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A plausible mechanism for Drosophila larva

intermittent behavior.

Panagiotis Sakagiannis'", Miguel Aguilera®, and Martin Paul Nawrot’

I Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Germany; 2Department of Informatics. University of Sussex. Brighton, UK

The behavior of many living organisms is not continuous. Rather,
activity emerges in bouts that are separated by epochs of rest, a phe-
nomenon known as intermittent behavior. Although intermittency is
ubiquitous across phyla, empirical studies are scarce and the under-
lying neural mechanisms remain unknown. Here we present the first
empirical evidence of intermittency during Drosophila larva free ex-
ploration. We report power-law distributed rest-bout and log-normal
distributed activity-bout durations. We show that a stochastic net-
work model can transition between power-law and non-power-law
distributed states and we suggest a plausible neural mechanism for
the alternating rest and activity in the larva. Finally, we discuss pos-
sible implementations in behavioral simulations extending spatial
Levy-walk or coupled-oscillator models with temporal intermittency.

larva crawling | Levy-walks | neuronal avalanches

he search for statistical regularities in animal movement

is a predominant focus of motion ecology. Random walks
form a broad range of models that assume discrete steps
of displacement obeying defined statistical rules and acute
reorientations. A Levy walk is a random walk where the dis-
placement lengths and the respective displacement durations
are drawn from a heavy-tailed, most often a power-law distri-
bution. When considered in a 2D space reorientation angles
are drawn from a uniform distribution. This initial basic
Levy walk has been extended to encompass distinct behavioral
modes bearing different go/turn parameters, thus termed com-
posite Levy walk. Levy walks have been extensively studied
in the context of optimal foraging theory. A Levy walk with a
power-law exponent between the limit of ballistic (a = 1) and
brownian motion (o = 3) yields higher search efficiency for
foragers with an optimum around o = 2 when search targets
are patchily or scarcely distributed and detection of a target
halts displacement (truncated Levy walk) (1).

Nevertheless, the underlying assumption of non-
intermittent flow of movement in Levy walk models
complicates the identification of the underlying generative
mechanisms as they focus predominantly on reproducing
the observed spatial trajectories, neglecting the temporal
dynamics of locomotory behavior. Therefore, Bartumeus
(2009) stressing the need for a further extension coined the
term intermittent random walk, emphasizing the integration
of behavioral intermittency in the theoretical study of animal
movement (2). Here we aim to contribute to this goal by
studying the temporal patterns of intermittency during
Drosophila larva free exploration in experimental data and
in a conceptual model, bearing in mind that power-law like
phenomena can arise from a wide range of mechanisms,
possibly involving processes of different timescales (1).
While our study remains agnostic towards whether foragers
really perform Levy walks - a claim still disputed (1) - we
suggest that intrinsic motion intermittency should be taken

into account and the assumption of no pauses and acute
reorientations should be dropped in favor of integrative
models encompassing both activity and inactivity.

Drosophila larva is a suitable organism for the study of
animal exploration patterns and the underlying neural mech-
anisms. A rich repertoire of available genetic tools allows
acute activation, inhibition or even induced death of specific
neural components. Crawling in 2D facilitates tracking of
unconstrained behavior. Also, fruit flies during this life stage
are nearly exclusively concerned with foraging. Therefore a
food/odor-deprived environment can be largely considered
stimulus-free, devoid of reorientation or pause sensory triggers,
while target-detection on contact can be considered certain.
Truncated spatial Levy-walk patterns of exploration with ex-
ponents ranging from 1.5 to near-optimal 1.96 that hold over
at least two orders of magnitude have been previously reported
for the Drosophila larva. The turning-angle distribution, how-
ever, was skewed in favor of small angles and a quasi-uniform
distribution was observed only for reorientation events > 50°
(3). Moreover, it has been shown that these patterns arise
from low-level neural circuitry even in the absence of sensory
input or brain-lobe function and have therefore been termed
‘null movement patterns’ (3, 4).

Behavioral intermittency has not been described for the
fruitfly larva. Previous empirical studies on adult Drosophila
intermittent locomotory behavior have concluded that the
distribution of durations of rest bouts is power-law while
that of activity bouts has been reported to be exponential
(5) or power-law (4). Genetic intervention has revealed that
dopamine neuron activation affects the activity/rest ratio via
modulation of the power-law exponent of the rest bouts, while
the distribution of activity bouts remains unaffected. This
observation hints towards a neural mechanism that generates
the alternating switches between activity and rest where tonic
modulatory input from the brain regulates the activity/rest
balance according to environmental conditions and possibly
homeostatic state.

Here we analyze intermittency in a large experimental
dataset and present a conceptual model that generates alterna-
tion between rest and activity, capturing empirically observed
power-law and non-power-law distributions. We discuss a
plausible neural mechanism for the alternation between rest
and activity and the regulation of the animal’s activity/rest
ratio via modulation of the rest-bout power-law exponent by
top-down modulatory input. Our approach seeks to elaborate

Conceptualization, P.S., M.A. and MP.N.; Methodology, P.S and M.A.; Writing — Original Draft, P.S.
Writing — Review and Editing, P.S., M.A. and MP.N.

The authors do not declare any conflicts of interest.

"To whom correspondence should be addressed.
e-mail : p.sakagiannis@uni-koeln.de
webpage : http://computational-systems-neuroscience.de/

October 9,2020 | 1-6


http://computational-systems-neuroscience.de/
https://doi.org/10.1101/2020.09.19.304774
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.19.304774; this version posted October 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

T(C) treatment larvae (#)  tracking time (h)  rest bouts (#) activity bouts (#)  activity ratio (mutsigma) Table 1.  Dataset
; description  and
22 BLsens > rpr/hid 33 19.9 869 559 0.9+0.21 .
i) empirical results
32 BLsens > rpr/hid 21 17.16 2251 1504 0.6 +0.23 for rest/activity
33 MB247/+ 16 12.28 1067 666 0.72+0.2 bout analyses.
33 MB247 > shit 16 13.43 1487 1021 0.64 +0.23
22 shits /+ 19 14.82 1370 861 0.77£0.24
33 shits /+ 21 16.85 1191 768 0.75+0.19
22 BL/+ 17 12.5 570 387 0.87 +£0.22
33 BL/+ 17 10.81 391 286 0.87 +0.19
33 BL > shit 14 12.78 879 629 0.82 £0.22
33 BLsens > shit 10 10.53 1553 1007 0.44 +0.25
32-33 Reference control 87 59.84 3519 2279 0.83+0.21

on the currently prevailing view that these patterns result
from intrinsic neural noise (4).

Materials and Methods

Experimental dataset. We use a larva-tracking dataset avail-
able at the DRYAD repository, previously used for spatial
Levy-walk pattern detection (3). The dataset consists of up
to one hour long recordings of freely moving larvae tracked
as a single point (centroid) in 2D space. We consider three
temperature-sensitive shibire’® fly mutants allowing for in-
hibition of mushroom-body (MB247),brain-lobe/SOG (BL)
or brain-lobe/SOG /somatosensory (BLsens) neurons and an
rpr/hid mutant line inducing temperature-sensitive neuronal
death of brain-lobe/SOG /somatosensory (BLsens) neurons.
Each mutant expresses a different behavioral phenotype when
activated by 32°-33° C temperature. We compare phenotypic
behavior to control behavior in non-activated control groups.
A reference control group has been formed consisting of all
individuals of the four 32°-33° C control groups (Tab. 1).

For the present study recordings longer than 1024 seconds
have been selected. Instances where larvae contacted the
arena borders were excluded. The raw time series of x,y coor-
dinates have been forward-backward filtered with a first-order
butterworth low-pass filter of cutoff frequency 0.1 Hz before
computing the velocity. The cutoff frequency was selected
as to preserve the plateaus of brief stationary periods while
suppressing the signal oscillation due to peristaltic-stride cy-
cles. Velocity values > 2.5 mm/sec have been discarded to
account for observed jumps in single-larva trajectories that
are probably due to technical issues during tracking. This
arbitrary threshold was selected as an upper limit for larvae of
length up to 5mm, crawling at a speed of up to 2 strides/sec
with a scaled displacement per stride of up to 0.25.

Bout annotation. In order to designate periods of rest and
activity we need to define a suitable threshold Vj in the velocity
distribution as done for the adult fruitfly in (5). We used the
density estimation algorithm to locate the first minimum Vy =
0.085mm/sec in the velocity histogram of the reference control
group. A rest bout is then defined as a period during which
velocity does not exceed Vy. Rest bouts necessarily alternate
with periods termed activity bouts. The bout annotation
method is exemplified for a single larva track in Fig. 1.

Bout distribution. To quantify the duration distribution of the
rest and activity bouts we used the maximum likelihood es-
timation (MLE) method to fit a power-law, an exponential

and a log-normal distribution for each group as well as for
the reference control group. Given the tracking framerate
of 2 Hz and the minimal tracking time of 1024 seconds, we
limited our analysis to bouts of duration 2' to 2'° seconds.
The Kolmogorov-Smirnov distance Dgs for each candidate
distribution was then computed over 64 logarithmic bins cov-
ering this range. Findings are summarized in Tab. 2 for the
rest bouts and in Tab. 3 for the activity bouts.

Results

The results section is organized as follows. Initially we
present a simple conceptual two-state model transitioning
autonomously between power-law and non-power-law regimes.
Next we analyse intermittency during larva free exploration
in a freely available dataset (3). Finally we compare mutant
and control larva phenotypes in the context of intermittency.

Network model of binary units reproduces larval statistics of
intermittent behavior. Previous work on Drosophila adult in-
termittent behavior reported that rest-bout durations are
power-law distributed while activity-bout durations are expo-
nentially distributed (5). Our first contribution is to provide
a simple model displaying how this dual regime might emerge.

We define a kinetic Ising model with N = 1000 binary
neurons, with homogeneous all-to-all connectivity (Fig. 2A).
Each neuron 1 is a stochastic variable with value s;(¢) at time
t that can be either 1 or 0 (active or inactive). We assume
that this neuron population inhibits locomotory behavior, so
that when ). si(t) > 0 the larva is in the rest phase, and
otherwise the larva remains active .

At time t + 1, each neuron’s activation rate is proportional
to the sum of activities at time ¢, and will be activated with a
linear probability function p;(t + 1) = % Zj 5;(t) + %. Here,
o is the propagation rate, which indicates that when a node
is active at time ¢, it propagates its activation at time ¢ + 1
on average to o other neurons. When one neuron is activated,
this model behaves like a branching process (6), with o as
the branching parameter. If o < 1, activity tends to decrease
rapidly until all units are inactive while, if o > 1, activity
tends to be amplified until saturation. At the critical point,
o = 1, activity is propagated in scale-free avalanches, in which
duration d of an avalanche once initiated follows a power-
law distribution P(d) ~ d~% (Fig. 2B, left), governed by a
critical exponent (o = 2 at the N — oo limit) describing how
avalanches at many different scales are generated.

When an avalanche is extinguished, the system returns to
quiescence which is only broken by the initiation of a new

Sakagiannis et al.


https://datadryad.org/stash/dataset/doi:10.5061/dryad.7m0cfxpq0
https://doi.org/10.1101/2020.09.19.304774
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.19.304774; this version posted October 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

010110

Hom AN 0.6

rest
BN activity

Fig. 1. Bout annotation methodology. A:

B Individual larva trajectory. Spatial scale

010 and recording duration are noted. B: Ve-
_o008 506 - ;E;fvity locity distribution for the single larva. The
< Gos threshold obtained from the reference
:1;0'06 EM group, used for rest vs activity bout an-
E 0.04 o3 notation is denoted by the arrow. C: The
g 002 # goz entire velocity time series of the larva.
o1 Rest and activity bouts are indicated by

000 el 02 03 04 o5 os %00 835 850 875 935 950 975 1000 different background colors. D: Magnifi-

velocity (mm/sec)

avalanche. With a residual rate p = 0.01 the system becomes
active by firing one unit and initiating a new avalanche. In this
case the duration of quiescence bouts (the interval between two
consecutive avalanches) follows an exponential distribution
(Fig. 2B, right).

This simple conceptual model alternates autonomously be-
tween avalanches of power-law distributed durations and qui-
escence intervals of exponentially distributed durations. This
alternation between power-law and non-power-law regimes can
serve as a basic qualitative model of the transition between
rest and activity bouts in the larva (cf. Discussion).

A
Rest, if Xs; >0
Active, otherwise
B
rest activity
v e rest bouts ®  non-rest bouts
101 = powerlaw MLE exponential MLE
<
é; 102
E 3
® W0
[
2 g
107

10" 10 10* 10" 10 10*
duration, d(sec)

Fig. 2. Probability distribution of the duration d of rest and activity phases in a
branching process model of o = 1, simulated over 10° occurrences of each phase.
Duration is measured as the number of updates until a phase is ended. Unit activation
si(t) propagates to neighbouring units creating self-limiting avalanches. In the
rest phase, when EL s;(t) > 0, the system yields a power law distribution with

exponent o« & 2. In the activity phase, when Zl si(t) = 0, one unit of the
system is activated with probability ;+ = 0.01, yielding an exponential distribution
with coefficient A = 0.1.

Parameterization of larval intermittent behavior. We analyzed
intermittent behavior during larval crawling in a stimulus-
free environment (cf. Materials and Methods for dataset
description). Each individual larva was video-tracked in space
(Fig. 1A). From the time series of spatial coordinates we com-
puted the instantaneous velocity and determined a threshold
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cation of the velocity time series.

value (Fig. 1B) that separates plateaus of continued activity
(activity bouts) from epochs of inactivity (rest bouts, Fig. 1C-
D) following the analyses suggested in (5).

We start out with the analysis of experimental control
groups that were not subjected to genetic intervention. As
a first step we computed the number of occurrences of rest
and activity bouts and the activity ratio, which quantifies the
accumulated activity time as fraction of the total time (Tab. 1).
For the reference control group we obtain an activity ratio of
0.83 albeit with a fairly large variance across individuals.

For the duration distribution of rest bouts we find that it
is best approximated by a power-law distribution in all six
control groups (Tab. 2) in line with previous results reported
for the adult fruitfly (4, 5). The empirical duration distribution
of rest-bouts across the reference control group is depicted in
Fig. 3A (red dots). Again, the power law provides the best
distribution fit. The exponent « of the power law ranges from
1.514 to 1.938 with a = 1.598 for the reference control group.

When analyzing the durations of activity bouts we found
that these are best approximated by a log-normal distribution
in all groups (Tab. 3). This result is surprising as previous work
in the adult suggested the mode of an exponential distribution
(5). For the reference control group Fig. 3B compares the
empirical duration distribution of activity bouts with the fits
of the three distribution functions.

rest

m— pOWErlaw
—— exponential
107! —— lognormal

activity
—— powerlaw

—— exponential
me |Ognormal

10°

1072

1073

probability , Py

1074

1075
10° 10t 102

103 10° 10t 102 103
duration, d(sec)
Fig. 3. Probability density of rest and activity bout durations for the reference control
group. Dots describe the probability density over logarithmic bins. Lines are the best

fitting power-law, exponential and log-normal distributions. The thick line denotes the
distribution having the minimum Kolmogorov-Smirnov distance D i s (Tab. 2 - 3).
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T(C) treatment
powerlaw exponential
alpha KS D lambda
22 BLsens > rpr/hid, ., 1.938 0.089 0.119
32 BLsens > rpr/hid 1.6 0.094 0.04
88 MB247/+ 1.58 0.06 0.042
33 MB247 > shit 141 0.167 0.029
22 shits /+ 1.702 0.086 0.049
33 shits /+ 1.465 0.099 0.027
22 BL/+ 1.783 0.046 0.048
33 BL/+ 1.514 0.101 0.039
33 BL > shit 1.666 0.109 0.111
33 BLsens > shit 1.483 0.125 0.033
32-33 Reference control 1.598 0.061 0.044
T(C) treatment
powerlaw exponential
alpha KS D lambda
22 BLsens > rpr/hid, ., 1.351 0.177 0.017
32 BLsens > rpr/hid 1.591 0.196 0.096
33 MB247/+ 1.428 0.149 0.032
33 MB247 > shit 1.391 0.212 0.027
22 shits /+ 1.371 0.175 0.025
33 shis /+ 1.359 0.184 0.018
22 BL/+ 1.335 0.191 0.018
33 BL/+ 1.327 0.215 0.015
33 BL > shit 1.483 0.179 0.045
33 BLsens > shit 1.682 0.209 0.147
32-33 Reference control 1.366 0.173 0.019

Modification of rest and activity bout durations in mutant
flies. Behavioral phenotypes in genetic mutants can help iden-
tify brain neuropiles in the nervous system of Drosophila larva
that are involved in the generation of intermittent behavior,
or that have an effect on its modulation. To this end we ana-
lyzed 4 experimental groups where genetic intervention was
controlled by temperature either via the temperature-sensitive
shibire protocol or via temperature-induced neuronal death
(rpr/hid genotype). Each group is compared to a non-activated
control group as shown in Fig. 4 and described in Tab. 1.

Interestingly, genetic intervention can have a large effect
on the activity ratio. When inactivating sensory neurons and
to a lesser extend the mushroom body the activity ratio is
decreased (cf. BLsens > rpr/hid, MB247 > shi®® and BLsens
> shi'® in Tab. 1). Inspection of the empirical duration distri-
bution of rest bouts in Fig. 4 (first and third columns) shows
that while the power-law fit is superior for all control groups,
the log-normal fit approximates best the respective mutant
distribution in 3 out of 4 cases (cf. MB247 > shi'®, BL > shi'®
and BLsens > shi’® in Tab. 2. This might hint impairment of
the power-law generating processes due to neural dysfunction.
In the fourth case of BLsens > rpr/hid the power-law is pre-
served but shifted to higher values. Regarding activity, the
empirical distributions indicate that overall the activity epochs
are severely shortened in time for both the BLsens > rpr/hid
and the BLsens > shi® mutants in comparison to the respec-
tive control groups (second and fourth columns) hinting early
termination of activity bouts by the intermittency mechanism

rest bouts Table 2. Distri-

bution parameter

EeiiEl fits of empirical

KS D mu sigma KS D rest bout duration.

0.411 1.066 1.122 0.171 The relevant  pa-

rameters for the

0.439 1.665 1.476 0.13 best fitting distri-

0.438 1.724 1.55 0.133 bution are indi-

0.246 2.438 1.574 0073  cated in bold text.
0.494 1.425 1.369 0.149
0.384 2.151 1.699 0.103
0.538 1.277 1.399 0.181
0.406 1.944 1.623 0.127
0.246 1.502 1.189 0.103
0.387 2.072 1.554 0.105
0.448 1.671 1.55 0.14

activity bouts Table 3. Distribu-

tion parameter fits

(el of empirical activ-

KS D mu sigma KS D ity bout duration.

0.249 2.847 1.641 0.041 The  relevant - pa-

rameters for the

0.189 1.691 1.101 0.062 best fitting distri-

0.248 2.336 1524 0.063 bution are indi-

0.227 2.557 1412 0035  cated in bold text.
0.212 2.699 1.528 0.066
0.287 2.786 1.634 0.044
0.214 2.988 1.644 0.079
0.224 3.058 1.566 0.042
0.252 2.07 1.353 0.063
0.201 1.466 1.011 0.096
0.26 2.73 1.617 0.046

Discussion

As most neuroscientific research focuses either on static net-
work connectivity or on neural activation/inhibition - behavior
correlations, an integrative account of how temporal behavioral
statistical patterns arise from unperturbed neural dynamics is
still lacking. In this context, we hope to contribute to scientific
discovery in a dual way. Firstly by extending existing mecha-
nistic hypothesis for larva intermittent behavior and secondly
by promoting the integration of intermittency in functional
models of larval behavior. In what follows we elaborate on
these goals and finally describe certain limitations of our study.

Self-limiting inhibitory waves might underlie intermittent
crawling and its modulation. The neural mechanisms underly-
ing intermittency in larva behavior remain partly unknown.
Displacement runs are intrinsically discretized, comprised of
repetitive, stereotypical peristaltic strides. These stem from
segmental central pattern generator circuits (CPG) located
in the ventral nerve chord, involving both excitatory and
inhibitory premotor neurons and oscillating independently
of sensory feedback (7). A ‘visceral pistoning’ mechanism
involving head and tail-segment synchronous contraction un-
derlies stride initiation (8). Speed is mainly controlled via
stride frequency (8).Crawling is intermittently stopped dur-
ing both stimulus-free exploratory behavior and chemotaxis,
giving rise to non-stereotypical stationary bouts during which
reorientation might occur. During the former they are intrin-
sically generated without need for sensory feedback or brain
input (3), while during the latter an olfactory-driven sensori-
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log-normal distributions for each group
duration, d(sec) duration, d(sec) (Tab. 2 - 3).

motor pathway facilitates cessation of runs when navigating
down-gradient. Specifically, inhibition of a posterior-segment
premotor network by a sub-esophageal zone descending neuron
deterministically terminates runs allowing easier reorientation
(9).

It is reasonable to assume that this intermittent crawling
inhibition is underlying both free exploration and chemotaxis,
potentially in the form of transient inhibitory bursts. A neu-
ral network controlling the CPG through generation of self-
limiting inhibitory waves is well suited for such a role. In the
simplest case, during stimulus-free exploration, the durations
of the generated inhibitory waves should follow a power-law
distribution, behaviorally observed as rest bouts. In contrast,
non-power-law distributed quiescent periods of the network
would disinhibit locomotion allowing the CPG to generate
repetitive peristaltic strides resulting in behaviorally observed
runs.

The model we presented (cf. 3.1) alternates autonomously
between avalanches of power-law distributed durations and
quiescence intervals of exponentially distributed durations
without need for external input. Therefore it can serve as
a theoretical basis for the development of both generative
models that reproduce the intermittent behavior of individ-
ual larvae and of the above mechanistic hypothesis for the
initiation and cessation of peristaltic locomotion in the larva
through disinhibition and inhibition of the crawling CPG re-
spectively. To uncover the underlying neural mechanism and
confirm/reject our hypothesis, inhibitory input to the crawling
CPG should be sought, measured neurophysiologically and
correlated to behaviorally observed stride and stride-free bouts
during stimulus-free exploration.

Intermittent behavior in the Drosophila adult is subject to
two modes of modulation, neither of which affects the distribu-
tion of the activity bouts. Firstly, high ambient temperature
and daylight raise the activity ratio over long timescales by
raising the number of activity bouts (5). This is achieved
by lowering the probability of the extremely long rest bouts,
without affecting the power-law exponent of the distribution,
which coincides with fewer sleep events (> 5 minutes) observed
during the day. This modulation is long-lasting and could
result from a different constant tonic activation of the system.
Secondly, dopamine neuron activation raises the activity ratio
acutely by modulation of the power-law exponent upwards (5)
skewing locomotion towards the brownian limit. This mod-

Sakagiannis et al.

ulation could be transient in the context of salient phasic
stimulation by the environment.

As mentioned above, during chemotaxis larvae perform
more and sharpest reorientations, terminating runs when nav-
igating down-gradient. In case the above hold for the larval
nervous system as well, a hypothesis integrating both ex-
perimental findings could be that this behavior stems from
transient olfactory-driven dopaminergically-modulated inhi-
bition of the crawling CPG. Our conceptual model can be
extended to address the above claims by adding tonic and/or
phasic input.

Intermittency can extend functional models of larva locomo-
tion. Traditional random walk models fail to capture the tem-
poral dynamics of animal exploration (1). Even when time is
taken into account in terms of movement speed, reorientations
are assumed to occur acutely. Integrating intermittency can
address this limitation allowing for more accurate functional
models of autonomous behaving agents. Such virtual agents
can then be used in simulations of behavioral experiments
promoting neuroscientifically informed hypothesis that ad-
vance over current knowledge and generate predictions that
can stimulate further empirical work (10).

It is widely assumed that Drosophila larva exploration can
be descibed as a random walk of discrete non-overlapping runs
and reorientations/head-casts (3) or alternatively that it is
generated by the concurrent combined activity of a crawler
and a turner module generating repetitive oscillatory forward
peristaltic strides and lateral bending motions respectively
and possibly involving energy transfer between the two me-
chanical modes (11-13). Both models can easily be upgraded
by adding crawling intermittency which might or might not be
independent of the lateral bending mechanism. In the discrete-
mode case, intermittency can simply control the duration and
transitions between runs and head-casts or introduce a third
mode of immobile pauses resulting in a temporally unfolding
random walk. In the overlapping-mode case the two modules
are complemented by a controlling intermittency module form-
ing an interacting triplet. Depending on the crawler-turner
interaction and the effect of intermittency on the turner mod-
ule, multiple locomotory patterns emerge including straight
runs, curved runs, stationary head-casts and immobile pauses.
This simple extension would allow temporal fitting of genera-
tive models to experimental observations in addition to the
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primarily pursued spatial-trajectory fitting, facilitating the
use of calibrated virtual larvae in simulations of behavioral
experiments.

Limitations. A limitation of our study is that due to the single-
spinepoint tracking, it is impossible to determine whether
micro-movements occur during the designated inactivity peri-
ods, an issue also unclear for adult fruitflies in (5). It follows
that in our analysed dataset, immobile pauses, feeding motions
and stationary head casts are indistinguishable. Therefore,
what we define as rest bouts should be considered as periods
lacking at least peristaltic strides but not any locomotory activ-
ity. Our relatively low velocity threshold Vp = 0.085mm/sec
though allows strict detection of rest bouts as it is evident
from the high activity ratio (higher than 0.7 in most control
groups). To tackle this, trackings of higher spatial resolution
with more spinepoints tracked per larva are needed, despite
the computational challenge of the essentially long recording
duration.

Also, our results show that an exponential distribution of
activity bouts (5) as reported for the adult fruitfly might not
be the case for the larva, as we detected log-normal long-tails in
all cases. Still, the exponential-power-law duality in our model
illustrates switching between independent and coupled modes
of neural activity. Substituting the exponential regime by
other long-tailed distribution such as log-normal might require
assuming more complex interactions between the switching
regimes and will be pursued in the future so that generative
models of the data can be fit.
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