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ABSTRACT 24 

The adoption of whole genome sequencing (WGS) data over the past decade for pathogen 25 

surveillance, and decision-making for infectious diseases has rapidly transformed the 26 

landscape of clinical microbiology and public health. However, for successful transition to 27 

routine use of these techniques, it is crucial to ensure the WGS data generated meet defined 28 

quality standards for pathogen identification, typing, antimicrobial resistance detection and 29 

surveillance. Further, the ongoing development of these standards will ensure that the 30 

bioinformatic processes are capable of accurately identifying and characterising organisms of 31 

interest, and thereby facilitate the integration of WGS into routine clinical and public health 32 

laboratory setting. A pilot proficiency testing (PT) program for WGS of infectious agents was 33 

developed to facilitate widely applicable standardisation and benchmarking standards for 34 

WGS across a range of laboratories. The PT participating laboratories were required to 35 

generate WGS data from two bacterial isolates, and submit the raw data for independent 36 

bioinformatics analysis, as well as analyse the data with their own processes and answer 37 

relevant questions about the data. Overall, laboratories used a diverse range of bioinformatics 38 

tools and could generate and analyse high-quality data, either meeting or exceeding the 39 

minimum requirements. This pilot has provided valuable insight into the current state of 40 

genomics in clinical microbiology and public health laboratories across Australia. It will 41 

provide a baseline guide for the standardisation of WGS and enable the development of a PT 42 

program that allows an ongoing performance benchmark for accreditation of WGS-based test 43 

processes. 44 
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INTRODUCTION 45 

The portability, reproducibility and potential anonymity of whole genome sequencing (WGS) 46 

data, along with its ability to provide high-resolution comparisons both within and across 47 

jurisdictions, represent an important advance and have become the underlying forces driving 48 

the transition to genomics in public health. The higher throughput, and exponential increase 49 

in the quality and flexibility, as well as the rapidly decreased cost and turnaround time mean 50 

that the next-generation sequencing (NGS) technologies are rapidly becoming a viable 51 

approach in complementing or even replacing existing molecular technologies and 52 

conventional assays currently run simultaneously in a diagnostic microbiology laboratory [1], 53 

[2].  54 

However, to fully integrate NGS into clinical and public health laboratory settings, we need 55 

to first address issues including establishment of quality assessment (QA) and quality control 56 

(QC) measures, and the development of practice guidelines for accreditation purposes in 57 

ensuring the quality of NGS-based tests. It is crucial to ensure that the WGS data generated 58 

meet minimum quality standards and that the bioinformatic processes are capable of 59 

accurately identifying and characterising the organisms of interest. Acting as an external 60 

quality assessment (EQA) tool, proficiency testing (PT) is not only useful for evaluation and 61 

verification of sequencing quality and reliability in bioinformatic analyses, it also 62 

independently assesses the test performance of clinical laboratories to ensure the quality, 63 

harmonization, comparability, and reproducibility of diagnostic results.  64 

Instead of the traditional analyte-specific PT, the assessment of interlaboratory performance 65 

recommended for the clinical NGS application is based on the method used, due to the 66 

extremely large variety of possible target sequences. This assessment can be achieved based 67 

on the test results performed on blinded samples provided to participating laboratories. In the 68 

absence of a formal PT program, sample exchange with a laboratory performing similar tests 69 
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can be utilized as an alternative assessment activity [3]. Since 2015, the Global Microbial 70 

Identifier (GMI) has been the forerunner in offering annual EQA and PT for WGS 71 

applications of infectious agents 72 

https://www.globalmicrobialidentifier.org/workgroups/about-the-gmi-proficiency-tests [4]. 73 

Other similar PT has been established for U.S. Food and Drug Association (FDA) field 74 

laboratories to focus on food pathogens [5], [6], while a more recent global PT was offered to 75 

assess bioinformatics analyses of simulated in silico clinical WGS data of virus in improving 76 

the identification of emerging diseases [7]. More recently, the CDC has released guidelines to 77 

assist laboratories adopt NGS workflows [8], and a global consortium, PH4AGE 78 

(https://pha4ge.github.io/) has been established to help translate many of the standards 79 

developed by the GA4GH (https://www.ga4gh.org/) to the microbial world.  80 

To facilitate the standardisation and benchmarking of WGS across a range of laboratories, the 81 

Pilot PT program for WGS of infectious agents was developed and offered in November 82 

2018. This pilot PT was designed to be applicable to laboratories that use a variety of 83 

sequencing platforms and test applications. In this two-part PT, participating laboratories 84 

were first required to generate WGS data from two Salmonella enterica subsp. enterica 85 

isolates, and along with their no-template control (NTC), submit the raw data for independent 86 

bioinformatics analysis. The second part focussed on the bioinformatics pipeline of 87 

participating laboratories, and required laboratories to analyse the WGS data with their 88 

processes and provide further information about the data and their bioinformatics pipeline. 89 

The WGS data submitted by participating laboratories in this study were assessed against a 90 

set of minimum data quality standards and bioinformatic processes, which were specifically 91 

established for this pilot PT. A workflow of standards and a fully reproducible bioinformatics 92 

analysis pipeline were made available so that participating laboratories could replicate the 93 

exact analysis carried out with their WGS data.  94 
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Overall, the pilot PT program has provided significant understanding into the current state of 95 

transition of genomics into Australian public health. Participation in a WGS PT program will 96 

support clinical and public health laboratories in the implementation of WGS as a diagnostic 97 

and epidemiological tool.  98 

 99 

100 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.09.18.304519doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.304519


6 
 

MATERIALS AND METHOD 101 

Organisation and participating laboratories. The pilot PT program was initiated by the 102 

Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP), in 103 

collaboration with the Communicable Diseases Genomics Network (CDGN), an Expert 104 

Reference Panel under the Public Health Laboratory Network (PHLN), Australia. This was 105 

based on the relevant information collected from an initial online questionnaire 106 

(Supplemental file) sent to participating laboratories of RCPAQAP Microbiology, 107 

RCPAQAP Serology and RCPAQAP Molecular Infectious Diseases in February 2018. The 108 

questionnaire was provided in four sections with the aims to understand and capture i) the 109 

basic details of end-users; ii) the capabilities of the laboratory in participating in a WGS pilot 110 

PT program; iii) the most frequently targeted infectious agents; and iv) the current QA 111 

practice at the laboratory. Following this, the PT program was announced through email 112 

invitation to a total of 10 Australian clinical and public health laboratories experienced in 113 

analysing WGS data sets for infectious agents. 114 

 115 

Survey specimens and survey instructions. Participating laboratories were supplied with 116 

two samples consisting of live bacteria isolates from the genus Salmonella, grown on 117 

chocolate agar slopes. Characteristics of these samples are recorded in Table 1. 118 

Participating laboratories were instructed to perform WGS on both isolates, and an NTC 119 

according to their established protocols, and report results within a six-week timeframe (from 120 

8 November to 19 December 2018). The laboratories were to analyse the sequence data using 121 

their choice of bioinformatics software (commercial or in-house pipeline) and i) to identify 122 

the genus, species (and sub-species, if applicable) of the organisms; ii) to report on the in 123 

silico multilocus sequence type (MLST) of the organisms, if a scheme exists; iii) to report on 124 
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antimicrobial resistance gene(s) detected; and iv) to provide the in silico serotype of the 125 

organisms, if appropriate for the organisms.  126 

 127 

Submitted PT results. Results generated in this pilot PT program were captured using two 128 

reporting methods. Firstly, the laboratories were to upload and submit the raw FASTQ data 129 

set for the two cultures and an NTC to a dedicated, secure File Transfer Protocol (FTP) server 130 

site within a six-week timeframe (from 8 November to 19 December 2018). Participating 131 

laboratories were provided with a unique laboratory identifier (LABID) to ensure that the 132 

overall results were anonymized.  133 

Secondly, participating laboratories were instructed to report all results obtained using their 134 

own bioinformatics analysis pipeline(s) via an online survey link 135 

(https://www.surveymonkey.com/) (see Table S1 in the supplemental material). The survey 136 

contained five sections, including the identification of the specimens, a report on the protocol 137 

used to generate the WGS data, the criteria used to identify the species, the criteria used to 138 

evaluate the quality of the sequence data, and the bioinformatics software and tool used for 139 

analysis. Laboratories were also invited to provide any feedback for the survey. The responses 140 

were collected as single or multiple options with free text for remarks and comments.  141 

 142 

Analysis of PT results. The definition of the minimum data quality standards and the 143 

development of a bioinformatics pipeline used to analyse the data were initiated following the 144 

discussion within the CDGN Bioinformatics Working Group. The PT results for both 145 

samples were assessed based on six quality metrics; i) the average quality score (Q-score); ii) 146 

the inferred genome coverage; iii) the inferred organism identification; iv) the genome 147 

assembly size; v) the inferred MLST scheme; and vi) the inferred MLST sequence type (ST), 148 

while the NTC was assessed only based on the total sequenced nucleotides; the number of 149 
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sequenced nucleotides for NTC must be less than 1,000,000 base pairs (bp) to pass this 150 

assessment. The definition of the criteria for quality metrics used to assess the performance of 151 

participating laboratories for BSQAP001 and BSQAP005 is available in Table S2 in the 152 

supplemental material. 153 

The FASTQ data were analysed by the CDGN Bioinformatics Working group. The 154 

bioinformatics pipeline engine used for these analyses was implemented using Snakemake 155 

[9]. All the bioinformatic tools were installed in Singularity containers [10]. All tools were 156 

installed using the package manager Conda (https://docs.conda.io/en/latest/), and both version 157 

and build were specified (see Table S3 in the supplemental material). In short, read statistics 158 

were generated with seqtk [11]; reads were trimmed with trimmomatic [12] using a database 159 

of Illumina adapter sequences; species identification was performed using kraken2 [13] with 160 

the MiniKraken Database v2 (includes bacteria, Archaea, virus, and human genomes) 161 

released on 2018-11-01; genome size and coverage estimation from k-mers was performed 162 

using mash [14]; read assembly was performed using shovill [15] using the SPAdes assembler 163 

[16]; assessment of the draft assembly was done with quast [17]; MLST was inferred using 164 

mlst [18] using schemes available on PubMLST [19]; presence of antimicrobial resistance 165 

(AMR) genes was inferred using abricate [20] using the NCBI AMR reference database [21]; 166 

and serotype was inferred using SISTR [22], a tool for inferring the serotype of Salmonella 167 

enterica. 168 

All containers are stored in CloudStor and available for download (see Table S4 in the 169 

supplemental material). Finally, the whole process can be reproduced using vagrant 170 

(https://www.vagrantup.com/) and virtualbox (https://www.virtualbox.org/) following the 171 

instructions available on the GitHub repository (https://www.github.com/cdgn-anz/wgsptp-172 

pipeline). The repository contains all the code for the pipelines and recipes for building the 173 

Singularity containers. Two Snakemake pipelines were written and named: data (to process 174 
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the FASTQ data associated with each sample) and ntc (to process the samples labelled as 175 

“negative control”); and both used the same elements. 176 

 177 

Pilot PT report. The report issued to the participating laboratories had two parts. Part one 178 

contained the summary of the identification of both samples, as well as the details of the 179 

protocol used to generate the WGS data, while part two contained the individual report on the 180 

QC performance of each laboratories. The comparative data for BSQAP001 and BSQAP005 181 

based on a total of six data aspects (average Q score, percent guanine-cytosine (GC), total 182 

nucleotides, total reads, assembly N50 and assembly size) derived from the analysis 183 

performed on the raw data set submitted by all participating laboratories were compared 184 

based on the Z-scores of each aspect. The Z-score was determined by subtracting the mean 185 

from the data point, and this value was then divided by the standard deviation to normalise 186 

the data. The observation of the variation in Z-scores of different data aspects were plotted on 187 

the same graph. This provided laboratories with a quick comparison across all aspects of the 188 

data across laboratories.189 
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RESULTS 190 

Identification (ID) of pilot PT samples. A total of eight laboratories identified the species in 191 

both samples using a k-mer ID approach, while two laboratories adopted a 16S rRNA gene 192 

ID approach for species identification (Table 2). The details of the list of top three species 193 

hits identified in the sequence data for BSQAP001 and BSQAP005, including the percentage 194 

(%) of reads that matched these hits or the evidence and confidence of each hit, are available 195 

in Table 2. The criteria used by laboratories with a k-mer ID approach to identify the species 196 

and the criteria used to evaluate the quality of the sequence are available in Table S5 and 197 

Table S6 in the supplemental material, respectively.  198 

Results are presented relative to the 10 participating laboratories. All laboratories correctly 199 

identified BSQAP001 and BSQAP005, respectively, as Salmonella enterica subspecies 200 

enterica. In regards to serotyping BSQAP001, six laboratories reported the sample to be 201 

Enteritidis, two reported the serogroup (D1), and two reported the antigenic formula 202 

(1,9,12:g.m:-). In sample BSQAP005 we observed a little more variation. A total of three 203 

laboratories reported the sample as Typhimurium, four laboratories reported the antigenic 204 

formula (I 4,[5],12:i:-), and the remaining three laboratories reported either serogroup B), or 205 

the (potential) monophasic variant of Typhimurium. Details in Fig. 1. All but one laboratory 206 

reported the correct in silico MLST for BSQAP001 (ST3304) and BSQAP005 (ST34) (Fig. 207 

2). Regarding the detection of AMR genes, we observed substantial variation in the reported 208 

genes harboured by both samples (Table 3). Despite no AMR gene matches identified for 209 

BSQAP001 based on the analysis performed by the Bioinformatics Working Group, CDGN 210 

on all raw FASTQ data set submitted by participating laboratories, there were six laboratories 211 

who identified aac(6’)-Iaa, three laboratories that reported mdf(A), and only four laboratories 212 

reported the absence of any AMR genes. A total of five AMR genes (tet(B), sul2, blaTEM-1, 213 

aph(6)-Id, aph(3”)-Ib), either complete or partial matches were identified for BSQAP005, 214 
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based on the analysis performed on all raw FASTQ data set submitted, by eight laboratories. 215 

Laboratories also reported four other AMR gene matches, aac(6’)-laa (n=5), mdf(A) (n=), 216 

strB_1 (n=1) and strA_4 (n=1),. 217 

 218 

Protocol used in generating the WGS data. All laboratories used a commercial kit to 219 

prepare the sequencing library; six laboratories used the Illumina Nextera XT DNA Library 220 

Preparation Kit, while the remaining laboratories used the Illumina DNA Flex Library Prep 221 

Kit. All laboratories performed paired-end sequencing on the Illumina platform, employing 222 

the NextSeq (n=5), MiSeq (n=4) and MiniSeq (n=1); read lengths employed on the MiSeq 223 

were 150bp (n=2) and 300bp (n=2) and 75bp on the MiniSeq. Additional information on the 224 

protocol used to extract the DNA for sequencing is listed in Table S7, while the summary of 225 

the bioinformatics analysis software and tools used by laboratories is listed in Table S8. 226 

 227 

Assessment of laboratories performance. The raw FASTQ data submitted by the 228 

laboratories were analysed, and the individual and overall performance of laboratories in 229 

sequencing both samples was evaluated based on the observed values for the quality metrics 230 

(Table 4).  All laboratories passed the assessment for all quality metrics, except the inferred 231 

genome coverage, whereby eight and six laboratories passed the assessment for BSQAP001 232 

and BSQAP005, respectively. Two laboratories sequenced more than 1,000,000 bp 233 

nucleotides for NTC, and therefore failed the assessment for the total sequenced nucleotides 234 

(Fig. 3). 235 

 236 

Comparison of the FASTQ data set submitted by laboratories. By analysing all 237 

participant data with a single pipeline, we control for the bioinformatics and are able to get a 238 

clear assessment of the effect of variability in sequencing approaches on downstream 239 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.09.18.304519doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.304519


12 
 

analyses. The comparative figure for both samples was summarised in Fig. 4, and the raw 240 

data is available in Fig S1. Overall, the results show that most laboratories sequenced to 241 

about the same effort, as suggested by the distribution of Z-scores for total reads and total 242 

sequenced nucleotides (most data are within one standard deviation from the mean). The 243 

exception is one laboratory that produced far more data than any other laboratory for both 244 

samples. While the average Q score was roughly bimodal, the percent GC also showed a 245 

bimodal distribution for each of the samples.  246 

The total assembly size for each sample was consistent within samples, and not unexpectedly 247 

distinct between samples. Despite consistent assembly sizes within samples, there was 248 

considerable variation, with Z-scores spanning almost 3.5 standard deviations in the case of 249 

sample BSQAP001. 250 

251 
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DISCUSSION 252 

The effective analysis of WGS data for infectious diseases requires a multidisciplinary team 253 

with technical and bioinformatics skills, as well as biological, epidemiological and clinical 254 

knowledge. The intricate multistep processing of WGS outputs generated by different 255 

sequencing platforms begins with sequence assembly or reference-based mapping and ends 256 

with simultaneous comparisons of multiple genomes and data visualisation [23]. Apart from 257 

processes such as library preparation and quality assessment of sequences produced, it also 258 

requires sequence reads validation. The validation involves processing of sequence reads with 259 

software tools or assembled into workflows and pipelines. Subsequently, the results obtained 260 

from the bioinformatics analysis for pathogen identification are evaluated post-analytically, 261 

including making correlations between bioinformatics results with clinical and 262 

epidemiological patient information. 263 

The aim of this study was to establish a workflow that allows assessment of a laboratory’s 264 

proficiency to perform WGS on bacterial isolates belonging to the genus Salmonella. This 265 

included defining minimum quality matrices, building a bioinformatics pipeline to analyse 266 

laboratories results, and developing a PT program with appropriately tested specimens and 267 

results reporting facilities. In this pilot PT, the capacity of laboratories to perform WGS was 268 

assessed initially on the correct organism identification, the determination of MLST, and the 269 

detection of AMR genes. The data submitted by all laboratories were analysed with a single 270 

pipeline, to ensure that the bioinformatics were controlled and the effect of variability in 271 

sequencing approaches on downstream analyses was clearly assessed. Essentially, 272 

participating laboratories were capable in generating high-quality data, either meeting or 273 

exceeding the minimum requirements. In some cases, there were laboratories that far 274 

exceeded the minimum requirements and could potentially save money by reducing their 275 

sequencing effort. While all laboratories determined the correct organism, serotype and 276 
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sequence type, we observed some variations in the format of data entry and terminology. 277 

There were significant variations observed in the reporting of presence or absence of AMR 278 

genes by all the laboratories. This was likely due to the high variation in assembly, which 279 

may impact on the post sequence analysis. Also, the wide-ranging approaches used in the 280 

genome-wide analyses, the gene detection software and database used, as well as the 281 

thresholds applied to determine the presence or absence of AMR genes may have affected the 282 

report of the AMR genes for both samples. The results from this study corroborate those of 283 

observed in a similar study [24].  284 

The detection of genomic variants will be affected by specimen preparation, sequencing 285 

methods, run throughput, and the amount of sequencing data sufficient for pathogen 286 

characterisation (genome coverage), with the choice of technology and coverage being 287 

particularly important. Prior to the sequencing step, DNA libraries need to be constructed, 288 

usually with protocols that are significantly variable. However, this critical step can have 289 

significant influence in downstream analyses, thus selecting the most cost-effective library 290 

construction approach is crucial to ensuring the highest quality data is available for 291 

inferences. To date, the data quality produced by different library methods has only been 292 

addressed in few studies. While the data quality is highly dependent on the purity of DNA 293 

sample submitted for sequencing and its GC-content [25], the choice of library preparation 294 

method is also known to influence the level of sequencing quality. Given that libraries were 295 

also run on different instruments which may introduce own biases, the process of comparison 296 

therefore will become too complex. While this study did not compare the quality of data 297 

based on the choice of library preparation method used, the performance of laboratories in 298 

generating the WGS data set in the future PT can potentially be measured using this aspect of 299 

data generation, if the right approaches are applied. In this pilot PT, commercial kits were 300 

used by all participating laboratories in the library preparation for sequencing. Kits that are 301 
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based on the enzymatic shearing of DNA, like the Illumina Nextera XT used by most of the 302 

laboratories in this pilot PT may result in less uniform data quality and missing more specific 303 

genomic sequence motifs (coverage bias), compared to the mechanical method in the 304 

Illumina TruSeq kit, as reported in a study performed on the GC-rich Mycobacterium 305 

tuberculosis genome [25]. The remainder of the laboratories here used the Illumina DNA 306 

Flex kit, a robust transposome bead-based method which has been reported to give a 307 

consistent yield and fragment size, and less sequence bias [26]. It remains a debate whether 308 

the process of generating the library using either the Illumina Nextera XT or the Illumina 309 

DNA Flex kit is significantly different, given that both kits are transposome-based. The only 310 

difference is in the method that is applied to normalise the sample and in the delivery of the 311 

transposome (in solution with Nextera XT versus on a bead with Flex), and this could also be 312 

an aspect of WGS data generation to be assessed in the future PT. A recent study evaluating 313 

the commercial library preparation kits have showed that the data quality from libraries made 314 

with Illumina DNA Flex kit were superior to those from Nextera XT. This was due to 315 

decreased sensitivity to variable GC-content, therefore an almost uniform distribution of 316 

read-depth and minimal low coverage regions, resulting in a more complete representation of 317 

the genome [27]. However, it has also been reported that more adapter dimer products are 318 

often generated, introducing contamination when sample input is limiting, as a results from 319 

suboptimal performance of the bead-based method [28], and potentially due to bead-320 

manufacturing process (personal communication).  321 

Several technologies have been used over the past decade for WGS: Ion Torrent PGM, 322 

PacBio, Roche 454, and more recently Oxford Nanopore Technologies. However, for 323 

bacterial genomics, Illumina machines are the most often used platform for generating WGS 324 

data (>90% at the Short Read Archive) [27]. Mirroring international practises, all 325 
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participating laboratories of this PT used Illumina sequencing platforms (either the NextSeq, 326 

MiSeq or MiniSeq platforms).  327 

The international public health community is still developing standards for pathogen 328 

identification, typing, microbial resistance detection and surveillance using WGS data (see 329 

PHA4GE initiative at https://pha4ge.github.io/). There is a need for these standards to be 330 

implemented to help harmonize the analysis and the consistency in the interpretation of WGS 331 

sequence data [29], [30]. It is also critical due to the various potential sources for error in 332 

sequencing and variant-calling processes [31], [32]. To optimise the quality of the data used 333 

to generate variant calls, many of the recommendations and best practises used are shared 334 

between human and microbial genomic NGS assays [33], [34]. This includes the 335 

recommendation to minimise amplification steps in library preparation (if applicable), use of 336 

paired-end sequencing, removal of duplicate reads, realignment around insertions and 337 

deletions, and recalibration of base Q-scores. In the absence of definitive quality metrics to 338 

measure the capacity of the participating laboratories in performing the WGS, we have 339 

employed six different quality metrics in this pilot PT, following the discussion within the 340 

CDGN Bioinformatics Working Group. Among the quality metrics that were assessed, only a 341 

minority of the participating laboratories failed to sequence to the required genome coverage 342 

depth of at least 40X for both samples. Among them, one laboratory particularly had a very 343 

low coverage (less than 20X) for both samples, potentially resulting in decreased sensitivity 344 

in their WGS data. Sufficient sequence coverage is vital for the accurate identification of 345 

genetic variants, the association between higher coverage levels and the steady increase in the 346 

sensitivity in WGS data, as previously reported [35]. The sequencing data from the NTC are 347 

useful not only to identify cross-contamination but also to detect any potential contaminants 348 

in buffers and reagents. The role of NTC in WGS is still being explored and best-practices 349 

are still being in development. While most published studies on the use of WGS for 350 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.09.18.304519doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.304519


17 
 

diagnostics and WGS PT did not incorporate a NTC analysis, we are proponents that an NTC 351 

is absolutely required for high-quality data in a public health and clinical setting, as it is also 352 

part of the requirement for accreditation. In most cases, however, a failed NTC will not cause 353 

a whole run to be failed. That approach would be too costly. Instead, we propose that a failed 354 

NTC triggers a more in-depth analysis of each sample in the run. Samples found to have 355 

significant evidence of contamination should be failed. Although, the levels of contamination 356 

deemed to be significant remain an open question. In this pilot PT, only two laboratories 357 

failed the assessment for the total sequenced nucleotides and will be required to further 358 

investigate and use this information to decide on what samples should or should not be failed. 359 

While the Z-score comparative data between the participating laboratories did not need to 360 

cluster together, ideally the results would cluster together for consistency across the analysis 361 

performed by the laboratories. In this pilot PT, the deviations in assembly N50 may suggest 362 

that the quality of the genome assembly performed by different laboratories was varying. 363 

This also further suggests fragmentation variation to some degree, for instance, due to 364 

contamination which may potentially affect the downstream gene detection. Some variation 365 

in assembly was also observed from the comparative data, which may impact on post 366 

sequencing analysis. Different versions of bioinformatics tools (e.g. abricate), choices of 367 

reference database or a different threshold applied in deducing the presence/absence of genes, 368 

may in turn impact on results. Other downstream variations in analysis, for instance, the 369 

average Q-score and percent GC were within the acceptable range. Q-score is an indication of 370 

the probability of error, whereby higher Q-scores indicate a smaller probability of error and 371 

lower Q-scores can result in a significant portion of the reads being unusable, which in turn 372 

may also lead to increased false positive variant calls, resulting in inaccurate conclusions. 373 

The average Q score was roughly bimodal, and we believe this largely reflects the instrument 374 

used (MiSeq vs NextSeq). Significant deviations in the GC-content and assembly size may be 375 
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indicative of contamination from an unrelated species or source with a different GC profile. 376 

While the data on total nucleotides and total reads clustered closer together for most 377 

participating laboratories, these were also a reflection on whether the laboratories have 378 

performed sufficient sequencing to yield the required sequence information for analysis (not 379 

over or under sequencing). Total nucleotides sequenced is a better comparison measure of the 380 

quality of the sequence, compared to the total reads, as the read length can vary depending on 381 

the library preparation. The consistency in the total nucleotides will affect downstream 382 

applications; while excessive coverage could increase the false rate in the single nucleotide 383 

polymorphism (SNP) detection and assembly and the cost to sequence per isolate; inadequate 384 

coverage may result in missing out on SNPs and issues with assemblies, and subsequently, 385 

gene detection.  386 

In this pilot PT, we observed some minimal variation in methods employed to generate and 387 

analyse the data, as well as in terms of quality control criteria, as expected in this early stage 388 

of the transition to genomics. Almost all participating laboratories used kraken, mlst, and 389 

abricate for sample ID, MLST and AMR, respectively, and most if not all have applied 390 

similar workflows, (i.e. Nextera XT in preparing the library, Illumina sequencer in 391 

sequencing the samples and Qiagen-based DNA extraction system) resulting in no extensive 392 

variation in bioinformatics tools and workflows for infectious agent analysis of WGS data. 393 

The only variation is likely in the versions used and the setting applied, therefore highlighting 394 

that harmonization is not just dependent on choice of tool used, but version control. With an 395 

appropriate validation approach for the choice of tool and version, this variation may not 396 

affect the quality of the WGS data or in measuring the capability of clinical laboratories in 397 

performing WGS (both wet and dry-laboratory components). There will never be a standard 398 

procedure for this analysis, which therefore makes the comparison of such analyses complex. 399 

With an abundance of tools continually being developed, refined and packaged together as 400 
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bioinformatics pipelines, it is expected that the variation in the bioinformatics approaches 401 

used in the microbiology community will remain highly variable [36]. Another challenge is in 402 

defining the ‘truth’ of the sample set used in a PT. Where there is high confidence in the truth 403 

of the WGS PT results and clear guidance on the settings to be used to define the truth, 404 

laboratories will then able to use that to calibrate their testing and results via a PT program.  405 

In summary, the introduction of a WGS PT program such as this pilot PT will facilitate 406 

harmonisation of genomics implementation, including standardisation of bioinformatics 407 

workflow, thereby making comparisons across jurisdictions more robust, reduce ambiguity 408 

and bolster confidence in the data generated and the process employed. Lessons learned from 409 

this pilot PT will help inform the development of future WGS PT programs for infectious 410 

diseases and create a consistent mechanism in conducting continuous PT to guarantee the 411 

quality of the WGS data generated from clinical and public health laboratories. The pilot PT 412 

offered in this study has been well received, due to the limitation in the availability of an 413 

external PT program for WGS of infectious agents for Australian laboratories. It 414 

demonstrated the capacity and protocol used by clinical and public health laboratories around 415 

Australia in performing WGS and analysing WGS data. In the future, laboratories are 416 

expected to create a balance between the characterisation of pathogen genome, the 417 

throughput of the instrument, and the accuracy of variant-calling algorithms.  418 
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TABLE 1 Characteristics of the samples sent to the participating laboratories 430 

RCPAQAP 

SEQID 

Genus, species, 

subspecies 
Serotype Sequence type Notes 

BSQAP001 

Salmonella 

enterica subsp. 

enterica  

Enteritidis  ST3304 Clade A 

BSQAP005 

Salmonella 

enterica subsp. 

enterica  

Typhimurium ST34 ser 4,[5],12:i:- 
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TABLE 2 Top three species hits identified for; A) BSQAP001, B) BSQAP005, using kmer and 16S identification (ID) approaches 431 

A. BSQAP001
 

ID
 a

p
p

ro
a
ch

 

P
a
rt

ic
ip

a
ti

n
g
 

la
b

o
ra

to
ry

 Species
a
 

Species 1 Species 2 Species 3 

Kmer 1 Salmonella enterica 97.04% Salmonella enterica subsp. 

enterica 

95.87% Salmonella enterica subsp. 

enterica serovar Dublin 

1.44% 

2 Salmonella enterica 82.78% Escherichia coli 0.43% Salmonella bongori;  0.01% 

3 Salmonella enterica 93.86% Escherichia coli  1.12% Enterobacter aerogenes 0.02% 

4 Salmonella enterica 93.15% Escherichia coli 1.09% Klebsiella pneumoniae 0.02% 

5 Salmonella enterica  unclassified  Burkholderia dolosa  

6 Salmonella enterica 93.29% Salmonella enterica subsp. 

enterica 

88.80% Salmonella enterica subsp. 

enterica serovar Dublin 

0.59% 

7 enterica 96.99%     

10 Salmonella enterica 84.56% Escherichia coli 0.59% Enterobacter aerogenes 0.02% 

        

16S 8 Salmonella enterica  Salmonella enterica  Salmonella enterica  

9 CP030214.1 Salmonella enterica 

strain SA20025921 

99% CP016357.1 Salmonella 

enterica subsp. enterica serovar 

Newport str. WA_14882 

99% CP010284.1 Salmonella 

enterica subsp. enterica serovar 

Newport str. CVM N1543 

99% 

 432 

B. BSQAP005
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ID
 a

p
p

ro
a
ch

 

P
a
rt

ic
ip

a
ti

n
g
 

la
b

o
ra

to
ry

 Species
a
 

Species 1 Species 2 Species 3 

Kmer 1 Salmonella enterica 93.73% Salmonella enterica subsp. 

enterica 

92.71% Salmonella enterica subsp. 

enterica serovar Typhimurium 

1.58% 

2 Salmonella enterica 80.93% Escherichia coli 0.15% Erwinia pyrifoliae 0.13% 

3 Salmonella enterica 90.69% Escherichia coli  0.68% Edwardsiella ictaluri  0.58% 

4 Salmonella enterica 90.58% Citrobacter freundii 0.28% Escherichia coli 0.16% 

5 Salmonella enterica  unclassified  Burkholderia dolosa  

6 Salmonella enterica 88.89% Salmonella enterica subsp. 

enterica 

84.82% Salmonella enterica subsp. 

enterica serovar Typhimurium 

0.72% 

7 enterica  93.09%     

10 Salmonella enterica 93.12% Escherichia coli 0.43% Edwardsiella ictaluri  

 

16S 8 Salmonella enterica  Salmonella enterica  Salmonella enterica  

9 CP019649.1 Salmonella enterica 

subsp. enterica serovar 

Typhimurium strain TW-Stm6 

99% 

 

CP029568.1 Salmonella 

enterica strain DA34837 

99% 

 

LN999997.1 Salmonella 

enterica subsp. enterica 

serovar Typhimurium isolate 

SO4698-09 

99% 

a
 The percentage (%) of reads that matched these hits or the evidence and confidence of each hit 433 
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TABLE 3  Antimicrobial resistance (AMR) genes harboured by different bacteria isolates 434 

were based on the sequencing data, as reported by the participating laboratories  435 

RCPAQAP SEQID AMR genes 

No. of participating 

laboratories that reported the 

AMR genes 

BSQAP001
a 

aac(6')-Iaa 

mdf(A) 

unspecified 

no resistance genes detected 

6/10 

4/10 

3/10 

1/10 

 

BSQAP005
b 

tet(B) 

sul2 

blaTEM-1 

aph(6)-Id 

aph(3")-Ib 

aac(6')-laa 

mdf(A) 

strB_1 

strA_4 

10/10 

10/10 

9/10 

9/10 

8/10 

5/10 

3/10 

1/10 

1/10 

   
a 
The bioinformatics analysis performed by the Bioinformatics Working Group, CDGN on all 436 

raw FASTQ data set submitted by participating laboratories for BSQAP001 found no 437 

complete or partial matches of AMR genes using X identity/Y coverage 438 

b 
The bioinformatics analysis performed by the Bioinformatics Working Group, CDGN on all 439 

raw FASTQ data set submitted by participating laboratories for BSQAP005 identified five 440 

complete or partial matches of AMR genes (in bold)441 
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TABLE 4   The observed value of quality metrics based on the raw FASTQ data set submitted by each participating laboratory for; A) 442 

BSQAP001, B) BSQAP005, and the assessment of their overall performance 443 

A. BSQAP001  

Quality metrics 
Participating laboratory

a 

Overall performance
b 

1 2 3 4 5 6 7 8 9 10 

Average Q-Score P P P P P P P P P P 10/10 

Inferred genome coverage P P P P P F P F P P 8/10 

Inferred organism P P P P P P P P P P 10/10 

Assembly genome size P P P P P P P P P P 10/10 

Inferred MLST scheme P P P P P P P P P P 10/10 

Inferred MLST ST P P P P P P P P P P 10/10 

 444 

B. BSQAP005  

Quality metrics 
Participating laboratory

a 

Overall performance
b 

1 2 3 4 5 6 7 8 9 10 

Average Q-Score P P P P P P P P P P 10/10 

Inferred genome coverage P F P P F F P F P P 6/10 

Inferred organism P P P P P P P P P P 10/10 

Assembly genome size P P P P P P P P P P 10/10 

Inferred MLST scheme P P P P P P P P P P 10/10 

Inferred MLST ST P P P P P P P P P P 10/10 
a 
Performance of individual laboratory; P: Pass the assessment; F: Fail the assessment 445 
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b 
Overall performance of participating laboratories; the number of participating laboratories that passed the quality metrics/number of 446 

participating laboratories 447 
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FIGURE  

 

FIG 1: In silico serotype for (A) BSQAP001 and (B) BSQAP005, as reported by all 
participating laboratories (N=10) in the pilot PT.  
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FIG 2: In silico MLST for (A) BSQAP001 and (B) BSQAP005, as reported by all participating 
laboratories (N=10) in the pilot PT.  
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FIG 3: Comparative data of the NTC based on the total sequenced nucleotides performed by 
all the participating laboratories (N=10). The interquartile range is represented by the box, and 
the median is represented by the horizontal line, while the red line indicates 1,000,000 bp.  
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FIG 4: Comparison of the assessment of the effect of variability in sequencing approaches on 
downstream analyses data for (A) BSQAP001 and (B) BSQAP005, based on the analysis 
performed on all participant data (N=10) using a single pipeline.   
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