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Abstract 25 

     Predictive coding models can simulate known perceptual or neuronal 26 

phenomena, but there have been fewer attempts to identify a reliable neural 27 

signature of predictive coding for complex stimuli. In a pair of studies, we test 28 

whether the N300 component of the event-related potential, occurring 250-350 29 

ms post-stimulus-onset, has the response properties expected for such a 30 

signature of perceptual hypothesis testing at the level of whole objects and 31 

scenes. We show that N300 amplitudes are smaller to representative (“good 32 

exemplars”) compared to less representative (“bad exemplars”) items from 33 

natural scene categories. Integrating these results with patterns observed for 34 

objects, we establish that, across a variety of visual stimuli, the N300 is 35 

responsive to statistical regularity, or the degree to which the input is “expected” 36 

(either explicitly or implicitly) based on prior knowledge, with statistically regular 37 

images evoking a reduced response. Moreover, we show that the measure 38 

exhibits context-dependency; that is, we find the N300 sensitivity to category 39 

representativeness when stimuli are congruent with, but not when they are 40 

incongruent with, a category pre-cue. Thus, we argue that the N300 is the best 41 

candidate to date for an index of perceptual hypotheses testing for complex 42 

visual objects and scenes. 43 

 44 
 45 
 46 
  47 
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Introduction 48 
 49 
The stars in the night sky are not arranged in the shape of a great bear and there 50 

is no rabbit on the moon; it is our prior knowledge of these shapes that invokes 51 

such descriptions. Increasingly, it is clear that perception does not depend on the 52 

sensory stimulus alone but is also dynamically influenced by our prior knowledge 53 

(Smith and Loschky 2019; Gordon et al. 2017; Caddigan et al. 2017; Lupyan 54 

2017; Vo and Wolfe 2013; Voss et al. 2012; Summerfield et al. 2006). Indeed, 55 

many models of perception include some form of perceptual hypothesis testing 56 

(PHT), in which perception, a hard inverse problem, is conceived of as a process 57 

of generating a hypothesis on the basis of both sensory input and prior 58 

knowledge and the current context (Clark 2013; Gregory 1980; Hochberg 1981; 59 

Huang and Rao 2011; Rock 1983; Helmholtz 1925). Recently, one class of PHT 60 

models has garnered increased interest: predictive coding models (Rao and 61 

Ballard 1999; Friston 2005; Spratling 2010), which posit that each area of, for 62 

example, visual cortex learns statistical regularities from the world that it then 63 

uses, jointly with the input from the preceding area, to make predictions about the 64 

stimulus. In particular, the prediction and incoming sensory signal are proposed 65 

to undergo an iterative matching process at each stage of the processing 66 

hierarchy. Most of these models are hierarchical in nature, with the prediction 67 

feeding back on the preceding area. The mismatch (“prediction error”), if any, 68 

between the prediction and the incoming sensory signal is then propagated to 69 

higher layers in the processing hierarchy, revising the weights of the hypotheses, 70 

until the feedback matches the incoming signal and the error is zero (Rao and 71 
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Ballard 1999; Friston 2005; Lange et al. 2018). These predictive coding models 72 

have risen to prominence in recent years, in part because they represent an 73 

efficient coding scheme for the complexity of the visual world and, perhaps more 74 

importantly, because they posit a role for the abundant feedback connections 75 

known to exist between visual areas.  76 

 77 

The bulk of support for predictive coding models has come from the models’ 78 

ability to simulate known perceptual or neuronal phenomena (reviewed in 79 

Spratling 2016). The empirical data used for such models have primarily come 80 

from experiments manipulating basic features of simple stimuli, such as 81 

variations in grating orientation or color (Kok et al. 2017; Marzecová et al. 2017, 82 

2018; Rungratsameetaweemana et al. 2018; Smout et al. 2019, 2020). However, 83 

it should also be possible to find signatures of predictive coding at higher levels 84 

of visual analysis. Such a signature would be observed to a variety of types of 85 

complex visual stimuli (objects, faces, natural scenes) across most or all viewing 86 

conditions. More importantly, it should be responsive to statistical regularity, or 87 

the degree to which features in the input are “expected” (either explicitly or 88 

implicitly) by the system based on prior knowledge. We learn regularities of 89 

object and natural scene features by being exposed to prototypical objects and 90 

natural environments over our lifetime. This prior knowledge facilitates our 91 

processing when the regularities in the incoming sensory stream meet our 92 

expectations (Caddigan et al. 2017). Thus, a good measure of predictive coding 93 

would index when stimuli deviate from the regularities we expect to see. In 94 
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particular, the measured response should increase with increasing irregularity, in 95 

keeping with the increased iterations, or inference-based error, proposed to 96 

occur when an item does not match the prediction. Importantly, the measure 97 

should also show context-dependency, as statistical regularities need to be 98 

sensitive to the immediate context in order to be of use to the system.   99 

 100 

Using complex visual objects, Schendan and colleagues (Schendan and Kutas 101 

2002, 2003, 2007) have shown that the N300 component of the event-related 102 

potential (ERP) can be interpreted as an index of object model selection 103 

processes, a framework that fits within PHT (Schendan and Ganis 2012; 104 

Schendan 2019).  Here we build on these findings, addressing the question of 105 

whether the N300 is also sensitive to statistical regularity for complex visual 106 

stimuli other than objects  -- in particular, for good and bad examples of visual 107 

scenes. Moreover, critically, we ask whether the N300 is sensitive to in-the-108 

moment expectations for visual information, as established by, in the present 109 

work, verbal cues. Taken together, this kind of evidence would support the 110 

characterization of the N300 more broadly as a signature of predictive coding 111 

mechanisms, operating in occipitotemporal visual cortex at the scale of whole 112 

objects and scenes. 113 

 114 

The N300 115 

The N300 is a negative going component with a frontal scalp distribution that 116 

peaks around 300 ms after the onset of a visual stimulus. It has been shown to 117 
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be sensitive to global perceptual properties of visual input (Mcpherson and 118 

Holcomb 1999; Schendan and Kutas 2002, 2003) but not to manipulations limited 119 

to low level visual features (e.g., color, or small-scale line segments; Schendan 120 

and Kutas 2007) that are known to be processed in early visual cortex. 121 

Components that precede the N300 in time have instead been linked to 122 

processing of and expectations for such low-level features. For example, a 123 

component known as the visual mismatch negativity (vMMN) occurs between 124 

100-160 ms in target-oddball paradigms, where it is larger for the visual oddball 125 

stimuli. The vMMN has sometimes been associated with predictive coding 126 

(Stefanics et al. 2014; Oxner et al. 2019). However, given its sensitivity to the 127 

current experimental context – and, importantly, not to statistical regularities built 128 

up over a lifetime – as well as its source location to occipital cortex (Susac et al. 129 

2014; File et al. 2017), the vMMN would be classified as indexing early stage 130 

PHT processing. In contrast, the N300 is a “late” visual component, with likely 131 

generators in occipitotemporal cortex (Schendan, 2019; Sehatpour et al., 2006). 132 

It immediately precedes access to multimodal semantic memory (reflected in the 133 

N400, which is observed later in time than the N300 when both are present; 134 

Kutas and Federmeier 2011). The N300 is therefore well positioned to capture 135 

the iterative, knowledge- and context-sensitive process of visual processing of 136 

the global features of stimuli, as proposed by predictive coding models, and thus 137 

seems promising as a candidate index of intermediate to late stage PHT 138 

processing. 139 

 140 
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Importantly, as hypothesized by predictive coding models, the amplitude of the 141 

N300 increases for less “expected” (i.e., less statistically regular) stimuli. The 142 

N300 is larger to pictorial stimuli that lack a global structure as compared to when 143 

the global structure of the object is clearly discernible (Schendan and Kutas 144 

2003). The N300 is also sensitive to repetition, with a reduced amplitude for 145 

repeated presentations; importantly, however, N300 repetition effects (but not 146 

those on earlier components) depend on knowledge, as they are larger when the 147 

visual stimulus is meaningful (Voss and Paller 2007; Schendan and Maher 2009; 148 

Voss et al. 2010). Similarly, and critically, N300 amplitudes are sensitive to a 149 

variety of factors that reflect the degree to which an object fits with prior 150 

experience. For example, N300 amplitudes are sensitive to the canonical view of 151 

an object; an open umbrella oriented horizontally (non-canonical) elicits a larger 152 

N300 amplitude than an open umbrella oriented vertically (Schendan and Kutas 153 

2003; Vo and Wolfe 2013). Amplitude modulations are also linked to factors such 154 

as object category membership, presence of category-diagnostic object features, 155 

and (rated) match to object knowledge (Gratton et al., 2009; Schendan, 2019; 156 

Schendan & Maher, 2009). This pattern of data suggests that the N300 may be a 157 

good marker for not only the global structure of an object but the degree to which 158 

the input matches learned statistical regularities more generally, with larger N300 159 

amplitudes for stimuli that do not match predictions based on learned regularities 160 

and hence require further processing.  161 

 162 
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Thus far, empirical data have largely linked the N300 to object processing, 163 

sometimes in the context of a scene (Mudrik et al. 2010; Vo and Wolfe 2013; 164 

Lauer et al. 2020), but still ostensibly elicited by an object. Indeed, Schendan 165 

(2019) has specifically linked the N300 to object model selection processes, in 166 

which an input is matched to possible known objects. This model selection 167 

process includes PHT computations. Here, however, we hypothesize that the 168 

N300 may reflect a more general signature of hierarchical inference within higher 169 

level visual processing. If so, it should be elicited by other meaningful visual 170 

stimuli, such as natural scenes. Scenes differ from individual objects in a few 171 

ways. Scenes often contain multiple objects rather than prominent objects that 172 

overshadow their backgrounds.  Moreover, the spatial layout of the environment 173 

is much more critical for understanding a photograph of a scene than a 174 

photograph of an object.  Finally, it is clear that the human visual system sees 175 

objects and scenes as importantly different as they have sub-systems dedicated 176 

to processing them (Epstein & Kanwisher, 1998).  Thus, if the N300 reflects, not 177 

a specific facet of object processing but, more generally, the computations 178 

associated with PHT in higher level vision, then it should also be sensitive to 179 

statistical regularity and prediction during scene processing.  180 

 181 

In fact, scrambled scenes (created by recombining parts of the scene image into 182 

a random jigsaw) have been found to elicit larger N300 amplitudes compared to 183 

intact and identified scenes (Pietrowsky et al. 1996).  Because the scrambled 184 

scenes were degraded, however, it is not clear whether these effects simply 185 
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reflect the disruption to the global structure of the image or a deviation from 186 

statistical regularity more generally.  Here we use intact scenes that are either 187 

highly representative of their category (e.g., good exemplars of that category) or 188 

less representative of their category (bad exemplars). Importantly, all the images 189 

are good photographs of real world scenes (i.e., they are not degraded); they are 190 

statistically regular or irregular by virtue of how representative they are of their 191 

category.  A highly representative exemplar of its category, by definition, contains 192 

better information about its category and thus serves as a better initial prediction 193 

(i.e., has high statistical regularity). We ask whether such statistically regular and 194 

irregular stimuli elicit differential N300s, as would be hypothesized if this 195 

component is indexing hierarchical inference or predictive coding beyond objects. 196 

 197 

Good and bad scenes 198 

We have previously found that good scene exemplars are more readily detected 199 

than bad exemplars (Caddigan et al. 2010, 2017); that is, participants are better 200 

at discriminating briefly presented and masked intact photographs from fully 201 

phase-scrambled versions when those images are good exemplars of their 202 

category (i.e., beaches, forests, mountains, city streets, highways, and offices). 203 

Good and bad exemplar status was determined with a separate rating task in 204 

which participants rated on a 1-5 scale how representative the image was of its 205 

category.  We took the 60 highest and 60 lowest rated images from each 206 

category, and verified that participants were significantly faster and more 207 

accurate at categorizing the good scene exemplars than the bad, indicating that 208 
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our manipulation captured the degree to which the image exemplified the 209 

category (Torralbo et al. 2013). Importantly, again, there were no artificially 210 

introduced objects in any of the bad exemplars nor were they impoverished or 211 

degraded in any way. Instead, their good and bad status derived entirely from 212 

how representative they were of the category being depicted.   Note that, 213 

although category was relevant to the choice of stimuli and whether they were 214 

designated good or bad, in Caddigan et al.’ experiments it was completely 215 

irrelevant to the intact/scrambled judgement being made (was the stimuli an 216 

intact photo or noise?). Nonetheless, participants had significantly higher 217 

sensitivity (d’) for good than bad exemplars  (Caddigan et al. 2010, 2017), 218 

suggesting that with the very brief (34–78 m) masked exposures good exemplars 219 

perceptually cohere into a intact photograph sooner than bad exemplars.  220 

 221 

Relatedly, the categories of those same good exemplars are better decoded, 222 

using fMRI multi-voxel pattern analysis, than are the categories of the bad 223 

exemplars in a number of visual areas, including V1 and the parahippocampal 224 

place area (PPA; Torralbo et al. 2013). Interestingly, the BOLD signal for those 225 

same bad exemplars is larger than that for good exemplars in the PPA (Torralbo 226 

et al. 2013), in keeping with predictions from hierarchical predictive coding (i.e., 227 

increased activity for the less statistically regular images). The poorer detection 228 

with brief presentations, weaker representations in the brain, and greater activity 229 

evoked by bad than good scene exemplars make these stimuli good candidates 230 

for eliciting a neural signature of hierarchical predictive coding. 231 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2020.09.21.304378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.304378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

11 
 

 232 

Design of the current experiments 233 

In Experiment 1, we recorded scalp EEG while participants viewed good and 234 

bad scene exemplars and made a good/bad judgment. If the N300 serves as an 235 

index of matching incoming stimuli to learned statistical regularities, then N300 236 

amplitude should be smaller for good exemplars of natural scenes than the bad 237 

exemplars.  In this first experiment participants viewed the stimuli without any 238 

forewarning of what to expect (category and good/bad status were fully 239 

randomized; see Figure 1A), and all the stimuli were unique images with no 240 

repeats in the experiment. If we observe an effect of statistical regularity, then the 241 

particular regularity brought online must stem from the current input, as there 242 

was no confound of repetition priming or episodic memory.  243 

 244 

However, an effective prediction process must also be sensitive to context. Thus, 245 

in Experiment 2 we then manipulated the expectations of the participants at the 246 

beginning of each trial by presenting a word cue (e.g., ‘Beach’) that either 247 

matched the upcoming scene’s category (on 75% of trials) or mismatched the 248 

upcoming image category (e.g., preceding a forest with the ‘Beach’ cue; see 249 

Figure 1B). If the N300 reflects a PHT process then it should also be sensitive to 250 

the particular template (i.e., statistical regularity) activated by the cue. In 251 

particular, we would predict that a cue with a 75% validity would activate the 252 

statistical regularities associated with the cued category. For images that come 253 
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from the cued category, then, we should observe smaller N300s for good than 254 

bad exemplars, as in Experiment 1, since good exemplars are a better match to 255 

the statistical regularities of their category. However, in contrast, when the input 256 

image does not come from the cued category (i.e., for mismatches), we would 257 

predict a reduction or even elimination of the good/bad N300 effect, since neither 258 

the good nor bad exemplar would fit well with the cued statistical regularity. For 259 

example, good beach exemplars should not systematically provide a better 260 

match to the statistical regularities of a forest than a bad beach does. Experiment 261 

2, then, provides a critical test of the idea that the N300 reflects the process of 262 

matching input to the currently activated template – i.e., the prediction. 263 
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 264 

Figure 1. Schematic of one trial in each of the experiments. A. In Experiment 1, 265 

a fixation cross was shown in the center of screen for a randomly chosen interval 266 

between 1000-2000 ms. A good or bad exemplar image from one of the six 267 

categories was then presented for 200ms, followed by a fixation cross. After a 268 

delay of 1000ms, the subjects respond to the question "Good or Bad?" with a 269 

button press and the next trial begins. B. In Experiment 2, the trial sequence is 270 

similar to Experiment 1 with the following differences. At the start of each trial a 271 

word cue (e.g., "Beach") from one of six categories (beaches, city streets, 272 

forests, highways, mountains, and offices) is shown. At the end of the trial the 273 

MismatchMatch

200 ms

1000 ms

500 ms

1000-2000 ms

ForestBeach

Yes or No ?

200 ms

1000 ms

1000-2000 ms

Good or Bad?

Experiment 1 Experiment 2

A. B.

Good

Bad

Beach City Street Forest Highway OfficeMountainC.
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subjects make a delayed response, with a button press, to the question "Yes or 274 

No?" (“Yes” if the image matches the cue and “No” otherwise) and the next trial 275 

begins. Cue validity was kept high (75%) to promote prediction; on 25% of the 276 

trials, there is a mismatch between the word cue and the image category. C. A 277 

sample of good and bad exemplars from each category used in our study. 278 

 279 

Materials and Methods 280 
 281 

Participants 282 

The data for Experiment 1 came from 20 right-handed college-age subjects 283 

(mean age = 24.36 years, range = 18 to 33 years, 12 women), and the data for 284 

Experiment 2 from a separate set of 20 right-handed subjects (mean age = 285 

22.44; range 18-30 years; 14 women). In both experiments, participants gave 286 

written, informed consent and were compensated for their participation in the 287 

study with course credit or cash. The study was approved by the Institutional 288 

Review Board of the University of Illinois at Urbana-Champaign. All participants 289 

were right-handed, as assessed by the Edinburgh Inventory (Oldfield 1971) and 290 

none had a history of neurological disease, psychiatric disorders, or brain 291 

damage. 292 

 293 

Materials and Procedures  294 

ERP-eliciting stimuli were pictures of natural scenes from six categories: 295 

beaches, forests, mountains, city streets, highways and offices (Figure 1C). In a 296 

previous study, these images were collected from the internet and rated for their 297 
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representativeness of the named category on Amazon Mechanical Turk, with 298 

participants answering, e.g., for beaches, ‘‘How representative is this image of a 299 

BEACH?’’ for each image, with the interpretation of the term representativeness 300 

left to the participants (Torralbo et al. 2013). In a separate experiment, 301 

participants were significantly faster and more accurate at categorizing the good 302 

exemplars than the bad, further confirming that our manipulation captured the 303 

degree to which the image exemplified the category. The 60 top rated images 304 

were used as good exemplars for each category, and the 60 lowest rated images 305 

were used as bad exemplars for each category (for details on the choice of good 306 

and bad exemplars see (Torralbo et al. 2013). Images were resized to 340 x 255 307 

pixels and presented on a black background with a fixation cross at the center. 308 

The images were randomly presented at one of three locations: the center of the 309 

scene, or with nearest edge 2 degrees to the left or right of fixation, with a total of 310 

120 good images and 120 bad images presented at each location. Here, we 311 

report only results for centrally-presented images1. The stimuli were all unique 312 

images with no repeats in the presentation sequence.  313 

 314 

 
1 The laterally presented scenes were included to separately answer questions 

about hemispheric biases in scene processing that are outside the scope of this 

manuscript. Because ERP waveforms for laterally presented stimuli have 

important morphological differences compared to those from centrally presented 

stimuli, the data from the two presentation conditions cannot be combined. 
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In Experiment 1, participants were instructed at the beginning of the study that 315 

they would be seeing good and bad exemplars of six scene categories and that 316 

their task at the end of each trial was to indicate via button press whether the 317 

image was a good or a bad exemplar of its category. Participants first practiced 318 

with 9 trials to acclimatize to the task environment, and these images were not 319 

repeated in the main experiment. Then, they completed 3 blocks each consisting 320 

of an equal number of trials, for a total of 240 centrally presented trials (trials 321 

were also presented to the left and right visual fields in each block). The trial 322 

counts for centrally presented stimuli, for each category (good and bad 323 

combined) are as follows: beaches = 39; cities = 41; forests = 38; highways = 42;  324 

mountains = 36; offices = 44.  325 

 326 

Participants were seated at a distance of 100 cm from the screen, and the 327 

images subtended a visual angle of 7.65° x 5.73° (width x height). Subjects were 328 

instructed to maintain fixation on the central fixation cross and to try to minimize 329 

saccades and eye blinks during stimulus presentation. As depicted in Figure 1A, 330 

each trial began with a fixation cross presented on a blank screen for a duration 331 

jittered between 1000-2000 seconds (to reduce the impact of slow, anticipatory 332 

components on the ERP signal). The scene image, either a good exemplar or a 333 

bad exemplar from one of the six categories, was presented for a duration of 200 334 

ms, followed by a fixation cross on a blank screen for 500 ms. At the end of the 335 

trial a prompt with "Good or Bad?" was displayed on the screen, and participants 336 

pressed one of two response buttons, held in each hand (counterbalanced 337 
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across participants), to indicate their judgment. The experiment lasted for 338 

approximately one hour and fifteen minutes. Subjects were given two five-minute 339 

breaks at roughly 25 minutes and 60 minutes from the start of the experiment. 340 

 341 

Experiment 2 was identical to Experiment 1, except that each trial began with a 342 

word cue, presented for 500 ms (Figure 1B), which corresponded to one of the 343 

six scene categories used in the experiment: Beach, City Street, Forest, 344 

Highway, Mountain, and Office. For each category, we ensured that five trials of 345 

each type (good and bad exemplars) were mismatched. There were thus 75% 346 

matched trials (15 trials each of good and bad within each of the six scene 347 

categories) and 25% mismatched trials, for a total of  180 (90 good, 90 bad) 348 

matched trials and 60 mismatched trials (30 good, 30 bad). Overall cue validity 349 

was kept high to promote the use of the cue to form expectations about what kind 350 

of image would appear next, while still ensuring that we would nevertheless have 351 

a sufficient number of mismatch trials to obtain a stable ERP to that condition as 352 

well. Instead of making a good or bad judgment, at the end of each trial 353 

participants were prompted to respond “yes” or “no,” with a button press, to the 354 

question of whether or not they thought that the picture had matched the cue. 355 

Hand used to respond “yes” or “no” was counterbalanced. 356 

 357 

ERP Setup and Analysis 358 

EEG was recorded from 26 channels of passive electrodes that were 359 

equidistantly arranged on the scalp, referenced online to the left mastoid and re-360 
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referenced offline to the average of the left and right mastoids. Additional 361 

electrodes placed on the outer cantus of each eye and on the orbital ridge below 362 

the left eye were used to monitor saccadic eye movements and blinks. 363 

Impedances were kept below 5 KΩ for scalp channels and 10 KΩ for eye 364 

channels. The signal was bandpass filtered online (0.02 Hz - 100 Hz) and 365 

sampled at 250 Hz. Trials with artifacts due to horizontal eye movements or 366 

signal drift were rejected using fixed thresholds calibrated for individual subjects. 367 

Trials with blinks were either rejected, or, for subjects with higher numbers of 368 

blink artifacts (12 in Experiment 1 and 8 in Experiment 2), were corrected using 369 

a blink correction algorithm (Dale 1994). We confirmed that the analytical results 370 

were unchanged if blinks were rejected instead of corrected. On average, 371 

in Experiment 1, 6.83% of good exemplar trials and 9.04% of bad exemplar 372 

trials were rejected due to artifacts, and no condition had fewer than 63 trials per 373 

subject in the analysis.  The average number of retained trials was, for good 374 

exemplars, 112 (range 81 to 119) and, for bad exemplars, 109 (range 63 to 375 

120). In Experiment 2, in the match condition, 10.8% of good exemplar trials and 376 

11.09% of bad exemplar trials were rejected due to artifacts and no condition had 377 

fewer than 56 trials per subject in the analysis (retained good exemplar trials: 378 

mean 80 (63-90); retained bad exemplar trials: mean 80 (56-90)). In the 379 

mismatch condition, 10.38% of good exemplar trials and 13.89% of bad exemplar 380 

trials were rejected due to artifacts (retained good exemplar trials: mean 27 (19-381 

30); retained bad exemplar trials: mean 26 (19-30)). 382 

 383 
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ERPs were epoched for a time period spanning 100 ms before stimulus onset to 384 

920 ms after stimulus onset, with the 100 ms prestimulus interval used as the 385 

baseline.  This processed signal was then averaged for each condition within 386 

each subject. A digital bandpass filter (0.2 Hz - 30 Hz) was applied before 387 

measurements were taken from the ERPs. Based on prior work showing that the 388 

N300 is frontally distributed and occurs between 250 ms to 350 ms (Federmeier 389 

and Kutas 2001; Schendan and Kutas 2002, 2003), we measured N300 mean 390 

amplitudes in this time window across the 11 frontal electrode sites: MiPf 391 

(equivalent to Fpz on the 10-20 system), LLPf, RLPf, LMPf , RMPf , LDFr , RDFr, 392 

LMFr , RMFr , LLFr , and RLFr (first letter: R=right, L=left, Mi=midline; second 393 

letter: L=lateral, M=medial, D=dorsal; Pf = prefrontal and Fr= frontal); on the 10-394 

20 system, this array spans from Fpz to just anterior of Cz and from mastoid to 395 

mastoid laterally, with equidistant coverage. Statistics were computed using R (R 396 

Core Team 2020). Specifically, we used the functions t.test, to compute t-tests, 397 

and ttestbf (from the package: BayesFactor) to compute Bayes Factors. The t- 398 

test and Bayes factor calculations compared the measured condition difference 399 

to 0. For within-subject calculations of confidence intervals, we used the function 400 

summarySEwithin() that is based on (Morey 2008). The function anovaBF (from 401 

the package: BayesFactor) was used to compute Bayes factors for interactions. 402 

 403 

For completeness, we also analyzed two ERP components in the time-window 404 

after the N300: the N400 and the Late Positive Complex (LPC). Prior work 405 

examining the N400 to pictures has shown a frontal distribution (Ganis et al. 406 
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1996), and thus we again used the 11 frontal electrode sites, but now in the time-407 

window 350-500 ms. For the LPC we chose posterior sites in the time-window of 408 

500-800 ms based on prior work characterizing the distribution and timing of the 409 

LPC (Finnigan et al. 2002).  410 

 411 

Results  412 

Experiment 1 413 

Behavior 414 

To motivate participants to attend to the scenes, we asked participants to make a 415 

delayed response on each trial, judging whether the exemplar was a good or bad 416 

exemplar of the scene category to which it was presumed to belong. Participants 417 

labeled most good exemplars as “good” (mean = 86.2%, std. dev = 13.9%) and 418 

labeled bad exemplars as “bad” about half the time (mean = 56.2%, std. dev = 419 

15.6%). All trials (irrespective of the choice of the participants) were used for the 420 

planned ERP analyses, but, as described below, we also confirmed that the 421 

results hold when conditionalized on subjects’ responses. 422 

 423 

ERPs 424 

Grand-averaged ERPs at eight representative sites are plotted in Figure 2. 425 

Responses to good and bad exemplars can be seen to diverge beginning around 426 

250 ms after stimulus onset, with greater negativity for bad exemplars than for 427 

good exemplars. The polarity, timing, and frontal scalp distribution of this initial 428 
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effect is consistent with prior work describing the N300 (Mcpherson & Holcomb, 429 

1999; Schendan & Kutas, 2002, 2003, 2007); see Supplementary Materials for 430 

a formal distributional analysis.  431 

N300 432 

To characterize the good/bad effect on the N300, mean amplitudes were 433 

measured from all 11 frontal electrode sites between 250 and 350 ms. Bad 434 

exemplars elicited significantly larger (more negative) N300 responses (mean = -435 

6.4 μV) than did good exemplars (mean = -5.3 μV); t(19)=-5.4 and Bayes Factor 436 

= 747.7 (Table 1; for a full distributional analysis see Supplementary Materials). 437 

In other words, we see the predicted differential response to statistically irregular 438 

exemplars (bad exemplars) as compared to the statistically regular exemplars 439 

(good exemplars). The larger amplitude for the bad exemplars, as compared to 440 

the good exemplars aligns with PHT predictions that would posit greater 441 

inference error, and, hence, greater iterative processing for the bad exemplars as 442 

compared to the good exemplars. These results also confirm that the N300 443 

indexes a match to statistical regularities of natural scenes and thus extend the 444 

validity of the N300 to not only objects, or objects in scene contexts, but more 445 

broadly to complex natural scenes.   446 

The above analysis was computed on all trials, to avoid confounding N300 447 

response patterns with the outcome of late stage decision making processes. 448 

However, for completeness, we also analyzed the results conditionalized on 449 

participants’ responses (i.e., including only good trials judged as good and bad 450 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2020.09.21.304378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.304378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

22 
 

trials judged as bad). This yielded the same effect pattern (Bayes factor for 451 

good/bad difference = 5.4; t = -2.89, p = 0.0094). For details see Supplementary 452 

Materials. We also analyzed the bad exemplar trials, as about half of them were 453 

judged as good, and did not see an N300 effect based on participants’ 454 

judgements of only the bad exemplars (see Supplementary Materials). 455 

Post N300 Components 456 

Although the N300 was the component of primary interest, to more completely 457 

characterize the brain’s response to the scenes, we also examined good/bad 458 

differences in later time windows encompassing the N400 (350-500 ms) and Late 459 

Positive Complex (LPC) (500-800 ms). The details of the analyses and results 460 

are provided in the Supplementary Materials and summarized here. N400 461 

responses, which index multimodal semantic processing, were larger for bad (-462 

3.3 μV) than for good exemplars (-2.2 μV), suggesting that items that better fit 463 

their category allow facilitated semantic access. We note however, that given the 464 

similar scalp distribution of the N300 and the N400 to picture stimuli (Ganis et al. 465 

1996), it is difficult to tell where the boundary of the two components might be 466 

and thus how much the N400 pattern might be influenced by the preceding N300. 467 

LPC responses were larger -- more positive – to good (4.5 μV) than to bad (3.3 468 

μV) exemplars. The LPC amplitude is known to positively correlate with 469 

confidence in decision making (Finnigan et al. 2002; Schendan and Maher 2009). 470 

Larger LPC responses to good items, therefore, is consistent with the behavioral 471 
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pattern in which good exemplars were classified more consistently than bad 472 

exemplars. 473 

Figure 2. 474 

 475 
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 479 

Figure 2 A. Grand average ERP waveforms for good (blue) and bad (maroon) 480 

exemplars in Experiment 1 are shown at 8 representative electrode sites 481 

distributed over the head. Plotted channel locations are marked as triangles on 482 

the schematic of the scalp (LMCe and RMCe are just posterior of and lateral to 483 

Cz on the 10-20 system). Negative voltage is plotted upwards. The waveforms 484 

differ over frontal sites beginning in the N300 time-window (250-350 ms), with 485 

greater negativity for bad exemplars as compared to good exemplars. The bar 486 

plot gives mean amplitude over the 11 frontal electrode sites (darkened electrode 487 

sites on the schematic of the scalp) used for the primary statistical analyses. The 488 

error bars plotted are within-subject confidence intervals. N=20. B. Topographic 489 

plots of the difference waves for the main effect of representativeness (Bad – 490 

Good). In the N300 time-window we see a frontal distribution, whereas in the 491 

N400 time-window we see a centro-parietal distribution, with a slightly left 492 

laterality. 493 

 494 
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 495 

 496 

 497 

 498 

 499 

Table 1. Experiment 1, mean amplitudes in the N300 time-window (250-350 ms) 500 

over 11 frontal electrode sites (see Figure 2), along with t-test and Bayes factor 501 

values. The N300 response to bad exemplars is more negative (larger) than that 502 

to good exemplars. The t- test and Bayes factor calculations compared the within 503 

subject Good/Bad difference to 0. 504 

        
Condition N Mean  

(μV) 
Mean 

Bad/Good 
Difference 

(μV) 

Bad/Good 
Difference 95% 

C.I. 

t(19) p Bayes 
Factor 

        

Bad 20 -6.4±0.61 
-1.05 -1.46 to -0.64 -5.4 3.3E-05 747.7 

Good 20 -5.3±0.61 

        
        

Note: ± values reflect the normed standard deviation within subjects. C.I. = 505 

confidence interval. 506 
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 507 
Experiment 2 508 
 509 
As mentioned in the introduction, a predictive coding signal should be sensitive to 510 

context. In particular, if the context predicts a specific stimulus category then 511 

initial predictions should reflect the statistical regularities associated with the 512 

predicted category.  The good/bad difference observed in Experiment 1 was 513 

elicited without any expectation regarding the specific category to be presented 514 

(i.e., category and good/bad status were completely randomized). Thus, the 515 

particular template or statistical regularity with which the image was compared 516 

must have been initially elicited by the input itself. This is also the case in almost 517 

all previous work examining the N300 to objects. In Experiment 2, therefore, we 518 

set out to examine whether the N300 is sensitive to expectations induced in the 519 

moment by context. We preceded each image with a word cue that either 520 

matched or mismatched the upcoming category. If the N300 difference observed 521 

in Experiment 1 reflects the matching of incoming stimuli to learned statistical 522 

regularities, we should be able to modulate that difference by activating either the 523 

appropriate (match cue) or inappropriate (mismatch cue) statistical regularity.  In 524 

particular, since neither a good nor a bad exemplar of, e.g., a beach, should be a 525 

better match to an inappropriate category (e.g., a forest), we should find that the 526 

N300 good/bad difference is reduced or eliminated when the cue mismatches the 527 

current category. 528 

 529 
Behavior 530 
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 On each trial, participants were asked to respond if the stimulus matched the 531 

verbal cue (“Yes” or “No”) via a button press. In the match condition, participants 532 

responded “Yes” to good exemplars (mean = 98.7%, std. dev = 2.4%) more often 533 

than to bad exemplars (mean= 67.9% and std. dev = 14.6%). In the mismatch 534 

condition, wherein the exemplars did not fit the cued category, participants 535 

responded “No” to good exemplars (mean = 95.9%, std. dev = 4.6%) more often 536 

than to bad exemplars (mean = 94.0% and std. dev = 5.5%). All trials were used 537 

for the ERP analyses. 538 

 539 
ERPs  540 

Scenes elicited an N300 response (Figure 3) with similar timing, polarity and 541 

scalp distribution to that observed in Experiment 1; see the Supplementary 542 

Materials for a formal distributional analysis. Analyses of N300 mean amplitudes 543 

were conducted using the same time window (250-350 ms) and frontal electrode 544 

sites as in Experiment 1, here comparing good and bad exemplars under the 545 

two cueing conditions: match and mismatch.  546 

 547 

N300  548 

In the match condition, when the scene was congruent with the verbal cue, we 549 

replicated the N300 effect of Experiment 1 for the good and bad exemplars, with 550 

a frontally distributed negativity that was larger for the bad exemplars than the 551 

good exemplars (Figure 3, Table 2A, 2B). Importantly, and as predicted, this 552 

N300 difference between good and bad exemplars was notably reduced – 553 
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indeed, likely absent altogether (Bayes factor 0.31) – in the mismatch condition 554 

compared to the match condition (Bayes factor for interaction of Good/Bad x 555 

Cuing = 4.0). This is consistent with the idea that the N300 is indexing the fit of 556 

the incoming stimulus to the template activated by the verbal cue. That is, neither 557 

a good or bad exemplar of category A represents a better match to a template for 558 

category B. The same pattern of results is also seen when the analysis is 559 

conditioned on subjects’ judgement; i.e., they responded to a cue congruent stimulus 560 

as ‘Yes’ and cue incongruent stimulus as “No, see Supplementary Materials, Table 561 

S6. We note that we chose to discuss the interaction in terms of the good/bad 562 

effect being dependent on a matching cue. However, one might also discuss the 563 

interaction in terms of the effect of cueing being different as a function of 564 

good/bad status. Indeed, the good images show a decrease in the N300 when 565 

they are preceded by a match cue than when they are preceded by a 566 

mismatched cue (Bayes Factor = 1.2 for good mismatch - good match; t = -567 

1.998, p = 0.06), consistent with the mismatch cue producing a prediction error. 568 

In contrast, not only is there little evidence for a cueing effect for bad exemplars 569 

(Bayes Factor = 0.68 for bad mismatch - bad match; t = 1.59, p = 0.13) but the 570 

difference is numerically in the opposite direction (slightly larger for match).  571 

 572 

For completeness, and to compare the N300 in our experiment with its 573 

characterization in the existing literature, we also performed an ANOVA across 574 

multiple factors: Good/Bad x Cueing (Match/Mismatch) x Anteriority x Laterality x 575 
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Hemisphere. There was a main effect of Good vs. Bad (bad larger than good; 576 

(F(1,19) =15.34) and an interaction between Good/Bad and Cueing (F(1,19) 577 

=5.87), with larger Good/Bad effects when the scene matched the cue. The main 578 

effect of Cueing was not significant (F(1,19) =0). For details on the distributional 579 

analysis see Supplementary Materials. 580 

 581 

Finally, to ensure that our results are not due to the differential number of trials in 582 

the match and mismatch condition, we subsampled the trials in the match 583 

condition to be equal to that of the mismatch condition.  This subsampling did not 584 

change the results (see Supplementary Materials, Table S7). 585 

586 
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 590 
 591 
Figure 3 A. Grand average ERP waveforms for the good-match (solid-blue), 592 
bad-match (solid-maroon), good-mismatch (dashed-blue), and bad-mismatch 593 
(dotted-maroon) conditions in Experiment 2 are shown at the same 8 594 
representative electrode sites. In the match condition, responses to good and 595 
bad exemplars differ in the N300 time-window (250-350 ms), with greater 596 
negativity for bad exemplars as compared to good exemplars, over frontal sites 597 
(darkened electrode sites on the schematic of the scalp). In the mismatch 598 
condition, the differences between good and bad exemplars on the N300 are 599 
diminished/eliminated. The bar plot gives the grand average mean of the ERP 600 
amplitude over the 11 frontal electrode sites (darkened electrode sites on the 601 
schematic of the scalp) used for the primary statistical analyses (N = 20). The 602 
plotted error bars are within-subject confidence intervals.  B. Topographic plots of 603 
the difference waves for the two main effects of representativeness (Bad – Good) 604 
and cueing (Mismatch – Match). In the N300 time-window the two main effects 605 
are qualitatively similar, with both main effects showing a frontal distribution. The 606 
N300 time-window also shows a quantitatively larger effect for the 607 
representativeness (Bad – Good) than for the cueing (Mismatch – Match). In the 608 
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N400 time-window, both effects are centro-parietally distributed with a slight left 609 
laterality. C. Topographic plots for the difference in the interactions for Good/Bad 610 
x Cuing are shown in two interpretations: in terms of the Good/Bad effect - (Bad-611 
Good) x Match and (Bad-Good) x Mismatch; and in terms of the cuing effect - 612 
Good x (Mismatch -Match) and Bad x (Mismatch -Match). 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

Table 2A. The grand average mean values, in the N300 time-window (250-350 623 

ms), shown for 11 frontal electrode sites (see Figure 3), along with t-test and 624 

Bayes factor values. There is strong evidence (large Bayes factor) for greater 625 

negativity of the N300 for bad exemplars as compared to good exemplars when 626 

the cue matches the stimulus. When there is a mismatch between the cue and 627 

the stimulus there is no evidence (small Bayes factor) for the difference between 628 

good and exemplars in the N300 time-window. The t- test and Bayes factor 629 

calculations compared the within subject Good/Bad difference to 0. 630 

 631 

Condition Cue N Mean  
(μV) 

Mean 
Difference 

(μV) 

95% C.I. t(19) p Bayes 
Factor 
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Bad Match 20 -7.1±0.94 
-2.06 -2.6 to -1.5 -7.4 5.6E-07 30457 Good Match 20 -5.1±1.07 

         
Bad Mismatch 20 -6.4±1.65 

-0.47 -1.7 to 0.73 -0.82 0.42 0.31 Good Mismatch 20 -6.0±1.64 

Good mismatch – Good 
match  20   -0.9 -1.84 to 0.04 -1.998 0.06 1.20 

Bad mismatch – Bad 
match  20   0.68 -0.22 to 1.58 1.59 0.13       0.68 

 632 

Table 2B. The Bayes factor for the main effects and interaction computed using 633 

Bayesian ANOVA. This shows that there is evidence for the interaction of 634 

Good/Bad x Cueing in Experiment 2. 635 

Effect Bayes Factor 

Good/Bad      118.1 

Cueing 0.2 

Good/Bad x Cueing 4.0 

 636 

Note: ± values reflect the normed standard deviation within subjects.  637 

 638 

Post N300 Components 639 

Again, for completeness, we also examined effects on the N400 (350-500 ms) 640 

and Late Positive Complex (LPC) (500-800 ms). These are presented in full in 641 

the Supplementary Materials and summarized here. Given prior work (reviewed 642 
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in Kutas and Federmeier 2011), we expected the N400 to be particularly 643 

sensitive to the match between the verbal cue and the scene category. Indeed, 644 

overall, N400 responses to good scenes that matched the verbal cue were 645 

facilitated (more positive:  -3.5 μV) than to good scenes that mismatched their 646 

cues (-5.6 μV), consistent with the large literature on N400 semantic priming (see 647 

Table S4). Moreover, we replicated the effect in Experiment 1: N400 amplitudes 648 

were also larger for bad (-5.3 μV) than for good exemplars (-3.5 μV) in the match 649 

condition, although, again, we cannot rule out influence from the prior N300 650 

effects on the observed pattern. We see an interaction of Good/Bad x Cuing in 651 

the N400 window (F =13.7; p =0.0015; E =1), with the largest facilitation for good 652 

exemplars in the match condition. LPCs were larger (more positive) for good 653 

exemplars in the match condition (2.7 μV) compared to both bad exemplars (0.4 654 

μV) in the match condition (replicating Experiment 1) and to either scene type in 655 

the mismatch condition (Good:  0.2 μV; Bad: 0.9 μV), presumably reflecting the 656 

increased ease and confidence of responding to the good match items (see 657 

Table S5). 658 

  659 

Discussion 660 

In two experiments, we tested whether the N300 component of the ERP has 661 

response properties expected for an index of hierarchical predictive coding 662 

during late stage visual processing, when global features of the stimulus are 663 

being processed. Across many studies, larger (more negative) N300 responses 664 

have been observed for conditions that might be characterized as statistically 665 
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irregular (Pietrowsky et al. 1996; Schendan and Kutas 2002, 2003, 2007; Mudrik 666 

et al. 2010; Vo and Wolfe 2013). However, the focus of the literature thus far has 667 

been limited to objects, objects in scenes, or artificially degraded stimuli. If the 668 

N300 more generally reflects predictive hypothesis testing in later visual 669 

processing, then it should be sensitive to statistical regularity outside of the 670 

context of object processing and artificial manipulations of global structure. To 671 

this end, in Experiment 1 we showed that the N300 is sensitive to the difference 672 

between good (statistically regular) and bad (statistically irregular) exemplars of 673 

natural scenes. Because none of the scenes we used were degraded, had any 674 

misplaced elements, or contained objects that were surprising or violated 675 

expectations (e.g., a watermelon instead of the expected basketball; see Mudrik 676 

et al. 2010; Vo & Wolfe, 2013), these results strongly link N300 modulations to 677 

statistical regularity as such. 678 

 679 

Predictive coding posits a larger inference error in processing statistically 680 

irregular items (bad exemplars) as compared to statistically regular items (good 681 

exemplars), and, consistent with this, N300 responses were larger for the 682 

statistically irregular exemplars. Note that the observed pattern cannot be 683 

explained by interstimulus perceptual variance (ISPV; Theirry et al., 2007; 684 

Schendan and Ganis, 2013). The good exemplars we used have more consistent 685 

low-level image statistics, and thus lower ISPV, than the bad exemplars (see 686 

Torralbo et al. 2013). Thus, if the pattern were driven by ISPV, we would have 687 

expected the good exemplars to elicit larger ERP modulations (see Thierry et al., 688 
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2007; Schendan and Ganis, 2013). Instead, we found that the good exemplars 689 

have a lower amplitude ERP, consistent with the claim that it is statistical 690 

regularity – and not ISPV – that is responsible for the effect.  691 

 692 

The data from Experiment 1, in combination with prior experiments, show that the 693 

N300 manifests the expected response properties for a general index of 694 

predictive coding mechanisms for late stage visual processing (for studies that 695 

rule out the N300 indexing early visual processing see Schendan and Kutas 696 

2002; Johnson and Olshausen 2003) of complex objects and scenes. Across the 697 

literature, the kinds of stimuli distinguished by the N300 encompass global 698 

structure, canonical viewpoints, probable views of objects in scene contexts, and, 699 

in our own experiment, the category-level representativeness of the stimuli. We 700 

would like to collectively refer to these properties as learned statistical 701 

regularities. We mean statistics in the Bayesian sense: The statistical regularities 702 

reflect the system’s prior belief. Although frequency of occurrence may be one 703 

factor that goes into constructing a regularity, the regularities should be more 704 

sophisticated than simple frequency. They should be constructed to maximize 705 

the informativeness of the prediction and minimize, on average, the amount of 706 

updating needed.  Thus, canonicity, prototypicality or representativeness will all 707 

be critical determinants of the regularities, as well as frequency or familiarity. A 708 

collection of these regularities can be viewed as a template (see also Johnson 709 

and Olshausen 2003), constructed to reduce, on average, the prediction error. 710 

Thus, we can think of the differences on the N300 component as an indicator of 711 
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the degree to which an incoming exemplar can be matched with a template, with 712 

greater negativity for a stimulus when it doesn't match a template as compared to 713 

when it does. 714 

 715 

In Experiment 1, neither scene category nor exemplar status (good or bad) was 716 

predictable from trial to trial, and thus the statistical regularity driving the 717 

observed effect must have been acquired over the life time (i.e., learning what 718 

does and does not constitute a good exemplar of a category), rather than within 719 

the context of the experiment. However, a key attribute of PHT models, of which 720 

predictive coding is a popular example, is that the hypotheses that are generated 721 

are sensitive to the current context. If the N300 reflects a template matching 722 

process, such that the input is compared against a contextually-relevant learned 723 

statistical regularity, then the N300 sensitivity to statistical regularity should vary 724 

in the moment, as a function of context.   725 

In Experiment 2, therefore, we set up expectations for a particular category on 726 

each trial using a word cue with high validity, with the aim of pre-activating a 727 

particular scene category template. Critically, however, on 25% of trials the 728 

scene did not match the cued category. We found that the N300 is indeed 729 

sensitive to regularities cued by the current context. When the scenes were 730 

congruent with the cued category, we observed a significant effect of statistical 731 

regularity (good versus bad) in the N300 time-window, replicating the results from 732 

Experiment 1. Here the good exemplars provide a better match to the activated 733 
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template than the bad exemplars, and thus the reduced inference error or 734 

iterative matching is reflected in the amplitude of the N300. In the mismatching 735 

condition, however, the presented stimulus, whether a good or bad exemplar of 736 

its own category, does not match the cued template (e.g., a “Forest” template 737 

has been cued but a good or bad beach scene was presented). In this case, 738 

notably, we failed to observe a reliable difference between the N300 to good and 739 

bad exemplars. In the language of predictive coding models, similar inference 740 

errors would be generated for both statistically regular (good) and irregular (bad) 741 

exemplars that mismatch the activated template, as they would both violate the 742 

predicted regularities – or, at least, neither good nor bad exemplars of another 743 

category should violate the predicted regularities more than the other. Beyond 744 

the statistical regularities learned over a lifetime, including our increased 745 

familiarity with more prototypical inputs, the N300 shows sensitivity to the specific 746 

expectations the visual system has in the moment, generated from the current 747 

context. 748 

 749 

Others have discussed the use of visual templates in the context of holding 750 

information active in memory to afford optimal performance on, e.g., visual 751 

matching tasks. In the case of sequential match paradigms, it is assumed that 752 

subjects can hold on to a recently seen target object – the “template” in this case 753 

– and then use that information to judge subsequent stimuli. Indeed, in these kind 754 

of paradigms, differences in anterior ERPs (which may be labeled N2s or N300s; 755 
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see discussion in Schendan 2019) have been observed between the match and 756 

mismatch conditions. Moreover, using a verbal cue for object type (e.g., “dog” 757 

followed by an image), Johnson & Olshausen (2003) observed a significant effect 758 

of cueing on a frontally-distributed negativity between 150 and 300 ms, which 759 

likely is encompassed by what we are calling the N300. Responses were more 760 

positive when the image matched the cue compared to when it did not. They did 761 

not vary the representativeness of their images, but it is reasonable to assume 762 

that they were on average more representative than our bad images, specifically 763 

chosen to be less representative.  Thus, our results are in accordance with those 764 

of Johnson & Olhausen (2003), and extend them, not only to natural scenes, but 765 

also by showing that the effect of cuing interacts with sensitivity to statistical 766 

regularity. Thus, Experiment 2 brings together two important facets of visual 767 

processing on a PHT framework. First, is the fact that the visual system builds 768 

templates based on statistical regularities, accumulated over the lifespan, and 769 

routinely uses those templates, elicited by the input itself, to guide its iterative 770 

processing. Second, then, is that fact that context information (such as a verbal 771 

cue) can cause a particular template to be activated in advance of the input, 772 

biasing processing toward that template. 773 

The N300 Indexes Perceptual Hypothesis Testing  774 

We can think of visual identification and categorization as a cascade of 775 

processes, starting with identification of low level visual features, followed by 776 

perceptual grouping of features, and then appreciation of the “whole” visual form 777 
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of objects and scenes, after which processing moves beyond the visual modality 778 

into multi-modal semantics and decision making. PHT mechanisms can work 779 

within and across each of these stages. In the context of object processing, prior 780 

work on the N300 has posited it as an index of object model selection, an 781 

intermediate stage in the process of object identification and categorization 782 

(Schendan, 2019; Schendan & Kutas, 2002, 2003, 2007).  Having extended the 783 

N300 differences to natural scenes, we propose that the N300 reflects PHT 784 

mechanisms in this intermediate stage more broadly, not just object selection. 785 

Similar to other work (Schendan, 2019), we believe that the N300 reflects 786 

processing at the point wherein the input is matched to items in memory with 787 

similar perceptual structures. However, our data show that this process is not 788 

limited to objects and that it makes use of variety of statistical regularities learned 789 

from the world, including those critical for processing both objects and scenes.  790 

The broadened view of the N300 as being reflective of a general visual template 791 

matching process would suggest that its source be occipitotemporal visual areas. 792 

Indeed, the N300 response to objects has been source localized to 793 

occipitotemporal visual areas (Schendan & Lucia, 2010; Sehatpour et al., 2006). 794 

Although the N300 for scenes has not yet been source localized, a high-density 795 

ERP study on scene categorization localized activity in the 200-300 ms time 796 

window to these same occipitotemporal visual areas (Greene and Hansen 2020).   797 

Similarly, Kaiser and colleagues (2019, 2020), using both fMRI and ERPs, 798 

demonstrated a similar sensitivity to intact versus jumbled scenes in the occipital 799 

place area and PPA as they did in the N300 time window. Moreover, our prior 800 
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fMRI work with good and bad scene exemplars (Torralbo et al. 2013) would 801 

suggest that the N300 for scenes originates in the PPA, a region known to 802 

preferentially process natural scenes (Epstein and Kanwisher 1998). Using the 803 

same good and bad scene exemplars as in our experiments, we found that, in 804 

the PPA, bad exemplars elicited a greater BOLD signal than good exemplars 805 

(Torralbo et al. 2013), mirroring the effect we observed for the N300. 806 

Interestingly, in that same PPA region of interest we observed that good 807 

exemplars were better decoded than bad exemplars; that is, we were better able 808 

to predict the scene category presented on the basis of activity patterns when the 809 

scene was a good exemplar than when it was bad in the same region that 810 

showed greater activity for the bad exemplar (Torralbo et al. 2013). In other 811 

words, it was not the case that reduced activity for good exemplars reflected a 812 

weaker representation but instead likely reflected a more efficient representation, 813 

an interpretation that aligns nicely with our characterization of the N300 effect as 814 

one of visual template matching in occipitotemporal cortex. We suggest that the 815 

N300 may be interpreted as a component that reflects the iterative processing, 816 

as posited by PHT, in occipitotemporal cortical regions, which helps match 817 

previously learned regularities of objects and scenes with the incoming stimulus.  818 

 819 

Although we are arguing that the N300 indexes PHT for late stage visual 820 

processing of complex visual objects and scenes, it is possible that other 821 

components could index PHT at other stages of processing. For example, PHT 822 
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matching low level sensory features, such as gratings (Kok et al. 2012), to 823 

hypotheses about such low level features should occur at earlier stages in the 824 

processing hierarchy. Earlier visual sensory components can manifest sensitivity 825 

to expected visual features (Boutonnet and Lupyan 2015) or to differences 826 

between well-learned visual categories, such as words vs. objects, and faces vs. 827 

objects (Schendan et al. 1998) – category comparisons that are thus at a much 828 

higher taxonomy than within objects or scenes. Of particular relevance to PHT is 829 

the vMMN which, as overviewed in the introduction, temporally precedes the 830 

N300 and has been observed in experimental contexts wherein a stream of 831 

standard stimuli that share particular low-level visual features (e.g., orientation, 832 

color) is occasionally interrupted by the presentation of a target stimulus that 833 

carries a featural difference (Stefanics et al. 2014; Oxner et al. 2019). Thus, the 834 

vMMN is sensitive to the context of recent exposure to low-level visual 835 

information, possibly reflecting PHT processes at that lower level.  836 

 837 

The N300, instead, does not modulate with low-level differences and manifests 838 

sensitivity to both regularities established through long-term experience and 839 

knowledge-based expectations derived from semantic contextual information. It 840 

may thus index a late stage of visual PHT, at the transition into multimodal, 841 

semantic processing. Immediately after the N300, ERP responses to complex 842 

objects and scenes are characterized by an N400, which we also observe in our 843 

experiment. The N400 is widely accepted as a signature of multi-modal semantic 844 
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processing, elicited by not only visual words and pictures, but also meaningful 845 

stimuli in other modalities (see review Kutas & Federmeier, 2011), whereas the 846 

N300 seems to be about visual perceptual structure (Schendan, 2019; Schendan 847 

& Kutas, 2002, 2003, 2007). In some cases, it may be difficult to disentangle the 848 

precise contributions of the N300 and N400 to observed effects of object 849 

categorization and match to object knowledge (Gratton et al., 2009; Schendan, 850 

2019; Schendan & Maher, 2009) since the N400 is known to be sensitive to the 851 

fit between, e.g., a picture and its context (Ganis et al. 1996; Federmeier and 852 

Kutas 2002). Importantly, however, this does not impact the critical effect of our 853 

good versus bad scenes, as neither contain contextually inappropriate items, nor, 854 

in Experiment 1, did we set up any context prior to an image (i.e., the scene 855 

category is unpredictable).  856 

Conclusion 857 

In a set of experiments we have provided support for the hypothesis that the 858 

N300 component is an index of PHT at the level of whole-objects and scenes. 859 

Using statistically regular and irregular exemplars of natural scenes, we showed 860 

that items that are a poorer match to our learned regularities for types of scenes 861 

– and, thus, inputs that should lead to larger inference errors in a predictive 862 

coding framework – indeed evoked a larger N300 amplitude compared to 863 

statistically regular exemplars, even when the upcoming scene category was not 864 

predictable. We further showed, not only that N300 responses to scenes are 865 

modulated by context – such as the scene category predicted by a verbal cue -- 866 

but that they behave as expected for a template matching process in which 867 
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statistically regular images procure their advantage by virtue of matching the 868 

current contextual prediction.  869 

 870 

Our work thus not only extends prior work on the N300 to natural scenes but it 871 

suggests that the N300 reflects a general template/model selection process of 872 

the sort proposed by PHT models, such as predictive coding. We propose that 873 

the N300 indexes visual inference processing in a late visual time-window that 874 

occurs at the boundary between vision and the next stage of multi-modal 875 

semantic processing. Further studies will be needed to explore the full range of 876 

the N300 response. For example, does it require that the object or scene is 877 

attended or might it proceed more automatically? Can it be modulated by 878 

contexts set up in different modalities (e.g., auditory inputs: speech, sounds)? 879 

Regardless, we propose that the N300 can serve as a useful marker of 880 

knowledge guided visual processing of objects and scenes, with templates based 881 

on prior knowledge serving as hypotheses for visual inference as posited by 882 

PHT. 883 

 884 

 885 
Funding  886 
 887 
This work was supported by Office of Naval Research (grant to D.M.B); National 888 

Institutes of Health (R01 AG026308 to K.D.F); and the James S. McDonnell 889 

foundation (grant to K.D.F). 890 

 891 
Acknowledgments 892 
 893 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2020.09.21.304378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.304378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

45 
 

We would like to thank Yanqi Zhang for assistance with running subjects in 894 

Experiment 1, and Resh Gupta, and Nirupama Mehrotra for helping with 895 

Experiment 1 data collection. We also thank Rami Alsaqri, Johan Saelens, Daria 896 

Niescierowicz, and Benjamin D. Schmitt for helping with data collection in 897 

Experiment 2.  898 

 899 
References 900 

Boutonnet B, Lupyan G. 2015. Words Jump-Start Vision: A Label Advantage in 901 
Object Recognition. Journal of Neuroscience. 35:9329–9335. 902 

Caddigan E, Choo H, Fei-Fei L, Beck DM. 2017. Categorization influences 903 
detection: A perceptual advantage for representative exemplars of natural 904 
scene categories. Journal of Vision. 17:21. 905 

Caddigan E, Walther DB, Fei-Fei L, Beck DM. 2010. Perceptual differences 906 
between natural scene categories. OPAM 2010 18th Annual Meeting. 907 
Visual Cognition. 18:1498–1502. 908 

Clark A. 2013. Whatever next? Predictive brains, situated agents, and the future 909 
of cognitive science. Behavioral and Brain Sciences. 36:181–204. 910 

Dale AM. 1994. Source localization and spatial discriminant analysis of event-911 
related potentials: linear approaches (brain cortical surface). 912 

Epstein R, Kanwisher N. 1998. A cortical representation of the local visual 913 
environment. Nature. 392:598–601. 914 

Federmeier KD, Kutas M. 2001. Meaning and modality: Influences of context, 915 
semantic memory organization, and perceptual predictability on picture 916 
processing. Journal of Experimental Psychology: Learning, Memory, and 917 
Cognition. 27:202. 918 

Federmeier KD, Kutas M. 2002. Picture the difference: Electrophysiological 919 
investigations of picture processing in the two cerebral hemispheres. 920 
Neuropsychologia. 40:730–747. 921 

File D, File B, Bodnár F, Sulykos I, Kecskés-Kovács K, Czigler I. 2017. Visual 922 
mismatch negativity (vMMN) for low- and high-level deviances: A control 923 
study. Atten Percept Psychophys. 79:2153–2170. 924 

Finnigan S, Humphreys MS, Dennis S, Geffen G. 2002. ERP ‘old/new’effects: 925 
memory strength and decisional factor (s). Neuropsychologia. 40:2288–926 
2304. 927 

Friston K. 2005. A theory of cortical responses. Philosophical Transactions of the 928 
Royal Society B: Biological Sciences. 360:815–836. 929 

Ganis G, Kutas M, Sereno MI. 1996. The Search for “Common Sense”: An 930 
Electrophysiological Study of the Comprehension of Words and Pictures in 931 
Reading. Journal of Cognitive Neuroscience. 8:89–106. 932 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2020.09.21.304378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.304378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

46 
 

Gordon N, Koenig-Robert R, Tsuchiya N, van Boxtel JJ, Hohwy J. 2017. Neural 933 
markers of predictive coding under perceptual uncertainty revealed with 934 
Hierarchical Frequency Tagging. eLife. 6:e22749. 935 

Gratton C, Evans KM, Federmeier KD. 2009. See what I mean? An ERP study of 936 
the effect of background knowledge on novel object processing. Mem 937 
Cognit. 37:277–291. 938 

Greene MR, Hansen BC. 2020. Disentangling the Independent Contributions of 939 
Visual and Conceptual Features to the Spatiotemporal Dynamics of Scene 940 
Categorization. J Neurosci. 40:5283–5299. 941 

Gregory RL. 1980. Perceptions as Hypotheses. Phil Trans R Soc Lond B. 942 
290:181–197. 943 

Helmholtz H von. 1925. Treatise on physiological optics, Bd. 3 : The perceptions 944 
of vision. English translation of the 3rd edition. ed. The Optical Society of 945 
America. 946 

Hochberg J. 1981. On cognition in perception: Perceptual coupling and 947 
unconscious inference. Cognition. 10:127–134. 948 

Huang Y, Rao RPN. 2011. Predictive coding. Wiley Interdisciplinary Reviews: 949 
Cognitive Science. 2:580–593. 950 

Johnson JS, Olshausen BA. 2003. Timecourse of neural signatures of object 951 
recognition. J Vis. 3:499–512. 952 

Kaiser D, Häberle G, Cichy RM. 2020. Cortical sensitivity to natural scene 953 
structure. Human Brain Mapping. 41:1286–1295. 954 

Kaiser D, Turini J, Cichy RM. 2019. A neural mechanism for contextualizing 955 
fragmented inputs during naturalistic vision. eLife. 8:e48182. 956 

Kok P, Jehee JFM, de Lange FP. 2012. Less is more: expectation sharpens 957 
representations in the primary visual cortex. Neuron. 75:265–270. 958 

Kok P, Mostert P, de Lange FP. 2017. Prior expectations induce prestimulus 959 
sensory templates. Proceedings of the National Academy of Sciences. 960 
114:10473–10478. 961 

Kutas M, Federmeier KD. 2011. Thirty years and counting: Finding meaning in 962 
the N400 component of the event related brain potential (ERP). Annu Rev 963 
Psychol. 62:621–647. 964 

Lange FP de, Heilbron M, Kok P. 2018. How Do Expectations Shape 965 
Perception? Trends in Cognitive Sciences. 22:764–779. 966 

Lauer T, Willenbockel V, Maffongelli L, Võ ML-H. 2020. The influence of scene 967 
and object orientation on the scene consistency effect. Behavioural Brain 968 
Research. 394:112812. 969 

Lupyan G. 2017. Changing What You See by Changing What You Know: The 970 
Role of Attention. Front Psychol. 8. 971 

Marzecová A, Schettino A, Widmann A, SanMiguel I, Kotz SA, Schröger E. 2018. 972 
Attentional gain is modulated by probabilistic feature expectations in a 973 
spatial cueing task: ERP evidence. Sci Rep. 8:54. 974 

Marzecová A, Widmann A, SanMiguel I, Kotz SA, Schröger E. 2017. Interrelation 975 
of attention and prediction in visual processing: Effects of task-relevance 976 
and stimulus probability. Biological Psychology. 125:76–90. 977 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2020.09.21.304378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.304378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

47 
 

Mcpherson WB, Holcomb PJ. 1999. An electrophysiological investigation of 978 
semantic priming with pictures of real objects. Psychophysiology. 36:53–979 
65. 980 

Morey RD. 2008. Confidence intervals from normalized data: A correction to 981 
Cousineau (2005)."  4.2 (2008):61. Web. Reason. 61. 982 

Mudrik L, Lamy D, Deouell LY. 2010. ERP evidence for context congruity effects 983 
during simultaneous object–scene processing. Neuropsychologia. 48:507–984 
517. 985 

Oldfield RC. 1971. The assessment and analysis of handedness: The Edinburgh 986 
inventory. Neuropsychologia. 9:97–113. 987 

Oxner M, Rosentreter ET, Hayward WG, Corballis PM. 2019. Prediction errors in 988 
surface segmentation are reflected in the visual mismatch negativity, 989 
independently of task and surface features. Journal of Vision. 19:9–9. 990 

Pietrowsky R, Kuhmann W, Krug R, Molle M, Fehm HL, Born J. 1996. Event-991 
related brain potentials during identification of tachistoscopically presented 992 
pictures. Brain and Cognition. 32:416–428. 993 

R Core Team. 2020. R: A language and environment for statistical computing. R   994 
Foundation for Statistical Computing, Vienna, Austria. 995 

Rao RPN, Ballard DH. 1999. Predictive coding in the visual cortex: a functional 996 
interpretation of some extra-classical receptive-field effects. Nat Neurosci. 997 
2:79–87. 998 

Rock I. 1983. The Logic Of Perception. Cambridge: MIT Press. 999 
Rungratsameetaweemana N, Itthipuripat S, Salazar A, Serences JT. 2018. 1000 

Expectations Do Not Alter Early Sensory Processing during Perceptual 1001 
Decision-Making. J Neurosci. 38:5632–5648. 1002 

Schendan HE. 2019. Memory influences visual cognition across multiple 1003 
functional states of interactive cortical dynamics. In: Federmeier KD, 1004 
editor. Psychology of Learning and Motivation. Academic Press. p. 303–1005 
386. 1006 

Schendan HE, Ganis G. 2013. Face-specificity is robust across diverse stimuli 1007 
and individual people, even when interstimulus variance is zero. 1008 
Psychophysiology. 50:287–291. 1009 

Schendan HE, Ganis G. 2012. Electrophysiological Potentials Reveal Cortical 1010 
Mechanisms for Mental Imagery, Mental Simulation, and Grounded 1011 
(Embodied) Cognition. Front Psychol. 3. 1012 

Schendan HE, Kutas M. 2002. Neurophysiological evidence for two processing 1013 
times for visual object identification. Neuropsychologia. 40:931–945. 1014 

Schendan HE, Kutas M. 2003. Time course of processes and representations 1015 
supporting visual object identification and memory. Journal of Cognitive 1016 
Neuroscience. 15:111–135. 1017 

Schendan HE, Kutas M. 2007. Neurophysiological evidence for the time course 1018 
of activation of global shape, part, and local contour representations 1019 
during visual object categorization and memory. Journal of Cognitive 1020 
Neuroscience. 19:734–749. 1021 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2020.09.21.304378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.304378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

48 
 

Schendan HE, Lucia LC. 2010. Object-sensitive activity reflects earlier perceptual 1022 
and later cognitive processing of visual objects between 95 and 500ms. 1023 
Brain Research. 1329:124–141. 1024 

Schendan HE, Maher SM. 2009. Object knowledge during entry-level 1025 
categorization is activated and modified by implicit memory after 200 ms. 1026 
NeuroImage. 44:1423–1438. 1027 

Sehatpour P, Molholm S, Javitt DC, Foxe JJ. 2006. Spatiotemporal dynamics of 1028 
human object recognition processing: An integrated high-density electrical 1029 
mapping and functional imaging study of “closure” processes. 1030 
NeuroImage. 29:605–618. 1031 

Smith ME, Loschky LC. 2019. The influence of sequential predictions on scene-1032 
gist recognition. Journal of Vision. 19:14–14. 1033 

Smout CA, Garrido MI, Mattingley JB. 2020. Global effects of feature-based 1034 
attention depend on surprise. NeuroImage. 215:116785. 1035 

Smout CA, Tang MF, Garrido MI, Mattingley JB. 2019. Attention promotes the 1036 
neural encoding of prediction errors. PLOS Biology. 17:e2006812. 1037 

Spratling MW. 2010. Predictive Coding as a Model of Response Properties in 1038 
Cortical Area V1. Journal of Neuroscience. 30:3531–3543. 1039 

Spratling MW. 2016. Predictive coding as a model of cognition. Cogn Process. 1040 
17:279–305. 1041 

Stefanics G, Kremláček J, Czigler I. 2014. Visual mismatch negativity: a 1042 
predictive coding view. Front Hum Neurosci. 8. 1043 

Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J. 2006. 1044 
Predictive Codes for Forthcoming Perception in the Frontal Cortex. 1045 
Science. 314:1311–1314. 1046 

Susac A, Heslenfeld DJ, Huonker R, Supek S. 2014. Magnetic Source 1047 
Localization of Early Visual Mismatch Response. Brain Topogr. 27:648–1048 
651. 1049 

Thierry G, Martin CD, Downing P, Pegna AJ. 2007. Controlling for interstimulus 1050 
perceptual variance abolishes N170 face selectivity. Nature Neuroscience. 1051 
10:505–511. 1052 

Torralbo A, Walther DB, Chai B, Caddigan E, Fei-Fei L, Beck DM. 2013. Good 1053 
Exemplars of Natural Scene Categories Elicit Clearer Patterns than Bad 1054 
Exemplars but Not Greater BOLD Activity. PLoS ONE. 8:e58594. 1055 

Vo ML-H, Wolfe JM. 2013. Differential Electrophysiological Signatures of 1056 
Semantic and Syntactic Scene Processing. Psychological Science. 1057 
24:1816–1823. 1058 

Voss JL, Federmeier KD, Paller KA. 2012. The potato chip really does look like 1059 
Elvis! Neural hallmarks of conceptual processing associated with finding 1060 
novel shapes subjectively meaningful. Cereb Cortex. 22:2354–2364. 1061 

Voss JL, Paller KA. 2007. Neural correlates of conceptual implicit memory and 1062 
their contamination of putative neural correlates of explicit memory. Learn 1063 
Mem. 14:259–267. 1064 

Voss JL, Schendan HE, Paller KA. 2010. Finding meaning in novel geometric 1065 
shapes influences electrophysiological correlates of repetition and 1066 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2020.09.21.304378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.304378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

49 
 

dissociates perceptual and conceptual priming. NeuroImage. 49:2879–1067 
2889. 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2021. ; https://doi.org/10.1101/2020.09.21.304378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.304378
http://creativecommons.org/licenses/by-nc-nd/4.0/

