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Abstract

Signaling networks mediate many aspects of cellular function. The conventional, mechanistically 

motivated approach to modeling such networks is through mass-action chemistry, which maps 

directly to biological entities and facilitates experimental tests and predictions. However such 

models are complex, need many parameters, and are computationally costly. Here we introduce the 

HillTau form for signaling models. HillTau retains the direct mapping to biological observables, but

it uses far fewer parameters, and is 100 to over 1000 times faster than ODE-based methods. In the 

HillTau formalism, the steady-state concentration of signaling molecules is approximated by the 

Hill equation, and the dynamics by a time-course tau. We demonstrate its use in implementing 

several biochemical motifs, including association, inhibition, feedforward and feedback inhibition, 

bistability, oscillations, and a synaptic switch obeying the BCM rule. The major use-cases for 

HillTau are system abstraction, model reduction, scaffolds for data-driven optimization, and fast 

approximations to complex cellular signaling.
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Author summary

Chemical signals mediate many computations in cells, from housekeeping functions in all cells to 

memory and pattern selectivity in neurons. These signals form complex networks of interactions. 

Computer models are a powerful way to study how such networks behave, but it is hard to get all 

the chemical details for typical models, and it is slow to run them with standard numerical 

approaches to chemical kinetics. We introduce HillTau as a simplified way to model complex 

chemical networks. HillTau models condense multiple reaction steps into single steps defined by a 

small number of parameters for activation and settling time. As a result the models are simple, easy 

to find values for, and they run quickly. Remarkably, they fit the full chemical formulations rather 

well. We illustrate the utility of HillTau for modeling several signaling network functions, and for 

fitting complicated signaling networks.

Keywords: Simulation, systems biology, mass-action, synaptic plasticity
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Introduction

John von Neumann’s elephant haunts mechanistically detailed models. von Neumann was reported 

to have claimed that he could fit an elephant with 4 parameters, with the implication that models 

with many parameters are under-constrained and over-fitted (Mayer, Khairy, and Howard 2010). 

There are two major arguments to exorcise this elephant: that mechanistic detail is needed to 

address certain kinds of questions; and that in the era of big data it is both easier and less biased to 

simply build up detailed models with all the available pieces. Here we describe a model formalism, 

the HillTau form, to help navigate between biological mechanisms and big data on the one hand, 

and the desirability of condensed model representations that expose the key principles of system 

function.

Cellular, and particularly synaptic signaling, is notoriously complex. There are an estimated 1400 

protein species localized to the postsynaptic density alone (Bayés et al. 2011). These support a 

range of functions including synaptic transmission, maintenance, plasticity, activity-driven protein 

synthesis, metabolic control, and traffic (Upinder S. Bhalla 2014). 

Mass-action chemistry is a common denominator for mechanistically inspired modeling of these 

phenomena. This has the key virtue of defining specific biological entities (molecules) and 

processes (reactions) that map directly to experimental observables. Many studies are based at this 

level (U S Bhalla and Iyengar 1999; Shouval, Bear, and Cooper 2002). Further levels of 

mechanistic detail include reaction-diffusion, stochastic chemistry  mesoscopic stochastic methods 

with trapezoidal or cubic meshes (Wils and De Schutter 2009; Oliveira et al. 2010) and even single-

particle reaction-diffusion calculations (Stiles and Bartol 2001; Andrews et al. 2010). Note that the 

additional mechanistic detail comes at a considerable computational cost.

A few studies have found ways to lessen the level of detail, typically by focusing on interactions 
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without dynamics (e.g, (Sorokina, Sorokin, and Armstrong 2011))  or on dynamics with highly 

reduced interactions (e.g.,(Barak and Tsodyks 2006)). Model detail may also be abstracted out 

through model reduction, which starts from a detailed (usually mass-action or Michaelis-Menten 

ODE form) model and strips it down to core interactions needed to account for model behavior. 

Another reduction approach is to identify ‘fast’ reactions in the system, which settle much faster 

than the overall system, and can be replaced with algebraic relations(Hoops et al. 2006; Deuflhard 

and Heroth 1996). These are a subset of general approaches to model reduction using quasi-

equilibrium and quasi-steady state methods (reviewed in (O. Radulescu et al. 2012)). There are 

serveral other model reduction techniques (reviewed by Snowden (Snowden, van der Graaf, and 

Tindall 2017)). Most of these methods retain the chemical kinetics formalism using ordinary 

differential equations (ODEs) to represent mass-action chemistry. 

Biochemical signaling models frequently suffer from incomplete parameterization. Thus ‘detailed’ 

models of signaling pathways, which are of course essential for many kinds of mechanistic analyses

and design of experiments, are often under-constrained. In this context, a reduced model is 

preferable as it requires fewer parameters. One frequently used form specifies rate of change of 

concentration of each molecule as a weighted sum of input molecule concentrations, which may be 

passed through a sigmoid to achieve saturation (Savageau 2001; Nyman et al. 2020; Bray 1995). 

This form is quite similar to neural network models. Thus it lends itself to machine learning 

approaches to obtain parameters from systematic experimental time-series measurements (Nyman et

al. 2020). The authors obtained relatively sparse interaction weight matrices, thus keeping down the

number of parameters. While this formulation is effective at modeling dynamics of molecules in 

reaction networks, the resultant interaction matrices do not map directly to reaction pathways. 

Similarly, other formal approaches to model reduction yield very compact models, but the mapping 

to experimental observables may be quite indirect (Snowden, van der Graaf, and Tindall 2017). 

Hence it is useful to have a compact chemically-inspired formulation to serve as the core for the 
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model reduction while remaining easy to parameterize and predict using the same quantities that are

measured in experiments (Maurya et al. 2005; Danø et al. 2006; Taylor, Doyle, and Petzold 2008). 

Indeed, a compact model with few parameters is arguably a better starting point to understand 

complex signaling with insufficient data, than is a mechanistically detailed model.

Savageau and colleagues have developed the Design Space Toolbox to facilitate a systematic 

approach to developing reduced signaling and transcriptional network models with specified 

properties such as multistability (Lomnitz and Savageau 2016). They cast mechanistic models into a

Generalized Mass Action form, and this is then analyzed to realize the required phenotypic 

repertoire. While this is an effective way of obtaining models with desired multi-state properties, it 

differs in objectives from our goal of having a reduced, very efficient representation of dynamic 

responses of complex reaction networks such as synaptic signaling.

Efficiency is a specific constraint in developing models of synaptic signaling. On the one hand, 

many neural functions depend on the nuances of signaling. For example, network properties are 

quite sensitive to different plasticity rules (Dan and Poo 2004), neuromodulators (Roelfsema and 

Holtmaat 2018), and mutations (Südhof 2017). Network models also are expanding to include 

diffusible messengers controlling cellular activity and blood flow (Dormanns, Brown, and David 

2016). At the single-cell level, explorations of receptor insertion and clustering (Hudmon et al. 

2005; Wilson et al. 2016), sequence recognition (Upinder S Bhalla 2017) and synaptic tagging 

(Frey and Morris 1997; Smolen, Baxter, and Byrne 2012) all require some level of reference to the 

chemical signaling. The crux of the problem arises when these studies need to scale beyond one 

synapse to whole-neuron (up to 104 synapses, (Upinder S Bhalla 2017)) or even network scales 

(e.g., 109 synapses (Markram et al. 2015) ). Clearly, efficiency in memory and computations is 

important for such models.
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The HillTau form addresses several key concerns with modeling of complex signaling networks. It 

utilizes only those observable states specified by the user to map directly to the chemistry, thus 

supporting sparse models that are easier to constrain with limited data. This requires very few 

parameters, yet behaves similarly to chemical cascades involving multiple intervening steps. Since 

the user specifies their chosen observables, each can be related directly to observations of 

concentration over time. The models are small and calculations are highly efficient, being closed-

form and event-driven. 

Results

We first provide an overview of the HillTau algorithm. Then we illustrate its use to approximate 

increasingly complex reaction networks. We then show how one can reduce a mass-action model to 

its HillTau equivalent, with a tradeoff of greater complexity for better accuracy. Finally we carry 

out some benchmarks of several reduced HillTau models against the original ODE-chemical kinetic

models run on two simulators, MOOSE (Ray and Bhalla 2008) and COPASI (Hoops et al. 2006), 

and show that HillTau is orders of magnitude faster.

Overview of HillTau algorithm

The name HillTau comes from combining the Hill form for concentration-dependence of a reaction,

and tau, the time-course for settling to steady state. In brief, a ‘reaction’ in HillTau uses  the Hill 

equation with modifiers to estimate steady-state values Y∞ of the product of one or several chemical

reactions having an input reagent Yinput, and a Ligand L, with order n:

Y∞ = Yinput.Ln/(KAn+ Ln) Eq. i

It may also optionally have a modifier M, with order h:

Y∞ = Yinput.Ln/(KAn(1+M/Kmod)h)/(1+Amod(M/Kmod)h)+ Ln) Eq. ii

A modifier changes the effective KA of a reaction, and is controlled by two terms. Kmod determines 
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the half-max concentration of the effect of the modifier. Amod determines what effect the modifier 

has on the reaction. If Amod < 1, the modifier is inhibitory, else it is excitatory (Hofmeyr and 

Cornish-Bowden 1997). The steepness of the effect of the modifier is controlled by its order, h.

The HillTau formulation of a reaction also incorporates τ, the time over which the system 

exponentially approaches this steady-state.  We allow for different time-courses τ and τ2 when the 

concentration is rising or falling: 

If  Y∞ > Y(t)     (Y(t+Δt) - Y(t))/(Y∞-Y(t)) = 1 - exp(-Δt / τ) Eq. iii

If  Y∞ < Y(t)     (Y(t+Δt) - Y(t))/(Y∞-Y(t)) = 1 - exp(-Δt / τ2) Eq. iv

This exponential form is a good and efficient approximation to the differential equation form for 

reaction rates (Eq v), so long as the timestep Δt in Eqs iii and iv is smaller than τ (See methods):

Y’(t) = (Y∞ - Y(t))/τ Eq. v

The set of elementary HillTau reactions are illustrated in Figure 1, and the details of the calculations

are provided in the Methods section.

 The motivation for this formalism is that the steady-state value of a cascade of binding reactions, or

of enzyme reactions with a fixed rate back-reaction, can be approximated by a Hill function 

(Methods). Further, the time-course of approach to steady-state is typically governed by the slowest 

reaction, and this can be approximated as an exponential settling function (Methods). 

Note that we do not assume that the input, activator and modifier act in a single mass-action 

chemical step. Indeed, HillTau is most effective for model reduction when one can fit several mass-

action steps using one HillTau ‘reaction’.

 Since Equations i to iv are analytic, one can do this calculation in an event-driven manner. HillTau 

achieves sparseness and simplicity by approximating many steps with a single ‘reaction’, 

considering only those intermediates that are needed for readouts or for improved precision. It 

achieves speed because the models are smaller, and by using event-driven calculations rather than 

numerical integration. 
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Most reaction networks cascade through many layers of reactions. HillTau evaluates each upstream 

layer before downstream ones. It first builds a dependency graph of all reactions. This is done by 

identifying input molecules as layer 0, and successively ranking all reactions that depend only on 

layer 0 as layer 1, reactions that depend on layers 0 to 1 as layer 2 and so on. 

HillTau identifies feedback loops by reactions which do not resolve into the above layers. Based on 

ordering of reactions in the model definition, it picks a reaction to ‘break’ the loop, and assigns it to 

layer N+1, where N was the previously deepest layer. It then repeats the process of layer 

assignment, including further loop-breaking if needed.

During evaluation of a single step in HillTau, all the steady-state and time-course calculations are 

completed for layer  1, then layer 2 is calculated, and so on. Thus each layer receives the inputs 

appropriate to the current time before doing its evaluation. In cases where update events are 

separated by periods greater than the shortest τ in the system, additional time-steps are inserted to 

maintain accuracy (Methods). For typical use-cases, such as synaptic plasticity models, the event 

interval is shorter than the time-courses in the model (typically ~1 sec) and hence only a single step 

is taken. In cases where HillTau inserts additional time-steps for accuracy, it is done behind the 

scenes of the same event-driven programming interface. If there is feedback,  then again one has to 

use event intervals shorter than the shortest τ in the feedback loop. A factor of 10 usually gives 

good convergence (e.g., Supplementary Figure S7 panels A and D).

In summary, HillTau uses analytic evaluation of reaction outputs based on a Hill-like form and 

exponential settling, and propagates the evaluation through successive layers of the reaction 

network for each event time. Events can be stimuli or points in a time-series for sampling system 

time-evolution.

The HillTau form can model a range of chemical signaling motifs

We implemented a range of elementary chemical signaling functions to illustrate the use of the 

HillTau form (Methods, Figure 1). The HillTau versions of most of these reactions have an exact fit
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to their mass-action counterparts (Supplementary Figure S1). We further implemented key signaling

motifs, including feedback inhibition, oscillation, and bistables (Figure 2). To do this, we 

constructed minimal HillTau schemes that incorporated the essential elements of each of these 

motifs. We developed an optimizer program mash.py (MASH: Model Abstraction from SBML to 

HillTau, see Methods) to tune parameters of the HillTau models to match the outputs to the original 

mass-action or ODE versions. MASH runs the reference model through a range of stimuli designed 

to explore its input-output properties, and then uses numerical optimization methods from 

scipy.optimize to tune parameters so that the HillTau model produces a good fit to the original. We 

used normalized RMS difference between the traces as a measure of goodness of fit. In Fig. 2A-C 

we compare feedback inhibition implemented in mass-action (5 reactions, 7 species, 2A), HillTau 

(2 reactions, 3 species, 2B), and run for a square pulse input (2C). The feedback inhibition model is 

well approximated by the HillTau version to within 4% normalized RMS deviation. 

Next, we implemented a HillTau version of a mitogen-activated protein kinase (MAPK) feedback 

oscillation model having 11 reactions and 15 species, Fig 2E (Kholodenko 2000). We used three 

HillTau reactions to map to the key components of the original ODE model. First, we used a 

reaction to represent the basic MAPK cascade. Second, we provided an output reaction to represent 

the phosphorylation of the MAPK molecule by the cascade. While it was possible to use this output 

signal to inhibit the cascade, we found we had to implement a separate reaction for the negative 

feedback step to introduce a longer delay to match the observed oscillations. 

Having constructed the model structure, we next fit the HillTau model to the original ODE model 

using MASH. As initial parameter estimates, we used taus of the order of the oscillatory period, and

KA of the same order as the (known) molecular concentrations. We first fit the initial output 

transients. Then we ran it for a complete cycle. Finally we stretched the fit time to include a few 

cycles. This incremental increase in time was necessary because our RMS scoring function gives 

very poor scores for otherwise good models if a phase mismatch builds up over a few cycles. The 
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final reduced HillTau version (3 reactions, 4 species, fig 2F) had similar period and amplitude (Fig 

2 D), and it fit the waveform to within ~7.6% normalized RMS deviation. 

Finally, we made a HillTau version of a chemical bistable switch using just 2 reactions (Fig 2 G). 

We demonstrated that the HillTau form works with the standard dose-response (null-cline) 

approach to estimating steady states (Figure 2 H) and showed that the resulting switch exhibits high 

and low states that are triggered by transient inputs (Figure 2 I).

Thus the HillTau form can efficiently represent a range of important signaling motifs and their 

dynamics, including feedback inhibition. oscillations, and bistability.
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Figure 1. The HillTau formulation and representation of elementary chemical reactions by a single HillTau reaction.

A: Principle of HillTau formulation. Left: steady-state output values for different levels of the input molecule, 

computed by the Hill equation. In all simulations in this figure, two input values are used: first 1 μM (red dot) and later 

0.2 μM (blue dot). Right: The simulator starts from the current value of the output, and computes the approach to the 

steady-state as an exponential time-course. Note that these are algebraic calculations, not numerical integration. In this 

example the output rises from zero toward the red dotted line for 2 seconds. Then the input is changed to 0.2 μM, and 

now the simulator approaches the steady-state value for this (blue dotted line) with an exponential time-course. B: Key 
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section of the JSON code defining this reaction system. C-G: Inputs (blue) and simulated time-course of outputs 

(orange) for seven different reactions. Each is represented by a similar HillTau reaction but with different parameters 

(see Supplementary Material). In all cases the HillTau output onset is identical to the output computed using numerical 

integration of a single reaction expressed as mass-action chemical kinetics. Decay time-course may differ from onset 

time-course in mass-action. C: Binding. D: 2nd order binding. E: Conversion. F: Inhibition, conceptually equivalent to 

removal of output molecules by binding of input to the output molecule, and sequestration of the resultant complex. G: 

Variant of binding reaction, in which there is a fixed baseline of 0.5 μM, and the system has different on (tau = 1s) and 

off (tau2 = 5s) time courses. H. Same as reaction 1, but with a modifier term that strengthens input affinity. I. Same as 

reaction 1, but with a gain term that multiplies the output, in this case by a factor of 2.
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Figure 2. HillTau models of key signaling motifs.  A-C: Feedback inhibition. A: Mass-action reaction scheme for  

feedback inhibition, involving 7 molecules and 5 reactions. B: HillTau version. Each box represents a molecule. If there

are input arrows to the box it means there is a reaction whose product is the named molecule. Input arrows can be either
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inputs (reagents), activators, inhibitors, or modifiers. This reaction consists of  3 molecules (input, fb, and output) and 2 

reactions (fb and output). C: Simulations for mass-action (blue)  and HillTau (orange) versions of feedback inhibition. 

The green trace is the input molecule. D-F: Oscillator from ultrasensitive MAPK cascade, taken from (Kholodenko 

2000). D: Output of simulation. Blue is ODE output and orange is HillTau. E: ODE model. This uses 15 molecules, and

11 reactions. MAPK-pp is the molecular species used as output of the oscillator. F: HillTau reaction scheme  for 

oscillator, using 5 molecules and 3 reactions. The concentration of the ‘output’ molecule is plotted. G: HillTau model of

bistable system, involving 4 molecules and 2 reactions. H: Phase plot showing stable states of system as the intersection

points between the steady-state dose-response curves. This was generated by varying the feedback molecule fb, and 

measuring output (brown curve), and then varying the output molecule and measuring fb (pink curve). I: Time-series 

illustration of state switching in the bistable. As before, output is in brown and fb in pink. The Y axes of H and I are the 

same to show that the steady-state output levels (brown) match. The system starts in the low state. At 20 s a small 

excitatory input stim is given which fails to switch the state. At 40 s a strong input causes switching to the high state. At

60 s a weak inhibitory input fails to turn it off, but at 80 s a strong inhibitory input returns the state to baseline. 

Excitatory and inhibitory inputs were delivered by transiently setting the level of stim to high or low values.
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The HillTau form compactly represents bidirectional synaptic plasticity

Synaptic plasticity is one of the most-modeled neuronal signaling processes (U S Bhalla and 

Iyengar 1999; Lisman 1989). The key features that have been represented include stimulus strength-

dependence, timing dependence, and long-term state storage (Upinder S Bhalla 2014). A few 

studies have come up with rather detailed models to implement each of these processes (Smolen, 

Baxter, and Byrne 2012; Hayer and Bhalla 2005; Kim et al. 2013). As an illustration of all these 

properties in the HillTau system, we implemented bidirectional synaptic plasticity including long-

term synaptic state changes (Figure 3). One of the interesting aspects of synaptic plasticity is that in 

many systems, the same input modality (typically read out as Ca2+ concentration) can give rise to 

both synaptic depression and potentiation. This has significant theoretical implications and an 

abstract rule for this bidirectional plasticity was proposed by Bienenstock et al (the BCM rule, 

(Bienenstock, Cooper, and Munro 1982)). We first devised a simplified mass-action version of the 

BCM rule using 9 molecules and 6 reactions (Figure 3A). The species p_AMPAR is the 

phosphorylated form of the receptor, assumed to be inserted into the synapse. Here, resting Ca2+ 

does not alter the state of the model; low Ca2+ causes depotentiation (that is, reduction of receptor 

levels), and high Ca2+ causes potentiation (Figure 3C, D, E). We then implemented a BCM model in

just 3 reactions in HillTau (Figure 3B). We used the program mash.py to fit the HillTau model to 

the reference mass-action version using a set of generic time-series and dose-response stimuli 

(Methods). We obtained a normalized RMS fit of ~2.3%. When we used the fitted model for Figure 

3, we obtained fits of ~5.2%, 8.9% and 2.3% for panels C, D and E respectively even though the 

model had not been tuned to these stimuli. As a further elaboration, we introduced a bistable switch 

for long-term retention of synapse state, which was driven bidirectionally by the BCM rule (Figure 

3F).  The bistable switch, derived from Calcium-calmodulin Type II kinase (CaMKII) signaling, 

controls receptor insertion. Using this model we delivered a typical potentiating stimulus (strong but

brief Ca2+ input), leading to sustained synaptic AMPAR elevation. We followed this with a typical 
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long-term depression stimulus (modest but sustained Ca2+ input), which turned the switch off again 

and led to reduction in AMPAR (Figure 3G). This composite model required 4 reactions and one 

summation function in the HillTau form. Several mass-action models of synaptic state switches 

include these elements (e.g., (U S Bhalla and Iyengar 1999; Lisman 1989; Hayer and Bhalla 2005; 

Singh and Bhalla 2018)) and they typically involve far more molecules and reactions (e.g., the 

Hayer and Bhalla 2005 model  used 133 molecules and 215 reactions (Hayer and Bhalla 2005)). 

Overall, these examples illustrate how compact HillTau models can represent both the bidirectional 

induction of plasticity, and also long-term maintenance of synaptic state. 
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Figure 3: HillTau version of synaptic plasticity rules. A. Mass-action model for generating Beinenstock-Cooper-Munro 

(BCM) rule for synaptic plasticity. p_AMPAR is the phospho-receptor, and is the output of the model. It is assumed to 

localize to the synapse and is thus also referred to as synAMPAR. Calcium triggers both an inhibitor (Calcineurin, CaN)
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and a stimulus (CaMKII) for receptor phosphorylation and insertion into the synapse. CaN activates at lower [Ca2+], so 

there is initially a reduction in p_AMPAR. CaMKII is present at very high levels, so at higher Ca2+ it out-competes CaN

to give an increase in p_AMPAR. B. BCM rule implemented in HillTau. Here the species synAMPAR is the output fo 

the model. C-E: Comparison of mass-action model p_AMPAR with HillTau model synAMPAR. Orange is HillTau, 

blue is mass action. C: 1s stimulus at 0.5 μM Ca2+ gives a reduction in synaptically localized AMPAR (synAMPAR). D:

1s stimulus at 5 μM Ca2+ gives an increase in synAMPAR. E: Dose-response curve of steady-state synAMPAR as a 

function of [Ca2+] for mass-action (blue) and HillTau (orange) models. In both cases settling time for each point was 

1000s. F: Schematic for BCM rule model feeding into bistable model, implemented in HillTau. The circular node 

labeled Σ represents weighted summation of multiple inputs. G: time-course of simulation of bidirectional plasticity 

using different Ca2+ stimuli. At t =20, a 1s stimulus of 2μM Ca2+ (green trace) causes a transition to the active state, 

using synaptic AMPAR (maroon trace) as a readout. At t = 50s, a 30s stimulus of 0.3 μM Ca2+ pulls the system back to 

resting state. 

HillTau models can be optimized to fit biochemical measurements

The above examples illustrate how HillTau can represent biological signaling motifs, and build 

them up into networks with interesting computational properties. We next approached a 

complementary problem in signaling, namely, to take a complex signaling system, and fit simple 

HillTau  models to it. This provides a way to perform model reduction and to infer computational 

properties. The basic flowchart is illustrated in Figure 4. This flowchart addresses both the 

heuristics of defining model topology, and of parameter fitting.

The heuristics for defining model topology are as follows.

1. Identify inputs and key readout molecules. These readouts may be important (and experimentally 

measured) intermediate signaling molecules in a reaction network, or the end-products of a cascade.

2. Assign a reaction for each readout molecule, with an input as an upstream substrate or inactive 
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state of the molecule, an activator (or inhibitor, see methods) and optionally, a modifier. Together 

these control the level of the readout molecule.

3. In case a molecule has multiple inputs, bring in additional reaction steps based on the known 

reaction mechanisms. For example, if we have BDNF, EGF and Ca all controlling ERKII activity, 

then we could specify an intermediate step where the two receptor tyrosine kinase ligands converge,

and this combination is an activator for the ERKII reaction with Ca as a modifier.

4. In case a readout is simply the sum of multiple active states of a molecule, use an equation to 

define this summation.

5. Obtain best model fit as per flowchart in Figure 4. If model accuracy does not meet criteria for 

your objectives, identify poorly performing intermediate readouts and insert further intermediate 

reaction steps.

Note that in principle many of these steps can be automated. For example, one can generate a 

family of models algorithmically (e.g., Ramakrishna and Bhalla 2008) and optimize over topology 

as well as parameters, but this is out of the scope of the current study. Other algorithmic approaches

for model reduction are discussed in (O. Radulescu et al. 2012).

In the current paper we have used the above heuristics to generate HillTau schemes (model 

topology) by hand. 

There are also simple steps to obtain initial parameter estimates for each HillTau ‘reaction’:

1. KA from the activator concentration at half-maximum of the experimental activation curve, or 

directly from mass-action model rates.

2. Time-course τ from the experimental time-course of the reaction, or from the slowest 

intermediate step of a mass-action model. If there is a distinct time-course when the reaction turns 

off, use this as τ2.

3. When the modulator is present, assign Kmod and Amod from the half-maximum and the 

steepness of modulation curve.
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This approach works in the same way for model construction from experimental response curves, 

and for model reduction from response curves taken from detailed models. Following generation of 

an initial, roughly parameterized HillTau model, we can deploy the model fitting approaches 

described in FindSim (Viswan et al. 2018). In brief, FindSim provides a Python-based framework 

for matching models to experiments. It codifies the experiment design (e.g., time-series, dose-

response, bar-chart) and experimental results into a single machine-readable file. FindSim runs the 

experiment on the model and returns a numerical score for goodness of fit. The model may be 

defined in SBML (run using MOOSE) or using HillTau. Thus FindSim can be used as the scoring 

function for optimizing model fit to experiments using a variety of optimization methods available 

in scipy.optimize.

For the special case of model reduction, where we already have a detailed SBML model and wish to

fit a reduced, HillTau version, the utility MASH provides a shortcut alternative to the FindSim and 

optimization pipeline (discussed above and in the Methods section).
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Figure 4: Flowchart for model building using HillTau. Left: flowchart. Right top: initial reaction with inputs A, B, and 

C. Right middle: successive local increments to model, introducing reactions X and Y respectively. Right lower: Final 

HillTau scheme with good fit at all stages.

As an example of this flowchart and the use of HillTau fitting to match an existing, detailed 

chemical ODE model, we derived a HillTau model of synaptic activity-triggered protein synthesis. 

Our reference data was obtained by running a series of ‘experiments’ on a published model 

implemented in mass-action kinetics (Jain and Bhalla 2009). The original model was based on 

numerous experiments, and included 123 molecules and 120 reactions (Fig 5A). The input 

pathways were Ca2+ and brain-derived neurotrophic factor (BDNF), and the final output was protein

synthesis rate. 

We started with the most reduced form, a single reaction to replace the entire synaptic protein 
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synthesis network. We specified amino acids as the input, BDNF as an activator,  Ca as a modifier, 

and protein as the product of this reaction, (Fig 5B) to obtain our starting reduced model. We used 

MASH to carry out the optimization (Methods). In a model with a single reaction, MASH obtained 

a fit of about 11% normalized RMS. This is remarkable for such a simple model. It does well with 

the dose-response experiments (Scores of 7% and 5%, Supplementary Fig 5.1). However, it does 

not do a good job of replicating the dynamics of the experimental data, achieving scores in the 

range of 10% to 42%.  (Supplementary Fig 5.1). We therefore increased the HillTau model detail. 

To do this, we introduced two additional key intermediates into the HillTau model: S6K, and 

CaMKIII. We first made a HillTau model involving inputs to S6K alone. Based on the known 

pathway, we chose BDNF as the activator, and Ca as the modulator for S6K. The S6K responses to 

combinations of these two inputs were used in MASH to obtain a fit to within 3.3% (Individual 

panel fits were between 3% and 22%, see Supplementary Fig 5.2). We then held S6K parameters 

fixed while we fit CaMKIII. CaMKII is activated by Ca, and modulated by S6K. MASH gave a 

CaMKIII fit of 1.9% (Individual panels 2% to 20% but most of the poor scores were small 

differences at baseline; Supplementary Fig 5.3). 

Collectively, the optimizations for S6K and CaMKIII correspond to the inner loop of Figure 4. 

Finally, we added a final protein synthesis reaction that took the already fitted S6K and CaMKIII 

activity as activator and modifier. We held the earlier reactions (S6K and CaMKIII) fixed, and 

optimized only the protein synthesis reaction. After this, the composite model fit the optimization 

waveform in MASH to within 3.2% (normalized RMS), and the figure panels fit within a mean of 

9.3% (Fig 5D-K). 

At this stage one could choose to perform further optimization in a couple of ways. We could have 

obtained closer fits had we optimized to the same stimuli as in the figure panels. Instead we used 

more general input time-series and dose-response stimuli to the MASH optimizer to see how well 

the model would generalize. This gives a HillTau model that behaves well across a wider range of 
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conditions than the experiments in figure 5. Second, there is a small systematic difference in 

baseline in panels 5F and 5G arising from a difference in output at resting BDNF, seen in panel 5I. 

The introduction of additional intermediate reactions in the model as per Figure 4 could further 

improve the fit. Such tradeoffs between generality, accuracy, and model complexity are common, 

and given that HillTau is meant for building compact models we considered this fit sufficiently 

good for illustration.

Overall, the abstract HillTau model captures many of the key properties of the mass-action system. 

These include steady-state and time-series responses of two inputs (BDNF and Ca), and three 

readouts: S6K, CaMKIII, and the end-product protein (Supplementary Fig 5.2, Supplementary Fig 

5.3 and Fig 5 respectively). This is a highly effective dimension reduction, from over 360 to 31 

parameters.

It is important to note that the efficiency of HillTau made the optimization calculations quite 

tractable. In the final optimization run for the entire model, the single reference ODE run took ~60 

seconds, and the cumulative time for 746 HillTau evaluations was around 18 seconds. The 

optimization algorithm itself took about 75 seconds, excluding function evaluations.

Can we create a reverse mapping from these simplified HillTau models to ODE forms? A close but 

not exact mapping is obtained by taking the small-time limit of the HillTau event-driven form 

(Equations 3.x) and converting to an ODE (rate) form (Equations 4.x). ODE equations are 

supported by many systems biology simulators. It is not an exact mapping because HillTau may use

different values for rising and falling time-courses (tau and tau2), whereas the ODE form can 

accommodate just a single value, tau. We implemented this conversion in a program, ht2sbml.py, 

which is provided on the GitHub repository for HillTau. Using this mapping we were able to export 

HillTau to SBML, and tested that SBML-capable simulators such as COPASI could run the 

reduced, ODE form models, and give approximately matching results (Methods, Supplementary 

Figure 5.4). Thus we can use the HillTau toolchain to make reasonably reduced ODE models, 
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though these are neither as efficient as their HillTau counterparts, nor do they have the same 

capabilities to use two time-courses to improve model fitting.

In summary, we developed a systematic procedure for developing reduced HillTau models to fit 

mass-action simulations, including a model optimization utility MASH. We illustrate this procedure

by developing a HillTau model of 10 molecules and 4 reactions to fit a mass-action model having 

123 molecules and 120 reactions. The resultant HillTau models generalize well and the fit improves

when intermediate reaction steps are added. 
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Figure 5: Model fitting and model reduction. A: Block diagram of source model with 123 molecules and 120 reactions, 

from (Jain and Bhalla, 2009). B: First pass reduced model in HillTau, with 1 reaction and 4 molecules. C: Final reduced
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HillTau model including activated S6K (aS6K) and activated CaMKIII (aCaMKIII) as intermediate readouts which also

were fit to data. This model has 4 reactions and 10 molecules. D-K: Eight ‘experiments’ on reference and HillTau 

models, not part of stimulus set used to tune parameters for HillTau version. In all cases protein production rate is 

readout. Blue plots are reference, orange are HillTau. D: BDNF@3.7 nM + Ca2+@0.2 μM, 900 seconds. E: 

BDNF@3.7nM, Ca2+@1μM. F: 3 pulses of BDNF@3.7 nM for 5s, coincident with Ca2+@10μM for 1s, pulses separated

by 300 s. G: Same as F, but Ca2+ held at baseline of 0.08 μM. H: Dose-response of protein vs. Ca2+, holding BDNF 

fixed at 3.7 nM. I: Dose-response of protein vs BDNF, holding Ca2+ fixed at 0.08 μM. J: Protein production rate for 

fixed BDNF@3.7 nM, where Ca2+ was given in 1 second pulses at intervals of 300, 120, 60 and 10 seconds; each pulse 

sequence lasting for 1200 s. . K: Dose response of protein production rate vs. Ca2+, holding BDNF at basal levels of 

0.05 nM. The average normalized RMS difference across the eight ‘experiments’ was under 10%, and in all cases the 

qualitative properties such as direction of change, matched well.

HillTau models are compact and efficient

We next took a set of HillTau models of various levels of complexity, and compared various 

measures of computational cost with the ODE equivalents (Table 1, Figure 6.)

We first compared model complexity, measured as the number of parameters needed to specify the 

model. The number of parameters scales roughly as 

# of molecular species + 2 * # of reactions. 

This is a slight overestimate, since some of the molecules are state variables and we do not need 

initial concentration values for them. Here we consider state variables to be those which are 

computed, as opposed to defined using initial conditions. In ODE models we estimate this by 

counting the number of rate terms plus the number of molecular species with a non-zero initial 

value. In HillTau models we count the rate terms and the species which are not reaction outputs. 

This yields the approximate scaling terms below. Each reaction needs two parameters, Kf and Kb 
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for conversion reactions, and Km and kcat for enzymes. We sampled from among the mass-action 

models presented in the above sections, ranging from 3 to over 360 parameters, and included an 

additional model with almost 750 parameters. (Fig 6A). The HillTau form had a similar scaling 

with molecules and reactions, except that HillTau also allows for a number of optional  terms in the 

reactions so the average scaling is somewhat larger than 2 * # of reactions. We found that the 

HillTau form became increasingly effective at model reduction for larger models. Note that here the

optimization goal was to obtain a single end-point response (3 end points in the case of the model in

Figure 5). Further reactions would be needed to also represent intermediate pathway readouts. 

We then examined run-time efficiency. We took run-times for two ODE simulators, MOOSE and 

COPASI, whose numerical cores are in C++. We compared these with matching HillTau models 

run using the C++ version of HillTau  (Methods, Figure 6B). For small models, HILLTAU was 

typically about 100 times faster than the ODE calculations , but for large models HillTau became 

over 3 to 4 orders of magnitude faster (Figure 6B). This set of HillTau models fit their ODE 

counterparts within 3 to 9% accuracy, but note that the approximations were inherent in the HillTau

model structure, and did not arise from lack of numerical convergence. The run-time for HillTau 

models grew with the number of parameters (Fig 6C, slope = 0.015 μs/s, R2 = 0.79), but also had a 

dependence on model stiffness due to the requirement that the internal timestep should be smaller 

than the smallest τ in the model. This suggests that the HillTau calculation cost could be further 

improved by utilization of a variable-timestep similar to methods for ODE solutions frequently used

for chemical kinetic calculations.
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Figure 6. Efficiency of HillTau method. A. Scaling of number of parameters. The HillTau form uses far fewer 

parameters than mass-action, and becomes relatively more concise with larger models. B, C: run-time scaling. All run-

times are expressed in μs of wall-clock time to execute 1 second of simulation time. Calculations were done on an 

Intel(R) i7-7700HQ processor, running Ubuntu 18.04. B. Comparison of run-times of the HillTau and mass-action 

forms, where the numerically intensive sections of HillTau were implemented in C++, and C++ was also used for ODE 

calculations in two simulators: MOOSE and COPASI. Due to the combination of model reduction and efficient 

calculation, HillTau has a huge efficiency advantage which grows to over 3 orders of magnitude for larger models. The 

accuracy with which this set of HillTau models fit their ODE counterparts was in the range 3 to 9%. C. HillTau model 

run-time increases with number of parameters. R2 = 0.79, slope = 0.015, intercept = 0.006, units in μs/s.
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Dose-response experiments are particularly efficient to compute using HillTau. An inefficient way 

to do these for ODE models is to run them out to steady-state for each successive dose. This may 

take a long while especially if the system is stiff or converges slowly. It is also possible to use linear

algebraic root-finding to find the steady-state value in one step, possibly following a short 

presimulation to bring the system closer to the steady-state   (Clarke, Bruce L. 1981; Hindmarsh et 

al. 2005). In HillTau, the form itself incorporates the steady-state value, so in principle one could 

leap to the steady value in one step. To be more conservative, the HillTau does so in 10 steps to 

smooth out transients and to allow any feedback signals to propagate through the system. As an 

illustration, COPASI performed the steady-state calculation for a large model (accession 92, 

DOQCS, ~100 reactions, (Jain and Bhalla 2009)) in ~1 second after some relaxation of convergence

criteria. The HillTau equivalent model (same as final model in Fig 5) took about 4 microseconds.  

Overall, HillTau models are compact and highly efficient compared to ODE-solved mass-action 

models. The efficiency improves for larger models.

Discussion

We have designed HillTau, a compact, computationally efficient abstraction of chemical signaling 

that is particularly effective in building reduced models of complex signaling networks. It uses an 

event-driven algebraic representation based on the Hill equation and exponential relaxation to 

steady state. HillTau is effective in representing a range of chemical signaling motifs and complex 

synaptic models, using biological observables of molecules, reactions, association constants and 

time-courses. We show its applicability for model reduction by optimizing the fit of its responses to 
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those of a reference mass-action model. This generates very compact models. A similar 

optimization approach works to build a HillTau model directly from experimental data. Thus 

HillTau addresses many of the concerns of model-building with limited data, and serves as a 

scaffold for eventual development of more detailed models.

HillTau is phenomenological and semi-heuristic, in that it uses the Hill equation to achieve 

concentration dependencies that  fit well, but ignores many intervening chemical steps. This 

combination gives it the strong points indicated above, namely speed, compactness, and consistent 

mapping to experimental observables, but it also sets out clear limitations. Foremost among these is 

that it can only make limited  predictions on detailed pathway chemistry, since it is missing many 

reaction steps. For example, a HillTau model would be limited in its ability to predict drug targets 

or side-effects because it may have lumped together potential molecular targets into a single 

reaction step. It is, however, quite effective in representing and predicting emergent signaling 

properties because it captures dynamics and topology of signaling networks. 

The current HillTau formulation is limited in its handling of two important aspects of signaling in 

neurons: stochasticity and diffusion. These phenomena are out of the scope of our current 

implementation, which has focused on development, validation, simplicity and speed. Many 

biochemical signaling processes experience substantial stochasticity, particularly in small-volume 

systems such as the synapse which is a target of our modeling. One possible way to introduce 

stochasticity would be through the linear noise approximation of the chemical Langevin equation 

(Wallace et al. 2012), which if used in an event-driven manner could be quite efficient. We 

anticipate it will take extensive validation to establish its utility in the HillTau framework. 

Similarly, there are potential ways to elaborate upon HillTau to use an event-driven approximation 

to diffusion, but these will require later follow-up.

Based on these attributes, we discuss four major use-cases for HillTau: model reduction, system 
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abstraction, scaffolds for data-driven optimization, and efficient approximations to complex cellular

signaling.
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Model reduction

Several algorithmic approaches have been brought to bear on the model reduction problem, 

including collapsing multiple mass-action steps into one (Ovidiu Radulescu et al. 2008), and power-

law generalizations of mass-action signaling (Savageau 2001). Simulators such as COPASI provide 

utilities for partitioning a reaction system into fast and slow reactions, thus allowing one to 

approximate the fast steps with their algebraic counterparts (Hoops et al. 2006; Deuflhard and 

Heroth 1996). In our test model (Accession 92, DOQCS, (Jain and Bhalla 2009)) we were able to 

partition about 80% of the steps into the fast domain (<100 s) using the ILDM method implemented

in COPASI. With HillTau one can use a well-known heuristic/optimization approach to simplifying 

large networks (Quaiser et al. 2011; Apri et al. 2014). This reduced the same test model down to 4 

reactions, about 25-fold (Figures 4, 5). The approach reported in our current study relies on the 

modeler starting from a minimal input-> output mapping, then iteratively picking relevant major 

nodes in the network, and optimizing each subset of the model to fit the data (Figure 4). 

Thus one can converge on the minimal set of intermediate nodes (illustrated in Figures 4 and 5, and 

Supplementary Figures S5.1, S52. and S5.3) to achieve the desired accuracy of model fit to data. 

Like other model reduction approaches, this minimal set of nodes is a compromise between 

available data and model accuracy (Snowden, van der Graaf, and Tindall 2017). Unlike several 

other reduction approaches, HillTau retains a direct mapping to observable biological entities. 

Indeed, the HillTau representation of a signaling node may be closer to the conventional intuition 

based on pathway schematics, than is a full mass-action reaction representation. Like pathway 

diagrams, each HillTau reaction receives excitatory, inhibitory and modulatory inputs. A further 

point of similarity is the HillTau models may condense   several intermediate steps into a single 

node on the reaction network. A more subtle point of similarity is that pathway block diagrams 
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typically assume implicit back reactions and decay of activity when stimuli are removed. This too is

built into how HillTau reactions work. In contrast to these simple mappings from pathway diagrams

to the HillTau form, it is often difficult to map between signaling diagrams and the full mass-action 

reaction schemes (Upinder S. Bhalla 2002; Upinder S Bhalla 2003). While previous model 

reduction studies have worked on different pathways than the synaptically biased set explored in 

our study, a comparison with the survey of methods in (Snowden, van der Graaf, and Tindall 2017),

suggests that HillTau achieves as good or better model reduction for large models than most other 

methods.

System abstraction

Next, system abstraction and functional modules help to make sense of complex biological 

signaling. We propose that HillTau forms a useful tool for arriving at functional modules in 

complex signaling networks. Such modules have long been considered a conceptual basis for 

understanding complex signaling (U S Bhalla and Iyengar 2001). Typically they have been 

ascertained by manual inspection and dynamical analysis of components of signaling networks, for 

example, the nested feedback loops in the cell cycle (Novák and Tyson 2004). A more scalable 

approach to uncovering such modules is to use graph theory for motif analysis on detailed mass-

action models, but this approach loses key aspects of system dynamics (Alon 2007). With the 

HillTau formalism and our procedures for model reduction, we are able to generate highly reduced 

reaction graphs that nevertheless support rather accurate dynamics. The formalism  encourages 

models that can be readily mapped to biology. Thus HillTau supports a data-driven approach to 

arrive at functional modules.

While functional modules are good for analysis, we note that biology does not necessarily partition 

signaling networks into neat modules (Upinder S Bhalla 2003). Indeed, cross-talk between 

pathways is common. HillTau supports explicit cross-talk interactions, but does not introduce 
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implicit interactions. In this regard it differs from mass-action reaction systems, in which 

mechanisms such as back-reactions or enzyme sequestration may introduce subtle effects, such as 

implicit feedback. For example, one can achieve bistability through multistage 

phosphorylation/dephosphorylation cascades (Markevich, Hoek, and Kholodenko 2004). To 

represent such effects in HillTau one would have to introduce explicit feedback steps between 

reactions, such as in the bistability example in Figure 2. Similarly, interesting behavior emerging 

from chemical saturation, such as zero-order ultrasensitivity (Goldbeter and Koshland 1981) would 

require the use of the explicit math expressions supported by HillTau.

Protein-protein interaction networks are a commonly derived form of abstract networks. These can 

be purely topological, or may also include reaction dynamics (Nyman et al. 2020). Can these be 

parsed into HillTau networks? To first order, protein interaction networks lack the distinction that 

HillTau ‘reactions’ make between inputs, activators and modulators. Additional information is 

needed to disambiguate these. Data from sources such as pathway maps, protein domain properties, 

or Gene Ontology relationships are required to resolve HillTau topologies for a given protein-

protein network (Sorokina, Sorokin, and Armstrong 2011).

Next, can the rates be assigned? In networks that include dynamics (e.g., (Nyman et al. 2020)) this 

is relatively straightforward to accomplish. In Figure 4 and 5 we illustrate how experimental data, 

or simulated dynamics of an existing model can be used to parameterize a HillTau model. The same

approach could utilize the original timing constraints that went into the Nyman model (Nyman et al.

2020). Alternatively, a program similar to MASH could explore dynamics of the reference (protein-

protein network) model, and use the output to search for parameters of the corresponding HillTau 

model.

Thus HillTau promotes abstraction through model reduction. The abstracted models expose all 

interactions explicitly.  
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Scaffolds for model fitting

Third, HillTau is a useful intermediate step, or scaffold, for model fitting of large mass-action 

models. Direct model-fitting is difficult in at least two ways: there are typically far fewer 

experiments than parameters, and it is computationally costly to run a large ODE model many times

for carrying out an optimization approach to model fitting. We propose that the HillTau form may 

provide a useful bridge on both these counts. As we have illustrated in Figures 2, 3 and 5, HillTau 

models lend themselves to fitting to experiments because they have few parameters and they run 

quickly. Several advantages accrue from an initial pass to make and fit a HillTau model. 1. In 

building and optimizing a HillTau model, the optimization dataset will be use-tested, and gaps 

identified. 2. The essential pathway structure of the model will be defined by the HillTau model, 

and key interactions identified. The mass-action model must, at minimum, incorporate these 

interactions. 3. The parameters of the HillTau model set bounds for those of the detailed reaction 

sets. For example, the time-course of any individual mass-action reaction step must be faster than 

the HillTau reaction in which it is embedded. 

Efficient approximations to complex signaling

Finally, HillTau models are useful because they are efficient. One of the key use-cases envisioned 

for HillTau was to model complex cellular signaling, with synaptic signaling as an exemplar. 

Several of the examples in the current paper are in this domain, specifically the BCM curve (Fig 

3A-E, the coupled BCM curve with bistables (Fig 3F,G), and a synaptic protein synthesis pathway 

(Figure 5). While even these large ODE signaling models run somewhat faster than wall-clock time 

(Figure 6), there are at least two cases where far greater efficiency is desirable. First, as mentioned 

above, model parameter optimization requires a large number of evaluations of complete 
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simulations (100s to 1000s in our experience). To perform a single evaluation, these synaptic 

simulations may have to run for many thousands of seconds of simulation time to compare with 

typical plasticity experiments (Ajay and Bhalla 2004). Further, one typically optimizes a pathway to

fit numerous experiments, all of which must be simulated for each evaluation. Together, this is 

computationally expensive. In our HillTau optimizations using MASH, the total simulation time for

large numbers of pathway simulations was typically even smaller than the time spent by the 

minimizer code itself.

A second use case for highly efficient signaling models is in synaptic signaling. A single neuron 

may have over 10,000 spines, and there may be many such neurons in a network. If each synapse is 

to implement a complex biochemical pathway the computational costs may be formidable. Network

plasticity models (Higgins, Graupner, and Brunel 2014), and cellular sequence selectivity models 

(Upinder S Bhalla 2017) are examples of this scale of model. Indeed, Higgins et al. (Higgins, 

Graupner, and Brunel 2014) have used an efficient event-driven calculation of synaptic weights 

with a similar exponential decay calculation as in HillTau. HillTau signaling provides a way to 

implement biologically detailed synaptic dynamics in every synapse, even in large networks. 

In summary, the HillTau form and its supporting toolkits for running and optimizing models 

provide a compact, efficient way to perform data-driven abstraction of complex signaling models.

37

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

37

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2021. ; https://doi.org/10.1101/2020.09.20.305250doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.20.305250
http://creativecommons.org/licenses/by/4.0/


Methods

HillTau formulation

The HillTau formulation is an event-driven variant of a Hill equation with modifiers. It is specified 

and evaluated in two stages: the steady-state value, and an exponential time-course of approach to 

steady-state. As detailed below, reactions in a HillTau model are evaluated in successive layers such

that the next estimate for steady-state value of a given layer depends only on boundary conditions 

and on outputs from preceding layers. In the equations below we expand out the equations for a 

range of use-cases. In equations 1.x we specify the steady-state values for each use case. In 

equations 2.x we define the approach to steady state. In equations 3.x we combine equations 1 and 2

to summarize the evaluations done in HillTau. In equations 4.x we provide interpretations of the 

HillTau equations as rate terms which can be evaluated by regular ODE solvers and form the basis 

for the SBML export of HillTau model systems. However, the definitive form of HillTau is event-

driven and the rate-term form should be regarded as a convenient but approximate mapping to 

conventional mass-action solvers. In equations 5.x we provide a motivation for the form of HillTau 

as an approximation to complex signaling chemistry.

HillTau steady-state.

The HillTau formulation stipulates that the steady-state level Y∞ of each signaling step (which may 

involve multiple chemical steps) is approximated by a Hill function 

Y∞/Yinput = Θ = Ln/(KAn + Ln) Eq 1.1

Here Yinput is the input concentration to this signaling step, where Yinput is either a molecule with a 

predefined concentration (i.e, a boundary condition) or coming from an upstream reaction. 
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Likewise, the reactant L can either be predefined or come from an upstream reaction. KA is the 

association constant of L with Y.

We elaborate this slightly to accommodate an optional gain term:

Y∞ = Ygain.YinputLn/(KAn + Ln) Eq 1.2

We utilize a slightly modified form to permit the Ligand L to act in an inhibitory manner:

Y∞ = Ygain.Yinput(1-Ln/(KAn + Ln)) Eq 1.3

In cases where there are modifiers, we include a further term based on the analysis of Hofmeyer and

Cornish-Bowden (1997):

Y∞ = Ygain.Yinput.Ln/(KAn(1+M/Kmod)h)/(1+Amod(M/Kmod)h)+ Ln) Eq 1.4

Here M is the concentration of the modifier, Kmod is the half-effect value, Amod is the modifier action,

and h is the order of the modifier. The modifier acts in an inhibitory manner when Amod < 1, and as 

an activator when Amod > 1. When Amod == 1, clearly, the modifier has no effect.

Similarly we define the action of the modifier on an inhibitory reaction:

Y∞= YgainYinput(1 - Ln/(KAn(1+M/Kmod)h)/(1+Amod(M/Kmod)h)+ Ln)) Eq 1.5

We use a different equation to define steady-state behavior of a system where a single substrate 

molecule Yinput is converted into a product Y:

Y∞ = Yinput
n / KA Eq 1.6

For the rare cases where a non-chemical formulation is needed to describe the system, we provide 

39

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

39

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2021. ; https://doi.org/10.1101/2020.09.20.305250doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.20.305250
http://creativecommons.org/licenses/by/4.0/


an alternative algebraic expression for Y∞:

Y∞ = f( Y1, Y2….) Eq 1.7

where f is an arbitrary algebraic function and Y1, Y2… are concentrations of other molecules. The 

use of this algebraic form is discouraged as it weakens the mapping of the model to the underlying 

chemistry. This form does not admit of modifiers.

 Note that these equations are entirely feed-forward: the concentrations of  molecules L, M, and 

Yinput are not affected by their participating in any downstream reactions.

HillTau time course

Equations 1 define the steady state estimate for molecule Y, given a set of molecule concentrations 

in the preceding layer. We then assume that the approach of the system to steady-state is governed 

by a simple exponential with characteristic time τ (Figure 1A):

(Y(t+Δt) - Y(t))/(Y∞-Y(t)) = 1 - exp( -Δt / τ ) Eq 2

where Y(t) is the value of Y at time t. For a simple binding reaction, the time course τ is an 

experimental observable, and is approximated by τ ~ 1/(kf+kb) where kf and kb are the forward and 

backward rates for the first-order Hill binding reaction (Figure 1, Supplementary Figure S1.1).

As a slight extension to this, we permit an optional separate time course τ2 when Y is falling:

If  Y∞ > Y(t)     (Y(t+Δt) - Y(t))/(Y∞-Y(t)) = 1 - exp(-Δt / τ) Eq 2.1

If  Y∞ < Y(t)     (Y(t+Δt) - Y(t))/(Y∞-Y(t)) = 1 - exp(-Δt / τ2) Eq 2.2

The occurrence of different time-courses for buildup and decay is quite common. It happens in a 
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simple binding reaction (Supplementary Figure S1.1, panels A, C, E). It also occurs when there are 

different chemical steps, such as enzymes with different rates, mediating competing processes for 

buildup and decay. 

HillTau composite form

Putting Eq 1 and Eq 2 together, we have the following closed-form expression for the value of Y at 

time t + Δt:

Y(t+Δt) = Y(t) + ( Y∞ - (Y(t)-Ybaseline) ) (1-exp(-Δt/ τ)) Eq 3

The term Ybaseline is an optional (positive) baseline level of molecule Y. Δt is the timestep. Note that 

this is a closed form: Δt can be as large as the end of the simulation. 

In the limit of large Δt, we have, 

Y(t = ∞) = Y∞ + Ybaseline Eq 3.1

The initial conditions for molecule Y are either specified in the model definition, or as a fallback we

estimate the steady-state concentration as in Eq 3.1. 

Rate interpretation of HillTau

Formally, HillTau can be seen as an approximation to the following rate equations:

Y’(t) = (Y∞ - Y(t))/τ Eq 4

In cases where we have a separate τ2 , and Y∞ < Y(t):  

Y’(t) = (Y∞ - Y(t))/τ2 Eq 4b

SBML, and most ODE solvers, will not readily handle this switch between τ and τ2. For the 
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purposes of the equations below we just use τ.

Expanding out Y∞, we have five variants of equation 4:

Basic activation reaction:

Y’(t) = (Ygain.YinputLn/(KAn + Ln) – Y(t) )/ τ Eq 4.1

Basic inhibition reaction:

Y’(t) = (Ygain.Yinput(1-Ln/(KAn + Ln)) – Y(t) )/ τ Eq 4.2

Activation reaction with modifier:

Y’(t) = (Ygain.Yinput.Ln/(KAn(1+(M/Kmod)h)/(1+Amod(M/Kmod)h)+ Ln) - Y(t))/τ Eq 4.3

Inhibition reaction with modifier:

Y’(t) = (Ygain.Yinput.(1-Ln/(KAn(1+(M/Kmod)h)/(1+Amod(M/Kmod)h)+ Ln)) - Y(t))/τ Eq 4.4

Conversion reaction:

Y’(t) = ((Yinput
n/KA) – Y(t) )/ τ Eq 4.5

Although the HillTau calculations can be done using equations 4.x with a regular ODE solver, the 

HillTau definition envisions event-driven calculations. Further, the complete HillTau form uses τ2 

extensively, which is not handled by the above equations. In principle, the optimization for the 

HillTau model could just use τ throughout, in which case the reduced HillTau model could be 

rendered in mass-action form with a reasonable degree of accuracy (Supplementary Figure 5.4A).

Here we summarize the parameters for HillTau. All but the first apply to Reactions.

Parameter Units Meaning Default Required?

ConcInit Concentration 

(can be any of M, 

mM, uM, nM)

Initial 

concentration. 

Only applies to 

species definitions

0 No

KA Concentration Association N/A Yes
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constant

τ Time (seconds) Time course for 

relaxation to 

steady state

N/A Yes

τ2 Time (seconds) Time course of 

relaxation if 

output is falling.

τ No

Gain None Scaling factor for 

reaction output. 

Used to indicate 

enzymatic 

amplification.

1 No

Baseline Concentration Baseline value of 

reaction output

0 No

Kmod Concentration Half-saturation 

concentration for 

modifier

N/A Only if modifier 

molecule is 

specified.

Amod None Activation term 

for modifier

4 No

Nmod None Order of modifier 

action

1 No

Table 1: Parameters used to define a HillTau model. Concentration units can be any of M, mM, uM,

and nM, and are specified in the Json file. The default concentration units are mM.

Simple HillTau models only need species concentrations, and the KA and  τ terms for the reactions. 

The optional terms greatly facilitate the design goals of compactly specifying diverse signaling 

reactions. 
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Computing time-evolution and steady-states.

To build complex reaction systems, we permit cascading of reactions so that any molecule can be a 

substrate or equation term in any other reaction. To reiterate, this is a purely feed-forward 

formulation, so substrates are not affected by any of their downstream targets. We obtain a 

dependency tree so that on each timestep the updates are carried out in an order which ensures that 

inputs ripple in order through the cascade of reactions. This may lead to inaccurate estimation of 

transient responses if the updates are carried out at greater intervals (timestep  Δt) than the time-

course (τ) of the fastest reaction in the model (Supplementary Figure S7). To address this, HillTau 

assigns an internal timestep Δt which is smaller than the smallest τ in the model.  Since one 

normally performs time-series sampling of reactions at a time finer than the fastest reaction, this 

restriction usually has little impact on run-time. Further, multi-step systems may include feedback. 

In such cases the program has to explicitly break the dependency chain. HillTau identifies 

dependency cycles, picks a reaction based on definition order, and assigns it the next open level in 

the dependency tree.

A distinct case arises when the HillTau system is used to compute steady state values (e.g., in a 

dose-response curve). These could ideally be solved by taking an infinitely long time-step. Given 

the possible presence of feedback, we instead take a long settling time and subdivide it into 10 equal

steps so as to allow feedback reactions to also settle. 

Motivation for the HillTau formalism

The initial motivation for the HillTau form was the observation that many stimulus-response curves 

in signaling have a saturating, Hill-like concentration dependence on input strength even if there are

multiple intermediate steps (U S Bhalla and Iyengar 1999; Jain and Bhalla 2009). Further, many 
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stimulus-response time-courses are visually similar to exponential time-courses. This suggested that

a combination of these two properties might be a good approximation even to multi-step signaling 

cascades.

In order to mathematically support this idea, we considered two of the common motifs in signaling: 

enzyme-activation of molecules such as phospho-proteins, with a balancing deactivation reaction; 

and binding of activators to a reagent. Below, we show that the HillTau form achieves a reasonable 

approximation both to the amplitude and time-course of the response.

First, we considered outcomes of an enzymatic cascade with back reactions. We approximate the 

rate of production using a Michaelis-Menten- form:

dP/dt = ES.kcat/( Km + S ) Eq 5.1

This is balanced by a first-order back reaction:

dP/dt = -kr.P Eq 5.2

Then the steady-state at dP/dt = 0 is obtained by combining these:

P1 = E.S1.kcat1/( (Km1 + S1 ) * kr1 ) Eq 5.3

This is of the same form as Equation 1, showing that a single enzymatic stage in the cascade can be 

approximated by HillTau. Here we add a subscript 1 to indicate that it is the first reaction in the 

cascade. Now we stipulate that P1 is the catalyst for the next step, substituting for enzyme E2. This 

stage results in the formation of product P2:

P2 = (E.S1.kcat1/( (Km1 + S1 ) * kr1 )).S2.kcat2/( (Km2 + S2 )*kr2 )) Eq 5.4

And so on for multiple steps. Now, suppose that we only have 2 variable inputs to this pathway: the 

first stage input E and one of the substrates. All other substrates are held fixed. This is a reasonable 

assumption for HillTau, because any further variable inputs should be treated explicitly either as 

modulators or as separate reaction steps. Then, all the (Kmn + Sn) terms are constant except the one 

variable substrate Sv. By combining all the constant terms into Kcascade, we end up with:

Pn = E.Sv.Kcascade/(Kmv + Sv) Eq 5.5
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This is equivalent to the Hill equation form at the basis of HillTau (See Eq 1.2). We treat inhibition 

using the same analysis, except resulting in depletion of a substrate (Eq 1.3). 

For the time-course, we assume that one of the reactions is rate-limiting. For this step, the rate of 

formation of product is given by: 

dP/dt = ES.kcat/( Km + S ) - kr.P Eq 5.6

This yields an exponential settling curve with a final value P∞., as shown from Eq. 5.3. The time-

course is given by:

P(t) =  P∞ – (P∞ - P0) exp( -t/τ) Eq 5.7

where 

τ = 1/kr and P0 is the initial value of P.

Note that Eq 5.7 can be rearranged to give Eq 3.

Overall, this approximation yields a consolidated HillTau ‘reaction’ in which we have one stimulus 

(E, mapping to the activator L in Eq. 1), one reactant (Sv mapping to the reagent Yinput in Eq.1),  to 

represent a cascade of enzymatic steps with back reactions.

Next, we consider binding reactions in the pathway. These give the same steady-state Hill Equation 

form, by definition. From Equation 1.1, setting n = 1, and considering the first reaction generating 

Y1:

Y1 = L1.R1/(L1+KA1) = R1/(1+KA1/L1) Eq 5.8

 A cascade of similar binding reactions, where Y1 feeds into reaction 2, can also be reduced into the

same form:

Y2 = R2/(1+KA2/Y1) = R2/(1+KA2*(1+KA1/L1)/R1)

=R1R2/(R1+KA2 +KA1KA2/L1) = Rx/(1+KAx/L1) Eq 5.9

where Rx = R1R2/(R1+KA2) and KAx = KA1.KA2/(R1+KA2)

Here Eq 5.9 has the same form as Eq1.1 and Eq 5.8.

Using a similar approach, any number of cascading binding reactions will end up fitting the same 
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Hill form. Further, from Eq. 5.5 we see that the enzyme/back-reaction steps  have a similar Hill-like

form. Thus they too can be folded into this cascade.

What is the time-course of this cascaded reaction? As before, we assume that the cascade has one 

rate-limiting step i. A standard analysis shows that this too has an exponential time-course.

dYi/dt = Kfi.Li.Ri – Kbi.Yi Eq 5.10

which yields the same exponential settling time-course as equation 5.7:

Y(t) =  Yinf – (Yinf - Y0) exp( -t/tau) Eq 5.11

where tau = 1/(L.Kf + Kb) and Y0 is the initial value of Y.

It is important to note that this value of tau has a dependence on a variable, L, and hence the use of 

a constant value of tau is approximate. This is partially mitigated by utilizing different values of tau 

for rising and falling phases of the signal Y. During the rising phase, L will have a different 

(typically larger) mean value than during the falling phase. The use of tau for rising and tau2 for 

falling phases of the response reflects this.

Thus the steady-state terms for cascading binding and enzymatic reactions can be consolidated into 

a single HillTau ‘reaction’ step of the Hill form, and the time-course can be approximated by an 

exponential when there is one rate-limiting step.

Model definition and reference implementation

HillTau reaction systems are set up in a simple JSON format (Figure 1C), for which we have 

provided a schema. We have implemented a small reference driver program in Python (hillTau.py) 

that loads the model, runs it with optional stimuli, and plots or saves the output. The hillTau.py file 

also provides a set of library functions for use in larger programs. An equivalent implementation in 

C++ using PyBind11 for identical Python bindings is also provided. The source files, schema file, 

examples and documentation are all available on GitHub (https://github.com/BhallaLab/HillTau). 

Three additional utilities are also provided, as described below: for model illustration, model 
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abstraction, and model conversion to SBML. Python scripts for generating the figures in this paper 

(except figure 4, which is a schematic only) are also provided in supplementary material and on the 

GitHub site. Benchmarking was done using the program fig6.py, which calls MOOSE and HillTau 

through their Python interfaces, and calls COPASI through the PyCoTools Python interface (Welsh 

et al. 2018). The output values of multiple benchmarking runs were averaged and used for 

generating the graphs in fig6_plotting.py. All HillTau and supporting code is licensed under GPL 

version 3 or later.

Model illustration

We developed a utility htgraph.py, which generates a reaction diagram for HillTau models specified

in the .json format. This diagram gives a complete specification of the model topology, in that one 

can rebuild the structure of the HillTau model by inspection of the reaction diagram, though of 

course the parameters are not provided in the diagram. htgraph.py uses the dot module of the open-

source package graphviz (Gansner and North 2000) to generate the network graphs.

Model reduction and abstraction: MASH

We provide a utility for performing Model Abstraction from SBML to HillTau: MASH. Briefly, 

MASH runs the original SBML model with a reference stimulus to explore the key dimensions of 

its input-output mappings. Typical reference stimuli (built into MASH) include dose-response 

curves and pulsatile time-series stimuli. MASH then uses standard minimization routines 

(scipy.optimize library, method “L-BFGS-B”, (Zhu et al. 1997)) to tweak the HillTau model 

parameters to improve its fit to the original model.

MASH is implemented as a Python script mash.py which uses an ODE model (SBML) as a 

reference to which it fits a HillTau model. The user provides an initial HillTau model and specifies 

a series of stimuli to deliver. As part of this the user also defines which are the input molecules, and 

which are the readouts, and the ODE and HillTau models. MASH generates a topologically 
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identical HillTau model to the original, with parameters optimized to fit. It also reports initial and 

final scores, expressed as normalized RMS difference between reference model and HillTau. As per

Figure 4, the user may introduce additional intermediate steps in the pathway in order to achieve the

target model fit. The user specifies a set of stimuli (typically a combination of dose-response and 

time-series calculations) that explore the model response space. MASH generates a reference 

response to these stimuli using an ODE solver (MOOSE). The function evaluation for the 

minimization is carried out by running the HillTau model with the same stimulus, and comparing 

the HillTau output point-by-point with the reference. The normalized RMS difference over all 

points is returned as the score. A score of below 0.05 means that on average the original response 

differs from the HillTau response by less than 5%. MASH uses the scipy.optimize library to tweak 

the HillTau model parameters to improve the fit, as measured by this RMS score. MASH 

documentation and examples are provided on the HillTau website. MASH was used to fit the 

HillTau models for figures 2, 3 and 5, and the scores are reported. Supplementary figures and data  

specify how these fits were done.

Model conversion to SBML

The utility ht2sbml.py performs a conversion of HillTau models defined in the reference JSON 

format, into equivalent ODE models defined in SBML. It uses simplesbml (https://github.com/sys-

bio/simplesbml for generating the SBML. This uses the forms defined in equations 4.x in Methods. 

The conversion is approximate on two counts, first, HillTau is an event-driven, not continuous 

method, and second, HillTau may use different time-courses for rising and falling phases as a 

reaction proceeds, whereas the ODE form uses only a single time-course. If the HillTau model is 

generated (for example, after model reduction) such that each reaction only utilizes tau and not 

tau2, then the approximation is very good. In Supplementary Figure S5.4, we performed ht2sbml.py

conversion of 3 HillTau models to SBML and then compared the HillTau output with COPASI 
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calculation of the converted model, under 5 conditions. We obtained an excellent fit (<1% 

normalized RMS) for an oscillatory model that did not use tau2. The feedback-inhibition model 

used in Figure 2, which does use tau2, gave a mediocre fit of 29%. The full protein synthesis model 

was tested under 3 conditions: protein response to BDNF, S6K response to BDNF, and CaMKIII 

response to Ca. These gave fits of 30%, 26% and 1.7% respectively, though the qualitative response

was similar in all cases.  Thus the ht2sbml.py conversion works for all HillTau models, but the 

conversion may be approximate for models which have very different tau and tau2 parameters in 

their reactions.
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List of Legends for supporting information files.

Supplementary Figure S1. HillTau fits to simple mass-action reactions indicated on top of each 

figure panel. Each of these is a single HillTau ‘reaction’ where ‘input’ is activator in all but Panel E,

where ‘input’ is an inhibitor.  In all cases the rising phase fits exactly, but in panels A, C and E the 

falling phase has a different time-course.

Supplementary Figure S5.1. Fit of single-reaction HillTau Model to protein synthesis pathway. 

Model is as in Figure 5B. Panels A-F correspond to panels D-I in Figure 5. In all cases protein 

production rate is readout. Blue plots are reference, orange are HillTau. A: BDNF@3.7 nM + 

Ca2+@0.2 μM, 900 seconds. B: BDNF@3.7nM, Ca2+@1μM. C: 3 pulses of BDNF@3.7 nM for 5s, 

coincident with Ca2+@10μM for 1s, pulses separated by 300 s. D: Same as C, but Ca2+ held at 

baseline of 0.08 μM. E: Dose-response of protein vs. Ca2+, holding BDNF fixed at 3.7 nM. F: Dose-

response of protein vs BDNF, holding Ca2+ fixed at 0.08 μM. G: MASH optimization waveform 

used to fit the HillTau model for protein synthesis.

Supplementary Figure S5.2. Fitting S6K to the protein synthesis pathway model. HillTau 

reactions as in Figure 5C. Panels A-F correspond to panels D-I in Figure 5. In all cases activated 

S6K concentration is readout. Blue plots are reference, orange are HillTau. A: BDNF@3.7 nM + 

Ca2+@0.2 μM, 900 seconds. B: BDNF@3.7nM, Ca2+@1μM. C: 3 pulses of BDNF@3.7 nM for 5s, 

coincident with Ca2+@10μM for 1s, pulses separated by 300 s. D: Same as C, but Ca2+ held at 

baseline of 0.08 μM. E: Dose-response of protein vs. Ca2+, holding BDNF fixed at 3.7 nM. F: Dose-

response of protein vs BDNF, holding Ca2+ fixed at 0.08 μM. G: MASH optimization waveform 

used to fit the HillTau model for S6K activation.
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Supplementary Figure S5.3. Fitting CaMKIII to the protein synthesis pathway model. HillTau 

reactions as in Figure 5C. Panels A-F correspond to panels D-I in Figure 5. In all cases activated 

CaMKIII concentration is readout. Blue plots are reference, orange are HillTau. A: BDNF@3.7 nM 

+ Ca2+@0.2 μM, 900 seconds. B: BDNF@3.7nM, Ca2+@1μM. C: 3 pulses of BDNF@3.7 nM for 

5s, coincident with Ca2+@10μM for 1s, pulses separated by 300 s. D: Same as C, but Ca2+ held at 

baseline of 0.08 μM. E: Dose-response of protein vs. Ca2+, holding BDNF fixed at 3.7 nM. F: Dose-

response of protein vs BDNF, holding Ca2+ fixed at 0.08 μM. G: MASH optimization waveform 

used to fit the HillTau model for CaMKIII activation.

Supplementary Figure S5.4. Conversion of HillTau models to SBML, and comparison of the 

resultant responses simulated in HillTau and COPASI respectively. A: Oscillator model. This uses 

only ‘tau’ in its formulation, and fits to within 1%. B. Feedback inhibition model from Fig 2. A 1 

uM stimulus is delivered at t = 20, and it lasts till t = 60. This has a mediocre fit or 29%. C-E: 

Protein synthesis model. C. Comparing protein synthesis response to a BDNF stimulus of 5 nM 

from t = 2000s to t = 3000s. Fit = 30% is mediocre. D. S6K activation in response to a BDNF 

stimulus of 5 nM from t = 2000s to t = 3000s. Fit = 26% is mediocre. E. CaMKIII activation in 

response to a calcium stimulus of 5 uM from t = 2000 to t = 3000s. This fits well, 1.7%. F. HillTau 

reaction scheme for oscillator model.

Supplementary Figure S6.1 HillTau model schematic for largest model in figure 6, with 35 

HillTau parameters and 11 reactions.

Supplementary Figure S7. Dependence of HillTau simulation output on timestep. In all panels the 

dashed lines represent the time-series, and the dots represent the sample points for estimating error 

using the smallest timestep as reference. Accuracy is reported as normalized root-mean square 
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difference from smallest timestep. A: Feedback inhibition. Step stimulus of 1 uM is given at t = 10s,

which lasts till t = 50s. 1% accuracy is achieved for dt=1s. B: feedforward inhibition. Stimulus same

as A.  1.5% accuracy at dt=1s. C: BCM curve. Stimulus of 1 uM is given at t = 10s and stays till the

end of the simulation. 1% accuracy at dt=1s. D: Kholodenko oscillator. Here the system is free-

running. 1.2% accuracy at dt=6s.

Supplementary code directory

The zipfile with supplementary code expands out into a directory which has Python scripts and 

model definition files for generating all the simulated components of the figures in the paper, 

including supplementary figures. Detailed instructions for running the scripts are provided in the 

README.txt file in the same directory. The scripts should run with Python 3.x, but many figures 

require additional software installation for the ODE simulators MOOSE and COPASI, as well as 

some other packages. Details are provided in the README.txt.
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