
Life cycle process dependencies of positive-sense RNA viruses

suggest strategies for inhibiting productive cellular infection

Harsh Chhajera, Vaseef A. Rizvib, Rahul Roya,c*

Author Affiliations:

a Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.

b Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.

c Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India.

Orchid identifiers:

HC: 0000-0001-9252-1855; RR: 0000-0003-3329-8803

*Corresponding author:

Rahul Roy

Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India-560012

Phone: 91-80-2293-3115; E-mail: rahulroy@iisc.ac.in

Subject areas:

Microbiology and Infectious Disease | Cell Biology

Keywords:

Positive sense RNA virus | Viral intracellular life cycle model | Compartment formation dynamics |

Stochastic fate of the infection | Synergy in virus inhibition | Mathematical modelling

1

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.09.19.304576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304576
http://creativecommons.org/licenses/by/4.0/


Abstract1

Life cycle processes of positive-strand (+)RNA viruses are broadly conserved across families,2

yet they employ different life cycle strategies to grow in the cell. Using a generalized dynamical3

model for intracellular (+)ssRNA virus growth, we decipher these life cycle determinants and their4

dependencies for several viruses and parse the effect of viral mutations and host cell permissivity. We5

show that Poliovirus employs rapid replication and virus assembly whereas Japanese Encephalitis6

virus leverages its higher rate of translation and efficient cellular reorganization compared to Hepatitis7

C virus. Stochastic simulations of the model demonstrate infection extinction if all seeding viral8

RNA degrade before establishing robust replication. The probability of productive cellular infection9

is affected by virus-host processes, defined by early life cycle events and viral seeding. Synergy10

among these parameters in limiting infection suggests new avenues for inhibiting viral infections by11

targeting early life cycle bottlenecks.12
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Introduction13

Positive sense single stranded RNA ((+)ssRNA) viruses, that include Enteroviridae (Poliovirus), Fla-14

viviridae (Dengue virus), Coronaviridae (SARS) virus families, are a major public health challenge.15

Better understanding of their growth dynamics in the cell can help us identify new drug targets and16

novel antiviral approaches. Viruses infect and grow inside the cell using a complex set of molecular17

and cellular processes that has evolved to ensure successful propagation. (+)RNA viruses sequentially18

translate viral proteins using the positive strand RNA genome upon cell entry, replicate to form nascent19

genomes from a double stranded RNA (dsRNA) replication intermediate and create new virus particles20

by encapsidating the (+)RNA genomes with its structural proteins. Members of this class show signifi-21

cant diversity in genome size, physical makeup, constituent viral proteins, host tropism, and chronicity22

of infection. Yet, they also display striking similarities in cellular life cycle dynamics, closely imitating23

mechanisms of replication, translation, virus assembly as well as similar interactions with the host cell24

machinery. This has motivated the search for universal features that can be exploited as broad spectrum25

anti-viral targets.26

One common characteristic of most (+)RNA viruses is the induction of significant alterations of the27

intracellular host membranes [1, 2, 3, 4]. The vesicular membranous structures formed, protect viral28

RNA and proteins from cytosolic degradation and host defense systems, provide a conducive micro-29

environment for efficient viral replication and hence are also referred to as replication compartments30

(CMs). Impeding membrane re-organization has been shown to decelerate cellular infection dynamics31

[5, 6], lower viral yield [7, 8, 9, 10] and reduce the propensity of the virus to establish productive cellular32

infection in the host cell [6, 11, 12]. In general, failure to establish viral infection has been associated33

with cellular heterogeneity and is attributed to the random loss of genome segments by RNA degradation34

in the early stages of infection [13, 14, 15]. This stochastic effect is more pronounced at low multiplicity35

of infection [12] and is observed for many virus families. While this suggests that early events in the36

virus life cycle define the fate of infection, what factors control this mode of viral clearance have not37

been profiled in detail.38

Quantitative measurements and mathematical modeling has tremendously enhanced our understand-39

ing of how the subtleties of intracellular processes shape the outcome during viral infections [16, 17, 18,40

19, 20, 21, 22, 23, 24, 25, 26]. Understanding derived from these (and their extensions that incorpo-41

rate extracellular and immune response) have been used to determine effectiveness of interventions and42

combinations thereof [27, 28, 29, 30, 31]. However, detailed models with explicit molecular details suffer43

from redundancy in fitting parameters or challenges with estimating parameters values experimentally.44

On the other hand, generalized models fail to accurately emulate the experimentally observed dynamics45

across a large class of viruses, viral strains and different host cells. Nevertheless, viral dynamics models46

that universally capture experimental observations while allowing sufficient inference of molecular mech-47
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anisms across many viruses can be insightful. Apart from identifying life cycle bottlenecks, they can be48

employed to predict the effectiveness of broadly applicable anti-virals.49

Most intracellular +RNA viral dynamics models also do not account for the slow formation kinetics50

of the membranous replication compartments. Since this event coincides with the early infection that51

is known to be sensitive to stochastic fluctuations in viral RNA, membrane reorganization can influence52

the virus life cycle in complex ways. In this study, we extend previous viral dynamics models [19,53

17, 22] by incorporating the kinetics of replication compartment formation post infection. We show54

that our model accurately captures several variants of experimentally measured dynamics for Hepatitis55

C virus (HCV)[22], Japanese Encephalitis virus (JEV) [32] and Poliovirus (PV) [19] infection from56

literature. Further, it identifies differences among virus life traits and dynamics and describes effect57

of viral mutations[5] and host factor silencing [7, 5]. We show that the dynamics of compartment58

formation is a critical kinetic bottleneck for the viruses. It influences the ability of various viruses to59

establish a productive infection in the host cell that we refer here as ‘cellular infectivity’ (Φ). Apart from60

replication, we recognize limiting formation of CM, increased cytoplasmic degradation of viral RNA and61

reduced translation as pan-viral strategies, and estimate the synergy among them in limiting cellular62

infectivity.63
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Results64

Cellular viral life cycle model for monopartite (+)RNA viruses65

We propose a mathematical model for cellular life cycle of single stranded monopartite (+)RNA viruses66

(Fig 1a, details in SI S1). It is inspired by previous HCV and PV models [19, 17, 22] but we focus on67

intracellular processes common to such viruses and lump molecular details when appropriate (eq. 2,68

Table 1). Upon entry into the cell, viral (+)RNA in cytoplasm (Rcyt) is translated by host ribosomes69

to produce structural (PS) and non-structural (PNS) proteins at a rate kt (eqs. 2.2, 2.3). Though70

translation occurs in the cytoplasm, replication is mainly restricted to replication compartments (CMs)71

[1, 2].72

CM formation occurs via extensive alteration to intracellular host membranes [33, 34] induced by

viral and host proteins post infection [1, 2, 3, 35]. Although a slow and critical step conserved across

many (+)RNA viral life cycle, previous models did not account for their gradual formation. We model

this dynamics using a functional form based on analysis of cellular ultra-structural characterization (Fig

1b and Figure S1). Assuming that host membrane homeostasis, we use the popular Weibull function

[36] to model the normalized growth of replication compartments, fCM (eq. 1).

fCM = 1− e−(
t
τS

)n
(1)

Here, τS parameterizes the time scale of the structural manifestation of CMs whereas n defines the73

steepness of the change. Fig 1b shows that increase in vesicular membranous structures observed among74

(+)RNA viruses is indeed virus and strain specific [37, 38, 39, 40]. Though the value of τS does not vary75

significantly, fitting improves as n increases from 2 to 4, suggesting synchrony in CM generation (Table76

S1). τS estimates generally correlate with the timescale of cellular infection across viruses and strains as77

observed for the Zika strains [41].78

In context of viral replication, one must consider the ability of these sites to provide protective79

confinement for the RNA replication complex but this aspect has not been quantitatively characterized.80

Since the structural and functional aspects are likely to be correlated, we use the same functional form (eq.81

1 with n=4), but consider a different maturation time (τF ) to model the functional maturation of CMs82

for replication hereon. Although not explicitly incorporated, τF subsumes other delays associated with83

virus entry and genome un-coating as well. However, such delays have been shown to be comparatively84

smaller [42, 19, 22].85

The number of available CMs limit the replication complex formation. Rcyt and PNS , compete for86

the unoccupied compartments given by [fCM − RCCM
NC

], where RCCM denotes the number of compart-87

mentalized replication complexes and NC is the carrying capacity associated with RCCM (Table 1).88
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Therefore, we model the compartmentalization of replication with a logistic function (eqs. 2.1, 2.4).89

RCCM synthesize new (+)RNA strands at a rate, kr (eq. 2.4). The (+)RNA in the compartments90

(RCM ) are exported out into the cytoplasm at rate, ke (eqs. 2.1, 2.5), where it can re-participate in91

the life cycle. While the viral RNA and proteins degrade in the cytoplasm, we ignore degradation in92

the compartments [4, 2, 26]. Finally, viral assembly occurs in cytoplasm where Rcyt associates with ηS93

molecules of PS to produce extracellular viral particles (VT ) at an overall rate of ka (eqs. 2.3, 2.6).94

Recapitulating observed HCV life cycle dynamics95

Using an iterative approximate Bayesian approach (iABC, see Methods and SI SM1), we fit our viral96

life cycle model to the dynamics of intracellular viral RNA, proteins, and extracellular viruses observed97

and recover parameter estimates for the well characterized HCV infection in Huh7 cells [22] (Fig 1c,98

Tables 1, S2). We find that new (+)RNA strands are produced at (kr=) 3.6 h−1 per compartmentalized99

replication complex (RCCM ). Using RNA polymerization rate of 150 nt/min [43], we predict around100

three simultaneous replication events per RCCM . This is consistent with experimental observations of101

synthesis of multiple viral RNA per replication intermediate (reported to be 5 for the closely related102

Dengue virus [44]). Similarly, our steady state ratio of viral (+)RNA to (-)RNA (= 54:1) compares well103

with the experimentally observed ratio of 30:1 [45, 46].104

While differences in parameter definition limit exact comparison, we find good agreement with previ-105

ous efforts to model HCV dynamics. For example, approximating 10 ribosomes [47] translating the viral106

RNA at a time and kt = 23.7 h−1, we predict the HCV protein production rate to be 2.4 h−1 per RNA.107

This is comparable to the previous estimate of the rate limiting step in protein synthesis, the polyprotein108

cleavage rate at 1 h−1 [16, 17]. Our prediction for (+)RNA export out of replication compartments is109

also similar to previous estimates [16]. However, virus production in our model is 50-fold faster than110

previous estimates. We attribute this to the unaccounted delay in CM formation that is neglected in111

prior models and this contributes to the reduced effective assembly rates [22]. Overall, we recapitulate112

HCV experimental observations not built a priori into the model as well as match previous estimates for113

comparable parameters.114

To further validate our model, we evaluate the life cycle dynamics of subgenomic HCV (sgHCV)115

transfected into Huh7 (Huh7-Lp) and it highly permissive derivative (Huh7-Lunet) cells using our model116

[17] (Figure S2). Our estimates for kt, kr and kc (the rate of formation of RCCM ) for the subgenomic117

viral transfection are similar to corresponding estimates for full-genomic HCV infection (Table S2, Table118

S3) suggesting robustness of our model across different experimental systems for HCV. However, the119

sgHCV system exhibits delayed RC formation and faster (+)RNA export out of CM likely due to lack120

of structural proteins, transfection induced cellular artifacts or additional pre-processing required for121

transfected RNA [17]. Importantly, the highly permissive cell line (Huh7-Lunet) exhibits faster CM122

6

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.09.19.304576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304576
http://creativecommons.org/licenses/by/4.0/


formation (1.9 fold lower τF ) and higher stability of viral dsRNA replication intermediate (11.8 fold123

larger NC) compared to Huh7-Lp [48], suggesting efficient replication compartmentalization contributes124

to higher cellular permissivity (Table S3).125

Comparative analysis of monopartite (+)RNA viruses126

To understand the differences in life cycle traits among (+)RNA viruses, we further evaluate our model127

with two distinct families of viruses for which comprehensive viral dynamics data exists, namely En-128

teroviridae (PV [19]) and Flaviviridae (JEV [32]). Comparison of life cycle process parameters (Fig 2,129

Table S2) shows that the replication rate (kr) and export rate of (+)RNA from compartment (ke) exhibit130

virus family specific trends (Fig 2c). For example, Poliovirus RNA replicates rapidly (60-fold higher kr)131

and re-enters the cytoplasmic pool faster (16-fold higher ke) than Flaviviridae family (HCV and JEV).132

Using our estimate of kr = 210 h−1 for PV (similar to 133 h−1 estimated earlier [19]) and assuming PV133

genome replication takes 100 secs [49], we predict 5.8 simultaneous replication events occur per RCCM134

closely matching previously measured values of 6.5 -7 [50, 51]. On the other hand, JEV displays ≈ 3135

simultaneous replications per RCCM (assuming RNA elongation rate of 150 nt/min [43]) comparable136

to HCV and Dengue. This further shows that our model captures the now well recognized fact that CMs137

are sites of multiple parallel replication reactions without explicitly assuming it [2].138

Protein synthesis rate, kt = 18.9 h−1 for PV is comparable to HCV and similar to previous report139

[19] but JEV proteins are produced seven times faster. Although polyprotein processing and host cell140

state affect kt, we attribute the high kt values for JEV to its RNA cap dependent translation initiation141

[52] compared to the IRES mediated mechanism employed by HCV and PV [53, 54]. Faster protein142

production and an associated early induction of membrane re-organization could contribute to the faster143

functional maturation of CM for JEV consistent with our estimates for τF .144

Virus assembly and generation defined by ka is significantly (> 105 fold) faster for PV compared145

to the Flaviviridae viruses (HCV and JEV) reflecting their corresponding complexity in assembly and146

maturation. While the detailed mechanisms of virus assembly remains poorly understood, HCV and147

JEV are enveloped viruses made of 180 copies of three different structural proteins [55, 56] that require148

maturation post assembly whereas PV is a smaller non-enveloped virus [57].149

These differences in virus life cycle traits are robust to alternative formulations (SI S5). For example,150

whether we consider pre-formed CM (fCM = 1) [Figure S5], or a more gradual rise in compartments151

(Weibull exponent, n = 2) for replication compartment formation [Figure S6], high rates for JEV trans-152

lation, and rapid replication and assembly of PV sets them apart (Table S4). Similarly, stoichiometry153

of PNS in formation of RCCM [Figure S7], or consideration of replication coupled assembly of viral154

particles [22] [Figure S8] does not alter our virus specific parameter trends. While goodness of fit based155

on cumulative AIC values for the three viruses (Table S4) demonstrates a marginal advantage in favour156
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of our main model, measured CM formation dynamics [33, 34] lend additional support to our choice of157

the model. Similarly, independent experimental data like recovery of steady state levels of replication158

intermediate [58, 17, 59] and steady state positive/negative RNA ratios [46, 45] are congruent with our159

model (Table S4). Due to the lack of molecular details for virus assembly, our model only qualitatively160

captures the virus assembly and particle release dynamics and we cannot discriminate between alternate161

sites (CMs vs cytoplasm) for virus assembly.162

Conserved and virus-specific determinants shaping viral life cycle163

To evaluate how perturbations in life cycle model parameters affect the viral dynamics, we employed164

temporal sensitivity analysis (TSA) using the eFAST algorithm ([60]). TSA profiles of RCCM , the165

key intermediate and a surrogate for viral replication, highlights three distinct phases for the viruses166

(Fig 3 a). The initial establishment (E) phase is sensitive to the delay in formation of CM (τF ), and167

displays minimal replication due to shortage of CM. The next growth (G) phase represents the rapid168

increase in viral RNA production and is influenced by parameters governing the increase of (+)RNA in169

the cytoplasm, and thus the formation of dsRNA replication intermediate. Growth phase is sensitive170

to changes in viral replication rate (kr), the kinetics of (+)RNA export from CM (ke) and the rate of171

cytosolic degradation of (+)RNA (µR). The final saturation (S) phase is defined by the pseudo-steady172

state behaviour primarily regulated by the carrying capacity for RCCM (NC). Though the TSA trends173

are qualitatively similar, the time associated with each phase varies with the virus. The length of the174

E phase correlates with the estimate for τF , and time span of growth phase reflects k−1r and k−1e . So,175

while the G phase is comparable for HCV and JEV, it is very short for PV as is evident with the rapid176

increase in PV RNA in a short window of 2 h [19].177

Differences in the TSA profiles across the viruses are more evident when VT (Fig 3b) and Rcyt178

are considered (Figure S9). The profiles associated with VT are particularly informative in identifying179

‘choke points’ and their effectiveness for different viruses. We postulate that perturbations to replication180

(kr) would be more effective than translation (kt) against JEV but vice versa for inhibiting Poliovirus181

growth. For HCV, viral dynamics is influenced by viral RNA degradation (µR) to a large extent followed182

by translation and replication. µR is critical for HCV life cycle as its (+)RNA has a large dwell time in183

the cytoplasm (due to its large τF , k−1t and k−1c ). This shows how parameter sensitivity in our model184

can generate virus-specific insights into intervention strategies.185

Changes in NC and τF mimic the effect of perturbations to compartment186

formation187

Among the life cycle parameters, τF , ke and NC are reflective of the CM formation dynamics and CM188

morphology. Various viral [1, 2, 4, 35, 61] and host perturbations [62, 63, 64, 65] and drug interventions189

8

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.09.19.304576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304576
http://creativecommons.org/licenses/by/4.0/


[9, 8, 10] have been reported to alter membrane reorganization, which ultimately affects infection kinetics190

as well as the steady state achieved in the late stages of infection. We emulate some of these perturbations191

by varying τF (for kinetics) and NC (for steady state) and compare it to experimental observations.192

Reticulon 3 (RTN3) is an Endoplasmic Reticulum (ER) shaping host protein shown to be involved in193

ER membrane re-organization during various (+)RNA viral infections [62, 63]. Silencing RTN3 in host194

cells reduces viral replication of Flaviviruses [7] and Enteroviruses [6], but not in the case of HCV [5]. In195

our model, NC is the sole parameter that affects the steady state levels of viral (-)RNA levels (RCCM ),196

which is perturbed upon RTN3 silencing in host cells [7]. By just varying NC , we are able to reproduce197

correlated fold changes in (-)RNA levels, viral titre and PNS with respect to viral RNA as observed for198

various Flaviviruses[7] and HCV[5] upon silencing RTN3 (Fig. 3c-inset, c, d). This also suggests that199

the steady state level correlations among the various virus constituents are appropriately captured by200

our model.201

Our steady state level relations for levels of virus and viral protein with viral (+)RNA are distinct202

for the three viruses considered here. For HCV and PV, PNS varies linearly with viral (+)RNA level,203

however it is sub-linear in case of JEV (Fig. 3d). The increase in VT with viral (+)RNA levels is204

super-linear and sub-quadratic, for JEV and HCV, respectively whereas it is linear for PV (Fig. 3d).205

The trends are corroborated by steady state analysis of the model (refer SI S3). Efficient assembly for206

PV (kaRcyt >> µP ) leads to Rcyt-independent level of PS (PS ≈ kt
ηSka

), resulting in a linear relation207

between VT and (+)RNA (VT ≈ krNC
µR
≈ Rcytkt

µRηS
). When comparing HCV and JEV, higher kt.ka estimate208

contributes to faster assembly of Rcyt. Thus, Rcyt (and consequently PNS =
ktRcyt
µP

) increases sub-linearly209

with NC for JEV.210

To evaluate the effect of the compartment formation kinetics, we compare viral polyprotein dynamics211

of HCV NS4B mutants, shown to be defective in inducing membrane re-organization [35, 61]. Using τF212

as the sole fitting parameter (details in SI SM3), the model is able to accurately recover the normalized213

protein dynamics observed for these sgHCV mutants [5] (Fig 3e). Large τF estimated for the NS4B214

sgHCV mutants R52D, Y63A and R52DY63A, (63, 101 and 80 h, respectively) compared to 5.8 h for215

the WT virus highlights how increased delay in CM formation affects viral dynamics.216

Compartmentalization of replication defines the fate of virus infection217

Compartmentalization of viral replication establishes sites for efficient (+)RNA replication, protected218

from cytoplasmic degradation in the infected cell. However, compartmentalization is not always guaran-219

teed upon virus entry, with the possibility of degradation of viral genome in the host cytoplasm before220

membrane reorganization. This aspect was not considered in models that assume pre-existing CMs. We221

posit that the infection outcome of viral seeding event is an all-or-none phenomena that is determined222

at the onset of the infection by the opposing effects of cytoplasmic viral RNA degradation and the for-223

9

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.09.19.304576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304576
http://creativecommons.org/licenses/by/4.0/


mation of RCCM (Fig. 4a). Indeed, stochastic simulations of the HCV life cycle demonstrates these two224

outcomes similar to previous reports [26] (Fig. 4b). All realizations where RCCM is formed before the225

complete degradation of viral RNA result in a productive infection, otherwise the infection extinguishes.226

We define this likelihood of productive infection establishment post virus seeding as ‘cellular infectivity’,227

Φ.228

Φ ranges between zero (deterministic extinction of infection) and one (deterministic establishment of229

productive infection), and is influenced by virus-host factors that are critical in the early stages of virus230

life cycle. For example, Φ increases monotonically to saturation with viral seeding load (N) (Fig 4c). It is231

also modulated by the kinetics of viral processes leading to compartmentalization of replication (kt, τ
−1
F ,232

kc) and the stability of viral genome in host cytoplasm (µ−1R ) [Fig 4d, Figure S10, Figure S11]. This is233

consistent with reports that show reduction in infection success rate by Phosphatidylinositol 4-kinase III234

alpha silencing [11] or for Enterovirus mutants [6] where CM formation is expected to be hindered. This235

effect is also associated with the antiviral activity of membrane re-modeling inhibitors like K22 [9, 8]236

that likely influence τF . Φ also increases from HCV to PV to JEV, based on our estimates of their life237

cycle parameters (Fig 4c). We estimate a significant fraction of single virus infections are non-productive238

(estimated to be 40% and 85% for JEV and HCV, respectively). With larger viral seeding, Φ increases239

such that at N=8, Φ of 0.95 closely matches the 95.28% infection success rate observed with HCV (8240

RNA measured inside the cell at 3 hpi [22]).241

Interestingly, while infection success rate with 10 seeding genomes remains unaffected when τF is242

increased, it drops by 47% for single genome infection for the same (by 2-fold) change in τF . This mirrors243

the larger reduction in fraction of productive PV infected cells observed due to action of membrane re-244

organization inhibitor, PIK93 [66] at low multiplicity of infection [12]. This effect also contributes to the245

synergy observed between entry inhibitors (that would decrease effective N) and other antiviral agents,246

like protease inhibitors, membrane re-organization inhibitors, cyclophilin inhibitors, against HCV [67, 68].247

Synergy among strategies reducing cellular infectivity248

Since the life cycle parameters that limit Φ collaborate in complex ways, we conjectured their inter-249

dependence would give rise to synergy in their action. We use the Bliss independence criterion [69]250

to evaluate this synergy (Ψ) since these early life cycle events are likely to occur independently at the251

molecular level. Apart from reducing Φ independently, τF and µR positively synergize (ΨτF ,µR > 1)252

when combined for the viruses (Figs. 5a, Figure S12a,b). For example, doubling of both τF and µR253

values resulted in an eight fold reduction in Φ compared to the product of their independent actions in254

case of HCV. In our formalism, synergy stems from enhanced delays in the formation of compartments255

leading to increased exposure of viral RNA to cytosolic degradation. By extension, other RNA viruses256

that employ compartmentalization to stabilize replication will also display such behaviour.257
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At first glance, the quantitative relationship for τF − µR synergy varies with the virus-host system258

and seeding density in a complicated fashion (Figs. 5b). Under conditions where Φ → 1 or is close259

to extinction of infection (Φ → 0), perturbations do not influence Φ, individually or in combination.260

However, figure 5c shows that ΨτF ,µR decreases with {(1 − p0) + p12}, a surrogate for how far the261

system is from either of the two deterministic limits (SI S4), where p0 and p12 denote Φ in unperturbed262

and doubly perturbed conditions, respectively. Similar synergy and associated negative correlation with263

{(1 − p0) + p12} is also predicted for τF − kt (Figure S12c-g). Therefore, interventions that target264

membrane reorganization can be combined with other antiviral inhibitors to target early life cycle events265

and achieve efficient viral clearance.266
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Discussion267

We incorporated the dynamics of replication compartment (CM) formation accompanying cellular infec-268

tion into a simplified intracellular life cycle description for monopartite (+)RNA viruses. This allowed269

us to capture observed dynamics for viruses spanning multiple (+)RNA virus families, parse diverse ef-270

fects of host cell susceptibility, host factor silencing and virus mutations, as well as identify stochasticity271

associated with establishment of (+)RNA virus infection upon cell entry.272

Based on temporal dependencies among model parameters, the viral life cycle can be categorized273

into three phases - establishment, growth and saturation (steady state). High translation efficiency274

(5′cap-dependent ribosome loading) and fast CM formation (associated with faster protein production),275

as observed for Japanese Encephalitis virus (JEV), results in rapid completion of the establishment276

phase. Following the compartmentalization of replication, the life cycle enters the growth phase that is277

marked by positive feedback from the newly synthesized RNA fueling the replication process. Kinetics278

of replication (kr), (+)RNA export from CM (ke) and (+)RNA degradation in cytoplasm shape this279

phase, which is particularly short for PV, owing to its rapid replication and export. Virus generation280

(ka) for PV is also very fast compared to the Flaviviridae members, which we attribute to differences281

in virus structural complexity, assembly and egress mechanisms [70, 71]. Replicative fitness (partly282

defined by kr and NC) and viral RNA stability (µ−1R ) determines the steady state levels of cytoplasmic283

(+)RNA and viral titre in the final saturation phase for all viruses. Not surprisingly, kr, which is targeted284

via nucleoside inhibitors, remains a promising pan-viral drug target. Additionally, temporal sensitivity285

profiles suggests that the translation of PV is more sensitive to inhibition compared to replication while286

the reverse is true for JEV. Virus production is robust against reduction in assembly rate (ka) for all287

the three viruses considered here. Combined with steady state analysis, this suggests that genomes are288

packaged efficiently compared to their effective synthesis and degradation.289

In our formalism, we also identify dynamics of CM formation (broadly defined by τF and kc) to be290

a key kinetic barrier in the early stage of the (+)RNA virus life cycle and it has been aptly described as291

the ‘load and choke point’ [17]. We demonstrate that ability of viruses to successfully establish infection292

in the host cell is stochastic and this ‘cellular infectivity’ (Φ) is determined at the onset of the infection.293

Such early stochastic extinction of viral infection has been similarly suggested due to biological noise294

[14, 13, 26]. Using our model based characterization of the viral life cycle, we are able to estimate this295

effect for the viruses. For synchronous co-infection, we predict that multiple genome infections are more296

likely to result in productive infection than single copy infection (as observed for PV [72]).297

In a cell population, Φ quantifies the fraction of cells successfully infected upon entry of infectious viral298

particle(s) and correlates with the multiplicity of infection (MOI). As with MOI (discussed in [71]), we299

see that Φ also depends on seeding density (N) and virus-host determinants. Factors like viral genome300

stability in cytoplasm (µ−1R ) and kinetics of viral processes antecedent to formation of RCCM affects301

12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.09.19.304576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304576
http://creativecommons.org/licenses/by/4.0/


productive infection. Indeed, drop in viral titers measured for translation-defective PV strains have302

been largely attributed to reduction in infectivity rather than growth defects [73]. Infectivity is highly303

sensitive to τF (compared to kt or kc). This agrees with the reduction in Φ observed when membrane304

re-organization is hindered independently [6, 11]. Similarly, we speculate that the infectivity of a virus305

in a host cell can define its permissiveness [17, 74, 75].306

Some of the early-infection parameters can also control cellular infectivity effectively in combination,307

displaying higher order effects due to their mutual action on common viral entities or processes. Our308

predictions are consistent with increased antiviral activity observed for membrane re-organizing inhibitor309

at lower MOI [12] as well as synergy observed between cell entry inhibitors and several classes of antiviral310

agents against HCV [67, 68]. Thus, strategies or drugs delaying CM formation, slowing translation,311

increasing viral degradation and reducing viral seeding, are expected to synergize in reducing infectivity.312

Host and viral heterogeneity would further accentuate this all-or-none dimorphism [15, 13].313

Decrease in overall viral production due to lower infectivity can reduce viral seeding for the subsequent314

round of infections. Due to its dependency on viral seeding, such reduction in infectivity can manifest315

in a compounding effect that reduces the effective basic reproduction number, R0 and can lead to viral316

clearance. Therefore, cellular antiviral strategies that target cellular infectivity can be used in conjunction317

with other interventions (including action of innate immune response) that reduce the virus load.318

Overall, our general theoretical framework can serve as a starting point for analysis of novel viruses319

with limited molecular level characterization, to generate insights into life cycle traits and bottlenecks,320

motivate design of experimental studies for insightful investigation and evaluate antiviral strategies.321
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Methods322

Experimental data and model fitting323

All experimental data sets used were curated from literature. Data for estimation of τS was retrieved from324

[37, 38, 39, 40]. Cellular life cycle dynamics data for HCV, JEV and PV were obtained from [22], [32]325

and [19], respectively. JFH1 (sgHCV strain) transfection dynamics and polyprotein dynamics of HCV326

NS4B mutants was obtained from [17] and [5], respectively. Effect of RTN silencing on viral dynamics327

were curated from [5, 7]. Figure digitization and data extraction were done using WebPlotDigitizer [76].328

Estimation of parameter values was done using Iterative Approximate Bayesian computation (iABC)329

algorithm (SI SM1), which iteratively improves upon the distribution of parameter values based on χ2
330

statistics computed between model prediction and observed data, χ2 =
∑ (Prediction−Data)2

V ar(Data) [77, 19]. In331

case variance was missing, we assumed a 25% relative error in the reported data and variance used in332

each case is shown in the figures. Practical identifiability is defined as the pairwise correlation in values of333

parameter combinations derived from the final iteration of estimation [19]. Further details are provided334

in the SI Methods.335

Temporal sensitivity analysis and estimation of Φ and Ψ336

We used extended Fourier Amplitude Sensitivity Test (eFAST) [60, 78], to estimate the corresponding337

temporal sensitivity profile. Sensitivity indices for RCCM , VT and Rcyt, corresponding to a change of338

up to 10% in parameter values, were evaluated every 1.5 minutes through the course of the infection to339

generate the temporal profile.340

To estimate cellular infectivity (Φ), stochastic realizations of the life cycle were implemented using341

the Gillespie algorithm [79], and classified as (a) successful infection (IS) if RCCM is formed, (b) failed342

infection (IF ) if all viral (+)RNA degrade, and (c) inconclusive if neither happen within a stipulated343

time. Since the fate of infection was decided in all stochastic realizations for HCV life cycle (slowest of344

the three viruses) by 12 h, this was used for the simulation run time. We consider only the ‘conclusive’345

realizations and define Φ as #(IS)
(#(IS)+#(IF )) . Dynamics of fCM is incorporated by updating it at every346

event or at steps of 0.05τF (whichever is shorter). This limits the error due to discretization of fCM to347

6.5%.348

To calculate synergy (Ψ), between two parameters, a1 and a2, that reduce Φ, we estimate p0, p1, p2349

and p12 as Φ corresponding to no change, change in parameter a1, parameter a2, and in both parameters,350

respectively. Synergy among parameters is given by, Ψ = g1.g2
g12

where gX denotes pX
p0

for X ∈ 1, 2, 12351

(Bliss criterion [69]).352
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Table 1: Life cycle Model Parameters

Parameter
[Units]

Description
HCV in
Huh7

JEV
in PS

PV in
HeLaS3

Free parameters ∗

τF [h]
Time constant for functional
development of CMs

5.8 2.6 4.2

kt [h−1] Protein production rate per Rcyt 23.7 1.6×102 18.9

kc
[molecules−1.h−1]

Formation rate of RCCM 2.6×10−3 1.6×10−2 1.2×10−2

kr [h−1] (+)RNA synthesis rate per RCCM 3.6 3.7 2.2×102

ke [h−1]
Export rate of RCM into the
cytoplasm

6.6×10−2 7.2×10−2 1.1

NC [number]
RCCM carrying capacity of the
host cell

8.8×101 1.21×103 1.62×103

ka
[molecules−1.h−1]

Effective virus generation rate 3.6×10−8 8×10−9 5.6×10−3

Fixed parameters #

ηS Number of PS per virus particle 180 180 60

µR [h−1] Degradation rate of Rcyt 0.25 0.25 0.25

µP [h−1] Degradation rate of PS and PNS 0.11 0.11 0.11

µV [h−1] Degradation rate of VT 6×10−3 6×10−3 6×10−3

∗ Median of the distribution estimated from data fitting (Fig. 2c).
# From literature [56, 55, 57, 22] or from analysis of [22], as shown in SI text S9.
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Cellular life cycle model

dRcyt
dt

= ke.RCM − ka.PS .Rcyt − µR.Rcyt − kc.PNS .Rcyt.(fCM −
RCCM
NC

) (2.1)

dPNS
dt

= kt.Rcyt − µP .PNS − kc.PNS .Rcyt.(fCM −
RCCM
NC

) (2.2)

dPS
dt

= kt.Rcyt − ηS .ka.PS .Rcyt − µP .PS (2.3)

dRCCM
dt

= kc.PNS .Rcyt.(fCM −
RCCM
NC

) (2.4)

dRCM
dt

= kr.RCCM − ke.RCM (2.5)

dVT
dt

= ka.PS .Rcyt − µV .VT (2.6)
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Figure 1: Viral life cycle model and incorporation of compartment formation dynamics
(a) Schematic of the viral life cycle model. In the cytoplasm, the (+)RNA (Rcyt) is translated by the host
ribosomes to produce viral structural (PS) and non-structural proteins (PNS). ηS copies of PS associates
with Rcyt to assemble virus particles (VT ). Intracellular membrane is re-organized to form compartments
(CM) which harbours viral replication complex (RCCM ) that produce new (+)RNA strands, which are
exported out into the cytoplasm. (b) Normalized dynamics of compartment formation (fCM ) observed
for different (+)RNA viruses fit (lines) using eq. 1 (n = 4) is shown. Data is derived from [37, 38, 39, 40]
for Mouse hepatitis virus (MHV), Equine arteritis virus (EAV), MR766 and H/PF/2013 strains of Zika
virus (ZIKVM and ZIKVH) and Hepatitis C virus (HCV). (c) Virus life cycle model fit for HCV infection
in Huh7 cells [22]. Circles and error bars correspond to data and colored lines represent respective fits.
Thin lines (lightly colored in background) represent dynamics predicted using a set of best parameter
combinations (250 sets) from iABC and thick lines denotes their average.
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Figure 2: Comparison of monopartite (+)RNA viruses
Model fits (thin lines, average shown as a thick line) for the intracellular dynamics of virus constituents
in case of (a) JEV infection in PS cells [32], and (b) PV infection in HeLaS3 cells [19] are shown. (c)
Comparison of parameter value distributions estimated for HCV, JEV and PV life cycle dynamics from
model fitting. Grey vertical lines indicate the range of initial guesses used for each parameter.
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Figure 3: Perturbation analysis of viral life cycle parameters
Parameter-temporal sensitivity profiles for dynamics of (a) RCCM and (b) VT , for HCV, JEV and PV
(with initial seeding of Rcyt=3) are shown. S(X) denotes the profile associated with parameter, X, and
SR = S(µP ) +S(µV ) +S(dummy). Based on the RCCM profiles, life cycle of each of the viruses can be
divided into the establishment (E), the growth (G) and the saturation (S) phases as shown. Time axis is
not to scale across profiles for different viruses. Fold change in steady state levels (c) VT vs (+)RNA, (d)
PS vs (+)RNA and (c-inset) (-)RNA vs (+)RNA, due to change in NC is compared to experimentally
data [7, 5]. Solid lines are model predictions and symbols show experimental data. (e) Viral protein
dynamics for NS4B mutants is fit with life cycle model by varying τF . Solid lines and symbols show best
fits and data [5], respectively.
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Figure 4: Stochastic fate of viral infection
(a) When the cytoplasmic viral RNA is encapsulated in vesicular compartments, high replication rate
and minimal degradation leads to productive infection. Otherwise, degradation of all viral RNA in the
cytoplasm leads to complete extinction of the infection. (b) Stochastic realizations of cellular life cycle
dynamics of HCV in Huh7 cells at viral seeding of 3. Thin lines show simulated trajectories for viral
RNA, (red) when at least 1 RCCM was formed or (black) when no RCCM were formed and thick lines
represent their corresponding averages. (c) Probability of establishment of infection (Φ) as a function of
seeding number (N) for HCV, JEV and PV is shown. (d) Fold change in Φ for PV infection corresponding
to a change in various parameters with respect to the wild type (WT, Table 1) values at different virus
seeding (N) is shown.
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Figure 5: Synergy between life cycle processes affecting infectivity
(a) Ψ(τF , µR) evaluates the Bliss synergy between τF and µR for Φ, for HCV at seeding, N = 3. (b)
Variation of Ψ(τF , µR) for various fold change in parameter values (denoted by different markers) with
viral seeding (N) for each virus is shown. (c) Ψ(τF , µR) shows a negative correlation with {(1−p0)+p12}.
τWT
F and µWT

R corresponds to the estimate for the respective virus. Marker properties are same in (b)
and (c) and marker size corresponds to value of N.
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SI S1 Description of the model

To capture the viral dynamics with a generalized model, we focus on life cycle processes common to all monopartite
+ssRNA viruses. Virus enters the cell and uncoats to release its genome, +RNA, into the cytoplasm. This is
usually a fast process relative to the corresponding viral cellular infection span, as suggested by direct kinetics
measurement [5] or detection of early protein production (a post ’un-coating’ event) [1]. Thus for a reduced model,
we do not explicitly account for this fast step of viral entry. Furthermore, we coarse-grain over specific molecular
details to keep model formulation simple. For example, we ignore the specific molecular roles of individual viral
proteins. We use a general term for non-structural proteins (PNS) that are involved in the replication process
and one for structural proteins (PS) which are required for viral assembly.

Viral protein synthesis

In the cytoplasm, the viral +RNA strands associate with host ribosomes, to undergo translation. Across the class
of the +RNA viruses, different ribosome loading mechanisms has been observed for viruses [25, 31, 21], which
can influence the kinetics and the number of ribosomes simultaneously loaded on a translating RNA strand.
Translation produces polyprotein that is co- and post-translationally processed (by host and viral proteases) to
produce individual viral proteins (PNS and PS). This entire process of protein synthesis is simplified by lumping
it from ribosome loading to polyprotein cleavage into a single kinetic step.

Assuming abundance of host ribosome, the process is modelled as a first order reaction proportional to level
of +RNA strands in the cytoplasm, Rcyt (eqs. 2.2 and 2.3). The rate parameter, kt, accounts for rate of single
event of protein production from Rcyt multiplied by the average number of such simultaneous events occurring
on each cytoplasmic viral +RNA strand.

Previous computational studies [9, 1] suggest that ribosome loading and translation elongation steps are fast
compared to polyprotein cleavage for HCV, thus it is likely that polyprotein processing is the rate determining
step and defines the parameter kt.

Compartment formation

Cellular life cycle of +RNA viruses are marked by spatial segregation of viral replication from the host cytoplasm.
During infection, viral non-structural proteins induce morphological changes in the membranes of host organelle
(target organelle varies with virus) to form of replication compartments (CMs) [24, 26, 10, 19, 34]. These
compartments confine (viral) replication substrates and protect them from cytosolic degradation.

Although a critical life cycle event for +RNA viruses and probably a rate limiting process, formation dynamics
of CMs has not been given due attention in previous models [9, 4, 1, 37]. To account for the kinetics of CM
development, we use a data driven approach augmented by a reasonable assumption. Though compartment
formation is induced by PNS and we don’t have sufficient quantitative data to reliably account for the correlated
dynamics. Therefore, we assume that CM formation is triggered by viral entry. Furthermore, it is difficult to
independently measure the functional development of CM that imparts protective confinement of replication. So,
we estimate the rate parameter via life cycle fitting. However, the mathematical form of the dynamics is assumed
to be identical to structural development of CMs, which has been quantitatively monitored for various +RNA
viruses. Our analysis show that a Weibull function with exponent of 4, captures the structural manifestation

quite accurately (Figure 1, main text; Table S1). Thus we assume the same form, given by fCM (t) = 1− e−(
t
τF

)4

(eq. 1, main text), to model the functional maturity of CMs. In the expression, τF is the delay parameter
associated with the dynamics.

An infection-triggered induction, rather than a PNS triggered induction, reduces the number of free param-
eters. Furthermore, it allows us to implicitly lump time lags associated with entry and un-coating, into τF .
However these sub-events can be explicitly modelled in future with more measurements.

Compartmentalization of replication intermediate

Viral Rcyt associates with PNS and unoccupied compartments to form compartmentalized replication com-
plexes (RCCM ). Given the limited number of unoccupied compartments available at a given time, the com-
partmentalization process can be viewed as a competition among complexes to be encapsulated. The dy-
namics of RCCM formation is modelled as a logistic function with the growth rate proportional to Rcyt and
PNS and carrying capacity being proportional to level of unoccupied compartments at that time, given by(
CM(t)
NCM

− RCCM (t)
NC

)
=
(
fCM (t)− RCCM (t)

NC

)
.

The rate constant, kc, captures the compartmentalization kinetics whereas NC denotes the number of com-
partmentalized replication complexes sustained during the infection (eqs. 2.1, 2.2 and 2.4, in Main text). Both
NC and kc depend on stability of the replication complex in the host cell. Additionally, NC is also influenced
by the number of replication compartments available, and kc is influenced by factors like cis-replicating element,
compartment accessibility and genome RNA-PNS association kinetics. Defining NCM as the carrying capacity of
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replication compartments formed during the course of infection, we can say that on an average NC
NCM

replication
intermediates occupy a given compartment.

Compartmentalized replication and +RNA export from compartments

Inside a compartment, new viral +RNA strands are synthesized at a rate proportional to number of replication
complexes compartmentalized into the compartment. We assume most +RNA synthesis occurs inside the com-
partments, ignoring cytoplasmic production of +RNA in comparison. Hence, the total rate sould be proportional
to total RCCM present in the cell at that time (eq. 2.5). The rate constant, kr, denotes the net +RNA synthesis
rate per RCCM , determined by replication elongation kinetics as well as the (average) number of simultaneous
replication events occurring on each RCCM .

In the model, we assume a temporally averaged value for kr which is a good approximation. The number
of viral replicase is fairly constant as they are protected from degradation inside the compartments [24, 26,
10] and the import of additional viral replicase protein into a compartment drops drastically with the age
of the compartment [35]. Furthermore the viral +RNA present in the compartment are exported into the
cytoplasm. The process is modelled as a first order reaction (eqs. 2.1, 2.5). The rate is proportional to +RNA
in compartments (RCM ) and parameterized by ke.

Virus generation

Viral genome associate with various structural proteins PS to form a viral particle, which exits the cell either
via a lytic or lysogenic mode, depending on the virus. Recent studies show that assembly occurs close to
the compartmental structure, and is phase separated from the cytoplasm [7]. In addition to the viral egress
mechanism, the mechanism of viral assembly also differs with virus [30]. Though a lot has been discovered,
current understanding of precise mechanism is far from complete. This, coupled with our attempt to simplify
the life cycle model, we coarse-grain the description of the entire viral generation process with a single equation.

Virus generation process is modelled as a second order reaction between Rcyt and PS with rate constant, ka,
to produce virus particles (VT ) (eqs. 2.1, 2.3 and 2.6, Main text). The parameter, ka, is affected by assembly
mechanism, genome-capsid association kinetics as well as viral egress mode. Further, cis-acting elements and
packaging signal sequence on the genome can also modulate ka. Additionally, ηS accounts for stoichiometry of
viral particle composition. ηS copies of each structural protein associate with one genome to form one virus
particle.

Degradation

Viral genome and proteins are susceptible to degradation in cytoplasm (eqs. 2.1, 2.2, 2.3). Motivated by
experimental data[1], we also consider degradation of virus (eq. 2.6). However, we ignore the degradation of
viral molecules inside compartment, considering the protective environment inside the CMs [24, 26, 10]
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SI S2 Revisiting the assumptions

We have tried to keep the model simple, so as to get reliable estimates for model parameters with limited ex-
perimental data available. Furthermore, lumping mechanistic and molecular details, makes the model applicable
to a wider range of viruses. Such assumptions are discussed here, which can be challenged in future with better
understanding and/or more quantitative data.

In our formulation, we assume that CM formation is triggered by the onset of infection, not by protein level
(PNS). One could incorporate the effect of PNS and model CM formation with an activating Hill function. For

example, dfCM
dt = Rf

PmNS
PmNS+κ

m (1 − fCM ), where κ and m are the threshold and shape parameters of the Hill

function, respectively. Rf represents the maximal rate of CM formation, when PNS >> κ and fCM << 1.
However in this formulation, the number of free parameters increases, which without independent estimation(s)
will lead to over-fitting of data. Thus given the limited data, we chose the Weibull function with a one time and
one steepness parameter.

In our model, viral entry and un-coating delays are implicitly lumped with the true CM formation lag within
τF . However, one should note that it is possible that viral +RNA degradation rate may vary depending on its
state of virus encapsidation. Thus, subsequent models can consider such sub-events more carefully. A small (but
non-zero) basal level of +RNA synthesis occurs in the cytoplasm outside the CM. However, the contribution
is small compared to replication occurring in the CM. In case of HCV, it is known that mutants defective in
inducing CM formation [36] have dynamics similar to replication deficient mutants[4], Although we have not
included it explicitly, the effect of cytoplasmic replication is lumped in the degradation rate of viral +RNA in
cytoplasm (µR). We have also ignored low level of degradation of viral +RNA and replication complexes inside
CMs, based on experimental evidence.

Inside the compartments, we do not explicitly account for formation of dsRNA due to replication of nascent
+RNA inside the compartments, rather +RNA have to be exported before they can synthesize a replication
intermediate. This simplifying assumption works well in our deterministic mean field setting owing to the high
bias of replicase enzyme to replicate the -RNA strand over the +RNA strand [2, 9].

The formation of compartmentalized replication complex (RCCM ) has been depicted as a single step asso-
ciation between Rcyt, PNS and unoccupied compartments. The assumption is implicit in the temporal order
of the events happening, that is, it does not differentiate whether (a) Rcyt and PNS associate first and then
enter the unoccupied RC, or (b) Rcyt and PNS enter the unoccupied RC and then associate. Furthermore the
process of association of NS proteins with +RNA to form replication complexes can be divided into multiple
steps, of which some are cis-mediated (like cis-replication element activity, NS3-5B protein association) whereas
others are trans-mediated [14, 18]. Cis-mediated reactions can be modelled as pseudo-first order reactions, and
the trans-mechanisms by second order reactions. Further assuming that a trans-mediated sub-process is the
rate limiting step in complex formation [9, 4, 1, 37], and that the complex also associates with the unoccupied
compartments, we model the kinetics of +RNA-PNS-’unoccupied CM’ association to form compartmentalized
replication complex as a third order reaction. The rate kinetics of the other fast sub-processes are lumped in the
kinetic parameter, kc.

Similarly the process of viral particle generation constitutes of multiple sub-processes, kinetics of which
have been lumped into ka (see previous section, SI S1). Future models could consider this process with higher
granularity.
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SI S3 Steady state analysis

Steady state conditions for non-zero viral seeding:

fCM = 1 RCCM = NC

RCM =
krNC
ke

Rcyt =
krNC

kaPS + µR

PNS =
ktRcyt
µP

PS =
ktRcyt

ηSRcyt + µP

VT =
ka
µV

RcytPS

Simplification under various limits:

1. When kaPS >> µR, µP we have PS ≈ kt
ηSka

, Rcyt ≈ ηSkrNC
kt

and VT = krNC
µR

.

2. When kaPS << µR, µP we have Rcyt ≈ krNC
µR

, PS ≈ ktkrNC
µRµP

and VT ≈ (krNCµR
)2 ktkaµP

.

3. When the two processes (assembly and cytoplasmic degradation of +RNA or PS) are comparable then VT
is super-linear but sub-quadratic with increase in +RNA levels. In this regime, an increase in kaPS due
to higher kt leads to comparatively lower increase in Rcyt (and thus PNS) due to increase in NC . This
explains the trends between PNS and +RNA observed for HCV and JEV.
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SI S4 Quantifying “far from deterministic regime”

We define p0 and p12 as the cellular infectivity corresponding to no perturbation and combined perturbation
respectively. Let us consider individual perturbations which reduce Φ, so p0 ≥ p12. Then, the following situations
are possible
(a) p0 = 0 =⇒ p12 = 0. In either situation, unperturbed or perturbed, the infection will go extinct - the
deterministic infection extinction limit.
(b) p12 = 1 =⇒ p0 = 1, implying that viral seeding always results in a productive infection - the deterministic
infection sustenance limit. Here these limits are defined for a particular system, characterized by the virus-host
pair, seeding density and level of parameter change, being considered.

So we see that (1 − p0) and p12 positively correlate with how far system is from the limit of deterministic
infection extinction and sustenance, respectively. Hence, we use {(1− p0) + p12} as a first-order approximation
to quantify how “far the system is from either of the deterministic regimes”.
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SI S5 Alternate models

Formulations

An important difference between the our proposed model and previous models existing in literature is that we
incorporate the dynamics of compartment formation. We assume that the normalized dynamics of functionally

active compartment increases as fCM = 1 − e−(
t
τF

)n
, (eq. 1) with n = 4 as obtained from the considering the

structural development of compartments; this model is referred to as ‘M1
4’. Here, we explore two alternative

formulations of fCM .

1. pre-formed CM present: fCM = 1 (equivalent to earlier models [9, 1]). This model is referred to as M′.

2. fCM is described by Weibull function but with exponent, n = 2. Hence for this alternate model, fCM =

1− e−(
t
τF

)2
. This model is referred to as ‘M1

2’.

Note as τF → 0, M1
4 (or M1

2) converges to M′; thus M′ can be considered as a special case of M1
4 (or M1

2).

Another alternate formulation stems from the stoichiometric consideration for the replication complex. In our
model we assume that one PNS and one Rcyt are used to form one RCCM . Thus, we explore a scenario (third
alternate model) where ten PNS and one Rcyt are used to from one RCCM . This alternate model is referred to
as ‘M10

4 ’.
For this model, the only equation different from M1

4 is eq. 2.2, which is modified to dPNS
dt = kt.Rcyt − µP .PNS −

10.kc.PNS .Rcyt.(fCM − RCCM
NC

).
However, since only a tiny fraction of NSP formed localize in the compartments, we did not expect the stoi-
chiometry to significantly affect the life cycle dynamics.

Furthermore, in ‘M1
4’, viral production uses genome from the cytoplasm since structural proteins are also

present there. However some reports indicate that assembly is also spatially segregated from the cytoplasm, and
may be linked with replication compartments [26, 10, 11, 7]. Thus we consider an alternate model (the fourth
alternate) for virus generation, where genome from compartment (RCM ) associates with PS to form virus; this
is similar to the model presented by Aunins et al, 2018 [1]. This is referred to as W4.
However this model (W4) and the one presented by Aunins et. al [1], do not explicitly locate where capsid
genome assembly occurs. This formulation suggests that the structural proteins enter into the compartments
where genome were formed, and the import kinetics is lumped into the assembly rate. Nevertheless, this indicates
a directionality among the viral processes, which one may argue not to be the optimal strategy for the virus [23]

Compartmental viral +RNA packaging model (W4)

dRcyt
dt

=ke.RCM − µR.Rcyt − kc.PNS .Rcyt.(fCM −
RCCM
NC

) (W4.1)

dPNS
dt

=kt.Rcyt − µP .PNS − kc.PNS .Rcyt.(fCM −
RCCM
NC

) (W4.2)

dPS
dt

=kt.Rcyt − ηS .ka.PS .RCM − µP .PS (W4.3)

dRCCM
dt

=kc.PNS .Rcyt.(fCM −
RCCM
NC

) (W4.4)

dRCM
dt

=kr.RCCM − ke.RCM − ka.PS .RCM (W4.5)

dVT
dt

=ka.PS .RCM − µV .VT (W4.6)

Comparison

In addition to the main model [M1
4], we fit the four alternate models to the observed cellular dynamics of viral

life cycle of HCV in Huh7 cells [1], JEV in PS cells [32] and PV in HeLaS3 cells [28] and estimate the values of
model parameter (Figs S5, S6, S7 and S8). Fitting statistics are summarized in Table S4. Based on AIC values
for each model, cumulated over analyses of three infection systems, M1

4 and M′ seem to be slightly better than
others (δAIC ≈ 2). Similar AIC values for M1

4 and M′ inspite of one extra parameter in M1
4 demonstrates the

merit of our model.
We see that accounting for CM formation (as in M1

4) better fits the dynamics of viral life cycle when CM
formation delay and infection span are comparable (as in PV). M1

4 estimates about 88 HCV compartmentalized
replication complexes (NC , Table S2), which matches more closely with experimentally reported range of 70-100
[15, 4, 13], compared to the corresponding estimate by M′ (NC ≈300, Table S4). Further the steady state ratio
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of +RNA to -RNA predicted by M1
4 (=53:1), about 1.6 times the experimental observations [35, 12] whereas the

(corresponding) ratio predicted by M′ (=12.5:1), more than 2-fold smaller (than the observations). Thus, M1
4

can be considered a better generalization compared to M′, to model cellular life cycle of +ssRNA viruses.
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SI SM1 Iterative Approximate Bayesian computation (iABC) for parameter esti-
mation

We implement an iterative version of Approximate Bayesian computation (ABC)[3, 28] for data fitting. We
iteratively improve upon distribution of each parameter, based on χ2 statistics of parameter sets sampled using
them. The algorithm used is as follows:

1. Step 1: Initial guess for parameter estimate distribution

2. Step 2: V parameter sets are sampled using the current estimate of the distribution. Calculate χ2 statistics
for each of the parameter sets.

3. Step 3: Sort the parameter sets based on their χ2 statistics. Select M parameter sets with lowest χ2

statistics.

4. Step 4: Use the M parameter sets to calculate the new estimate for the distribution. Repeat Steps 2
through 4 until stopping condition is satisfied.

Latin hyper-cube sampling (LHS) [22] is used to sample parameter sets from the distribution. To improve
robustness of the algorithm and not spiral into local minima, we sample parameter combinations (in Step 2) from
current estimate of distribution combined with a uniformly distributed noise.
Sampling distribution for next iteration =

1
1+α(k) (Current estimate of distribution) + α(k)

1+α(k) (Uniform distribution),

where α(k) is the strength of perturbation, which decreases with the index of iteration, k.

Stopping conditions can be based on numerical convergence in successive estimates of parameter distribution
or on χ2 statistics. In our implementation, the algorithm was stopped after a fixed number of iterations, k. k
was chosen such that the difference between the largest χ2 statistics of the parameter sets used for estimating
the new distribution converge (Fig S4 a, b, c).

SI SM2 Practical Identifiability calculation

We calculate the practical identifiability of parameter estimation to characterize the redundancy in parameter
distribution estimated using the given data. This is done by evaluating the correlation among the values of
different parameters which form the parameter sets used to calculate the distribution [28].

Suppose ~Θ1, ~Θ2, . . . , ~ΘM , are the M parameter sets selected based on χ2 statistics. We calculate the correlation
between {~Θi(p)}Mi=1 and {~Θi(q)}Mi=1 to characterize the redundancy between the estimates of the pth and qth

parameters.

CC(p, q) =
M
∑M
i=1

(
~Θi(p)~Θi(q)

)
−
(∑M

i=1
~Θi(p)

)(∑M
i=1

~Θi(q)
)

√
M
∑M
i=1

~Θi(p)2 − (
∑M
i=1

~Θi(p))2
√
M
∑M
i=1

~Θi(q)2 − (
∑M
i=1

~Θi(q))2

Note that CC(p, q) is defined when p 6= q and the correlation matrix, as expected, is symmetric, that is,
CC(p, q) = CC(q, p).

Furthermore, lower the absolute value of CC(p, q) - correlation coefficient between the pth and the qth pa-
rameters - higher is the pair-wise identifiability between the estimates of the parameter given the data set.
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SI SM3 Implementation details

The ODE models were solved using MATLAB 2019b ODE solver, ‘ode23s’. Codes for the analysis can be down-
loaded from our Github repository, https://github.com/hcharsh/iABC_fit/tree/master/%2BRNA_viral_lifecycle_
fit. In addition to the data, we need to specify the fixed parameters and initial conditions (if known) to define
the fitting problem.

We fix parameter values associated with various degradation rates and viral particle stoichiometry either
based on literature survey or independent data analysis, indicated in this section. We also list the initial guesses
(for free parameters), algorithm options and initial conditions (if any) used in the study. In our analysis we
fit the logarithm of parameter values (normalized to the units mentioned in Table 1, Main text) in base 10, to
explore a large dynamic range for each parameter value.

In this section, u[a, b] denotes the uniform distribution with lower and upper bounds as a and b respectively.

SI SM3.1 Characterizing ultra-structural data corresponding to formation of replication com-
partments

Initial guess for the parameter distribution for fitting compartment formation dynamics (eq. S1) observed in
all four infection systems:
log10NCM ≈ u[0, 4], log10τ ≈ u[0, 2].

iABC algorithm options: k = 5; V = 1× 104; M = 0.025N; α = 0.25 for all of the systems considered here.

SI SM3.2 Characterizing the intracellular infection dynamics of HCV in Huh7, JEV in PS cell
or PV in HeLaS3

Fixed parameters:
ηS denotes the number of copies of each structural proteins required to form a viral particle. For HCV: ηS =
180[29]; For JEV: ηS is assumed to be same as that of DENV[17] or HCV, so ηS = 180; For PV: ηS = 60 [20].
For HCV, JEV and PV: cytoplasmic degradation rate of viral +RNA, µR = 0.25 h−1[1]
For HCV, JEV and PV: cytoplasmic degradation rate of viral proteins, µP = 0.11 h−1[1]
For HCV, JEV and PV: degradation rate of extracellular viruses, µV = 6× 10−2 h−1 - estimated using extracel-
lular virus dynamics observed (till 15 hours post infection) for HCV [1].

Initial condition used (all variables start at zero unless specified here):
For the model and all its variants, we have
For HCV: According to MOI specified [1], Rcyt(0) = 3 and PS = ηSRcyt = 540. Based on data [1], VT (0) = 4.6.
For JEV: According to MOI specified [32], Rcyt(0) = 10. Based on data [32], VT (0) = 0.01.
For PV: According to MOI specified [28], Rcyt(0) = 10.

Initial guess for the parameter distribution:
log10kt ≈ u[0, 3], log10kc ≈ u[−5,−1], log10τ ≈ u[0, 2], log10kr ≈ u[−1, 3], log10ke ≈ u[−2, 2], log10NC ≈ u[1, 4],
log10ka ≈ u[−10, 0].

iABC algorithm options: k = 8; V = 1 × 104; M = 0.025N; α = 0.25 for all three infection systems for all
the model variants.

SI SM3.3 Note on fixing the same value for cytoplasmic viral RNA degradation rate for HCV
and JEV

Parameter estimation (Table S2) suggests that τF = 2.6h for JEV whereas it is 5.8h for HCV. Faster protein
production (higher kt) leading to a rapid, early increase in NSP levels and consequently an early trigger for
membrane re-organization most likely explains the smaller lag in RC formation for JEV. Even differences in
re-organization mechanisms, across the different viruses, may contribute too.

However the observed trend may also be an artefact of our implementation procedure: here we assume
µR = 0.25h−1 for all infection systems. Studies suggest that 5’capping increases stability of viral RNA[6]; and
the low value of τF estimated may be compensating for the fixed parameter value used; as smaller τF or smaller
µR are functionally similar.
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SI SM3.4 Accounting for Luciferase dynamics to analysis transfection dynamics

We use the following equation to account for the dynamics of Luciferase while estimating parameters for (a)
sgHCV transfection in Huh7-Lp and Huh-Lunet cell lines [4], and (b) life cycle of WT and NS4B mutant HCV
strains [36]:
dL
dt = ktRcyt − µLL
Here L denotes level of Luciferase, produced upon translation of Rcyt (viral +RNA in cytoplasm). µL denote
the degradation rate of Luciferase which is fixed at 0.44h−1 based on experimental evidence reported [4].

SI SM3.5 Characterizing the intracellular transfection dynamics of JFH1 (sgrHCV) in Huh7-Lp
and Huh7-Lunet cell lines

Fixed parameters:
µR = 0.25 h−1[1]
µP = 0.11 h−1[1].
µL = 0.44 h−1[4].
Further assembly and viral degradation terms are ignored as sgHCV strain can not form new viral particles,
ka = 0 and µV = 0.

Initial condition used: Rcyt(0) = 100 and all other variables start at zero.
Initial guess for the parameter distribution:
log10kt ≈ u[0, 3], log10kc ≈ u[−5,−1], log10τF ≈ u[0, 2], log10kr ≈ u[−1, 3], log10ke ≈ u[−2, 2], log10NC ≈ u[1, 4].

iABC algorithm options: k = 3; V = 5× 103; M = 0.025N; α = 0.25 for both the transfection systems.

The analysis is done assuming 25% constant relative error in data reported (Fig. S2), as the range of reported
error varies a lot [4]. However we also fit the model using Rcyt(0) = 100 using reported experimental error [4]
and Rcyt(0) = 1000 assuming 25% constant relative error. The estimation is summarized in Fig. S3.

SI SM3.6 Intracellular life cycle of sgHCV NS4B mutants

τF is the only parameter being varied while fitting normalized protein dynamics observed for sgHCV NS4B mu-
tant strain. We fix the value of the remaining parameters according to those estimated in Table S2 (HCV infection
dynamics in Huh cells). τF is kept fixed for wildtype strain (Table S2). Since we do not know the initial condition
(viral seeding) precisely, we fit for it using the normalized protein dynamics observed for wildtype strain. The viral
seeding, thus obtained, is used for the analysis of τF for the mutant strains. Additionally we fix µL at 0.44 h−1 [4].

Initial guess for fitting WT dynamics: log10[Rcyt(0)] ≈ u[0, 2],
Rcyt(0) estimation: Median=12.45; first quantile=11.8; third quantile=13.6.

Initial guess for fitting mutant dynamics: log10τF ≈ u[0, log10144].

iABC algorithm options: k = 2; V = 103; M = 0.025N; α = 0.25 for each fitting exercise.

SI SM3.7 Note

While fitting JEV life cycle dynamics, the normalized dynamics of RCCM was used to explain time series
measurements of relative RdRp activity, and steady state of RCCM was used to fit the steady state of (-)vRNA.
This is because RCCM characterizes active replication. However in case RdRp activity measurement is not
available, we fit RCCM dynamics to that of (-)vRNA. Furthermore we fit dynamics of (Rcyt +RCM +RCCM ) to
that of (+)vRNA, as in our model +RNA is present in cytoplasm (Rcyt) and in compartment either free (RCM )
or as part of the dsRNA replication intermediate (RCCM ). Total vRNA considers levels of both (-)vRNA and
(+)vRNA strands.
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Figure S1: Compartment formation dynamics
Normalized dynamics of compartment formation (fCM ) observed for different (+)RNA viruses and fit (lines)
using eq. S1 with (a) n = 2, (b) n = 3 and (c) n = 5. ZIKVM and ZIKVH denotes the MR766 and H/PF/2013
strains of Zika virus, respectively. Data derived from [16, 33, 27, 8]. Thin (lightly colored) lines represents
dynamics predicted using a set of best parameter combinations from iABC (see section SI SM3 for algorithm
implementation details) and thick lines denotes their average. Here, hollow circles and error bars correspond to
data used for fitting.
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Figure S2: Parsing effects of host cell permissiveness
Model Fits (thin lines, best parameter fits; thick line, average of best fits) for the observed transfection dynamics
of sgHCV (JFH1 strain) in (a) low permissive (Huh7-Lp) and (b) high permissive (Huh7-Lunet) cell lines. Initial
condition used in both cases: Rcyt = 100. We consider constant relative error in observation. We ignore viral
assembly (ka = 0) for JFH1 strain. Data source: [4]. Hollow circles and error bars correspond to data used for
fitting. (c) Comparison of parameter value distributions estimated for sgHCV transfection in Huh7-Lp (grey) and
Huh7-Lunet (red). Pairwise correlation (see SI SM2) among the parameters estimated for sgHCV transfection
in (d) Huh7-Lp and (e) Huh7-Lunet cell.
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Figure S3: Fitting transfection dynamics using different initial conditions
Comparison of parameter value distributions estimated for sgHCV transfection in Huh7-Lp (grey) and Huh7-
Lunet (red) using initial condition (a) Rcyt = 100 [using reported experimental error [4]] and (b) Rcyt = 1000
[using constant 25% relative error]. Data used for fitting and implementation details are identical to that
corresponding to results shown in Figure S2.
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Figure S4: Algorithm convergence and practical identifiability analysis for fitting cellular dynamics of HCV, JEV
and PV using M1

4

Variation of minimum (red) and maximum (blue) χ2, corresponding to parameter combinations selected, with
each progressive iteration of iABC while fitting life cycle dynamics of (a) HCV, (b) JEV and (c) PV.
Pairwise correlation (see SI SM2) in the values of parameters estimated for (d) HCV, (e) JEV and (f) PV.
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Figure S5: Analysing alternate model, M′: fCM formulation variant where fCM = 1
Model Fits (thin lines, best parameter fits; thick line, average of best fits) for the observed cellular life cycle
dynamics of (a) HCV infection in Huh7 cells [1], (b) JEV infection in PS cells [32], and (c) PV infection in
HeLaS3 cells [28]. (d) Comparison of parameter value distributions estimated for HCV, JEV and PV life cycle
dynamics from iABC based model fitting (implementation details in SI SM3).
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Figure S6: Analysing alternate model, M1
2: fCM formulation variant where fCM = 1− e−(

t
τF

)2

Model Fits (thin lines, best parameter fits; thick line, average of best fits) for the observed cellular life cycle
dynamics of (a) HCV infection in Huh7 cells [1], (b) JEV infection in PS cells [32], and (c) PV infection in
HeLaS3 cells [28]. (d) Comparison of parameter value distributions estimated for HCV, JEV and PV life cycle
dynamics from iABC based model fitting (implementation details in SI SM3).

17

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.09.19.304576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304576
http://creativecommons.org/licenses/by/4.0/


Figure S7: Analysing alternate model, M10
4 : formulation assumes that 10 PNS molecules are required to form

one RCCM
Model Fits (thin lines, best parameter fits; thick line, average of best fits) for the observed cellular life cycle
dynamics of (a) HCV infection in Huh7 cells [1], (b) JEV infection in PS cells [32], and (c) PV infection in
HeLaS3 cells [28]. (d) Comparison of parameter value distributions estimated for HCV, JEV and PV life cycle
dynamics from iABC based model fitting (implementation details in SI SM3).
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Figure S8: Analysing alternate model, W4: Packaging formulation variant where genomes from compartments
associate with SP from cytoplasm to form new viral particles
Model Fits (thin lines, best parameter fits; thick line, average of best fits) for the observed cellular life cycle
dynamics of (a) HCV infection in Huh7 cells [1], (b) JEV infection in PS cells [32], and (c) PV infection in
HeLaS3 cells [28]. (d) Comparison of parameter value distributions estimated for HCV, JEV and PV life cycle
dynamics from iABC based model fitting (implementation details in SI SM3).
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Figure S9: Parameter-temporal sensitivity profiles for dynamics of (+)vRNA in cytoplasm (Rcyt) for HCV, JEV
and PV (at seeding Rcyt(t = 0)=3) are shown. Here S(X) denote the profile associated with parameter, X, and
SR = S(µP ) + S(µV ) + S(dummy). Time axis is not to scale across profiles for different viruses.
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Figure S10: Cellular infectivity profiles
Φ(τF , µR) evaluates the cellular infectivity at different values of compartment formation delay (τF ) and degra-
dation rate of viral +RNA in cytoplasm (µR) for (a) JEV and (b) PV at seeding, N = 3.
Φ(τF , kt) evaluates the cellular infectivity at different values of τF and viral translation rate (kt) for (d) HCV,
(e) JEV and (f) PV at seeding, N = 3.
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Figure S11: Seeding dependent fold change in Φ due to change in life cycle parameter value for (a) HCV and
(b) JEV. kWT

t , kWT
c and τWT

F correspond to estimates for correspond to the estimates for the respective virus
(Table 1, Main text), and µWT

R = 0.25 h−1.
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Figure S12: Synergestic strategies to reduce cellular infectivity
Ψ(τF , µR) evaluates the Bliss synergy between compartment formation delay (τF ) and degradation rate of viral
+RNA in cytoplasm (µR) for (a) JEV and (b) PV at seeding, N = 3. Ψ(τF , kt) evaluates the Bliss synergy
between τF and viral translation rate (kt) for (c) HCV, (d) JEV and (e) PV at seeding, N = 3.Color scale may
vary across the sub-figures (a-e). (f) Variation of Ψ(τF , µR) for various levels of change in parameter values
(denoted by different markers) with viral seeding (N) for HCV (blue), JEV (red) and PV (yellow). (g) Ψ(τF , kt)
shows a negative correlation with {(1− p0) + p12}.
τWT
F and kWT

t correspond to the estimates for the respective virus (Table 1, Main text), and µWT
R = 0.25 h−1.

Marker properties are same in (f) and (g) and larger markers correspond to higher N.
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Table S1: Compartment formation dynamics: Parameter estimation and goodness of fit*

Infection Estimated τS (in h) Estimated NCM χ2 Data
system n=2 n=3 n=4 n=5 n=2 n=3 n=4 n=5 n=2 n=3 n=4 n=5 source

1. MHV 5.9 5.3 4.8 4.7 17.8 17.8 17.8 17.8 13.6 7.3 5.7 5.4 [33]
2. EAV 6.7 6 5.7 5.3 223.9 223.9 219.3 177.8 29.2 11.8 2.8 0.2 [16]
3. ZIKVM 20.1 15 13.3 13.3 70.8 57.1 56.2 56.2 0.5 2.6 6.1 9.3 [8]
4. ZIKVH 37.6 26.6 23.7 21.1 71.1 70.8 70.8 70.8 12.2 2.1 1.3 1.5 [8]
5. HCV 37.6 26.6 23.7 21.1 446.7 354.8 354.8 354.8 15.5 8.3 3.6 1 [27]

MHV: Mouse Hepatitis virus infection in HeLaS3 cells; EAV: Equine Arteritis virus in Vero E6 cells; ZIKVM :
Zika viral strain MR766 infection in Huh cells; ZIKVH : Zika viral strain H/PF/2013 infection in Huh cells;
HCV: Hepatitis C virus infection in Huh cells.
The estimates correspond to median of the estimated distribution obtained in the fifth iteration of iABC.
We fit dynamics of compartments formed, X, using eq. S1 for n = 2, 3 and 4.

X = NCM × fCM
= NCM .(1− e−(

t
τS

)n
) (S1)

where NCM is the carrying capacity with respect to replication compartments in the infected host cell using
fCM given by eq. 1 (main text). We fit log10(τS [in h]) and log10(NCM ) for each virus using initial guess for
parameter value distribution as u(0, 2) and u(0, 3) respectively. Here u(a, b) represent the uniform distribution
with a and b as the lower and upper bounds of the distribution respectively.
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Table S2: Cellular life cycle model*: Parameter estimation summary

Parameter Estimated value: Q2, (Q1, Q3) #

(Unit) HCV in Huh7 cell JEV in PS cells PV in HeLaS3 cells

kt 23.7 1.6×102 18.9
(h−1) (21.3, 26.1) (1.2, 1.9)×102 (17.4, 20.6)

kc 2.6×10−3 1.6×10−2 1.2×10−2

(molecules−1.h−1) (2, 3.4)×10−3 (0.8, 3.1)×10−2 (1, 1.4)×10−2

τF 5.8 2.6 4.2
(h) (5.2, 6.3) (1.8, 2.9) (4.1, 4.3)

kr 3.6 3.7 2.2×102

(h−1) (3.4, 3.9) (3.5, 3.9) (2, 2.4)×102

ke 6.6×10−2 7.2×10−2 1.1
(h−1) (5.9, 7.2)×10−2 (6.7, 8)×10−2 (1, 1.2)

NC 8.8×101 1.21×103 1.62×103

(molecules) (8.1, 9.8)×101 (1.15, 1.31)×103 (1.53, 1.78)×103

ka 3.6×10−8 8×10−9 5.6×10−3

(molecules−1.h−1) (2.9, 4.7)×10−8 (6.4, 10.2)×10−9 (3.2, 20.3)×10−3

* Using life cycle model given in main text (M1
4).

# Q1, Q2 and Q3 represent the first, second (median) and third quartiles respectively of the estimated
distribution after final iteration of iABC. See section SI SM3 for analysis/implementation details. Data used for
fitting was taken from various publications- for HCV infection in Huh7 cells:[1]; for JEV infection in PS
cells:[32]; for PV infection in HeLaS3 cells:[28].
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Table S3: Comparing parameter estimation for sgHCV (JFH1 strain) life cycle in host cells of different permis-
sivity

Parameter Estimated value: Q2, (Q1, Q3) #

(Unit) JFH1 in Huh7-Lp cell JFH1 in Huh7-Lunet cell

kt 30.7 28.3
(h−1) (25.2, 35.8) (21, 34.4)

kc 3.5×10−3 1.6×10−3

(molecules−1.h−1) (2.1, 7.5)×10−3 (3.4)×10−3

τF 29.9 16.4
(h) (27.5, 32.5) (5.4, 19.6)

kr 4.8 2.4
(h−1) (3.3, 7) (1.7, 3.7)

ke 3.7 2.1
(h−1) (3, 4.6) (1.4, 3)

NC 51.2 603.1
(molecules) (34.2, 61.9) (455.3, 768.8)

# Q1, Q2 and Q3 represent the first, second (median) and third quartiles respectively of the estimated
distribution (after final iteration of iABC). For the analysis we assume that 100 viral genomes enter each cell.
See section SI SM3 for further implementation details. Data used for fitting was taken from [4].
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Table S4: Comparing parameter estimation and goodness of fit for model variants

Model HCV in Huh7 cell JEV in PS cells PV in HeLaS3 cells

Parameter estimation

Parameter Median of estimated distribution#,
(Unit) [Fold change with respect to M1

4 median estimates]

kt M10
4 13.1, [0.6] 1.2×102, [0.8] 21.6, [1.1]

(h−1) M1
2 21.1, [0.9] 1.2×102, [0.8] 22.7, [1.2]

M′ 8.7, [0.4] 5.4×101, [0.3] 7.9, [0.4]
W4 10.2, [0.4] 2.8×102, [1.8] 33.8, [1.8]

kc M10
4 8.2×10−3, [3.1] 2.2×10−2, [1.4] 1×10−2, [0.9]

(molecules−1.h−1) M1
2 3.5×10−3, [1.3] 1.8×10−2, [1.1] 2×10−3, [0.2]

M′ 2.7×10−3, [1] 3.7×10−3, [0.2] 2×10−4, [0.02]
W4 8.1×10−3, [3.1] 6.1×10−2, [3.9] 6.3×10−3, [0.5]

τF M10
4 5.2, [0.9] 3.1, [1.2] 4, [1]

(h) M1
2 8.8, [1.5] 2.9, [1.1] 4.7, [1.1]

M′ NA NA NA
W4 3.2, [0.6] 3.6, [1.4] 4.2, [1]

kr M10
4 1.8, [0.5] 4.5, [1.2] 2.4×102, [1.1]

(h−1) M1
2 3.3, [0.9] 3.3, [0.9] 2.32×102, [1.1]

M′ 1.4, [0.4] 3.3, [0.9] 2.13×102, [1]
W4 8.3×10−1, [0.2] 4.4, [1.2] 2.6×102, [1.2]

ke M10
4 1.2×10−1, [1.9] 6.6×10−2, [0.9] 1, [0.9]

(h−1) M1
2 6.8×10−2, [1] 7.6×10−2, [1] 1.1, [1]

M′ 3.2×10−1, [4.9] 8.8×10−2, [1.2] 5.5, [5.2]
W4 4.5×10−1, [6.9] 5×10−2, [0.7] 5.1×10−1, [0.5]

NC M10
4 2.5×102, [2.8] 1.1×103, [0.9] 1.6×103, [1]

(molecules) M1
2 1.07×102, [1.2] 1.4×103, [1.2] 1.77×103, [1.1]

M′ 3.03×102, [3.4] 1.37×103, [1.1] 1.16×103, [0.7]
W4 4.5×102, [5.1] 1.16×103, [1] 1.54×103, [0.9]

ka M10
4 5×10−9, [0.1] 1.1×10−8, [1.4] 4.3×10−3, [0.8]

(molecules−1.h−1) M1
2 8.9×10−9, [0.2] 7.1×10−9, [0.9] 3.8×10−3, [6.7]

M′ 1.9×10−9, [0.5] 1.6×10−8, [2] 4.4×10−2, [7.8]
W4 2.5×10−8, [0.7] 8×10−10, [0.1] 2.9×10−3, [0.5]

Goodness of fit

min. χ2 M1
4 81.3 (43.9) 26.8 (20.5) 23.7 (22.2)

(AIC) M10
4 93.1 (47.8) 25.8 (19.8) 19.8 (20)

M1
2 81.2 (43.9) 25 (19.2) 29.3 (24.7)

M′ 83.4 (42.6) 21.9 (14.7) 49.5 (29)
W4 99.8 (49.8) 24 (18.4) 19.3 (19.7)

* Refer the section ’Alternate models’ (SI S5) for model nomenclature.
AIC = num.log(χ2/num) + 2.fp, where num denotes the number of data points being used in the fitting and fp
denotes the number of free parameters.
# Estimated distribution after final iteration of iABC. See section SI SM3 for analysis/implementation details.
Data used for fitting was taken from various publications- for HCV infection in Huh7 cells:[1]; for JEV infection
in PS cells:[32]; for PV infection in HeLaS3 cells:[28].
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Montserrat Bárcena. Biogenesis and architecture of arterivirus replication organelles. Virus research, 220:70–
90, 2016.

[35] H. Wang and A. W. Tai. Continuous de novo generation of spatially segregated hepatitis C virus replication
organelles revealed by pulse-chase imaging. J. Hepatol., 66(1):55–66, 01 2017.

[36] Ming-Jhan Wu, Po-Yuan Ke, John T-A Hsu, Chau-Ting Yeh, and Jim-Tong Horng. Reticulon 3 interacts
with ns4b of the hepatitis c virus and negatively regulates viral replication by disrupting ns4b self-interaction.
Cellular microbiology, 16(11):1603–1618, 2014.

29

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.09.19.304576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304576
http://creativecommons.org/licenses/by/4.0/


[37] Carolin Zitzmann, Bianca Schmid, Alessia Ruggieri, Alan S Perelson, Marco Binder, Ralf Bartenschlager,
and Lars Kaderali. A coupled mathematical model of the intracellular replication of dengue virus and the
host cell immune response to infection. Frontiers in microbiology, 11:725, 2020.

30

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.09.19.304576doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.19.304576
http://creativecommons.org/licenses/by/4.0/

