 Melanoma 4 51
5 HP:0000819 Diabetes mellitus 6 27

Table 5 Most frequent proteins mentioned in the dataset

UniProt ID Protein Name Freq.
1 P04626 Receptor tyrosine-protein kinase

erbB-2
149

2 P01308 Insulin 66
3 Q9Y617 Phosphoserine aminotransferase 57
4 O14788 Tumor necrosis factor ligand super-

family member 11
56

5 P09486 SPARC 35
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Table 6 Most frequent protein-HPO term pairs mentioned in the dataset

UniProt ID HPO ID Protein Name HPO Term Frequency
1 P04626 HP:0002664 Receptor tyrosine-protein kinase erbB-2 Neoplasm 102
2 Q9Y617 HP:0002664 Phosphoserine aminotransferase Neoplasm 54
3 P04626 HP:0003002 Receptor tyrosine-protein kinase erbB-2 Breast carcinoma 37
4 Q03164 HP:0001909 Histone-lysine N-methyltransferase 2A Leukemia 21
5 O14788 HP:0003002 Tumor necrosis factor ligand superfamily member 11 Breast carcinoma 14

2.3 Preprocessing

The next step is to preprocess the data to make it ready for our models.
Preprocessing includes replacing protein and phenotype entities, tokenization,
converting the data into a numeric format, and padding/ truncating. The
following sections discuss each step in more detail.

2.3.1 Proteins and Phenotype Tokens

Some protein names and phenotype names are composed of multiple words
that make interpretations difficult. We replace protein names and phenotype
names in sentences with “PROT” and “PHENO”, respectively, to have a
unique format across all sentences.

2.3.2 Tokenizer

In the next step, we need to convert the text into a list of tokens. To obtain
a tokenizer, we use Keras6 tokenizer that is capable of fitting a tokenizer on
the unstructured text and converting the list of texts into a list of sequences.
These sequences can be used as direct input to our model.

2.3.3 Padding and Truncating

The sequences need to have the same shape to be used as the input to our
model. Therefore, we need to truncate the sequences longer than a cutoff, and
also, we need to add zeros to the end of sequences shorter than that specific
value. We set the maximum length of sequences to a cutoff of 80, and we
perform padding and truncating to make all of them the same size.

2.4 Models

Fig. 5 depicts the overview of the proposed deep ensemble model, which is
capable of classifying sentence-level co-mentions of proteins and phenotypes
from biomedical literature. In this model, inspired by a Peng et al.’s study

6 https://keras.io
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Fig. 5 The proposed ensemble model that combines PPPred with BERT, a convolutional
neural network, and a recurrent neural network.

[25], we start with training four separate classifiers on the training set. Subse-
quently, we make predictions using the trained models on the validation set.
By feeding the predicted probabilities made by the models, we train an ad-
ditional model using Logistic Regression-based Stacking [43] to combine the
outputs of previous models. The stacking method learns how to combine the
predictions of multiple models into one ensemble model.

The four models used for developing our ensemble classifier are: (a) PPPred
[31] that we have developed previously, (b) a model that utilizes the BERT
language model, which we fine-tune for this particular task, (c) a CNN model,
and (d) an RNN model. Both the CNN and RNN models are specifically
designed for this specific problem. The following sections describe the BERT,
CNN, RNN models in detail.

2.4.1 BERT Model

As mentioned earlier, BERT is already pre-trained on millions of articles, and
it can be utilized for a variety of tasks. In this work, we fine-tune BERT for
text classification by performing tokenization on sentences and adding “[CLS]”
and “[SEP]” tokens to the start and end of the sequence. We fill the rest of the
input sequence with zeros to make all the sequences the same length. BERT
also requires the positional embeddings and segment embeddings as input
that we pass them with the current sentence to BERT. After fine-tuning, we
take the prediction from the output layer of BERT. Fig. 6 demonstrates the
described BERT model. In this figure, the segment embeddings are filled with
ones for all of the tokens since we pass the entire sentence as one input.
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Fig. 6 The proposed BERT model that takes the tokenized sentence, positional embeddings,
and segment embeddings as input, and returns the probability of belonging the input to each
class at the output layer.

2.4.2 CNN Model

We propose a convolutional neural network inspired by Peng and Lu’s study
[25]. We create 64 kernels for each network with window sizes of three and
five. To prevent the model from overfitting, we employ dropout values of 0.3
and 0.5 for the original and shortest path sequences, respectively. After max
pooling with a stride value of two, we flatten the sequences and concatenate
them together. Next, we add two fully-connected layers with sizes of 100 and
64. For each fully-connected layer, we add a dropout layer with a value of 0.2.
We use ReLU activation functions for all of the layers except the output layer
in which we utilize the Sigmoid function to get the confidence score between
zero and one. Fig. 7 demonstrates the described convolutional neural model.

2.4.3 RNN Model

We design another neural network for this specific task that is based on recur-
rent neural network architecture. We employ two Bi-directional LSTM layers
for the original sequence and shortest path sequence with the sizes of 32 for
each layer. Eventually, we add two fully-connected layers with the sizes of
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Fig. 7 The proposed Convolution neural network

100 and 64, and two dropout layers with a value of 20%. We pass the fully-
connected layers through the ReLU activation function, and the Sigmoid func-
tion is used for the output layer. Fig.8 shows the described BiLSTM model.

2.5 Experimental Setup

We implemented all models using the PyTorch package7 and the SciKit-learn8

package. All the neural networks have 20 epochs and use binary cross-entropy
loss function and the Adam optimizer. We also fine-tine BERT for four epochs.
Eventually, we combine the predictions of four models using the Logistic Re-
gression classifier on the validation set.

We perform 10-times repeated train/test validation with various seeds and
average across them for comparing the performance of the proposed mod-
els with others. We report precision, recall, and F1 values as the primary
performance measures. We also measure the significance of the difference in
performance using paired t-tests.

The RNN model takes 240 seconds for training, while the CNN model can
be trained in 90 seconds. The BERT model also takes 600 seconds to be fine-
tuned on the training data. The average time for combining the outputs of
these models using Stacking is two minutes.

3 Results and Discussion

Fig. 9 shows the comparison of the results of running the PPPred, RNN, CNN,
BERT, and the Ensemble model on the test set. We observe that PPPred ob-
tains the best precision value compared with other models, which can be due
to the specific features we designed for this problem. However, the highest

7 https://pytorch.org
8 https://scikit-learn.org

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.09.18.304329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.304329
http://creativecommons.org/licenses/by/4.0/


Title Suppressed Due to Excessive Length 13

Fig. 8 The proposed BiLSTM neural network

Fig. 9 The comparison of multiple models’ performances on the test set.

recall value, among the individual components of our ensemble model, is ob-
tained by the BERT model. The BERT model also provides the best F1 score
among the individual models. The RNN and BERT models achieve very close
F1 scores, and it shows that RNNs, which are designed for sequence problems,
perform similar to the BERT model, which provides state-of-the-art in several
NLP tasks.

Overall, we observe that the proposed ensemble model achieves the best
F1 score (0.919) among all models. We also observe that the ensemble model
significantly outperforms its components in recall as well. PPPred performs
better than the CNN model, which automatically performs feature extraction.
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Fig. 10 Comparison of F1 scores on the sentences from abstracts, full-text articles, and
both.

It also obtains a comparable F1 score to the RNN model. This observation
highlights the fact that engineered features for PPPred can provide as good
performance as the new neural networks in the context of smaller datasets.
However, a larger annotated dataset, which is hard to come by, may have
tipped the scales in favor of CNN and RNN models.

We also investigate the separate performance of the described models on
abstracts and full-text articles. Fig. 10 depicts the comparison of F1 scores
obtained by the PPPred, CNN, RNN, BERT, and ensemble models on the
sentences extracted from abstracts, full-text articles, and both. We observe
that the proposed ensemble model provides the best F1 score on the sen-
tences from the abstracts (0.902), whereas the PPPred model outperforms
other models on the full-texts’ sentences. This is because of the high precision
value obtained by the PPPred compared to other models.

Our results (data not shown) suggest that the CNN model performs better
on shorter sentences, whereas the RNN model provides better performance on
longer sentences. We observe that by using RNNs, the average length of wrong
predictions is 231 characters, whereas the average length of wrong predictions
made by the CNN model is 251 characters. The mean length of sentences
is 219.8, and the standard deviation is 96.5. This is an intuitive observation
since CNNs are designed to extract local features from the input. On the other
hand, the added cell-state in LSTMs provides the ability to learn from long
sequences. Peng et al. has observed the same [26].

Another observation from the results is that longer sentences are harder to
classify (data not shown). Our designed models provide false positives and false
negatives when the input sentence is long and contains multiple clauses and
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relationships between several bio-entities. For example, consider the following
sentence: “It was on the basis of these concerns, and with a view to shedding
further light on the expression of Reelin in human liver injury, that we investi-
gated hepatic Reelin expression in a large series of patients with HCV-related
chronic hepatitis, and verified its relationship with the other histological and
immunohistochemical markers used to reflect activity and severity of liver dis-
ease.”. This is a long sentence that contains multiple phenotypes, and our
ensemble model is unable to make the correct prediction.

4 Conclusions and Future Work

In this study, we created a co-mention classifier/filter that distinguishes be-
tween good and bad co-mentions of proteins and phenotypes in sentences.
Specifically, we created an ensemble model composed of several supervised
classifiers, including several sophisticated deep learning models, trained us-
ing manually-annotated sentence-level co-mentions of proteins and pheno-
types. This ensemble classifier can be employed to perform highly accurate co-
mention classification on protein and phenotype entities mentioned in biomed-
ical literature. We observed that the proposed ensemble model provides the
best performance compared with its individual classic and modern supervised
components. We combined the BERT model that was a break-through in NLP,
with other deep learning models and obtained state-of-the-art for the task of
protein-phenotype co-mention classification.

There are still many avenues to work in this area. We utilized syntactic
features extracted from all sentences. However, a potential future work is to in-
corporate the section titles, e.g., Introduction, Conclusion, etc., to employ only
the more informative sentences. The performance of our system is restricted
due to the lack of annotated data. Nonetheless, we have access to millions
of unlabeled co-mentions through ProPheno. Therefore, we plan to develop
a semi-supervised framework that takes advantage of unlabeled data for co-
mention classification. Another potential future work is to incorporate larger
spans of text, e.g., paragraphs, and to incorporate inter-sentence co-mentions.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Biocuration, I.S.: Biocuration: Distilling data into knowledge. PLOS
Biology 16(4), 1–8 (2018). DOI 10.1371/journal.pbio.2002846. URL
https://doi.org/10.1371/journal.pbio.2002846

2. Bokharaeian, B., et al.: SNPPhenA: a corpus for extracting ranked associations of single-
nucleotide polymorphisms and phenotypes from literature. Journal of biomedical se-
mantics 8(1), 14 (2017)

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.09.18.304329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.304329
http://creativecommons.org/licenses/by/4.0/


16 Morteza Pourreza Shahri et al.

3. Chaturvedi, S.K., et al.: Protein misfolding and aggregation: mechanism, factors and
detection. Process Biochemistry 51(9), 1183–1192 (2016)

4. Chen, E.S., et al.: Automated acquisition of disease–drug knowledge from biomedical
and clinical documents: an initial study. Journal of the American Medical Informatics
Association 15(1), 87–98 (2008)

5. Chiti, F., Dobson, C.M.: Protein misfolding, amyloid formation, and human disease: a
summary of progress over the last decade. Annual review of biochemistry 86, 27–68
(2017)

6. Corbett, P., Boyle, J.: Improving the learning of chemical-protein interactions from
literature using transfer learning and specialized word embeddings. Database 2018
(2018)

7. Coulet, A., et al.: Using text to build semantic networks for pharmacogenomics. Journal
of biomedical informatics 43(6), 1009–1019 (2010)

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019)

9. Goh, C.S., et al.: Integration of curated databases to identify genotype-phenotype as-
sociations. BMC genomics 7(1), 257 (2006)

10. Harrison, P.W., et al.: The evolution of gene expression and the transcriptome–
phenotype relationship. In: Seminars in cell & developmental biology, vol. 23, pp.
222–229. Elsevier (2012)

11. Hartl, F.U.: Protein misfolding diseases. Annual Review of Biochemistry 86, 21–26
(2017)

12. Huang, M., et al.: Discovering patterns to extract Protein–Protein Interactions from full
texts. Bioinformatics 20(18), 3604–3612 (2004)

13. Khordad, M., Mercer, R.E.: Identifying genotype-phenotype relationships in biomedical
text. Journal of biomedical semantics 8(1), 57 (2017)
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