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Abstract

Despite the success of models making use of
word embeddings on many natural language
tasks, these models often perform significantly
worse than humans on several natural language
understanding tasks. This difference in perfor-
mance motivates us to ask: (1) if existing word
vector representations have any basis in the
brain’s representational structure for individ-
ual words, and (2) whether features from the
brain can be used to improve word embedding
model performance, defined as their correla-
tion with human semantic judgements. To an-
swer the first question, we compare the repre-
sentational spaces of existing word embedding
models with that of brain imaging data through
representational similarity analysis. We an-
swer the second question by using regression-
based learning to constrain word vectors to
the features of the brain imaging data, thereby
determining if these modified word vectors
exhibit increased performance over their un-
modified counterparts. To collect semantic
judgements as a measure of performance, we
employed a novel multi-arrangement method.
Our results show that there is variance in the
representational space of the brain imaging
data that remains uncaptured by word embed-
ding models, and that brain imaging data can
be used to increase their coherence with hu-
man performance.

1 Introduction

The most commonly-used approaches for repre-
senting semantic knowledge rely on corpus statis-
tics. One such approach is a distributional semantic
model (DSM), which uses word co-occurrence and
frequency data to derive semantic representations
(Landauer and Dumais, 1997). DSMs have become
increasingly widespread since the introduction of
word2vec by Mikolov et al. (2013) which learns
vector representations for words based on their dis-
tributional properties. Existing word vector repre-

sentations have been used to achieve impressive
performance on many natural language tasks and
they approach, if not surpass, human-level accu-
racy on several tasks such as sentiment analysis and
named entity recognition. However, there still ex-
ists a significant gap between models making use of
word embeddings and human performance on many
other natural language understanding tasks (Nangia
and Bowman, 2019). One approach to explaining
the gap between humans and state-of-the-art NLP
models is to assess the cognitive plausibility of the
NLP models (Keller, 2010). This approach leads
us to inquire whether existing word vector repre-
sentations have any basis in how the human brain
processes lexical semantics.

The seminal paper published by Mitchell et al.
(2008) first demonstrated that word vectors sourced
from corpus statistics could be used to predict par-
ticipants’ functional magnetic resonance imaging
(fMRI) responses when they were shown concrete
nouns. Follow-up work has replicated the original
paper’s results with other brain imaging modali-
ties such as magnetoencephalography (Sudre et al.,
2012). While the semantic features of the word
vectors Mitchell et al. used were defined by co-
occurrences with 25 manually-selected verbs, state-
of-the-art DSMs have been used to improve the
original results (Anderson et al., 2017; Abnar et al.,
2018). More recently, brain imaging data during
the onset of a word in the context of a sentence (or
a narrative) have been linked to decoding models
employing word embeddings (Wehbe et al., 2014;
Anderson et al., 2016a; Pereira et al., 2018). Collec-
tively, these findings cohere with evidence which
suggests that a continuous semantic space exists
in the human brain (Huth et al., 2012; Huth et al.,
2016).

In order to continue building on this existing
body of work, we must address two important ques-
tions which have largely gone unanswered:
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1. Do the representational structures of words de-
rived from existing word embedding models
differ from those in the brain?

2. If their representations differ, can we use fea-
tures from the brain to improve the perfor-
mance of existing models for creating word
embeddings in NLP?

To establish a performance metric by which to an-
swer the second question, we use a novel technique
for acquiring semantic judgements of textual stim-
uli: the multi-arrangement method (Kriegeskorte
and Mur, 2012). The multi-arrangement method
asks participants to directly model the representa-
tional space we are interested in, while overcom-
ing many of the issues associated with the exist-
ing methods for collecting semantic judgements in
NLP.

Following this introduction, we first describe the
brain imaging data and the word vector represen-
tations to be used in this study (Sections 2 and
3). Then we describe how we compare the rep-
resentational structure of individual words for the
brain imaging data and the word vector represen-
tations, using a method known as representational
similarity analysis (Section 4). We subsequently in-
troduce the motivation behind our use of the multi-
arrangement method, and we describe the details of
the behavioral data we collected (Section 5). Using
these data as an evaluation metric, we then compare
the performance of the word vectors constrained to
the features of the brain imaging data with the per-
formance of the unmodified word vectors (Section
6). We ultimately find variation in the brain imag-
ing data (beyond noise) that remains uncaptured
by the word embeddings, and that brain features
can be used to improve the performance of exist-
ing word embedding models (to be discussed in
Section 7).

2 Brain Imaging Data

In our paper, we use the previously collected fMRI
dataset from Mitchell et al. (2008)1. The fMRI data
were collected from 9 participants as they were
asked to name properties for each word shown.
Each fMRI image was captured while a participant
was shown a concrete noun and its correspond-
ing line drawing. Concrete nouns belonged to one
of 12 semantic classes (e.g. mammals, buildings,

1http://www.cs.cmu.edu/afs/cs/project/
theo-73/www/science2008/data.html

tools) and there were 5 such exemplars presented
for each semantic class. Each concrete noun was
displayed six times, in random order, resulting in
360 fMRI images per participant. The fMRI data
we use for analysis were the same as in the original
paper except for minor differences in preprocessing
described below.

2.1 Preprocessing

When evaluating their encoding model, Mitchell
et al. (2008) used only the fMRI data from the 500
voxels2 from the whole brain with the most stable
response profiles for the 60 concrete nouns, across
all six presentations. Mitchell et al. approximated
the stability of each voxel as the average Pearson
correlation between its responses across each pos-
sible pair of the six runs. This stability-based ap-
proach to voxel selection is susceptible to including
regions which respond identically to all stimuli (i.e.
this approach would select for voxels whose ac-
tivations do not vary across words). Instead, we
use a reliability-based approach for voxel selection
following the methodology introduced by Tarhan
and Konkle (2019). We first assess the reliability
of each voxel by computing the Pearson correla-
tion of its response profile to all 60 words across
even and odd runs. This results in one r-value (i.e.,
measure of reliability) for each voxel in a given
participant’s fMRI data. We then consider a range
of possible thresholds for the r-value (between 0
and 0.95). Across both even and odd runs, we
calculate the reliability of the response patterns in
the voxels included in the given threshold for each
word. This calculation produces a series of val-
ues of r and their corresponding reliability across
response patterns for each word. After analyzing
all such series of values across all participants, we
find that the threshold for r which optimized both
the reliability and the coverage of the data was r =
0.253. Since this threshold is selected without con-
sidering which words garner the greatest responses
from the voxels (or independently of any specific
relationship among the words in the dataset more
generally), there is no need to perform voxel selec-

2Voxels are the three-dimensional units of fMRI data. In
this dataset they are defined with a spatial resolution of 3x3x6
mm3 (each containing approximately one million neurons).

3Under this threshold, the number of selected voxels
ranged between 445 and 3,614 in participants. This range
demonstrates the large variation in reliability across the partic-
ipants’ data, which is to be expected from non-invasive brain
imaging techniques.
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tion separately for each validation set4. Moreover,
this value for r is similar to the optimal value of r =
0.30 that Tarhan and Konkle (2019) found for the
fMRI datasets they evaluated in their paper.

We additionally transform each word’s response
from each voxel into a z-score as was also per-
formed by Anderson et al. (2016b) in their work
with the data from Mitchell et al. (2008). This
is done in order to remove amplitude differences
between conditions and runs. Beyond this normal-
ization procedure, we form the representation for
each concrete noun by averaging its standardized
response pattern over the selected voxels across all
six presentations of the noun.

3 Word Vector Representations

When considering which word vector representa-
tions to use in this work, we decided against contex-
tualized word embeddings for several reasons. We
cannot make use of one of the main advantages of
contextualized word embeddings—context—due
to the nature of our fMRI data where an isolated
noun is displayed during each trial. We could not
clearly justify introducing context into our dataset
(e.g. by providing the respective Wikipedia entries
for each concrete noun) while maintaining a fair
comparison with the remaining word vector repre-
sentations. For these reasons, we have chosen to
use word vector representations which are not con-
textualized. The most commonly-used such word
vector representations are:

• word2vec. Word2vec uses a skip-gram model
which learns to predict words using their con-
text (Mikolov et al., 2013). We use the vectors
trained on 100 billion words from the Google
News dataset5.

• GloVe. GloVe is a global context method
which makes use of word-word co-occurrence
statistics across an entire corpus (Pennington
et al., 2014). We use the vectors trained on
42 billion words from the Common Crawl
dataset6.

• fastText. FastText is an extension of
word2vec which treats each word as a group of

4Unlike in Mitchell et al. (2008) where voxel selection
was done independently for each left-out fold during cross-
validation.

5https://code.google.com/archive/p/
word2vec

6https://nlp.stanford.edu/projects/
glove

character n-grams, thereby learning to account
for morphological information (Bojanowski
et al., 2017). We use the vectors trained on
16 billion words from the Wikipedia 2017,
UMBC webbase, and the statmt.org news
datasets7.

All the pre-trained word vectors we use are of
length 300. Despite their qualitative differences,
all three word vector representations rely on distri-
butional semantics.

4 Comparing the Representational
Spaces of the Brain and Word Vectors

In order to compare the representational spaces of
the brain and word vectors, we will use representa-
tional similarity analysis (RSA).

4.1 Representational Similarity Analysis

RSA was first introduced by Kriegeskorte et al.
(2008) and has become a popular procedure in the
field of cognitive neuroscience for relating stimuli
representations from various modalities with brain
imaging data. The procedure relies on the idea that
correlating pairwise distance judgements across
qualitatively distinct models (e.g. brain imaging
data and computational implementations) can serve
as a proxy for determining the extent to which the
representational spaces of the models are aligned.
In our paper, we will adopt the RSA methodology
outlined in Nili et al. (2014), which introduced a
toolbox implementing the RSA procedure.

Before we can perform our comparative analysis
of the representational spaces of the participants’
fMRI data and the word vectors, we must com-
pute the representational spaces themselves. For
each of the concrete noun representations, we com-
pute a representational dissimilarity matrix (RDM)
wherein each entry denotes the pairwise distance
(defined as 1−ρ, where ρ is the Pearson correlation)
between the corresponding pair of nouns under the
given representation. Thus, each representational
space will be defined by the upper triangular region
of a symmetric RDM with dimensions 60x60.

To determine how related a word vector’s RDM
is to the participants’ brain imaging data RDMs, we
calculate the Spearman correlation8 between the

7https://fasttext.cc/docs/en/
english-vectors.html

8A rank-correlation is used to compare the RDMs because
we cannot assume a linear relationship between the brain
imaging data and the word vectors.
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RDM of the word vector and a given participant’s
RDM, and we average the results across all par-
ticipants. We evaluate the significance of the cor-
relations using a one-sided Wilcoxon signed-rank
test (against the null hypothesis of a correlation of
0). Because the Wilcoxon signed-rank test is non-
parametric, there is no assumption made regarding
how normally-distributed our data is. The results
of these tests are shown in Figure 1.

Figure 1: Results of the comparative analysis of RSA.
The star below each word vector representation denotes
if it is significantly related to the participants’ fMRI
data, p < 0.05. Here, the error bars above each word
vector representation indicate the standard error of the
mean resulting from the variation across participants.
The values above the word vector representations spec-
ify the average correlation between the participants’
RDMs and the respective word vector representation.
The shaded area indicates the lower and upper bound
of the noise ceiling (i.e. the performance we would
expect from a true model of the underlying representa-
tional space, considering the noise present in the data).
The upper bound is estimated using the correlation be-
tween each participant’s RDM and the RDM averaged
across all participants (including the participant we are
correlating with), while the lower bound is computed
by correlating each participant’s RDM with the RDM
averaged across all remaining participants9. The visu-
alization has been adapted from the Matlab toolbox10

provided by Nili et al. (2014).

Each word vector representation’s RDM has
a correlation significantly greater than 0 (p’s =
0.002). Thus, all three word vector representa-
tions’ RDMs are significantly related to those of

9Noise ceiling computations were performed after rank-
transforming the RDM of each participant.

10http://www.mrc-cbu.cam.ac.uk/
methods-and-resources/toolboxes/

the participants’ fMRI data. However, the differ-
ence between the correlation of the word vector rep-
resentations and the correlation we would expect
from a true model (accounting for noise) suggests
that much of the representational space of the brain
imaging data is not aligned with that of the word
vector representations.

We then assess if the word vector representa-
tions differ in their relatedness to the participants’
fMRI data. For each pair of word vector RDMs,
we perform a two-sided Wilcoxon signed-rank test
against a null hypothesis that both RDMs’ correla-
tions with each of the participants’ RDMs are equal
(due to the number of samples provided, the two-
sided Wilcoxon signed-rank test is an exact test).
After correcting the resulting significance values
for multiple tests using the Benjamini-Hochberg
method (Benjamini and Hochberg, 1995), there is
no significant difference in the degree to which
each of the word vector representations is related
to the brain imaging data (p’s > 0.05). This result
may be explained by our understanding that all the
word vectors compared are DSMs.

Returning to our first question, we can conclude
that the representations of the word embeddings are
significantly related to the representations of the
brain imaging data. However, there is still variation
beyond noise in the brain imaging data that these
methods do not capture.

5 Introducing a Novel Semantic
Judgement Acquisition Technique

Before we can evaluate whether features from the
brain can be used to improve the performance
of existing word embeddings, we must first de-
fine a metric by which we will judge perfor-
mance (Pereira et al., 2016). A common ap-
proach to evaluating vector space representations
in NLP is to compare the semantic relations pre-
dicted by the distances between word vectors with
human-rated relatedness/similarity scores. How-
ever, the largest publicly-available word similar-
ity/relatedness benchmark has minimal overlap
with the word pairs in our dataset (it only con-
tains scores for 13 of the 1770 possible word pairs).
There are also several shortcomings to the existing
methods of collecting participant similarity and re-
latedness judgements for textual stimuli. Problems
include conflating between types of relations (e.g.
synonymy and antonymy) in the case of word as-
sociation norms, relying on heuristics (e.g. “good-
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Figure 2: A demonstration of the multi-arrangement method using a toy example is shown. A participant is first
presented with an initial set of stimuli to arrange (words in this case). Following a drag-and-drop scheme, the par-
ticipant then arranges the stimuli based on their perceived relationship (i.e. more similar stimuli are arranged closer
together, while more dissimilar stimuli are arranged further apart). The subsequent subset of stimuli to arrange is
determined by the “lift-the-weakest” algorithm which aims to collect an equal amount of evidence of dissimilarity
for each stimulus pair. A dissimilarity matrix is then computed using the redundant information present in the
participant’s multiple arrangements. This figure has been adapted from the one provided in Kriegeskorte and Mur
(2012).

bad”, “weak-strong”) in the case of the semantic
differential technique, and being affected by bias
from both word order and context in the case of
pairwise similarity judgements.

5.1 The Multi-arrangement Method

We make use of a new approach for collecting par-
ticipants’ semantic judgements in NLP referred
to as the multi-arrangement method (Kriegeskorte
and Mur, 2012). The multi-arrangement method
requires participants to perform arrangements of
several subsets of stimuli. Each subset is designed
to collect an equal amount of evidence for the dis-
similarity between each pair of stimuli. A dissimi-
larity matrix for the stimuli is then computed from
the redundant distance information in the multi-
ple arrangements. A demonstration of the multi-
arrangement method is shown in Figure 2. In past
work, the multi-arrangement method has been pri-
marily used to collect semantic judgements of im-
ages and visual object categories (Mur et al., 2013;
Dobs et al., 2019; Karimpur et al., 2019). This
approach avoids many of the issues present in exist-
ing methods for collecting human-rated similarity
and relatedness scores through asking participants
to directly model the representational space for the
concepts we desire.

Several authors from Kriegeskorte and Mur
(2012) and follow-up work with the method
(Charest et al., 2014) created the Meadows Re-
search11 platform, which implements the multi-
arrangement method in an online tool. For our
paper, we recruited participants in-person and
collected semantic judgements using the multi-
arrangement method (as implemented on the Mead-
ows Research platform). To the best of our knowl-
edge, this is the first time the multi-arrangement
method has been used in NLP to collect semantic
judgements from participants.

5.2 Behavioral Data

Ten healthy individuals (3 identified as female and
7 as male; mean age: 21.4 years, standard deviation:
1.50) volunteered to participate in our experiment.
All participants were fluent speakers of English.
Each participant had 60 minutes to complete sev-
eral arrangements (as many as they comfortably
could) of the concrete nouns in our dataset. Fol-
lowing the multi-arrangement method, an RDM
is computed for each participant based on the re-
dundant information in their arrangements. We
average the RDMs across all ten participants, pro-

11http://meadows-research.com
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viding us with 10 semantic judgements 12 for each
of the 1770 word pairs in our dataset. This RDM
of pairwise dissimilarity judgements will form our
evaluation metric.

6 Improving Existing Word Vector
Representations

Now that we have established a metric by which to
evaluate word vectors, we can proceed with deter-
mining whether features from the brain can be used
to improve the performance of existing word vector
representations. We will answer this question by
first mapping the word vectors onto the fMRI data
using linear regression. We will evaluate this map-
ping under a cross-validation procedure to assess if
the distances it predicts between previously unseen
words correlate better with the behavioral data than
existing word vector representations.

Following from the analysis of Mitchell et al.
(2008), we decide to learn mappings using ridge
regression, a variant of multiple linear regression
that uses a least squares loss function and L2 reg-
ularization. For every word vector representation
and each participant’s fMRI data, we learn a map-
ping between the features of the word vectors and
the voxels in the participant’s preprocessed fMRI
data. This mapping is used to predict the fMRI
responses for previously unseen nouns. Given that
no word vector representation entirely captures the
representational structure of the fMRI data, the
learned mappings may allow for the uncaptured
representational structure in the fMRI data to sup-
plement the word vectors in predicting the variance
of the behavioral data. In order to evaluate the
learned mappings, we use a leave-two-out cross
validation procedure similar to that originally used
by Mitchell et al. (2008).

For each combination of word vector represen-
tation and participant, we train a ridge regression
model with the word vectors and the fMRI data
for 58 of the 60 nouns, repeating this training pro-
cess for every such combination of left-out words.
We then use this regression model to predict the
fMRI images of the two left-out words. Then we
can compute the cosine distance between those
two predicted fMRI images, and have that serve
as the predicted relatedness score between the left-

12We determined that 10 semantic judgements per word
pair would be sufficient for controlling variability across par-
ticipants. This determination was based on previous work
employing the multi-arrangement method for visual stimuli,
and existing word similarity/relatedness datasets.

out words. After performing this operation for all
combinations of left-out word pairs,

(n=60
2

)
, the re-

sulting 1770 predicted relatedness scores can then
be correlated with the behavioral data we collected
earlier to assess the performance of the mapping
between the given word vector representation and
participant.

The results after evaluating the mapping learned
between each word vector representation and each
participant’s fMRI data are shown in Table 113.

We assess the significance of the ridge regression
results by comparing it with those of an empirical
distribution of null models (in a manner similar
to that performed by Mitchell et al. (2008) to as-
sess the significance of their regression results).
We perform our permutation testing by first taking
the fMRI data of one of our participants at ran-
dom, and shuffling the 60 word labels. A model
is then trained and tested (by the leave-two-out
cross-validation procedure described earlier) using
these data and the word vectors corresponding to
the 60 word labels in the original (non-permuted)
order. We train 1,000 such models for each word
vector representation in order to form an empir-
ical distribution. From this distribution, we find
that each of the mappings we learned between the
participant fMRI data and the word vector repre-
sentations exhibit a correlation greater than 99.9%
of null models in the empirical distribution. We
therefore assign a significance value of p < 0.001
to each of our participant models for being more
strongly correlated with the human semantic judge-
ments than the 99.9th percentile model in the null
distribution for each word vector representation.

We further test the significance of the improve-
ments across participants with respect to each word
vector representation’s baseline performance us-
ing a one-sided Wilcoxon signed-rank test (against
the null hypothesis of no improvement in perfor-
mance)14. We find that the results of the ridge-
regressed data are significant for every participant,
and further that the improvements in performance
for each word vector representation are significant
(p’s < 0.05).

13The hyperparameters for each ridge regression model
were optimized accordingly during training.

14As a non-parametric test, the Wilcoxon signed-rank test
made no assumptions regarding the distribution of the corre-
lation values we provided. The resulting significance values
were corrected using the Benjamini-Hochberg method.
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Word
Vectors

Base-
line

Adj.
Perf.

Avg.
Incr.

P1 P2 P3 P4 P5 P6 P7 P8 P9

word2vec 42.9 50.2 +7.3 +11.3 +8.9 +9.0 +7.7 +7.1 +6.2 +7.6 -4.6 +12.6
GloVe 44.8 46.9 +2.1 +5.1 +4.0 +5.1 +4.2 -1.9 +0.7 +3.9 -8.4 +5.9
fastText 39.8 52.1 +12.3 +15.7 +15.6 +15.9 +13.3 +9.9 +10.2 +11.4 +4.2 +14.9

Table 1: The performance of each word vector representation before and after ridge regression is shown. Immedi-
ately on the right of each word vector representation is the performance of the corresponding vectors before ridge
regression (i.e. the Spearman correlation between the word vector representations themselves and the behavioral
data we collected earlier). The following two columns display the performance of each word vector representation
and its respective increase from the baseline after ridge regression, averaged across all participants. The rightmost
columns show the change in performance when the given word vector representation is mapped onto the given
participant’s fMRI data (the specific participant is denoted at the top). The values displayed are multiplied by 100
for readability.

7 Conclusion

In this paper, we originally asked: (1) whether
existing word vector representations used in NLP
have any basis in the brain’s representational struc-
ture of lexical semantics, and, (2) if we can use
features from the brain to increase the performance
of existing word vector representations. Using rep-
resentational similarity analysis, we found that the
representational spaces of word embedding mod-
els are significantly related to the representational
spaces of the fMRI data; however, a great propor-
tion of the fMRI data’s variation beyond noise still
remains uncaptured by the word embeddings. For
the second question, we demonstrated that features
from brain imaging data can be used to improve the
performance of existing word embedding models,
and that these improvements can be generalized to
words which lack brain imaging data.

We introduced a novel semantic judgement ac-
quisition technique for evaluating word embed-
dings in NLP: the multi-arrangement method. To
measure a participant’s representational space for
a set of stimuli, the method relies on the redun-
dant distance information present in a participant’s
successive arrangements of stimulus subsets. The
multi-arrangement method overcomes many of the
shortcomings present in existing techniques for
collecting semantic judgements in NLP, namely:
conflating between different types of semantic rela-
tions, relying on heuristic associations, and biasing
from word order and context.

An inherent limitation of this work is the cer-
tainty of noise in fMRI data and non-invasive brain
imaging techniques as a whole. We must addi-
tionally acknowledge the practicality of our results.
Since we cannot expect to compile a large enough
fMRI dataset of a language’s most commonly-used

words, future work should explore how well our
results can generalize to a larger proportion of the
lexicon.

While this work is limited to concrete nouns (due
to the availability of words in the fMRI dataset),
future work could determine if our findings hold
for other lexical items such as abstract nouns, adjec-
tives, and verbs. Our findings may also inform the
development of models aiming to learn a mapping
between brain imaging data and naturalistic text
stimuli, specifically, entire sentences and phrases
(Sun et al., 2019; Schwartz et al., 2019; Djokic
et al., 2020). Despite the most successful such at-
tempts having used intracranial recordings (Makin
et al., 2020), our results suggest that further se-
mantic decoding progress remains to be made with
non-invasive brain recordings.

Moreover, we use RSA to compare brain imag-
ing data with computational models, and it is worth
investigating applications of RSA beyond brain
imaging data. For example, recent work has used
RSA to compare representational spaces across
computational language models and their individ-
ual components (Gauthier and Levy, 2019; Abnar
et al., 2019; Chrupała and Alishahi, 2019). We also
feel that the multi-arrangement method is under-
utilized in NLP for the shortcomings it addresses
in existing semantic judgement acquisition tech-
niques. Future research can employ the method
when collecting similarity scores for a variety of
textual stimuli (e.g. words, phrases).

As a whole, our work serves to motivate more
research that borrows insights from neuroscience
to build more appropriate computational language
models.
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