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Abstract 10 
 11 
Biological membranes have been prominent targets for coarse-grained (CG) molecular dynamics (MD) 12 
simulations. While minimal CG lipid models with three-beads per lipid and quantitative CG lipid 13 
models with >10-beads per lipid have been well studied, in between them, CG lipid models with a 14 
compatible resolution to residue-level CG protein models are much less developed. Here, we extended 15 
a previously developed three-bead lipid model into a five-bead model and parametrized it for two 16 
phospholipids, POPC and DPPC. The developed model, iSoLF, reproduced the area per lipid, 17 
hydrophobic thickness, and phase behaviors of the target phospholipid bilayer membranes at the 18 
physiological temperature. The model POPC and DPPC membranes were in liquid and gel phases, 19 
respectively, in accordance with experiments. We further examined the spontaneous formation of a 20 
membrane bilayer, the temperature dependence of physical properties, vesicle dynamics, and the 21 
POPC/DPPC two-component membrane dynamics of the CG lipid model, showing some promise.  22 
Once combined with standard Cα protein models, the iSoLF model will be a powerful tool to simulate 23 
large biological membrane systems made of lipids and proteins.  24 
  25 
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Introduction 26 

While molecular dynamics (MD) simulations have been indispensable tools to study the structural 27 

dynamics of biomolecular systems, the time scale attainable by all-atom MD simulations poses one of 28 
the major challenges for many biological phenomena.1-3 To overcome this limitation, coarse-grained 29 

(CG) modeling reduces the number of degrees of freedom by grouping atoms into CG beads, effectively 30 

decreasing the computational cost of simulations while retaining the properties of interest as much as 31 
possible.5-6 Due to the hierarchic nature of biomolecular systems, there are several different resolutions 32 

of coarse-graining. In general, higher resolution CG models are more accurate but computationally 33 

more expensive. Thus, depending on the purpose, one can choose the best CG model, among others. 34 
For example, CG models that explicitly represent solvent molecules are relatively accurate, while 35 

implicit solvent CG models are considerably faster by incorporating the average effects of solvents 36 
directly into CG force fields of solute molecules.7 37 

 Biological membranes are prominent targets of CG MD simulations, for which different classes 38 
of CG lipid models have been developed for two decades. In 1998, Goetz and Lipowsky developed an 39 

explicit solvent CG amphiphile model and successfully simulated self-assembly of a bilayer 40 
membrane.8 Some years later, Noguchi and Takasu were the first to make an implicit solvent CG model 41 
of amphiphiles that exhibit proper physical behaviors of a bilayer membrane.9 Later, Cooke et al. 42 

developed a much simpler pairwise-interacting implicit solvent CG model for lipids.10 Both of these 43 
implicit solvent models use three CG beads per lipid, making them minimal and generic, without 44 
requiring the parameterization for any specific molecule. These minimal models were successfully 45 

applied to uncover many physical aspects of membrane systems, such as the gel-liquid phase transition, 46 
phase separation, membrane fusion, and budding. As a different class of models, several higher-47 
resolution CG lipid models were developed, including the seminal work of MARTINI by Marrink et al. 48 

in 2004.11-18 This class of models uses more than 10 CG beads per lipid and represent the two-alkyl-tail 49 
geometry explicitly, making the model specific to individual phospholipids. Among others, the 50 
MARTINI model has been successfully applied to many targets.19-22 Most of these models, with some 51 

exceptions13,17,23, use explicit solvent molecules, making them computationally demanding compared 52 

to the above-mentioned minimal models. 53 
 Notably, most biological membrane systems of interest contain membrane proteins as well. 54 

Thus, to be able to apply CG lipid models to many of these biological systems, its compatibility with 55 

CG protein models is of crucial importance. In particular, to model physicochemical interactions 56 
between lipids and proteins naturally, it is highly desired that both the CG lipid and protein 57 

representations share a similar resolution. The MARTINI force field, for example, consistently uses a 58 

mapping of one CG particle for about four non-hydrogen atoms for lipids, proteins, and other molecules. 59 
Among many CG models for proteins, a classic and still very popular representation is to use one CG 60 

particle per amino acid, most frequently placing the CG particle at its Cα position24-28. Amino acids in 61 
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proteins contain 8.4 ± 	2.4  non-hydrogen atoms (the average over 20 amino acids ±  the standard 62 

deviation). Therefore, with this resolution, one can roughly reduce the degree of freedom by one order 63 
of magnitude. Representative phospholipids, for example, POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-64 

phosphocholine) and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine), contain 52 and 50 65 

non-hydrogen atoms, respectively. We thus regard the use of 5-6 CG particles for each lipid molecule 66 
to be compatible with the Cα protein representation. However, among the several CG lipid models with 67 

an intermediate resolution in between three-beads per lipid and MARTINI-like models29-35, there are 68 

few CG models with a 5-6 CG particles per lipid resolution. In fact, the purpose of this paper is to 69 
present a new and relatively simple CG lipid force field with a compatible resolution to Cα protein 70 

models, where we represent each lipid with five CG beads to reduce the computational cost. 71 

 With the use of five CG beads, our aim is not to model generic lipid molecules but to 72 
parametrize the model for specific phospholipid molecules. In particular, we parametrize our CG lipid 73 

model for the POPC and the DPPC lipids. POPC and DPPC are unsaturated and saturated 74 

phospholipids, respectively. It is well-known that near-physiological temperatures (30 °C for example), 75 
pure POPC lipid membranes are in the liquid disordered phase, while pure DPPC lipid membranes are 76 

in the gel phase.36,37 More generally, at physiological conditions, pure unsaturated phospholipid 77 
membranes are in the liquid disordered phase, while pure saturated phospholipid membranes are in the 78 
gel phase. Reproducing these two phases should be important for simulations of biological membranes, 79 

which are a mixture of unsaturated and saturated phospholipids, in addition to membrane proteins and 80 
others. We also note that, with a five CG bead representation, we give up the two-tailed branched-chain 81 
geometry and, instead, use a linear chain (notably, it is not impossible to take two-tailed chain geometry 82 

with six beads per lipid resolution, as was recently proposed in an elegant work34).  The linear chain 83 
representation of lipids makes it particularly challenging to distinguish between the unsaturated and 84 
saturated lipids because the unsaturated tail tends to bend and separate from the other tail. 85 
 In this work, we develop our CG implicit solvent lipid model by extending the work of Cooke, 86 

Kremer, and Deserno10, representing each lipid molecule with five CG beads so that it has a compatible 87 
resolution to Cα protein models. The Method section describes the CG model, including its mapping to 88 
all-atom structures and the potential energy function, as well as CG and all-atom MD simulation details. 89 
The Results and Discussion section begins with the parametrization of the force field for the two target 90 

lipids, POPC and DPPC. Then we report simulation results of spontaneous bilayer membrane 91 
formation, 2D diffusion of lipids, vesicle dynamics, the temperature dependence of membrane 92 

properties, and the POPC/DPPC two-component membrane dynamics. Finally, we discuss the 93 

limitation and future directions. 94 
 95 

Methods 96 

Lipid model 97 
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In our CG model, a two-tailed glycerophospholipid is represented as a linear chain molecule (Fig. 1a).  98 

Each CG lipid molecule is composed of five beads, two polar head beads (H1 and H2), and three 99 
hydrophobic tail beads (T1, T2, and T3). The H1 bead represents the terminal group bonded to the 100 

phosphate, and the H2 bead corresponds to the phosphate, glycerol, and ester carbonyls. The T1, T2, 101 
and T3 beads represent the first five carbon atoms of each tail, the next five carbon atoms of each tail, 102 

and the remaining carbon atoms, respectively. As mentioned, this five-bead mapping produces a similar 103 

resolution to Cα protein models. 104 

 105 
Figure 1. The current CG lipid model. (a) Mapping of glycerophospholipids, POPC as an example, into 106 
a linear chain of five CG beads composed of two polar head beads (H1 and H2), and three hydrophobic 107 
tail beads (T1, T2, and T3). The horizontal lines indicate the boundaries that define the assignment of 108 

atoms into CG beads. (b) Schematic picture of intermolecular interactions. The thick double-headed 109 

arrows indicate attractive interactions between hydrophobic tail CG particles. Notably, no attraction is 110 
applied between the T1 and T3 beads. Repulsion between any pairs is applied based on the bead 111 

diameter, 𝜎! for the head, and 𝜎", for the tail. (c) The potential function between tail CG beads (except 112 

T1-T3 pairs) in the unit of the scaling parameters 𝜎 and ε10. The regions I and II represent the repulsive 113 

and attractive parts, respectively. The width of the attractive part is controlled by the parameter ω. 114 
 115 

 In our CG force field, the potential energy function has four terms: 116 

 117 
𝑉 = 𝑉#$%& + 𝑉'%()* + 𝑉+*,-)./$% + 𝑉'001230/$% (1) 118 

 119 

The first term, 𝑉#$%&, represents the virtual bond interactions between two adjacent CG beads belonging 120 
to the same lipid molecule and is modeled by the harmonic potential: 121 

 122 
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𝑉#$%& = . 𝑘4$%&,/0𝑏/ − 𝑏6,/3
7

%!"#$%

/89

(2) 123 

 124 

Here, 𝑘4$%&,/ is the force constant, 𝑏/ is the i-th virtual bond length between consecutive CG beads, 𝑏6,/ 125 

is the equilibrium value for the virtual bond, and 𝑛4$%&.  is the total number of virtual bonds. The 126 

second term, 𝑉'%()*, is the potential for the virtual bond-angle between two consecutive virtual bonds 127 

in a lipid molecule and is modeled by the harmonic potential: 128 

 129 

𝑉'%()* = . 𝑘2%()*,/0𝜃/ − 𝜃6,/3
7

%&#'()%

/89

(3) 130 

 131 

Here, 𝑘2%()*,/  is the force constant, 𝜃/  is the angle between two consecutive bonds, 𝜃6,/  is the 132 

equilibrium value for the i-th angle, and 𝑛2%()*. is the total number of angles. We note that the dihedral-133 

angle potential used in all-atom force fields is not included in our model because the 𝜃6,/ in eq.(3) turn 134 

out to be close to π (see Table 1, below), which makes the dihedral potential near divergent. 135 
 The two remaining terms of the force field represent the interaction between two lipid 136 

molecules. These terms have the same functional form as the ones described in the work of Cooke, 137 

Kremer, and Deserno10. The repulsive term, 𝑉+*,-)./$%, is modeled with the Weeks-Chandler-Andersen 138 

potential: 139 

 140 

𝑉+*,-)./$% = . 7
4𝜀/: 9:

𝜎/:
𝑟/:
<
97

− :
𝜎/:
𝑟/:
<
;

+
1
4
= , 𝑟/: ≤ √2* 𝜎/:

0, 𝑟/: > √2* 𝜎/:

%#(+,&-.%

/<:

(4) 141 

 142 

with 𝜀/:  representing the force scaling factor, 𝜎/:  the repulsive range for the 𝑖𝑗  pair of beads, and 143 

𝑛%)=,2/1. the total number of non-local pairs of CG beads. This repulsive interaction is applied to all 144 

the pairs of beads that are not participating in a virtual bond or a bond-angle interaction. The value of 145 

𝜎/: is defined as the arithmetic mean (𝜎/ + 𝜎:)/2 where 𝜎/ (𝜎:) represents the van der Waals diameter 146 

of the i-th (j-th) CG particle. For each lipid type, 𝜎/ takes two values; 𝜎! for the head and 𝜎" for the tail 147 

beads, with values related by 𝜎! = 0.65𝜎" (Fig. 1b). This relation confers the lipids a geometry that 148 

prevents the formation of persistent holes in membranes, which we will discuss later in this paper. The 149 

value of 𝜀/: is defined as the geometric mean, 𝜀/: = H𝜀/𝜀:, where 𝜀/ depends on the lipid type. Finally, 150 

in the last term, 𝑉'001230/$% , represents the attractive hydrophobic interaction between tail beads of 151 

different lipid molecules: 152 
 153 
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𝑉'001230/$% = .

⎩
⎪
⎨

⎪
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−𝜀/:𝑐𝑜𝑠7 P
𝜋

2𝜔/:
0𝑟/: − √2* 𝜎/:3S , √2* 𝜎/: < 𝑟/: ≤ √2* 𝜎/: +𝜔/:

0, √2* 𝜎/: +𝜔/: < 𝑟/:

%#(+,&-.%

/<:

(5) 154 

 155 

Here, 𝜀/: and 𝜎/: have the same values as in the repulsive potential, whereas 𝜔/: represents the width 156 

of the pair potential well, which is defined as the arithmetic mean of each lipid type, (𝜔/ +𝜔:)/2. The 157 

attractive interaction, which approximates the hydrophobic interaction, is only applied between tail 158 

bead pairs, excluding the T1-T3 pairs (Fig. 1b). This exclusion of the T1-T3 pairs was motivated to 159 

prevent the system from getting trapped into a highly rough membrane surface, and unrealistic collapsed 160 
local minima. Fig. 1c shows the potential that represents the interaction between tail bead pairs that 161 

participate in both repulsive and attractive interactions. In our preliminary tests, an attractive potential 162 

between head beads occasionally resulted in the inverted micelle form for simulations starting from 163 
random configurations. To avoid this configuration, we do not include the attraction between head 164 

beads in the current model. However, a weak and fine-tuned attractive force could be useful in the 165 
future.  166 
 We call the current CG lipid models as the implicit solvent lipid force field, iSoLF. 167 

 168 

Coarse-grained molecular dynamics simulation 169 

We performed all the CG MD simulations using a modified version of our software, CafeMol v3.1.38 170 
We used the standard underdamped Langevin equation and set the mass of each CG bead equal to the 171 
sum of the masses of atoms involved in the CG bead.  172 
 For the force-field parameter optimization, the estimate of physical properties of plane-173 

membrane, their temperature dependence, the observation of pore formation, and the observation of the 174 

POPC/DPPC two-component membrane behavior, we used periodic boundary conditions and semi-175 
isotropic pressure coupling in the xy-direction by fixing the linear length in the z-axis and allowing the 176 

linear lengths in the x- and y-axes to change while maintaining the surface tension equal to zero, i.e., 177 

the NγxyLzT ensemble where γxy means surface tension in xy-direction and Lz stands for the linear length 178 
in the z-direction. For the integrator, we used the one developed by Gao, Fang, and Wang.39 The friction 179 

coefficient of the thermostat in the Langevin dynamics was set equal to 0.1 (1/CafeMol-time. In 180 

CafeMol v3.1, one CafeMol-time unit apparently corresponds to ~ 49 fs although effective dynamics 181 

is much accelerated.) 38, the friction coefficient of the barostat equal to 0.1 (1/CafeMol-time), and the 182 

compressibility of the simulation box equal to 0.01 (Å> ∙ 𝑚𝑜𝑙 𝑘𝑐𝑎𝑙⁄ ). The MD time-step size in the 183 
integration was 0.2 (CafeMol-time) for simulations of pure POPC system, and 0.1 for simulations 184 

containing DPPC (we found the DPPC-containing system unstable with a time-step of 0.2, probably 185 

due to a small harmonic force constant and a large bond length of T2-T3 bonds). For the parameter 186 
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optimization process, each simulation consists of 1 x 106 and 2 x 106 MD steps for POPC and DPPC, 187 

respectively, of which the second half data were used for the estimation of the properties. For the 188 
temperature dependence examination, each simulation contains 1.2 x 106 and 2.4 x 106 MD steps for 189 

POPC and DPPC systems, respectively, from which the first sixth of data was discarded (sample 190 
trajectories are in Fig. S1). For the POPC/DPPC two-component system, the simulation contains 2.4 x 191 

106 MD steps. 192 

 For the spontaneous lipid bilayer membrane formation and the vesicle simulation, we used the 193 
default dynamics setup of CafeMol, a fixed-size box with periodic boundary conditions, the NVT 194 

ensemble, and 2 x 106 and 1 x 106 MD steps, respectively. 195 

 For the simulation of the spontaneous lipid bilayer membrane formation, we prepared the initial 196 
configuration by sequentially placing lipid molecules inside a simulation box. The placement procedure 197 

of lipids consisted of selecting a random point where an H1 head bead was positioned. Then, the 198 

remaining beads (H2, T1, T2, and T3) were added following a randomly oriented straight line. During 199 

the placement of a lipid molecule, if any of its beads happened to be at a distance lower than 1.3𝜎 to 200 
any of the already placed beads, the molecule was discarded, and the placement of the H1 bead was 201 

performed again.  202 
 For the simulation of a vesicle made of POPC lipids, we prepared an initial configuration based 203 
on a simple geometric method. We set the radius of the vesicle as 15 nm (more precisely, the radius is 204 

defined as the distance from the center to the outer layer of the vesicle). Using the surface area of each 205 
leaflet and the area per lipid, we estimated the number of lipids in the inner- and outer- leaflets as 2976 206 
and 4400, respectively. Then, we used an algorithm that distributes points optimally on the surface of a 207 

sphere as evenly as possible, via mapping the Fibonacci lattice onto the surface40, by which we placed 208 
each lipid molecule. 209 
 We implemented our lipid model, iSoLF, in our software, CafeMol, and it will be included in 210 
the upcoming release.  211 

 212 

All-atom molecular dynamics simulations 213 

For the bottom-up parameter determination and calculation of reference physical properties, we 214 
performed all-atom MD simulation using GROMACS41 version 5.1.1, the Slipids42,43 force field for 215 

lipids, and the TIP3P water model.44 We downloaded single-component membrane patches of 128 216 

POPC and DPPC lipids (64 lipids per leaflet) from the Slipids website45 and performed energy 217 

minimization using the steepest descent method, NVT equilibration for 200 𝑝𝑠  at a constant 218 

temperature of 303K using the v-rescale thermostat, and NPT equilibration for 5 𝑛𝑠 at a constant 219 

pressure of 1.013 bar and a constant temperature of 303K using the Parrinello-Rahman barostat. In both 220 

equilibrations, lipid and water molecules were coupled separately, using time constants of 0.5ps and 221 
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10ps for the thermostat and barostat, respectively. Then, we performed production runs for 200 𝑛𝑠 using 222 

the equilibrated patches, of which data was used for the estimates. 223 
Finally, for the running-time comparison of the CG and all-atom models, we equilibrated all-224 

atom and CG membrane patches of POPC following the protocol described above and performed 225 

production runs to estimate 2D MSD using 1 CPU core of an Intel i7-5930K processor and no GPUs. 226 
 227 

Calculations of properties 228 

In the planar membrane simulations, we calculated the area per lipid, the order parameter, the 229 

hydrophobic thickness, and the 2D diffusion coefficient. The area per lipid, 𝐴?, was calculated by the 230 

formula: 231 

 232 

𝐴? = 2
𝐴@A
𝑛)/,/&.

(6) 233 

 234 

where  𝐴@A is the area of the simulation box in the xy-plane and 𝑛)/,/&. is the total number of lipids in 235 

the system. 236 

The order parameter, 𝑆B, was calculated from the angle 𝜃/ 	formed between the line joining the 237 

center of mass of the tail beads T1 and T3, and the z-axis (Fig. 2a). We used this angle in the formula: 238 

 239 

〈𝑆B(𝑡)〉 =
1

𝑛)/,/&.
.

1
2
[3𝑐𝑜𝑠7(𝜃/(𝑡)) − 1]

%(-,-$%

/89

(7) 240 

 241 

where 𝑛)/,/&. is the total number of lipids in the system, and 〈⋯ 〉 represents the average over all lipids. 242 

For the hydrophobic thickness, we employed a similar method to the one used in the GridMAT-243 

MD46 software. For each lipid molecule, we choose the middle point of the H2-T1 pair as a reference 244 
point. Then, we find the lipid molecule in the opposite leaflet, which has the smallest distance in the 245 

xy-plane. The difference in the z-axis between the reference points defines the hydrophobic thickness 246 

at that lipid site. Once it is averaged over all lipids, we obtain the hydrophobic thickness (Fig. 2b).  247 
The 2D diffusion coefficient, i.e., the lateral diffusion coefficient, was calculated from the mean 248 

square displacement (MSD), defined as MSD = 〈0𝑟/,@A(𝑡 + 𝑡6) − 𝑟/,@A(𝑡6)3
7〉, where 𝑟/,@A  is the xy 249 

coordinate of the center of mass of the i-th lipid molecule, 𝑡 is the size of the time window, and 𝑡6 is 250 
the separation between time windows. The MSD as a function of the time window t is fitted by a straight 251 

line of which the slope is equal to 4 times the 2D diffusion coefficient. Also, for a given t, we set the 252 

interval of 𝑡6 larger than t.47 253 

 254 
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 255 
Figure 2. Methods for calculating the order parameter and the hydrophobic thickness. (a) Drawing of 256 

the angle 𝜃 for the calculation of the order parameter. It is defined as the angle between the line joining 257 

the bead T1 and T3, and the z-axis. (b) The local hydrophobic thickness for three lipids. For each lipid 258 

molecule, we find a lipid molecule in the opposite leaflet such that the distance in xy-plane between the 259 
two lipids is the smallest (blue dashed lines). The difference in the z-axis between the pair of lipids 260 
(indicated by red arrows) defines the hydrophobic thickness at that site. 261 

 262 
 Finally, in this study, we used the physical properties described above to assign a phase to each 263 
of the simulated lipid bilayers. The gel phase was characterized by markedly slower lateral diffusion of 264 

lipids and a high order parameter. Faster lateral diffusion of lipids corresponded to the liquid phase, in 265 

which the liquid disordered and the liquid ordered phases were characterized by a low and high order 266 
parameter, respectively. As a function of temperature, we monitored the lateral diffusion coefficient, 267 

the order parameter, as well as the hydrophobic thickness and the area per lipid. For each lipid 268 

membrane, we found significant changes in all these properties nearly around a temperature, which we 269 
identified as the phase transition temperature. The thresholds for the slower/faster lateral diffusion and 270 

the lower/higher order parameter are defined by the corresponding values at the phase transition 271 

temperature. 272 
 273 

Results and Discussion 274 
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Model Parameterization 275 

Parameters in the force field were determined for two target glycerophospholipids, POPC (1-palmitoyl-276 
2-oleoyl-sn-glycero-3-phosphocholine) and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine). 277 

It has been characterized that near-physiological temperature (30 °C) single-component membranes of 278 
POPC and DPPC lipids exhibit liquid disordered and gel phases, respectively. Thus, these two lipids 279 

can serve as representatives of the gel and liquid disordered phases of lipid membranes. In the parameter 280 

determination, we used a partly bottom-up and partly top-down approach.  281 
 282 

 For the virtual-bond and bond-angle potential parameters, we took a bottom-up approach. We 283 

first performed all-atom simulations of single-component lipid membranes of POPC and DPPC (see 284 
the section "All-atom molecular dynamics simulations"). From the obtained structure ensembles, we 285 

fitted Eq. (2) and Eq. (3) using the standard Boltzmann inversion method.48 The obtained parameters 286 

are listed in Table 1. It should be noted that we solely used lipid structural samples in the bilayer 287 
membrane. Thus, we expect the obtained lipid parameters are appropriate for lipids in the membrane, 288 

but not necessarily for those out of membranes. 289 
 290 

Type Coefficient POPC DPPC 

Bond 

𝑘!9=!7 0.446 0.471 

𝑘!7="9 1.073 1.320 

𝑘"9="7 1.001 0.875 

𝑘"7="> 0.443 0.280 

𝑏6,!9=!7 5.580 5.417 

𝑏6,!7="9 5.452 5.824 

𝑏6,"9="7 5.050 6.312 

𝑏6,"7="> 5.095 6.299 

Angle 

𝑘!9=!7="9 0.600 0.582 

𝑘!7="9="7 2.383 3.357 

𝑘"9="7="> 0.880 4.823 

𝜃6,!9=!7="9 3.142 3.142 

𝜃6,!7="9="7 3.142 3.142 

𝜃6,"9="7="> 3.142 3.142 
Table 1. Parameters for the virtual bond and bond-angle potentials of POPC and DPPC. The force 291 

coefficients 	𝑘 are in 𝑘𝑐𝑎𝑙/Å7𝑚𝑜𝑙 for the virtual bond, and in 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 for the virtual bond-angle, the 292 

equilibrium distances 𝑏6 are in Å, and the equilibrium angles 𝜃! are in radians. 293 
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 294 

 For the parameterization of the intermolecular repulsive and attractive potentials, we took a 295 
top-down approach, in which we iteratively optimized the parameters so that the CG MD simulations 296 

reproduced three, either physical or geometrical properties of lipid membranes. To guide this 297 
optimization process, we introduced a cost function: 298 

 299 

𝐶𝑜𝑠𝑡(ε, σ, ω) =.:
𝑝/,./C(ε, σ, ω) − 𝑝/,1*D

𝑝/,1*D
<
7>

/89

(8) 300 

 301 

with 𝑝/,1*D representing the reference value for the i-th property and 𝑝/,./C the i-th property calculated 302 

from the CG MD simulation that depends on the force field parameters, ε, σ, and ω. For the three 303 

properties to match, we chose the area per lipid (APL), the hydrophobic thickness, and the order 304 

parameter in the bilayer membrane (Fig. 3a-3c). The reference values for the first two properties for 305 
the POPC lipid membrane were taken from experimental data reported by Kučerka, Nieh, and 306 
Katsaras49. In contrast, those for DPPC in the gel phase that were not available from experiments were 307 

taken from the all-atom MD structure ensemble. We calculated the reference value for the order 308 
parameter from the all-atom MD trajectories by mapping the atomic coordinates of lipid molecules to 309 
the CG beads and using the Eq. (7). 310 
 We seek a set of parameters that minimize the cost function. Each evaluation of this cost 311 

function requires a new CG MD sampling with an updated set of parameters. Moreover, the calculation 312 
of the derivatives of the cost function with respect to the parameters is computationally very expensive. 313 
Thus, to minimize this function with respect to parameters, we used the Nelder-Mead method50, a 314 

gradient-free method in which a boundary enclosing a minimum in the parameter space is refined in 315 
each iteration step up to the desired precision. By selecting a suitable set of initial values, the 316 

convergence is achieved within some tenths of iterations (Fig. 3d-3f). Values for the optimized 317 
parameters for POPC and DPPC lipids are given in Table 2. 318 

 319 

 POPC DPPC 

𝜀 0.416 0.464 

𝜎"  7.111 6.900 

𝜔 9.867 10.318 
 320 

Table 2. Coefficients for intermolecular interactions of POPC and DPPC. 𝜀 is in kcal/mol, and 𝜎 and 	321 

𝜔 are in Å. 322 

 323 
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 324 
Figure 3. The parameter optimization process for the attractive and repulsive inter-lipid interactions for 325 

POPC using the Nelder-Mead method. (a)-(c) Values for the target properties for the best and the worst 326 
points of the boundary enclosing the minimum. As the optimization proceeds, both points approach 327 

each other. (d)-(f) Values for the coefficients of the attractive and repulsive interaction at each step of 328 

the optimization process.  329 
 330 

Spontaneous membrane formation 331 

Using the optimized set of parameters, we examined the spontaneous formation of lipid bilayer 332 
membranes with our CG force field, iSoLF. We prepared a system containing 200 POPC lipid 333 
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molecules randomly placed in a box following the procedure described in the Methods section. We 334 

fixed the size of the box so it would produce the equilibrium APL of POPC at 30 °C, that is, Lx, Ly, and 335 
Lz equal to 64, 64, and 80 Å, respectively. With this setup, the randomly positioned lipids spontaneously 336 

adopted a lipid bilayer conformation within 104 MD steps (Fig. 4). Once the lipid bilayer membrane 337 
was formed, we did not find any breakage of the membrane within the simulation time due to its stability. 338 

This spontaneous formation of the lipid bilayer membrane and no rupture of it suggest that the lipid 339 

bilayer is thermodynamically the most stable state with the current force field and under these 340 
conditions. 341 

 342 
Figure 4. Spontaneous lipid bilayer membrane formation. (a) Simulation of 200 POPC lipids at 30 °C, 343 

starting from a random configuration. (b) After 5000 CafeMol-time units, lipids begin to gather, 344 
forming a membrane-like conformation. (c) The lipids adopt a membrane conformation after 10000 345 
CafeMol-time units and maintain it without any breakage. Head and tail beads are in dark-gray and 346 

white, respectively. 347 
 348 
 Two observations in the preliminary studies may be instructive. First, when we used the 349 

ensemble of zero surface tension in the xy-direction with variable box size, we noticed that CG MD 350 

simulations starting from random conformations were unstable, and the system box expanded 351 
indefinitely. This might be a technical difficulty specific to the implicit solvent nature of a system with 352 

variable box size. To avoid this issue, we decided to use a fixed box size, i.e., the NVT ensemble, in 353 

this simulation.  354 
 Another interesting observation in the preliminary simulation is on the stability of the formed 355 

lipid bilayer membrane. With the choice of 𝜎! = 0.85𝜎"~1.00𝜎", during the simulations starting from 356 

the lipid bilayer membrane configurations, pores appeared spontaneously in the membrane (Fig. 5a and 357 
Fig. S2). This behavior is consistent with an observation given in a document by the original author 358 

group.51 When the box size is variable, the system occasionally expands, which results in a transient 359 

cavity formation in the membrane. The transiently formed cavity induces a tilt of the surrounding lipids, 360 
which increases the repulsive energy between head beads and tail beads at the cavity (akin to collisions). 361 

In order to reduce the repulsion, the system expands and forms a pore. Once the pore is formed in the 362 
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membrane, it is very stable, and the system is trapped in this conformation (Fig. 5a). We found that the 363 

stability of the pores depends on the ratio 𝜎!/𝜎" between the head and tail beads (Fig. S2). With the 364 

choice of 𝜎! = 0.65𝜎", we did not see, even transiently, the pore formation. Moreover, after a pore is 365 

formed with the use of 𝜎! = 0.85𝜎" relation, by changing the ratio to 𝜎! = 0.65𝜎" , we could observe 366 

that the pore quickly disappeared (Fig. 5b). We concluded that a small enough radius of the head bead 367 

relative to the tail bead is necessary to make lipid bilayer membranes stable. 368 

 369 
Figure 5. Pore formation in lipid membranes. Depending on the size ratio 𝜎!/𝜎" , pores appear or 370 

disappear in the membrane conformations. (a) A simulation with a ratio of 𝜎! = 0.85𝜎" results in the 371 

spontaneous formation of pores. (b) When the ratio is changed back to 𝜎! = 0.65𝜎" , the pore 372 

disappears. Head and tail beads are in dark-gray and white, respectively. 373 
 374 
 375 

 376 

Lateral diffusion 377 

We evaluated the lateral diffusion of POPC and DPPC lipids with the parameter set determined in the 378 
optimization process. To quantify the lateral diffusion, we computed the MSD in 2D at 30 °C (Fig. 6a). 379 

The MSD with respect to the time difference fits well to the straight line, suggesting a normal diffusion 380 

in 2D. A comparison of the slope of the MSD of the two lipids suggests that the pure POPC membrane 381 
is in a liquid phase, whereas the pure DPPC membrane is in a gel phase at 30 °C. To further support 382 

this, we calculated the diffusion coefficient of POPC and DPPC at different temperatures (Fig. 6b) and 383 

observed an apparent phase transition from gel to liquid phases around 25 °C for POPC and 95 °C for 384 
DPPC. This putative assignment of phases is further confirmed later by observing simultaneous changes 385 

in the area per lipid, the hydrophobic thickness, and the order parameter. 386 
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 387 
Figure 6. Lateral diffusion of POPC and DPPC lipids in membranes. (a) Mean square displacement 388 

(MSD) at a temperature of 30 °C for POPC (blue) and DPPC (orange). At this temperature, the POPC 389 

membrane shows a liquid phase, while the DPPC membrane remains in a gel phase. The red line 390 
corresponds to the fitted equation used to calculate the diffusion coefficient. (b) The 2D diffusion 391 

coefficient for POPC and DPPC lipids as a function of temperature. The model POPC and DPPC 392 
membranes exhibited an apparent phase transition around 25 °C and 95 °C, respectively. The subplot 393 

shows the lower section of the main plot. 394 
We also used the MSD in 2D for a rough comparison of the running time of our coarse-grained 395 

lipid model with a standard all-atom model. Using 1 CPU core for both all-atom and coarse-grained 396 

simulations, we calculated the MSDs (Fig. S3). For the all-atom simulation, an MSD of 0.174	𝑛𝑚7 397 

was obtained in about 8	ℎ𝑜𝑢𝑟𝑠	47	𝑚𝑖𝑛𝑢𝑡𝑒𝑠 . On the other hand, with our CG model, an MSD of 398 

36.7	𝑛𝑚7 was obtained in about 21	𝑚𝑖𝑛𝑢𝑡𝑒𝑠. Assuming the MSD increases linearly in time, except for 399 

a very short time regime, we obtained a speed-up factor of ~5000 relative to the all-atom model. To get 400 
an MSD value comparable to our coarse-grained model, the all-atom model would need about 2 months 401 
and 17 days using the same resources. 402 

 403 

Vesicle dynamics 404 

Next, we performed a CG MD simulation of a vesicle made of POPC lipids. For this, we prepared a 405 
small unilamellar vesicle (SUV) with a diameter of ~30 nm (see the Method, Fig. 7a). Preliminary tests 406 

suggested that starting the CG MD simulations at a room temperature causes an unstable behavior of 407 

the vesicle due perhaps to a poor setup of the initial structure. To avoid this instability, we started from 408 
a temperature of 0K = - 273 °C and then gradually heated the system until 30 °C. During this heating 409 

process, some lipid molecules in the outer leaflet left the vesicle, but without affecting the overall 410 

vesicle shape. Once the system reached 30 °C (Fig. 7b), we removed lipid molecules that were 411 
dissociated from the vesicle during the heating up process and, after that, conducted the production run. 412 

During this process, we evaluated the stability of the vesicle by monitoring the radius of the sphere that 413 

best fitted the vesicle as a function of time (Fig. 7c). Also, by visual inspection, we checked that the 414 
vesicle did not present any pore and that the unilamellar structure was maintained during the simulation. 415 
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416 
Figure 7. A CG MD simulation of a vesicle made of POPC lipids. (a) Initial conformation of the vesicle 417 

generated with the Fibonacci lattice method. (b) Vesicle after equilibrating the system at room 418 
temperature. (c) The radius of the best fit sphere on the vesicle during the equilibration (I) and 419 

production (II) run. In the first stage, the vesicle was heated up from 0 K = -273 °C to 30 °C, and in the 420 

second stage, the vesicle was kept at a constant temperature of 30 °C. Head and tail beads are in dark-421 
gray and white, respectively. 422 
 423 

Temperature dependence 424 

The parameterization of our CG lipid force fields for POPC and DPPC was performed at 30 °C. At this 425 

temperature, the simulations closely reproduced the reference properties, and the POPC and DPPC 426 

membranes were apparently in liquid and gel phases, respectively (Fig. 3 and Fig. 6b). Here, we 427 
examine if our model can reproduce the temperature dependence of these quantities. Simulating POPC 428 
and DPPC lipid membranes at different temperatures from 0 °C to 110 °C, we calculated the area per 429 
lipid (APL), the hydrophobic thickness, the order parameter (Fig. 8), and the lateral diffusion coefficient 430 

(Fig. 6b) of single-component lipid bilayers. 431 
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 432 
Figure 8. Temperature dependence of membrane properties. Comparison of the temperature 433 
dependence of geometric properties between CG simulations and experiments for (a) the area per lipid 434 

(APL), (b) the hydrophobic thickness, (c) and the order parameter. The experimental data are available 435 

only in the liquid phase for POPC. Purple squares represent the values calculated from all-atom MD 436 

simulations of DPPC membranes. The maximum errors are ±0.04 and ±0.009 for the APL, ±0.01 and 437 

±0.004 for the hydrophobic thickness, and ±7.1 × 10=E and ±0.006 for the order parameter of POPC 438 

and DPPC, respectively. 439 

 440 

 We observed a characteristic change in the area per lipid, the hydrophobic thickness, and the 441 
order parameter nearly at the same temperature as that in the lateral diffusion coefficient, both for POPC 442 

and DPPC (Fig. 8), giving further evidence of a transition from the gel phase to the liquid disordered 443 

phase52-54. For the pure POPC membrane, we found that both the area per lipid and the hydrophobic 444 
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thickness of the CG model membrane stayed correlated with the experimental values at temperatures 445 

within the range of 30 - 60 °C. Below 30 °C, however, we observed the phase transition around 25 °C 446 
in the CG model (Fig. 3 and Fig. 6b), whereas, experimentally, the phase transition temperature of the 447 

POPC membrane is reported as -2 °C. This shows that the transition temperature was not correctly 448 
reproduced in the current parametrization. 449 

 DPPC lipid membranes have a gel-liquid phase transition temperature at 41 °C, experimentally. 450 

In the current parametrization, we took the reference values at 30 °C from an all-atom MD simulation 451 
ensemble, in which DPPC lipid was in the gel phase. With our CG lipid force field, the DPPC lipid 452 

membrane showed a sharp gel-liquid phase transition at around 95 °C (Fig. 6b). Thus, the phase 453 

transition temperature was also not accurately reproduced. At 50-60 °C, our estimates of the area per 454 
lipid and the hydrophobic thickness from CG MD in the gel phase deviates from experimental data 455 

from the liquid phase (Fig. 8). 456 

 Overall, we summarize that, with the current force field of lipids, we can reproduce major 457 
geometrical properties of pure POPC and pure DPPC membranes at 30°C at which we calibrated the 458 

parameters, as well as the temperature dependence within the liquid phase. Yet, we cannot predict the 459 
phase transition temperature between the gel and liquid disordered phases.  460 

 461 

Two-component membrane system 462 

Finally, we tested the behavior of a membrane composed of POPC and DPPC. We simulated a 463 

membrane consisting of 256 POPCs and 256 DPPCs at 50 °C. We prepared the initial configuration at 464 
which the POPC lipid molecules were localized in the half area of the membrane, and the DPPC lipids 465 
were localized in the other half (Fig. 9a). In an early stage of the simulation, we confirmed that two 466 
different phases, the liquid phase in the POPC region and the gel phases in the DPPC region, coexist 467 

(Fig. 10a). 468 

 469 
Figure 9. Simulation of a system composed of POPC and DPPC with a ratio of 1:1 at 30 °C. (a) Initial 470 

configuration of the binary system. Grey and red molecules represent POPC and DPPC lipids, 471 
respectively. (b) Some DPPC lipids in a gel phase diffuse to the POPC phase. At the boundary, POPC 472 

lipids directly interacting with DPPC lipids transitioned to a gel phase. 473 
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 474 

 As the system evolved, we observed some exchanges in lipids around the interface between the 475 
DPPC and POPC phases. We found that the DPPC lipids that moved to the liquid disordered phase 476 

exhibited a faster diffusion, whereas the POPC lipids that moved to the gel phase had almost zero 477 
diffusion. Consistently, the order parameter suggests that DPPC lipids exhibit liquid disordered-like 478 

behavior when they are locally in a low ratio to POPC lipids, despite being at a temperature that 479 

corresponds to the gel phase of pure DPPC (Fig. 10b). In the same way, POPC lipids exhibited a gel-480 
like behavior when they are locally in a lower ratio to DPPC lipids. 481 

 482 

 483 
Figure 10. Order parameter for POPC and DPPC in a two-component membrane. (a) Time series of 484 

the average order parameter for POPC and DPPC in a two-component membrane. (b) Time series of 485 
the order parameter of two specific lipids. The red line shows the order parameter of a POPC lipid that 486 
diffuses into the DPPC gel phase, and the green line the order parameter of a DPPC lipid that diffuses 487 

into the POPC liquid phase. 488 

 489 

Conclusions  490 

In this study, we extended the three-bead lipid model developed by Cooke, Kremer, and Deserno into 491 

a five-bead model. We parametrized it for the two phospholipids, one unsaturated, POPC, and the other 492 
saturated, DPPC lipids. The developed model, iSoLF, reproduced the area per lipid, the hydrophobic 493 

thickness, and the phase behaviors of the target phospholipids at 30 °C. Also, the model membranes of 494 

POPC and DPPC were in liquid disordered and gel phases, respectively, in accordance with experiments. 495 
We further examined the spontaneous formation of a lipid bilayer, the temperature dependence of 496 

physical properties, the vesicle dynamics, and the POPC/DPPC two-component membrane dynamics 497 

using the parameterized CG lipid model.  498 
 While our CG model membranes, both for POPC and DPPC lipids, reproduced geometric and 499 

physical properties estimated from experiments or all-atom models at 30 °C where we calibrated the 500 

parameters, the CG model did not reproduce the gel-liquid phase transition temperature correctly. 501 
Probably, we can perform finer tuning of the parameters targeting the phase transition temperature for 502 
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each target phospholipid. For the two-component systems made of POPC and DPPC, we only tested a 503 

small patch of a membrane with 1:1 composition in this work. Probably, we need a more comprehensive 504 
examination of longer-time simulations of larger systems with different compositions. These 505 

refinements are left for future studies.  506 
 Since our aim here is to develop a CG lipid model compatible with the Cα-protein model, our 507 

next step is to model lipid-protein interactions. Therein, from a physicochemical point of view, the 508 

excluded volume, hydrophobic interactions, and electrostatic interactions need to be modeled. These 509 
developments are now underway. Once combined with standard Cα protein models, the iSoLF model 510 

will be a powerful tool to simulate large biological membrane systems made of lipids and proteins. The 511 

iSoLF model will be available in the upcoming release of CafeMol. 512 
 513 
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 623 
 624 

Figure S1. Time series for POPC and DPPC. Time series obtained with our coarse-grained lipid model 625 
following the protocol described in the Methods section of the main text. The plots show the APL, 626 
Hydrophobic Thickness, and Order parameter for POPC (a-c) and DPPC (d-f). The red zone in each 627 
plot represents the portion of the trajectory that was discarded, and the green line represents the running 628 
average for the 10 last points. 629 
 630 
 631 
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 634 
 635 
Figure S2. Probability of pore formation for POPC. For each ratio, 20 simulations were performed 636 
from which the probability was determined by counting the number of membranes presenting a pore. 637 
No pores were formed when the ratio of 𝜎! 𝜎"⁄  is 0.75 or lower. At a ratio of 0.8, a pore was formed in 638 
14 out of 20 membranes during the first 0.5 × 10; simulation steps (blue line), and after 1.0 × 10; 639 
simulations steps, all the membranes presented a pore. 640 
 641 

 642 
Figure S3. Lateral diffusion of POPC for one sample trajectory. (a) MSD obtained with the Slipids all-643 

atom model. (b) MSD obtained with our iSoLF coarse-grained model. Both simulations consisted of 644 

128 POPC lipids at 303K, as described in the Methods section of the main text. 645 
 646 
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