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ABSTRACT
Time-lapse microscopy is a powerful technique that generates large
volumes of image-based information to quantify the behaviors of
cell populations. This method has been applied to cancer studies
to estimate the drug response for precision medicine and has great
potential to address inter-patient (or intertumoral) heterogeneity. A
couple of algorithms exist to analyze time-lapse microscopy images;
however, most deal with very high-resolution images involving few
cells (typically cell lines). There are currently no advanced and
efficient computational frameworks available to process large-scale
time-lapse microscopy imaging data to estimate patient-specific
response to therapy based on a large population of primary cells.
In this paper, we propose a robust and user-friendly pipeline to
preprocess the images and track the behaviors of thousands of
cancer cells simultaneously for a better drug response prediction
of cancer patients.
Availability and Implementation: Source code is available at:
https://github.com/CompbioLabUCF/CellTrack
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1 INTRODUCTION
An increasing number of biological and biomedical studies are using
time-lapse microscopy imaging data to observe the dynamic behav-
ior of cells over time [2, 16, 17]. Such imaging platform quantifies
the number of cells and their sizes, shapes, and dynamic interac-
tions across time [16]. These quantitative properties provide critical
insight into the fundamental nature of cellular function.

Figure 1: Time-lapse microscopy image. On the left is a mi-
croscopy image with an enlarged portion displayed on the right.
The white spots represent cells, some of which are macrophages.
The blue rectangle shows a macrophage that is devouring the cells
in the yellow rectangle. The translucent white lines in the green
rectangles are stromal cells.

Cancer cells vary widely in their response to drug treatment,
drug tolerance development, survival, and metastatic potential
[17, 20, 26]. Recent cancer studies relied on time-lapse microscopy
imaging data to estimate the chemosensitivity of patient-derived
cancer cells based on their quantitative properties. Such imaging
platforms aid in characterizing tumor heterogeneity by creating sub-
populations with different degrees of chemosensitivity to a given
drug [19–21]. Figure 1 presents the microscopy image for a one-
time point. Most of the white spots in this image represent cells.
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Some of them are tumor cells (alive or dead) and some of them are
macrophages. The green rectangle in Figure 1 points out some of
the stromal cells, which are the translucent white. In this study, the
time-lapse microscopy imaging data imaged thousands of primary
tumor cells every 30 minutes for six days with 289 time points (289
images) based on our EMMA platform (ex vivo imaging platform)
[19, 20]. The 289 images can be stacked together to generate a time-
lapse video that contains the necessary information to estimate the
effectiveness of a drug in a cancer patient at a specific dose. As time
goes by, some tumor cells undergo cell death due to the action of
the drug, while some are attacked by macrophages. An example of
this is shown in the yellow rectangle in Figure 1 which presents
one macrophage ‘eating’ a tumor cell (i.e., phagocytosis) as they
come in contact with each other.

There are a few algorithms available to analyze time-lapse mi-
croscopy imaging data [3–6, 10, 14, 15, 25, 27]. Most work on
the images involving very few cells (typically cell lines) at a very
high-resolution, making cell segmentation and tracking relatively
straight-forward. Unlike most studies, we are working with mi-
croscopy imaging data that captures several thousand primary cells
(derived from patients) in every frame. Due to the massive number
of cells, the resolution at the cellular scale is relatively weak, mak-
ing cell detection and tracking a problematic task. To overcome the
challenges and create a better prediction of the cancer patients’ drug
sensitivities, we developed an open-source time-lapse microscopy
imaging data analysis pipeline. This pipeline computes differences
in sequential microscopy images so that it can track cells, classify
live cells, detect cell death, identify cells based on behavior, and
track phagocytosis events.

2 METHODS
In this section, we introduce each step of our proposed five-step
framework for time-lapse microscopy imaging data analysis. The
first three steps are image preprocessing, cell detection, and cell
tracking. After the tumor cells are successfully detected and tracked,
a classification algorithm is applied to distinguish the live and dead
cells at each time point (i.e., image). Also, the framework can detect
events of phagocytosis (i.e., macrophages devouring tumor cells)
by applying a density-based spatial clustering algorithm.

2.1 Image Pre-processing

(a) Image 𝑎 (b) Image 𝑏

Figure 2: Original Images

2.1.1 Image Luminance Adjustment. Our framework is invariant to
the three channels (i.e., red, green, blue) of the original RGB images,
with all three channels having the same values for each pixel. To

avoid the redundancy of performing the same operation to each of
the three channels separately, we convert the RGB images into gray
scale and use these gray scale images for all following analyses.

In this study, we use luminance values to detect cells and track
their behaviors in the images; however, as can be seen in Figure 2,
the luminance values of the converted images at two-time points
(𝑎 and 𝑏) can be different. The luminances of the converted images
are not in the same scale nor under the same distribution. This
difference in luminance adversely affects the cell detection and
tracking accuracy of our model; therefore, we need to make the
images compatible in terms of luminance.

(a) Original Histogram (b) Histogram after Sliding

Figure 3: The Histograms of Image 𝑎 and Image 𝑏

To adjust the luminance of the images, We use Image Histogram
Sliding (IHS) [11]. Figure 3 shows the image histograms before and
after IHS. In the image histograms, the horizontal axis is the pixel
gray level values, while the vertical axis is the frequency of those
values. The most frequent pixel values in image 𝑎 and image 𝑏 are
56 and 79, respectively. 56 occurs 73122 times in image 𝑎 and 79
occurs 65332 in image 𝑏. These create the two peaks in Figure 3
(a). To make the two images have similar brightness, we shift the
peak pixel values of both images to a target peak value (100 in this
paper). For example, in image 𝑎, all pixels with value 56 will shift to
100, the rest of the pixel values changing accordingly. Similarly, in
image 𝑏, all pixels at value 79 will be moved to 100 and the rest of
the values will be scaled accordingly. The following equation can
describe this process:

𝑦 =

{
𝑥/𝑝 ∗ 𝑡 𝑥 <= 𝑝

𝑡 + (𝑥 − 𝑝) (255 − 𝑡)/(255 − 𝑝) 𝑥 > 𝑝
(1)

where 𝑥 is an arbitrary pixel value in the original image, and 𝑦 is
the generated pixel in the new image. 𝑝 is the peak pixel in each
image. 𝑡 is the target peak value.

(a) Image 𝑎 after Histogram Sliding (b) Image 𝑏 after Histogram Sliding

Figure 4: Images after Histogram Sliding

The IHS adjustment produces new histograms displayed in Fig-
ure 3 (b), which shows the histograms almost completely overlap-
ping. Thus, by using IHS, we can regenerate image 𝑎 and image
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𝑏 while compensating for the difference in luminosity between
frames, as shown in Figure 4. In our analysis, all images align to
the same target peak value by applying IHS.

2.1.2 Image Scaling. The resolution of the original image is 1328
× 1048, whereas, for one cell, it is approximately 10 × 10. This
resolution, at the individual cellular scale, is rather low. Therefore,
if we set a threshold pixel value to extract the white core or black
edge of the cell, there will not be enough pixels representing a cell
for further analysis. For example, if we set a pixel value threshold
of 130 to filter out the dark pixels from the original image shown
in Figure 5 (a), we would end up with Figure 5 (b): very few white
pixels representing a cell. The shape of the cell in that image is
defined arbitrarily by limited pixels and does not illustrate the
actual structure. If one more pixel were to be filtered out using
a higher threshold, the shape would change drastically. It is of
paramount importance that we have a well-defined form for each
cell since our model works based on the detection of the shape of
the cells. As a result, to get a smooth contour of the cell, we use
image interpolation [23] to improve the resolution of the images.

(a) Original Cell (b) The Binary Form of Original Cell

(c) Cell after Interpolation (d) The Binary Form of the Cell after
Interpolation

Figure 5: Images Scaling

Figure 5 (c) is a rescaled version of Figure 5 (a) that used bicubic
interpolation to enlarge it eight times. Figure 5 (d), the binary form
of 5 (c), is generated using the same threshold used to get Figure 5
(b) from 5 (a). This rescaling smooths out the cell and portrays a
more accurate shape demonstrated by comparing 5 (d) to the rest
of the figures. Hence, for all further analyses, we will use the eight
times enlarged images.

2.2 Cell Detection
In the original image, cells are the white spots surrounded by a
black edge (cytomembrane), as shown in Figure 6 (a). Each image

goes through 3 steps before we can detect a cell. First, the binary
image is generated from the gray scale image using a pixel value
threshold. In this paper, we set the threshold to 85 and convert all
gray scale images into binary. The black pixels in Figure 6 (a) with
a value below the preset threshold become converted into white
pixels in Figure 6 (b). All other pixels above the threshold values
convert to black pixels. This conversion is done by following the
equation below:

𝑦 =

{
0 𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

255 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

where 𝑥 is the pixel value in the gray image, as is shown in Figure
6 (a), and 𝑦 is the new pixel value in the binary image, as is shown
in 6 (b).

(a) Gray Image (b) Binary Image

(c) Contour Image (d) The Detected Cells

Figure 6: Cell Detection Steps
Second, using the binary image, Figure 6 (b), we find the contours

of the white pixels shown in Figure 6 (c) by applying the Border
Following Contours Retrieving Algorithm [22]. Finally, the last
step is to determine which contours represent a cell. Figure 6 (c)
reveals that a cell typically has two contours, a larger and smaller
one, which together forms an annulus. The annulus corresponds to
the cytomembrane of the cell. In order to achieve a more accurate
detection result, we use the following criterion to determine if an
object is a cell:

(1) A bigger contour must include a smaller one.
(2) The radius of the smaller contour should be in a reasonable

range. In this paper, the contour’s radius must be greater than 7
pixels and less than 90 pixels. We get the radius of a contour by
using the smallest circle that can enclose that contour. The radius
and center of this circle denote the radius and center of the contour.

(3) We check if the pixels within the smaller contour is bright
enough. In this paper the pixel value at the center should be larger
than 100 to meet this condition.
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If all three conditions are met, we conclude that the object is a
cell. Figure 6 (d) displays all cells detected by our model from Figure
6 (a). We track the cells in the following steps using the coordinates
of the center of the small contour to represent the coordinates of
the cell.

2.3 Cell Tracking
Cell tracking across different frames (time points) is the next step
in our framework. In this step, we map the detected cells in the
current image to the detected cells in a previous image, shown in
Figure 7. We create one track for each cell to record its position and
shape across the time points.

We use the Hungarian algorithm [8, 12] to find one to one map-
ping between cells of two images. Let𝑚 and 𝑛 be the number of
cells in our current and previous images, respectively. For each cell
at an earlier time point, we superimpose it on the current image and
calculate the distances to all𝑚 cells. Since we get the coordinates of
all cells in the Cell Detection step, we can calculate the Euclidean
distance between any pair of cells.

(a) Previous Image (b) Current Image

Figure 7: The Result of Cell Detection

Figure 8 shows the current image. The detected cells are in the
yellow circles, whereas the red circle denotes a cell’s position in
the previous image. For every cell in the current image, the yellow
circles, we calculate the distance between it and each cell in the
previous image, the red circle. For 𝑛 cells in the previous image
and𝑚 cells in the current image, we end up with a 𝑛 ×𝑚 distance
matrix.

Figure 8: Cell Distances

The Hungarian algorithm works based on the minimization of
the distance matrix. The algorithm finds a value for each row such
that the summation of all the values is minimum. If for the 𝑖𝑡ℎ row,
the algorithm chooses a value in 𝑗𝑡ℎ column, it means that the 𝑖𝑡ℎ

cell in the prior time point is the same as the 𝑗𝑡ℎ cell in the present

time point. Applying the Hungarian algorithm on our matrix, we
get the relation between all cells in the previous image and all cells
in the current image. When 𝑛 is not equal to 𝑚, some cells are
unable to be matched. For example, 𝑛 being bigger than𝑚 means
there are more cells in the previous image; some of them have died
or got devoured by macrophages, therefore, can not be tracked. If 𝑛
is smaller than𝑚, then there are more cells in the current image, so
we need to create more tracks to record the movement of the extra
cells accordingly.

As is shown in Figure 9, we mark the cells with a number in
all-time points. If one cell matches between previous and current
images, we use the same unique number of the prior time point to
mark that cell in the present time point. This permits us to track
the cell in the continuous images, allowing us to see how the cell
changes through the time points.

(a) Previous Image (b) Current Image

Figure 9: The Result of Cell Tracking

2.4 Cell Classification
After we can successfully detect cells and track their position at
each time point, we need to classify them between living and dead.
To distinguish the live cells from the dead ones, we use the shape of
the cytomembrane. It uses the fact that the shape of a live cell keeps
changing over time (as shown in Figure 10), whereas the shape of a
dead cell remains unchanged.

(a) Previous Image (b) Current Image

Figure 10: Cell Changes Shape

To describe the shape of a cell, we use the minimum bounding
box of the inner contour of that cell, shown in Figure 11. The
minimum bounding box is the smallest rectangle that can encircle
the inner contour of the cell, which is determined by the rotating
calipers algorithm [18]. To track the cell changes over time, we
propose a new metric, Ratio of Short side to Long side (RSL), which
is defined by the following equation:
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𝑅𝑆𝐿 =
𝑠ℎ𝑜𝑟𝑡 𝑠𝑖𝑑𝑒

𝑙𝑜𝑛𝑔 𝑠𝑖𝑑𝑒
, (3)

where RSL is the ratio of the shorter side of the rectangle to the
longer side, as shown in Figure 11. A larger change in RSL value
indicates a more substantial change in the shape of the cell, which
directly relates to a cell being alive.

(a) (b)

Figure 11: The Shape of One Cell

To determine if a cell is alive at a given time point, we measure
how much the cell shape changes across four previous and four
following reference images. For example, if our given time point
is 20 and we want to decide if a cell is alive at that moment, then
we will consider time points 16-19 and 21-24 as reference. Figure
12 shows a sample of nine time points (eight references and one
given). If the shape changes significantly between any two of the
nine images then we can safely conclude that the cell is live at our
assigned time point.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q) (r)

Figure 12: The change of RSL

In Figure 12, (a-i) are the original cells and (j-r) illustrate their
binary form. The nine RSLs are 0.76, 0.86, 0.94, 0.8, 0.69, 0.87, 0.93,
0.98, 0.98 respectively. The maximum among the nine RSLs is 0.95
and the minimum is 0.63. The difference between the maximum
and minimum represents the maximum change of shape of this
cell between any of the nine time points. We set a threshold of 0.3
for change in RSL to reduce computational uncertainties. For this
example, the maximum change in RSL is 0.32 which is above the
threshold. Therefore, we can conclude that this cell is live at a given
time point (represented by Figure 12 (e)). Any value smaller than
0.3 for other cases will indicate that the cell is dead.

2.5 Detection of Phagocytosis
As previously mentioned, a macrophage is a type of phagocyte that
detects, engulfs, and destroys pathogens like a tumor cell. This event
would cause the number of cells to decrease locally. We can identify

phagocytosis events by clustering the cells based on proximity or
density and tracking the changes in the number of cells in clusters.
If cells get devoured in a particular cluster, we will see a significant
drop in cell population of that cluster across different time points.
In this paper, we use the DBSCAN algorithm [7] to cluster cells,
as is shown in Figure 13, where the number beside each cluster
represents the cluster index.

Figure 13: Cell Clusters

As the cells are continuously moving, cluster structures will
change even without any phagocytosis. Some cells may move fur-
ther from a cluster resulting in it being excluded from that cluster.
At the same time, it will be included to a new cluster based on
density, as can be seen in Figure 14. In Figure 14 (a), the cell pointed
by the yellow arrow moves closer to the cluster so that the cluster
includes it. On the contrary, Figure 14 (b) illustrates a cell marked
by a yellow arrow that is moving far from the cluster; consequently,
the cluster will then exclude the cell. Phagocytosis will cause much
faster decreases in the cluster population than random cell move-
ment alone. We need to set a threshold for change in the cluster
population to differentiate between these two cases.

(a) (b)

Figure 14: The Change of the Clusters
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When phagocytosis happens in a cluster, many cells disappear
as time goes on. Figure 15 illustrate this phenomenon. The cells in
the red circle make up Cluster 53. The cell in the blue box is the
macrophage. There are 29, 18, 9 cells within Custer 53 in Figure
15 (a) (b) (c), respectively. The macrophage in this cluster is very
active and it engulfs cancer cells when they are in contact with
each other.

(a) Time Point 43 (b) Time Point 114 (c) Time Point 283

Figure 15: The Number of Cells Decreases in Cluster 53

We count the number of cells in every time point and check if
the number within a cluster decreases. In Figure 16, we use linear
regression to fit a straight line to show the rate of reduction of the
cell population in Cluster 53. If the slope of the fit line is steeper
than -0.04, we will conclude that the cluster contains phagocytosis.
The slope of this fit line for Cluster 53 is -0.086, which surpasses
the preset threshold. Accordingly, we can conclude that Cluster 53
contains phagocytosis.

Figure 16: The Number of Cells Changes in Cluster 53

3 EXPERIMENTS
In this section, we performed two experiments to evaluate the
framework. First, we tested the performance of our classification
model using a simulated video that contains both live and dead cells
with 193 time points. Furthermore, we added different levels of noise
to that simulated video to test the robustness of our framework.
Second, we test our framework for its detection of phagocytosis. In
this experiment, we used two time-lapse microscopy imaging data
(‘videos’) as the input to detect the events.

3.1 Classification of Live and Dead Cells
The cells in original images are not labeled, which means we do not
have any ground truth to quantify the accuracy of our classification.
Our collaborators manually labeled nine cells from the original
imaging data and classified them into three categories: always live,
live to dead, and always dead. We simulated a series of images (193
time points) using the nine labeled cells. Each of the nine cells were
duplicated 20 times in each image. Among the 20 duplicates, each
quarter were rotated 0, 90, 180, 270 degrees, respectively, resulting in
four different orientations for one cell. In the original imaging data,
if any of the nine labeled cells disappears at any time point, all of its
duplicateswill also disappear at the same time point in the simulated
data. In the first simulated time point, the cells were arbitrarily
positioned as long as they did not overlap. In the following time
points they were given random movements.

Figure 17: Classification Accuracy with Different Back-
ground Noise

We applied our algorithm to classify the cells into living and
dead and yielded 100% accuracy for the simulated cells at all time
points. As for the robustness of our algorithm, we added three dif-
ferent levels of Gaussian noises 𝑁 (`, 𝜎2) into the background of the
simulated images, where ` = 0 and 𝜎 = 0.5, 0.6, and 0.7 correspond-
ingly. The larger the 𝜎 (standard deviation), the more random noise
we added to the image background. The detection result with the
noise can be seen in Figure 17. The horizontal axis represents the
time points and the vertical axis represents classification accuracy.
Accuracy is the ratio of the number of correctly classified cells to
the total number of cells in the experiment. From Figure 17, we can
see that the accuracy of our algorithm is higher than 0.8, even with
the largest background noise (𝜎 = 0.7) we added. It indicates that
the cell detection, tracking, and classification steps are robust to
the background noises in the real time-lapse microscopy imaging
data.

3.2 Detection of phagocytosis
We processed two real time-lapse microscopy imaging data (videos)
to check whether they have phagocytosis in any cluster of cells.
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The result from the first video (one time point) is shown in Fig-
ure 18. In Figure 18 (a), the clusters that are determined to have
phagocytosis are circled by red, whereas the other clusters are en-
circled by yellow. The number beside each cluster represents its
index in that image. Figure 18 (b) shows the change in the number
of cells in three selected clusters. The number of cells in Clusters
117 and 137 decrease as time goes by and the slopes are higher
than the threshold, which indicates that clusters have phagocytosis.
Cell populations in cluster 121 fluctuate, which is attributed to the
random movement of cells.

(a) Clusters of Sample 1

(b) The Number of Cells in the Three Selected Clusters of Sample 1

Figure 18: Clusters in Sample 1

The result from the second video (one time point) can be seen
in Figure 19. Three clusters were selected in the video to show the
change of cell numbers within the clusters. We can see that Clusters
23 and 83 in Figure 19 (b) have a stable decrease in number of cells.
As explained in the Methods Section, we use linear regression to
model the decreasing trend. The slopes of the fitted regression lines
for the number of cells in the two clusters are above the threshold,

indicating the presence of phagocytosis. The fitted line of Cluster
41 in 19 (b) is stable in a range without any apparent decreasing
trend. Therefore, we can classify it into the category of clusters that
has no phagocytosis.

(a) Clusters of Sample 2

(b) The Number of Cells in the Three Selected Clusters of Sample 2

Figure 19: Clusters in Sample 2

In each video, several clusters are determined to have phagocy-
tosis that is illustrated by the clusters circled by red in Figures 18
and 19. The results can show that the cells within these clusters are
devoured by macrophage gradually, which demonstrates that the
proposed method is very effective. The pathologists confirm most
of these detected phagocytosis.

3.3 Running Time
To measure the scalability of the proposed framework, we tested it
on a 289-image time-lapse microscopy data. The framework took
180 CPU seconds to detect, track, and classify all the cells in one
experiment. The CPU time was measured on AMD Ryzen Thread-
ripper 2950X CPU with 2140MHz.
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4 DISCUSSION AND CONCLUSION
Time-lapse microscopy imaging data estimates the response of tu-
mor samples to anti-cancer drugs at single-cell resolution, which
enables cell tracking and the observation of a variety of cellular
activities to study anti-cancer therapeutics. In this study, we pro-
pose an efficient framework for analyzing the large-scale time-lapse
microscopy imaging data to track the behaviors of thousands of
cancer cells simultaneously. The overall framework can be divided
into five main steps. For each step, we describe the process, math
formulas, and its importance. In the first and second steps, an ad-
vanced image interpolation technique is applied to improve the
image resolution. Then, the cell contours are automatically esti-
mated for cell detection. In the third step, the Hungarian algorithm
is applied to track cells among the images at different time points in
the same experiment. It calculates the pairwise distances of cells be-
tween two consecutive time points. In some studies [1, 13], Kalman
filtering [9] was used to track multiple moving cells and estimate
the path of each cell. However, cell migration is usually considered
as Brownian motion [24] and the trajectories of the cells are difficult
to predict. Therefore, the Hungarian algorithm is not integrated
with the Kalman filter in this study. In the fourth step, we classify
the live and dead cells based on whether the cells undergo defor-
mations at different time points. If yes, we classify it as a live cell.
In the last step, we apply a density-based clustering algorithm (i.e.,
DBSCAN) to detect phagocytosis events.

The results in the simulation experiment demonstrate that the
proposed framework is robust to image background noise and it
can accurately track and classify the live and dead cells in each
image. The experiments on detecting phagocytosis events illustrate
that the pipeline has great potential to identify macrophages and
track their behaviors. Overall, the work in this paper introduces a
comprehensive pipeline for time-lapse microscopy imaging data
analysis and provides an accurate estimation of the drug response
for each cancer patient.
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