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Fig. 7. Embedding of the input of the neural network with batch normalization and with three emotion categories.

Fig. 8. Embedding of the input of the neural network with stratified normalization and with three emotion categories.

Fig. 9. Embedding of the output of the neural network with batch normalization and with three emotion categories.

Fig. 10. Embedding of the output of the neural network with stratified normalization and with three emotion categories.

to 75.11%.

Then, we found out that implementing stratified normaliza-
tion is highly efficient in reducing the inter-participant vari-
ability from the data. Indeed, by training SVMs to try and
recognize which participant the activation data of a given
layer belongs to, we could observe that the participant identi-
fication information, or brain signature, was lost from a layer
to another.

As we compared the embeddings at the level of the input and

output layers, we could see that the stratified normalization
already erases this brain signature in the input layer, such that
by the end of the network, it is almost gone already – 33%
for two categories and 31% for three categories in the last
layer of the models with stratified normalization, approach-
ing a chance level of 20%. It would be interesting to look for
new ways of improving this result further.

Regarding the published articles, our method outperforms the
rest of the proposed methods for binary classification and
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overpasses the works that did not use the data for validation
during the training process for ternary classification.
These results indicate the high applicability of stratified nor-
malization for cross-subject emotion recognition tasks, sug-
gesting that this method could be applied not only to other
EEG classification datasets but also to other applications that
require domain adaptation algorithms.
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