Abstract
Humans can seamlessly combine value signals from diverse motivational incentives, yet it is not well-understood how these signals are “bundled” in the brain to modulate cognitive control. The dorsal anterior cingulate cortex (dACC) is theorized to integrate motivational value dimensions in the service of goal-directed action, though this hypothesis has yet to receive rigorous confirmation. In the present study, we examined the role of human dACC in motivational incentive integration. Healthy young adult men and women were scanned with fMRI while engaged in an experimental paradigm that quantifies the combined effects of liquid (e.g., juice, neutral, saltwater) and monetary incentives on cognitive task performance. Monetary incentives modulated trial-by-trial dACC activation, whereas block-related effects of liquid incentives on dACC activity were observed. When bundled together, incentive-related dACC modulation predicted fluctuations in both cognitive performance and self-report motivation ratings. Statistical mediation analyses suggest that dACC encoded the incentives in terms of their integrated subjective motivational value, and that this value signal was most proximally associated with task performance. Finally, we confirmed that these incentive integration effects were selectively present in dACC. Together, the results support an account in which dACC integrates motivational signals to compute the expected value of goal-directed cognitive control.
Significance Statement How are primary and secondary incentives integrated in the brain to influence goal-directed behavior? Using an innovative experimental fMRI paradigm that combines motivational incentives that have historically been studied independently between species (e.g., monetary rewards for humans, food rewards for animals), we examine the relationship between incentive motivational value and cognitive control allocation. We find evidence that the integrated incentive motivational value of combined incentives is encoded in human dorsal anterior cingulate cortex (dACC). Further, self-reported motivational shifts mediated the effects of incentive-modulated dACC activity on task performance, revealing convergence in how self-reported and experimentally-induced motivation are encoded in the human brain. Our findings may inform future translational studies examining affective/motivational and cognitive impairments in psychopathology (e.g., anxiety, depression, addiction).
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Conflict of Interests: The authors declare no conflicts of interest.
Manuscript title and content updated