1 Mechanical impact on the head has an antihypertensive effect

2

- 3 Authors:
- 4 Shuhei Murase^{1,2,14}, Naoyoshi Sakitani^{1,14}, Takahiro Maekawa¹, Daisuke Yoshino³, Ayumu
- 5 Konno⁴, Hirokazu Hirai⁴, Taku Saito², Sakae Tanaka², Keisuke Shinohara⁵, Takuya Kishi⁶,
- 6 Yuki Yoshikawa⁷, Takamasa Sakai⁷, Makoto Ayaori⁸, Hirohiko Inanami⁹, Koji Tomiyasu¹⁰,

7 Toru Ogata^{1,11}, Atsushi Takashima¹², Masahiro Shinohara¹, Motoshi Nagao¹ and Yasuhiro

- 8 Sawada^{1,13}*
- 9

10 Affiliations:

11	¹ Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with
12	Disabilities, Tokorozawa, Japan. ² Department of Orthopaedic Surgery, Graduate School of
13	Medicine, The University of Tokyo, Tokyo, Japan. ³ Division of Advanced Applied
14	Physics, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan.
15	⁴ Department of Neurophysiology & Neural Repair, Gunma University Graduate School of
16	Medicine, Maebashi, Japan. ⁵ Department of Cardiovascular Medicine, Kyushu University Graduate
17	School of Medical Sciences, Fukuoka, Japan. ⁶ Department of Cardiology, Graduate School of
18	Medicine, International University of Health and Welfare, Okawa, Japan. ⁷ Department of
19	Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.

20	⁸ Tokorozawa Heart Center, Tokorozawa, Japan. ⁹ Inanami Spine & Joint Hospital/Iwai Orthopaedic
21	Medical Hospital, Iwai Medical Foundation, Tokyo, Japan. ¹⁰ Department of Internal Medicine,
22	¹¹ Center of Sports Science and Health Promotion, ¹² Department of Assistive Technology,
23	¹³ Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities,
24	Tokorozawa, Japan.
25	¹⁴ These authors contributed equally: Shuhei Murase, Naoyoshi Sakitani.
26	*Correspondence to Yasuhiro Sawada, Department of Clinical Research, National Rehabilitation
27	Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan, Tel: +81-
28	4-2995-3100, Fax: +81-4-2995-0355, Email: ys454-ind@umin.ac.jp
29	
29 30	Abstract
	Abstract Nervous cell functions are known to be physiologically regulated by mechanical factors in the
30	
30 31	Nervous cell functions are known to be physiologically regulated by mechanical factors in the
30 31 32	Nervous cell functions are known to be physiologically regulated by mechanical factors in the brain. However, it remains unclear whether mechanical interventions can modulate the
30 31 32 33	Nervous cell functions are known to be physiologically regulated by mechanical factors in the brain. However, it remains unclear whether mechanical interventions can modulate the pathophysiological processes underlying brain-related disorders and modify their
 30 31 32 33 34 	Nervous cell functions are known to be physiologically regulated by mechanical factors in the brain. However, it remains unclear whether mechanical interventions can modulate the pathophysiological processes underlying brain-related disorders and modify their consequences. Here we show that passive head motion of hypertensive rats, which reproduces

38	pressure. Passive head motion generates interstitial fluid movement that is estimated to exert
39	shear stress with average magnitude of a few Pa on cells in rats' brainstem. Fluid shear stress
40	of a relevant magnitude decreases AT1R expression in cultured astrocytes, but not in neuronal
41	cells. Furthermore, in hypertensive rats, inhibition of movement of interstitial fluid by its
42	gelation with reactive polyethylene glycol injected into the RVLM eliminates the ability of
43	passive head motion to decrease their blood pressure and AT1R expression in RVLM
44	astrocytes. Consistent with these results from animal experiments, vertically oscillating chair
45	riding of hypertensive adult humans, which reproduces mechanical accelerations generated at
46	their heads during light jogging or fast walking, lowers their blood pressure. Our findings
47	indicate that moderate mechanical impact on the head has an antihypertensive effect by
48	modulating the function of RVLM astrocytes through interstitial fluid shear stress. We
49	anticipate mechanical regulation to underlie a variety of positive effects of physical exercise
50	on human health, particularly those related to brain functions.
51	
52	Introduction
53	Hypertension, which is a major cause of stroke and cardiovascular diseases, is the biggest risk
54	factor for death worldwide ¹ . Whereas numerous antihypertensive drugs have been developed and

- used clinically, physical exercise is known to be effective for the treatment and prevention of
- 56 essential hypertension^{2,3}, which comprises the majority (>90%) of human hypertension⁴. Although

57	long-term regulation of blood pressure (BP) has been recognized to be largely dependent on sodium
58	excretion adjusting systems, which mainly involve kidney functions ⁵ , elevated activity of the
59	sympathetic nervous system also importantly contributes to the development of hypertension ⁶⁻⁸ .
60	Rostral ventrolateral medulla (RVLM), which is located in the brainstem, plays a critical role in
61	determining the basal activity of the sympathetic nervous system, and its functional integrity is
62	essential for the maintenance of basal vasomotor tone and regulation of BP ^{6,9} . Angiotensin II (Ang
63	II) is the major bioactive peptide of the renin-angiotensin system (RAS), and is known to regulate
64	BP as well as other biological processes such as cell growth/apoptosis/migration, inflammation, and
65	fibrosis ¹⁰ . The biological effects of Ang II are mediated by its interaction with two distinct high-
66	affinity G protein-coupled receptors, Ang II type 1 receptor (AT1R) and type 2 receptor. Of these
67	receptors, AT1R is responsible for most of the known physiological and pathophysiological
68	processes related to Ang II. Whereas RAS is involved in the functional regulation of various
69	"peripheral" organs and tissues such as kidney and vessels, it also regulates brain functions within
70	the blood-brain barrier, including the control and maintenance of sympathetic nerve activity and
71	cognitive ability ¹¹ . In particular, the role of AT1R signaling in the RVLM in cardiovascular
72	regulation has been extensively studied and demonstrated. For example, the pressor/depressor
73	responses to Ang II and Ang II antagonists, injected into the RVLM have been reported to be
74	enhanced in spontaneously hypertensive rats (SHRs) ^{12,13} . We have previously demonstrated that

75	treadmill running at moderate velocities alleviates the sympathetic nerve activity, involving
76	attenuation of AT1R signaling in the RVLM of stroke-prone spontaneously hypertensive rats
77	(SHRSPs) ¹⁴ , a substrain of SHRs that exhibit severer hypertension as compared with SHRs ¹⁵ .
78	However, the details about the changes in AT1R signaling in the RVLM of these hypertensive rats
79	have yet to be elucidated. It remains unclear what type(s) of cells (e.g., neurons or astrocytes) are
80	primarily responsible for the altered AT1R signaling in the RVLM of SHRs or SHRSPs.
81	Furthermore, the causal relationship between the increased AT1R signal activity in the RVLM and
82	high BP in SHRs or SHRSPs in their steady state (i.e., apart from their responses to
83	pharmacological interventions) is left unrevealed.
84	AT1R has also been shown to play a vital role in regulating a variety of physiological or
84 85	AT1R has also been shown to play a vital role in regulating a variety of physiological or pathological processes, including cellular responses to mechanical perturbations ^{16,17} . For example,
85	pathological processes, including cellular responses to mechanical perturbations ^{16,17} . For example,
85 86	pathological processes, including cellular responses to mechanical perturbations ^{16,17} . For example, mechanical stretching of cardiac myocytes activates AT1R signaling ¹⁸ , and fluid shear stress (FSS)
85 86 87	pathological processes, including cellular responses to mechanical perturbations ^{16,17} . For example, mechanical stretching of cardiac myocytes activates AT1R signaling ¹⁸ , and fluid shear stress (FSS) of average 1.5 Pa lowers AT1R expression in human vein endothelial cells ¹⁹ . Although intervening
85 86 87 88	pathological processes, including cellular responses to mechanical perturbations ^{16,17} . For example, mechanical stretching of cardiac myocytes activates AT1R signaling ¹⁸ , and fluid shear stress (FSS) of average 1.5 Pa lowers AT1R expression in human vein endothelial cells ¹⁹ . Although intervening the Ang II-AT1R system through pharmacological approaches, such as administration of
85 86 87 88 89	pathological processes, including cellular responses to mechanical perturbations ^{16,17} . For example, mechanical stretching of cardiac myocytes activates AT1R signaling ¹⁸ , and fluid shear stress (FSS) of average 1.5 Pa lowers AT1R expression in human vein endothelial cells ¹⁹ . Although intervening the Ang II-AT1R system through pharmacological approaches, such as administration of angiotensin-converting enzyme inhibitor or selective AT1R blocker, has been established as an

93	which generate mechanical impacts (accelerations) on the head at the time of foot contact with the
94	ground (i.e., landing). The importance of mechanical loads is well established in the physiological
95	regulation of bones, the stiffest organ that only allows tiny deformation ²¹ . Osteocytes, the
96	mechanosensory cells embedded in bones ²² , are assumed to undergo minimal deformations under
97	physiological conditions. We have reported that FSS on osteocytes derived from interstitial fluid
98	flow induced upon physical activity plays an important role in maintaining bone homeostasis ²³ .
99	Given that the brain is not a rigid organ, minimally deforming forces or stress distribution changes
100	in the brain during exercise or even activity of daily living (e.g., walking) may produce beneficial
101	effects. We have previously shown that in the prefrontal cortex (PFC) of rodents, moderate
102	mechanical impact-induced FSS modulates serotonin signaling in the neurons in situ ²⁴ . Based on
103	these previous findings together with the distribution of interstitial fluid throughout the whole brain,
104	we hypothesized that moderate mechanical impact on the head might have antihypertensive effects
105	involving FSS-mediated modulation of AT1R signaling in the RVLM.
106	

107 **Results**

Application of cyclical mechanical impact to the head by passive motion lowers the BP in
 SHRSPs. To determine the effects of a mechanical intervention of a moderate intensity on BP, we
 first sought to develop an experimental system that reproduces the impact exerted on the head

111	during rats' treadmill running at a modest velocity (20 m/minute), a typical experimental
112	intervention to test the effects of physical exercise on rats ^{25,26} . In a recent study, we observed that
113	treadmill running of rats (20 m/minute) generated 5-mm vertical oscillation of their heads with ~ 1.0
114	x g peak accelerations and 2-Hz frequency; therefore, we developed a "passive head motion"
115	(PHM) system to produce 2-Hz 5-mm vertical oscillation exerting $1.0 \ge g$ acceleration peaks at the
116	heads of rats ²⁴ . In the current study, we examined the effects of mechanical impact on BP in
117	SHRSPs, using the PHM system. Similar to the antihypertensive effect of treadmill running on
118	SHRs or SHRSPs that we and others reported previously ^{14,25,27} , application of PHM (30
119	minutes/day, 28 consecutive days; see Fig. 1a) significantly lowered their BP (Fig. 1b,c) as
120	compared to their controls, whereas HR was not significantly affected by PHM (Fig. 1d).
121	Anesthesia alone (daily 30 minutes) did not significantly alter the BP in SHRSPs (Extended Data
122	Fig. 1a), indicating that the antihypertensive effect resulted specifically from PHM. The anti-cardiac
123	hypertrophy effect of PHM on SHRSPs (Fig. 1e) as well as the lack of these PHM effects on control
124	normotensive rats (Wistar-Kyoto: WKY) (Fig. 1b,c,e) were also consistent with previous reports
125	describing treadmill running as an antihypertensive intervention for SHRs ²⁷ . As was observed in our
126	treadmill running experiments ¹⁴ , PHM decreased 24-hour urinary norepinephrine excretion of
127	SHRSPs (Fig. 1f). This suggests that PHM mitigates the sympathetic hyperactivity ²⁸ . Collectively,
128	these results support our hypothesis that cyclical moderate mechanical impact on the head has an

129 antihypertensive effect.

131	PHM down-regulates AT1R expression in RVLM astrocytes of SHRSPs. We then looked into
132	the mechanism of how PHM alleviated the development of hypertension in SHRSPs. We previously
133	reported that down-regulation of AT1R signaling in the RVLM is responsible for the treadmill
134	running-induced sympathoinhibition in SHRSPs ¹⁴ . Given the mechanical regulation of AT1R
135	expression in endothelial cells ¹⁹ , we examined whether PHM modulated AT1R expression in RVLM
136	neurons and astrocytes of SHRSPs. In our histochemical analysis, we defined neuronal nuclei
137	(NeuN)-positive cells as neurons ²⁹ and glial fibrillary acidic protein (GFAP)-positive cells as
138	astrocytes ³⁰ . PHM (30 minutes/day, 28 days) did not significantly change the relative population of
139	AT1R-expressing neurons and astrocytes in the RVLM of WKY rats (Fig. 1g). In contrast, 4-week
140	PHM significantly decreased the expression of AT1R in the astrocytes, but not in the neurons, of
141	SHRSPs' RVLM (Fig. 1h). Notably, AT1R expression in the RVLM neurons was comparable
142	between WKY rats and SHRSPs, either with and without PHM (Fig. 1i). In contrast, AT1R
143	expression was significantly higher in the RVLM astrocytes of SHRSPs without PHM (Fig. 1j,
144	column 3). PHM lowered the AT1R expression in the RVLM astrocytes of SHRSPs to the level
145	equivalent to that of WKY rats (Fig. 1j, columns 1, 2, and 4). Taken together, AT1R expression in
146	RVLM astrocytes appeared to be correlated with the antihypertensive effect of PHM on SHRSPs. In

line with this observation, 4-week treadmill running of SHRSPs also decreased the AT1R
expression in their RVLM astrocytes, but not neurons (Extended Data Fig. 1b–d).

150	PHM alleviates the sensitivity of RVLM in SHRSPs to Ang II or Ang II antagonist. We next
151	sought to examine whether the PHM-induced decrease in AT1R expression in the RVLM astrocytes
152	of SHRSPs (Fig. 1j, columns 3 and 4) was functionally relevant to the suppression of AT1R
153	signaling. To this end, we analyzed the pressor responses to Ang II injected into unilateral RVLM of
154	WKY rats and SHRSPs, either subjected to 4-week PHM or left sedentary under anesthesia (30
155	minutes/day, 28 days) (Fig. 2a). As we previously reported ¹⁴ , SHRSPs without PHM exhibited
156	significantly greater pressor response to Ang II administered to RVLM than WKY rats (Fig. 2b,
157	compare between top and bottom of left panels; Fig. 2c, compare columns 1 and 3). Four-week
158	PHM ameliorated the pressor response to Ang II injected into the RVLM of SHRSPs, but not of
159	WKY rats (Fig. 2b, compare left and right; Fig. 2c, compare columns 1 vs. 2 and 3 vs. 4).
160	Furthermore, depressor responses to Ang II antagonist injected into unilateral RVLM ¹³ of WHY rats
161	and SHRSPs with and without 4-week PHM appeared to be approximate mirror images of the
162	pressor responses (Fig. 2d,e). These results support the functional relevance of the PHM-induced
163	decrease in AT1R expression in the RVLM astrocytes of SHRSPs (Fig. 1j).
164	To examine whether the increased AT1R expression in the RVLM astrocytes of SHRSPs was

165	associated with their development of hypertension, we manipulated AT1R signaling by introducing
166	exogenous expression of AT1R-associated protein (AGTRAP), which interacts with AT1R and
167	tempers Ang II-mediated signals by promoting AT1R internalization ³¹ . To this end, we used an
168	adeno-associated virus (AAV)-mediated gene delivery system ³² . AAV serotype 9 (AAV9) vectors
169	were injected locally to transduce RVLM cells (Fig. 3a and Extended Data Fig. 2a). To achieve
170	astrocyte- and neuron-specific gene expression, we used AAV9 vectors that harbored mouse GFAP
171	promoter (AAV-GFAP) and rat neuron-specific enolase (NSE) promoter (AAV-NSE), respectively
172	(Fig. 3a). Because these vectors contained a region encoding GFP and 2A sequence of porcine
173	teschovirus-1 (P2A; self-cleaving peptides ³³) (Fig. 3a), observation of green fluorescence allowed
174	us to identify the cells in which transgene was expressed (Fig. 3b,c and Extended Data Fig. 2a-e).
175	AAV-mediated expression of AGTRAP in astrocytes (Fig. 3b) but not in neurons (Fig. 3c) of
176	bilateral RVLMs in SHRSPs significantly lowered the BP as compared with their control SHRSPs
177	in which only GFP was virally expressed in RVLM astrocytes or neurons (Fig. 3d,e). Furthermore,
178	AAV-mediated expression of AGTRAP in astrocytes, but not neurons, of SHRSPs' bilateral RVLMs
179	decreased 24-hour urinary norepinephrine excretion (Fig. 3f). Injection of control AAV vector
180	(GFAP-control or NSE-control) did not significantly affect the BP of SHRSPs (Extended Data Fig.
181	2f). These results support the importance of AT1R signal intensity in RVLM astrocytes for SHRSPs'
182	development of hypertension and sympathetic hyperactivity, as well as the physiological relevance

of PHM-induced decrease in AT1R expression we observed in the RVLM astrocytes of SHRSPs(Fig. 1j).

185

186	PHM generates low-amplitude pressure waves and induces interstitial fluid movement in rat
187	RVLM. We then sought to determine the physical effects that PHM produced in rat RVLM. To do
188	so, we analyzed local pressure changes using a telemetry pressure sensor (Fig. 4a) as we described
189	previously ²⁴ . PHM generated pressure waves (changes) with ~1.2 mm Hg peak amplitude (Fig.
190	4b-d). Hydrostatic pressure of this magnitude (~1.6 cm H ₂ O) is unlikely to initiate mechano-
191	responsive signaling in cells ³⁴ . Postulating an analogy to osteocytes embedded in bones, the
192	function of which is known to be modulated by interstitial fluid flow-derived shear stress ²³ , we have
193	demonstrated that minimal stress distribution changes generate interstitial fluid flow in the brain,
194	resulting in shear stress-mediated regulation of nervous cell functions ²⁴ .
195	To analyze the PHM-induced interstitial fluid movement in the RVLM, we injected an iodine-
196	based contrast agent (Isovist®) into the RVLM of anesthetized rats, and tracked its distribution with
197	sequential computed tomography (CT) (Fig. 4e) as we previously did to quantify the movement of
198	intramuscular interstitial fluid ³⁵ . We found that PHM significantly promoted Isovist spreading in the
199	rostral-caudal and dorsal-ventral (y- and z-axes, Fig. 4f) directions (Fig. 4g,h). In contrast, PHM did
200	not significantly affect the left-right spreading (x-axis, Fig. 4f) of Isovist (Fig. 4g,h). As we

201	observed in rat PFC ²⁴ , PHM induced interstitial fluid movement in the brainstem in defined
202	directions, rather than in an isotropic manner. Our simulative calculation suggests that PHM
203	subjected RVLM cells to interstitial fluid flow-derived shear stress with an average magnitude of
204	0.59–2.64 Pa (Supplementary Table 1). FSS of this magnitude is known to modify the physiological
205	function of astrocytes ³⁶ , leading us to hypothesize that FSS derived from interstitial fluid movement
206	(Fig. 4e-h) mediated the PHM-induced decrease in AT1R expression in RVLM astrocytes (Fig. 1j).
207	
208	FSS on astrocytes decreases AT1R expression in vitro. To test this hypothesis, we conducted in
209	vitro FSS experiments. Based on our simulation (Supplementary Table 1), we applied pulsatile FSS
210	with an average magnitude of 0.7 Pa to cultured primary astrocytes, which were prepared from
211	astrocyte-GFP mice ³⁷ (Extended Data Fig. 3a), using a system we previously reported ^{23,24,35,38} .
212	Quantitative polymerase chain reaction (qPCR) and immunostaining analyses revealed that FSS
213	application (0.5 Hz, 30 minutes) significantly decreased AT1R expression in astrocytes for at least
214	24 hours (Fig. 5a-c). In contrast, FSS application to Neuro2A cells, which exhibit neuronal
215	phenotypes and morphology ^{39,40} , did not decrease AT1R expression (Extended Data Fig. 3b-d).
216	Consistent with the decreasing effect of FSS on AT1R expression, the binding of fluorescently
217	labeled Ang II to cultured astrocytes was significantly decreased by pre-exposure to 30-minute FSS
218	(Fig. 5d,e). The duration (>24 hours) of FSS effects on AT1R expression in astrocytes (Fig. 5) poses

219	a possibility of cumulative effects of FSS applied repeatedly at 24-hour intervals. Therefore, these
220	in vitro observations suggest that FSS-mediated persistent reduction of AT1R expression is involved
221	in the effects of daily PHM application on BP (Fig. 1b,c) and AT1R expression in the RVLM
222	astrocytes (Fig. 1j) in SHRSPs.
223	
224	Hindrance of interstitial fluid movement by hydrogel introduction in RVLM eliminates the
225	ability of PHM to decrease the AT1R expression in RVLM astrocytes and the BP in SHRSPs.
226	To examine whether interstitial fluid movement in the RVLM mediated the effects of PHM on BP
227	and AT1R expression in RVLM astrocytes of SHRSPs, we modulated local interstitial fluid
228	dynamics. Following the procedure we used to hinder the interstitial fluid movement in mouse
229	PFC ²⁴ , we gelled interstitial fluid in situ and deprived its fluidity by microinjecting mutually
230	reactive polyethylene glycol (PEG) gel-precursor (pre-gel) solutions to RVLM (Fig. 6a). Injected
231	pre-gel solution spread over rat RVLM, and gelled the interstitial fluid in situ (Extended Data Fig.
232	4a).
233	Hydrogel introduction in bilateral RVLMs eliminated the ability of PHM to decrease BP (Fig.
234	6b, black and orange lines; Fig. 6c, columns 2 and 3), urinary norepinephrine excretion (Fig. 6d,

- columns 2 and 3), and AT1R expression in the RVLM astrocytes (Fig. 6e, bottom 2 rows; Fig. 6f,
- columns 2 and 3) in SHRSPs. In contrast, hydrogel introduction increased BP (Fig. 6b, blue and

237	orange lines; Fig. 6c, columns 1 and 3), norepinephrine excretion (Fig. 6d, columns 1 and 3), and
238	AT1R expression in the RVLM astrocytes (Fig. 6e, top 2 rows; Fig. 6f, columns 1 and 3) of
239	SHRSPs subjected to PHM. AT1R expression in the RVLM neurons of SHRSPs remained unaltered
240	irrespective of the combination of PHM and hydrogel introduction (Fig. 6e,g). These results suggest
241	that hydrogel introduction in the RVLM disrupts the mechanism mediating the PHM-induced
242	decrease in BP, norepinephrine excretion, and AT1R expression in the RVLM astrocytes of
243	SHRSPs.
244	We previously showed that gelation only inhibits the fluidity of the fluid but does not restrict
245	the diffusion of small molecules inside the gel ^{24,41} . Consistently, hydrogel introduction did not
246	apparently delay or attenuate the depressor response to Ang II antagonist injected to the RVLM
247	(Extended Data Fig. 4b-d), indicating rapid solute diffusivity through the hydrogels. As was the
248	case with mouse PFC ²⁴ , gelation by injecting PEG solution did not affect overall cell number or
249	apoptosis in RVLM (Extended Data Fig. 4e,f), and survival or apoptosis of RVLM astrocytes
250	(Extended Data Fig. 4g,h) and neurons (Extended Data Fig. 4i,j). Collectively, the loss of PHM
251	effects by hydrogel introduction in bilateral RVLMs of SHRSPs (Fig. 6b-f) is likely to result from
252	hydrogel-mediated alteration in interstitial fluid dynamics, rather than decreased cell viability
253	caused by impaired nutrient supply or removal of metabolic wastes.

255	Vertically oscillating chair riding (VOCR) lowers BP in hypertensive adult humans. The			
256	results from our animal experiments reveal the antihypertensive effect of mechanical accelerations			
257	generated at the head during treadmill running at a moderate velocity. This prompted us to test			
258	whether mechanical impact on the head lowered BP in hypertensive humans. As we observed light			
259	jogging or fast walking (locomotion at the velocity of 7 km/hour) typically produce ~2 Hz vertical			
260	acceleration waves with an amplitude of $\sim 1.0 \text{ x } g$ at the person's head (Extended Data Fig. 5a, top),			
261	we constructed a chair that could vertically oscillate at the frequency of 2 Hz (Extended Data Fig.			
262	5b) and produce $\sim 1.0 \text{ x } g$ acceleration waves at the head of the occupant (Extended Data Fig. 5a,			
263	bottom).			
264	Given that previous reports regarding antihypertensive effects of aerobic exercise typically			
265	recommend \geq 3-4 days per week (frequency) and \geq 30 minutes per session or day (duration) ³ , we set			
266	our regimen of VOCR as 3 days/week (Monday, Wednesday, and Friday unless needed to assign			
267	otherwise for particular reasons such as public holidays) and 30 minutes/day. Our study of protocol			
268	1, in which we simply compared the subjects' BP and HR before and after 4-week (12 times)			
269	VOCR (Extended Data Fig. 5c), showed that VOCR decreased BP in hypertensive humans (Fig.			
270	7a).			
271	We then conducted a human study of protocol 2, in which we followed the changes in subjects'			
272	BP and HR more minutely (Extended Data Fig. 5d). Encouraged by the positive results from the			

273	study of protocol 1, we adopted the same VOCR regimen as to its frequency (3 days/week) and
274	duration (30 minutes/day). Participants were subjected to serial blood sampling to measure plasma
275	catecholamines (epinephrine, norepinephrine, and dopamine) and renin activity, and serum
276	aldosterone and C-reactive protein (CRP) before and after the intervention period (Extended Data
277	Fig. 5d). To conduct the 2nd blood sampling on the next day of the last bout of VOCR, the
278	intervention period was extended from 4 weeks (total 12 times, typically 26 days) to 4.5 weeks
279	(total 14 times, 30-31 days) because blood sampling could not be done during weekends at our
280	hospital. BP, both systolic and diastolic, and MAP immediately after the intervention period
281	significantly decreased as compared with those immediately before the intervention period (Fig.
282	7b). Furthermore, we also observed an antihypertensive effect of VOCR when we defined "BP of
283	the week" to reliably detect the trends by reducing the influences from interday BP variability (see
284	Methods) (Fig. 7c and Extended Data Fig. 6a). Notably, the post-intervention follow-up showed that
285	the BP-lowering effect apparently persisted for 4 weeks, but not 5 weeks, after the last bout of
286	VOCR (Fig. 7c). Similar to our animal study, we did not observe significant changes in HR by the
287	VOCR intervention (Fig. 7a-c). Significant differences were not detected in the blood levels of
288	catecholamines, aldosterone, renin activity, and CRP between before and after the VOCR
289	intervention (Extended Data Fig. 6b).

290 Collectively, our studies of protocols 1 and 2 suggest that VOCR, which reproduces

291	mechanical impact exerted on the head during light jogging or fast walking, has an antihypertensive
292	effect in hypertensive humans. Importantly, in none of 21 subjects (Supplementary Table 2),
293	apparent adverse events, including motion sickness and low back pain, were observed or manifested
294	in relation to the VOCR intervention.
295	
296	Discussion
297	Essential hypertension is defined as high BP in which secondary causes including renovascular
298	disease, renal failure, pheochromocytoma, and primary aldosteronism are not present. It accounts
299	for >90% of human cases of hypertension, resulting from combinations of multiple genetic and
300	environmental factors ⁴ . Recently, brain (dys)function has been implicated in the pathogenesis of
301	essential hypertension; however, the details of their molecular link remain unclear ⁴² . Physical
302	exercise is proven to be effective as a therapeutic/preventative measure for essential hypertension ³ .
303	Although the antihypertensive effect of physical exercise has been shown to involve normalization
304	of sympathetic hyperactivity in the brain ⁴³ , it is still unclear whether exercise directly modulates
305	brain function. In this study, PHM, which reproduced mechanical accelerations generated at the
306	head during treadmill running, allowed us to dissect bodily activity-derived physical effects.
307	Whereas AT1R signaling in both neurons and astrocytes of the RVLM have been reported to be
308	involved in regulating BP ^{44,45} , we observed that AT1R expression in RVLM astrocytes was

309	increased in SHRSPs as compared to that in WKY rats (Fig. 1j). In contrast, AT1R expression in
310	RVLM neurons was comparable between WKY rats and SHRSPs (Fig. 1i), although AT1R
311	expression in RVLM neurons has been shown to play an important role in other animal model(s) of
312	hypertension ⁴⁴ . Together with the decreases in BP and urinary epinephrine excretion of SHRSPs in
313	which RVLM astrocytes were transduced with AGTRAP gene (Fig. 3d-f), the intensity of AT1R
314	signaling in RVLM astrocytes appears to be critically involved in the pathogenesis of hypertension
315	and sympathetic hyperactivity in SHRSPs.
316	Four-week PHM decreased urinary norepinephrine excretion and AT1R expression in RVLM
317	astrocytes of SHRSPs to the levels almost equivalent to those of WKY rats (Fig. 1f,j). However,
318	PHM only partially alleviated the development of hypertension in SHRSPs to the extent similar to
319	the antihypertensive effects of treadmill running we and others previously reported ^{14,25} (Fig. 1b,c).
320	Therefore, it is evident that factors other than AT1R signaling in RVLM astrocytes contribute to the
321	pathogenesis of essential hypertension.
322	AT1R expression in cultured astrocytes decreased upon FSS application (Fig. 5a-c). This was
323	consistent with our findings that PHM and treadmill running decreased in AT1R expression in
324	RLVM astrocytes of SHRSPs (Fig. 1j and Extended Data Fig. 1d). However, the AT1R expression
325	level in RVLM astrocytes was low in WKY rats even without PHM (Fig. 1j), and this may raise a
326	concern regarding the physiological relevance of our in vitro FSS experiments using cultured

327	astrocytes. Yet, it has been reported that cultured astrocytes typically exhibit increased "reactivity",
328	and do not fully recapitulate physiological astrocytes in vivo ⁴⁶ . We suggest that the FSS-induced
329	decrease in AT1R expression in cultured astrocytes we observed represents physiological functions
330	of astrocytes, despite that their increased basal AT1R expression may relate to unphysiological
331	aspects of two-dimensional culture on stiff substrates (culture plastics). Cells in static culture are
332	exposed to a complete absence of FSS, which may not be physiologically realized in vivo. Previous
333	reports describe increased extracellular fluid in brains of hypertensive humans ⁴⁷ and altered
334	dynamics of intracerebral interstitial fluid of SHRs ⁴⁸ . Aberrant regulation of RVLM astrocytes'
335	function that relates to altered interstitial fluid movement-derived FSS may underlie the
336	pathogenesis of essential hypertension.
336 337	pathogenesis of essential hypertension. PHM did not significantly alter the AT1R expression in SHRSPs' RVLM neurons (Fig. 1i), and
337	PHM did not significantly alter the AT1R expression in SHRSPs' RVLM neurons (Fig. 1i), and
337 338	PHM did not significantly alter the AT1R expression in SHRSPs' RVLM neurons (Fig. 1i), and FSS did not decrease AT1R expression in cultured Neuro2A cells (Extended Data Fig. 3b–d). Yet,
337 338 339	PHM did not significantly alter the AT1R expression in SHRSPs' RVLM neurons (Fig. 1i), and FSS did not decrease AT1R expression in cultured Neuro2A cells (Extended Data Fig. 3b–d). Yet, we do not suspect that these results represent the absence of sensitivity of neurons to FSS or other
337 338 339 340	PHM did not significantly alter the AT1R expression in SHRSPs' RVLM neurons (Fig. 1i), and FSS did not decrease AT1R expression in cultured Neuro2A cells (Extended Data Fig. 3b–d). Yet, we do not suspect that these results represent the absence of sensitivity of neurons to FSS or other type(s) of mechanical stimulation, particularly because we observed PHM- and FSS-induced
337 338 339 340 341	PHM did not significantly alter the AT1R expression in SHRSPs' RVLM neurons (Fig. 1i), and FSS did not decrease AT1R expression in cultured Neuro2A cells (Extended Data Fig. 3b–d). Yet, we do not suspect that these results represent the absence of sensitivity of neurons to FSS or other type(s) of mechanical stimulation, particularly because we observed PHM- and FSS-induced internalization of 5-HT _{2A} receptor expressed in mouse PFC neurons and Neuro2A cells,

345	affect the AT1R expression in RVLM astrocytes in normotensive WKY rats (Fig. 1j). Relevantly,
346	we and others have reported mechanical loading (in vivo)- or FSS (in vitro)- induced alleviation of
347	inflammatory processes ^{23,49} , which can transcriptionally increase AT1R expression ⁵⁰ .
348	Whereas the amplitude of pressure waves that PHM generated in rat RVLM was tiny (Fig.
349	4b-d), the magnitude of interstitial fluid movement-derived shear stress in rat RVLM appeared
350	comparable with that of FSS previously reported for vascular endothelium ^{51,52} , interstitium of
351	bone ²¹ and skeletal muscle ³⁵ (Supplementary Table 1b). Consistent with the lack of strict cell
352	specificity in many of cellular responses to mechanical forces ⁵³ , FSS-induced decrease in AT1R
353	expression, which was reported in vascular cells ¹⁹ , was also observed in cultured astrocytes. Taken
354	together, we speculate that there may be common homeostasis-regulatory mechanisms at the
355	cellular level that involve fluid flow-derived shear stress of ~ 0.5 to a few Pa.
356	Based on our hypothesis concerning the similarity in the pathogenesis of high BP between
357	human essential hypertension and SHRSPs, we conducted human studies in which we intended to
358	reproduce the mechanical impact on the head that lowered the BP in SHRSPs. Although the
359	mechanism behind the apparent antihypertensive effect of VOCR remains to be determined, the
360	significant role of interstitial fluid dynamics in the RVLM, which we demonstrated by our animal
361	experiments, might be shared between humans and rats or other animals (Extended Data Fig. 7).
362	Whereas plasma catecholamine levels were not significantly changed by the VOCR intervention

(Extended Data Fig. 6b), it is possible that urinary epinephrine measures collected over 24 hours in
 our rat PHM experiments (Fig. 1f, 3f, and 6d) enhanced our ability to capture the sympathetic nerve
 activity under "everyday-life" ambulatory conditions⁵⁴.

As the phrase "Exercise is Medicine" indicates, physical exercise is broadly useful to maintain 366 human health. Many of aerobic exercises, including walking and running, involve impact-367 generating bodily actions creating sharp accelerations at the head upon foot contacting with the 368 ground. Therefore, their beneficial effects as therapeutic/preventative procedures for a variety of 369 brain function-related diseases and health disorders may rely at least partly on modest changes in 370 mechanical stress distribution in the brain, which may prompt optimal FSS on intracerebral nervous 371 cells. While we have recently demonstrated that brain function can be physiologically regulated by 372 mechanical forces²⁴, alterations in interstitial fluid movement-derived shear stress may underlie the 373 374 pathogenesis of various brain disorders, particularly those related to physical inactivity or aging. Limitation of study. There are several limitations of this study. We were unable to test the response 375 of primary neurons, which were prepared from mouse cerebral cortex or hippocampus, to FSS of 376 relevant magnitudes (0.59–2.64 Pa, see Supplementary Table 1b) because of their easy detachment 377 from the substrates by FSS. As an alternative of cultured neuronal cells, we tested Neuro2A cells, 378 which stably adhered to the substrates through FSS of magnitudes up to $\sim 1 \text{ Pa}^{24}$. 379 380 We did not comprehensively analyze the effects of PHM on brain functions, but focused on the

381	study of RVLM. PHM may modulate AT1R signaling in other brain regions that participate in the
382	regulation of sympathetic nerve activity, including the anteroventral third ventricle, paraventricular
383	nucleus of the hypothalamus, and nucleus tractus solitarii ^{6,9} . Nonetheless, elimination of PHM
384	effects on BP and urinary norepinephrine excretion by hydrogel introduction in RVLM (Fig. 6b-d)
385	supports the critical role for RVLM. Because hydrogel may exert yet unknown effects, experiments
386	of hydrogel introduction may not entirely prove the contribution of interstitial fluid movement. For
387	example, hydrogel introduction may alter the stiffness and elasticity of extracellular matrix, which
388	are known to affect the neurological physiology, pathology, and development ⁵⁵ . Although further
389	studies are required to address these issues, our findings suggest that mechanical factors can be a
390	therapeutic target within the blood-brain barrier, the accessibility to which of antihypertensive drugs
390 391	therapeutic target within the blood-brain barrier, the accessibility to which of antihypertensive drugs appears variable and controversial ⁵⁶ .
391	appears variable and controversial ⁵⁶ .
391 392	appears variable and controversial ⁵⁶ . Unlike the case of PHM in rats, VOCR of humans generates vertical accelerations at various
391 392 393	appears variable and controversial ⁵⁶ . Unlike the case of PHM in rats, VOCR of humans generates vertical accelerations at various body parts in addition to the head. Therefore, we cannot preclude the possibility that the
391 392 393 394	appears variable and controversial ⁵⁶ . Unlike the case of PHM in rats, VOCR of humans generates vertical accelerations at various body parts in addition to the head. Therefore, we cannot preclude the possibility that the antihypertensive effect of VOCR is mediated by mechanical regulation of tissues and organs other
391 392 393 394 395	appears variable and controversial ⁵⁶ . Unlike the case of PHM in rats, VOCR of humans generates vertical accelerations at various body parts in addition to the head. Therefore, we cannot preclude the possibility that the antihypertensive effect of VOCR is mediated by mechanical regulation of tissues and organs other than the brain. Furthermore, our clinical studies of protocol 1 and 2 are based on a small number of

399	mechanical impacts with moderate magnitudes is expected to be highly safe with minimal			
400	possibility of adverse effects, providing a novel therapeutic/preventative strategy for physical			
401	disorders including those that are resistant to conventional treatments such as drug administration.			
402	Notably, our approach utilizing mechanical interventions may bring considerable benefits to those			
403	who cannot receive benefits from exercise because of physical disabilities.			
404				
405	Data availability			
406	All data are included in this article and its supplementary information files. Raw data are available			
407	from the corresponding author upon reasonable request.			
408				
409	Acknowledgements			
410	We thank K. Nakanishi, K. Hamamoto, and N. Kume for their consistent support. This work was in			
411	part supported by Intramural Research Fund from the Japanese Ministry of Health, Labour and			
412	Welfare; Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science			
413	(15H01820, 15H04966, and 18H04088 to Y.S; 17H02127 and 18H03138 to T.O.; 19K06899 to			
414	A.K.); MEXT-Supported Program for the Strategic Research Foundation at Private Universities,			
415	2015–2019 from the Japanese Ministry of Education, Culture, Sports, Science and Technology			
416	(S1511017 to Y.S. and T.O.); Brain Mapping by Integrated Neurotechnologies for Disease Studies			

417 from the Japan Ag	gency for Medical Research and I	Development (AMED Brain/MINDS,
-----------------------	----------------------------------	--------------------------------

418 JP20dm0207057 to H.H.).

419

420	Author	contributions	5
-----	--------	---------------	---

- 421 S.M. and N.S. conducted most of the experiments. Y.S. conceived the research, designed the study,
- 422 and led the project with help from M.N. and M.S. T.K. provided technical advice for all the
- 423 experiments involving measurement of cardiovascular parameters. S.M., N.S., T.K., M.S. and Y.S.
- 424 wrote the manuscript. T.M. and A.T. contributed to the design and construction of the machine for
- 425 PHM. D.Y. helped in vitro FSS experiments and carried out simulative calculation of in vivo FSS.
- 426 T.S. and Y.Y. developed and provided the PEG hydrogel system. A.K. and H.H. prepared and
- 427 provided AAV vectors. K.T., T.K., M.A., H.I., and T.O. contributed to the human studies. K.S., T.S.,

428 S.T. M.S., T.O., and M.N. provided technical, advisory and financial support.

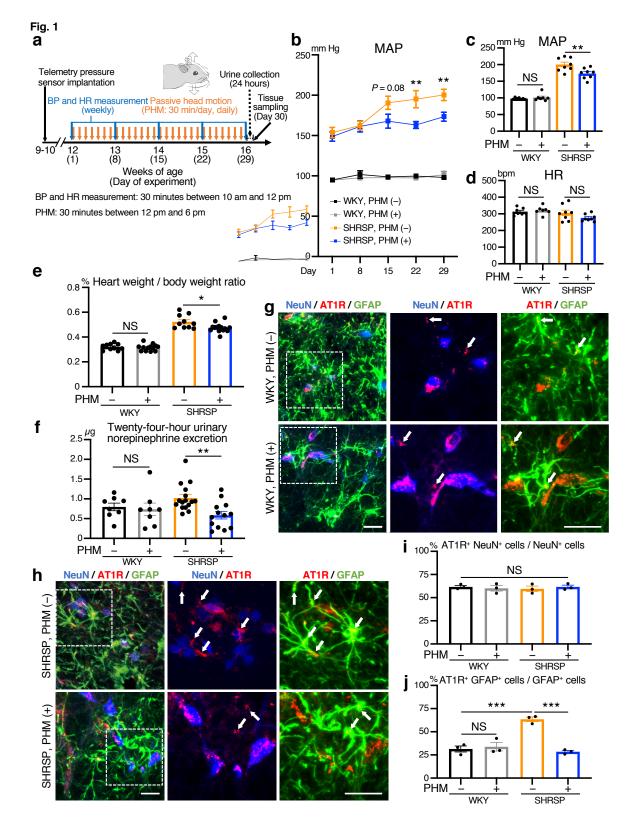
429

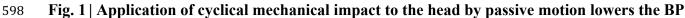
430 **Competing interests**

- The authors declare no competing interest. S.M., T.M., T.O., A.T., and Y.S. joined the application of
 a patent for the vertically oscillating chair, which has been awarded in Japan (JP6592834) and filed
- 433 internationally (US16/616,935; EP18806753.2; CN201880033284.0; IN201927048891).

435 **References**

- 1. Lim, S.S., et al. A comparative risk assessment of burden of disease and injury attributable to
- 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the
 Global Burden of Disease Study 2010. *Lancet* 380, 2224-2260 (2012).
- 439 2. Hagberg, J.M., Park, J.J. & Brown, M.D. The role of exercise training in the treatment of
 440 hypertension: an update. *Sports Med* 30, 193-206 (2000).
- Pescatello, L.S., MacDonald, H.V., Lamberti, L. & Johnson, B.T. Exercise for hypertension: a
 prescription update integrating existing recommendations with emerging research. *Curr Hypertens Rep* 17, 87 (2015).
- 444 4. Carretero, O.A. & Oparil, S. Essential hypertension. Part I: definition and etiology. *Circulation*445 101, 329-335 (2000).
- 446 5. Guyton, A.C. Abnormal renal function and autoregulation in essential hypertension.
 447 *Hypertension* 18, III49-53 (1991).
- 6. Guyenet, P.G. The sympathetic control of blood pressure. *Nat Rev Neurosci* 7, 335-346 (2006).
- Grassi, G., Mark, A. & Esler, M. The sympathetic nervous system alterations in human
 hypertension. *Circ Res* 116, 976-990 (2015).
- 451 8. Malpas, S.C. Sympathetic nervous system overactivity and its role in the development of
 452 cardiovascular disease. *Physiol Rev* 90, 513-557 (2010).
- 453 9. Dampney, R.A. Functional organization of central pathways regulating the cardiovascular
 454 system. *Physiol Rev* 74, 323-364 (1994).
- 455 10. Fyhrquist, F. & Saijonmaa, O. Renin-angiotensin system revisited. *J Intern Med* 264, 224-236
 456 (2008).
- 457 11. Forrester, S.J., *et al.* Angiotensin II signal transduction: an update on mechanisms of
 458 physiology and pathophysiology. *Physiol Rev* 98, 1627-1738 (2018).
- 12. Ito, S., Komatsu, K., Tsukamoto, K., Kanmatsuse, K. & Sved, A.F. Ventrolateral medulla AT1
 receptors support blood pressure in hypertensive rats. *Hypertension* 40, 552-559 (2002).
- 461 13. Muratani, H., Ferrario, C.M. & Averill, D.B. Ventrolateral medulla in spontaneously
 462 hypertensive rats: role of angiotensin II. *Am J Physiol* 264, R388-395 (1993).
- 463 14. Kishi, T., *et al.* Exercise training causes sympathoinhibition through antioxidant effect in the
 464 rostral ventrolateral medulla of hypertensive rats. *Clin Exp Hypertens* 34, 278-283 (2012).
- 15. Nabika, T., Ohara, H., Kato, N. & Isomura, M. The stroke-prone spontaneously hypertensive
 rat: still a useful model for post-GWAS genetic studies? *Hypertens Res* 35, 477-484 (2012).
- 467 16. Lu, X., *et al.* Effects of local mechanical stimulation on coronary artery endothelial function
 468 and angiotensin II type 1 receptor in pressure or flow-overload. *J Hypertens* 31, 720-729
- 469 (2013).

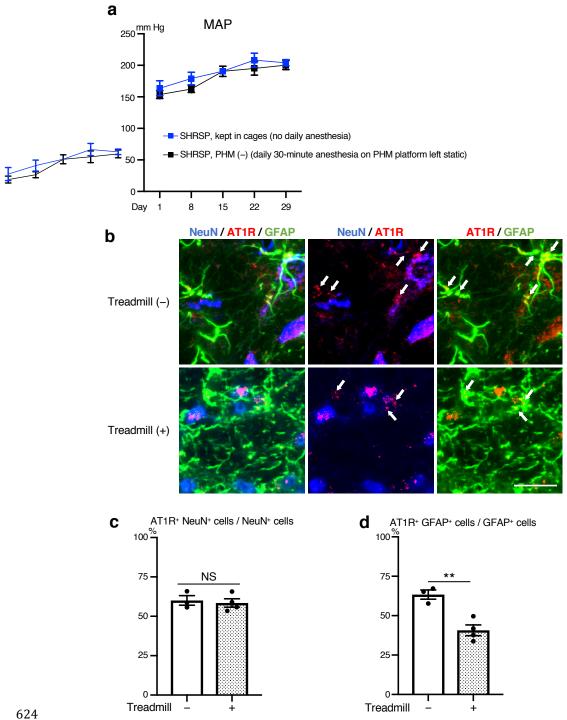

- 470 17. Galie, P.A., Russell, M.W., Westfall, M.V. & Stegemann, J.P. Interstitial fluid flow and cyclic
 471 strain differentially regulate cardiac fibroblast activation via AT1R and TGF-β1. *Exp Cell Res*472 318, 75-84 (2012).
- 473 18. Zou, Y., *et al.* Mechanical stress activates angiotensin II type 1 receptor without the
 474 involvement of angiotensin II. *Nat Cell Biol* 6, 499-506 (2004).
- 475 19. Ramkhelawon, B., *et al.* Shear stress regulates angiotensin type 1 receptor expression in
 476 endothelial cells. *Circ Res* 105, 869-875 (2009).
- 477 20. Li, E.C., Heran, B.S. & Wright, J.M. Angiotensin converting enzyme (ACE) inhibitors versus
 478 angiotensin receptor blockers for primary hypertension. *Cochrane Database Syst Rev*,
 479 CD009096 (2014).
- Weinbaum, S., Cowin, S.C. & Zeng, Y. A model for the excitation of osteocytes by mechanical
 loading-induced bone fluid shear stresses. *J Biomech* 27, 339-360 (1994).
- 482 22. Tatsumi, S., *et al.* Targeted ablation of osteocytes induces osteoporosis with defective
 483 mechanotransduction. *Cell Metab* 5, 464-475 (2007).
- 484 23. Miyazaki, T., *et al.* Mechanical regulation of bone homeostasis through p130Cas-mediated
 485 alleviation of NF-κB activity. *Sci Adv* 5, eaau7802 (2019).
- 486 24. Ryu, Y., *et al.* Mechanical regulation underlies effects of exercise on serotonin-induced 487 signaling in the prefrontal cortex neurons. *iScience* **23**, 100874 (2020).
- 488 25. Minami, N., *et al.* Effects of exercise and β -blocker on blood pressure and baroreflexes in 489 spontaneously hypertensive rats. *Am J Hypertens* **16**, 966-972 (2003).
- 490 26. Kim, S.E., *et al.* Treadmill exercise prevents aging-induced failure of memory through an
 491 increase in neurogenesis and suppression of apoptosis in rat hippocampus. *Exp Gerontol* 45,
 492 357-365 (2010).
- 493 27. Bertagnolli, M., *et al.* Exercise training reduces sympathetic modulation on cardiovascular
 494 system and cardiac oxidative stress in spontaneously hypertensive rats. *Am J Hypertens* 21,
 495 1188-1193 (2008).
- 28. Chidsey, C.A., Braunwald, E. & Morrow, A.G. Catecholamine excretion and cardiacstores of
 norepinephrine in congestive heart failure. *Am J Med* 39, 442-451 (1965).
- 498 29. Mullen, R.J., Buck, C.R. & Smith, A.M. NeuN, a neuronal specific nuclear protein in
 499 vertebrates. *Development* 116, 201-211 (1992).
- 30. Freeman, M.R. Specification and morphogenesis of astrocytes. *Science* **330**, 774-778 (2010).
- Tamura, K., *et al.* The physiology and pathophysiology of a novel angiotensin receptor-binding
 protein ATRAP/Agtrap. *Curr Pharm Des* 19, 3043-3048 (2013).
- 503 32. Huda, F., et al. Distinct transduction profiles in the CNS via three injection routes of AAV9 and
- the application to generation of a neurodegenerative mouse model. *Mol Ther Methods Clin Dev*1, 14032 (2014).

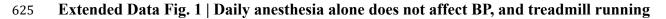

- 33. Tang, X., *et al.* "Self-cleaving" 2A peptide from porcine teschovirus-1 mediates cleavage of
 dual fluorescent proteins in transgenic Eimeria tenella. *Vet Res* 47, 68 (2016).
- 34. Tworkoski, E., Glucksberg, M.R. & Johnson, M. The effect of the rate of hydrostatic pressure
 depressurization on cells in culture. *PLoS One* 13, e0189890 (2018).
- 510 35. Saitou, K., *et al.* Local cyclical compression modulates macrophage function in situ and 511 alleviates immobilization-induced muscle atrophy. *Clin Sci (Lond)* **132**, 2147-2161 (2018).
- Maneshi, M.M., *et al.* Mechanical stress activates NMDA receptors in the absence of agonists.
 Sci Rep 7, 39610 (2017).
- 514 37. Gong, S., *et al.* A gene expression atlas of the central nervous system based on bacterial 515 artificial chromosomes. *Nature* **425**, 917-925 (2003).
- 38. Yoshino, D., Sakamoto, N., Takahashi, K., Inoue, E. & Sato, M. Development of Novel Flow
 Chamber to Study Endothelial Cell Morphology: Effects of shear flow with uniform spatial
 gradient ondistribution of focal adhesion. *J Biomech Sci Eng* 8, 233-243 (2013).
- 39. Goshima, Y., Ohsako, S. & Yamauchi, T. Overexpression of Ca²⁺/calmodulin-dependent protein
 kinase II in Neuro2A and NG108-15 neuroblastoma cell lines promotes neurite outgrowth and
 growth cone motility. *J Neurosci* 13, 559-567 (1993).
- 40. Yun, J., *et al.* Neuronal Per Arnt Sim (PAS) domain protein 4 (NPAS4) regulates neurite outgrowth and phosphorylation of synapsin I. *J Biol Chem* **288**, 2655-2664 (2013).
- 41. Fujiyabu, T., Toni, F., Li, X., Chung, U.I. & Sakai, T. Three cooperative diffusion coefficients
 describing dynamics of polymer gels. *Chem Commun (Camb)* 54, 6784-6787 (2018).
- 42. Jennings, J.R., Muldoon, M.F. & Sved, A.F. Is the brain an early or late component of essential
 hypertension? *Am J Hypertens* (2020).
- 43. Joyner, M.J. & Green, D.J. Exercise protects the cardiovascular system: effects beyond
 traditional risk factors. *J Physiol* 587, 5551-5558 (2009).
- 44. Jancovski, N., *et al.* Angiotensin type 1A receptor expression in C1 neurons of the rostral
 ventrolateral medulla contributes to the development of angiotensin-dependent hypertension.
 Exp Physiol 99, 1597-1610 (2014).
- 45. Guo, F., *et al.* Astroglia are a possible cellular substrate of angiotensin(1-7) effects in the rostral
 ventrolateral medulla. *Cardiovasc Res* 87, 578-584 (2010).
- 46. Liddelow, S.A. & Barres, B.A. Reactive astrocytes: production, function, and therapeutic
 potential. *Immunity* 46, 957-967 (2017).
- 47. Maclullich, A.M., *et al.* Higher systolic blood pressure is associated with increased water
 diffusivity in normal-appearing white matter. *Stroke* 40, 3869-3871 (2009).
- 48. Bedussi, B., *et al.* Enhanced interstitial fluid drainage in the hippocampus of spontaneously
 hypertensive rats. *Sci Rep* 7, 744 (2017).
- 49. Hahn, C. & Schwartz, M.A. Mechanotransduction in vascular physiology and atherogenesis.
 Nat Rev Mol Cell Biol 10, 53-62 (2009).

- 543 50. Elton, T.S. & Martin, M.M. Angiotensin II type 1 receptor gene regulation: transcriptional and 544 posttranscriptional mechanisms. *Hypertension* **49**, 953-961 (2007).
- 51. Galie, P.A., van Oosten, A., Chen, C.S. & Janmey, P.A. Application of multiple levels of fluid
 shear stress to endothelial cells plated on polyacrylamide gels. *Lab Chip* 15, 1205-1212 (2015).
- 547 52. Kadohama, T., Nishimura, K., Hoshino, Y., Sasajima, T. & Sumpio, B.E. Effects of different
 548 types of fluid shear stress on endothelial cell proliferation and survival. *J Cell Physiol* 212,
 549 244-251 (2007).
- 550 53. Iskratsch, T., Wolfenson, H. & Sheetz, M.P. Appreciating force and shape-the rise of 551 mechanotransduction in cell biology. *Nat Rev Mol Cell Biol* **15**, 825-833 (2014).
- 54. Hughes, J.W., Watkins, L., Blumenthal, J.A., Kuhn, C. & Sherwood, A. Depression and anxiety
 symptoms are related to increased 24-hour urinary norepinephrine excretion among healthy
 middle-aged women. *J Psychosom Res* 57, 353-358 (2004).
- 55. Li, S.C., *et al.* Tissue elasticity bridges cancer stem cells to the tumor microenvironment
 through microRNAs: implications for a "watch-and-wait" approach to cancer. *Curr Stem Cell Res Ther* 12, 455-470 (2017).
- 558 56. Kishi, T., Hirooka, Y. & Sunagawa, K. Sympathoinhibition caused by orally administered 559 telmisartan through inhibition of the AT(1) receptor in the rostral ventrolateral medulla of 560 hypertensive rats. *Hypertens Res* **35**, 940-946 (2012).
- 561 57. Huang, N. & Bonn, D. Viscosity of a dense suspension in Couette flow. *J Fluid Mech* 590, 497 562 507 (2007).
- 58. Sugiyama, S., *et al.* Computational simulation of convection-enhanced drug delivery in the
 non-human primate brainstem: a simple model predicting the drug distribution. *Neurol Res* 35,
 773-781 (2013).
- 566 59. Yao, W., Shen, Z. & Ding, G. Simulation of interstitial fluid flow in ligaments: comparison
 among Stokes, Brinkman and Darcy models. *Int J Biol Sci* 9, 1050-1056 (2013).
- 568 60. Tarbell, J.M. & Shi, Z.-D. Effect of the glycocalyx layer on transmission of interstitial flow
 569 shear stress to embedded cells. *Biomech Model Mechanobiol* 12, 111-121 (2013).
- 570 61. Sakai, K., *et al.* Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo.
 571 *Hypertension* 36, 1023-1028 (2000).
- Kishi, T., *et al.* Overexpression of eNOS in the RVLM causes hypotension and bradycardia via
 GABA release. *Hypertension* 38, 896-901 (2001).
- 63. Paxinos, G. & Watson, C. *The rat brain in stereotaxic coordinates* (Academic Press, 1998).
- 64. Hirooka, Y., Polson, J.W. & Dampney, R.A. Pressor and sympathoexcitatory effects of nitric
 oxide in the rostral ventrolateral medulla. *J Hypertens* 14, 1317-1324 (1996).
- 577 65. Shinohara, Y., *et al.* Effects of neutralizing antibody production on AAV-PHP.B-mediated 578 transduction of the mouse central nervous system. *Mol Neurobiol* **56**, 4203-4214 (2019).

- 579 66. Shinohara, Y., Ohtani, T., Konno, A. & Hirai, H. Viral vector-based evaluation of regulatory
 580 regions in the neuron-specific enolase (NSE) promoter in mouse cerebellum in vivo.
 581 *Cerebellum* 16, 913-922 (2017).
- Konno, A., *et al.* Mutant ataxin-3 with an abnormally expanded polyglutamine chain disrupts
 dendritic development and metabotropic glutamate receptor signaling in mouse cerebellar
 Purkinje cells. *Cerebellum* 13, 29-41 (2014).
- 585 68. Matsuzaki, Y., *et al.* Neurotropic Properties of AAV-PHP.B are shared among diverse inbred 586 strains of mice. *Mol Ther* **27**, 700-704 (2019).
- 587 69. Sakitani, N., *et al.* Application of consistent massage-kike perturbations on mouse calves and
 588 monitoring the resulting intramuscular pressure changes. *J Vis Exp* e59475 (2019).
- 589 70. Liu, C., De Luca, A., Rosso, A. & Talon, L. Darcy's law for yield stress fluids. *Phys Rev Lett* 590 122, 245502 (2019).
- 591 71. Schildge, S., Bohrer, C., Beck, K. & Schachtrup, C. Isolation and culture of mouse cortical
 592 astrocytes. *J Vis Exp* e50079 (2013).
- 593 72. Umemura, S., *et al.* The Japanese Society of Hypertension guidelines for the management of
 594 hypertension (JSH 2019). *Hypertens Res* 42, 1235-1481 (2019).

596 Figures and figure legends

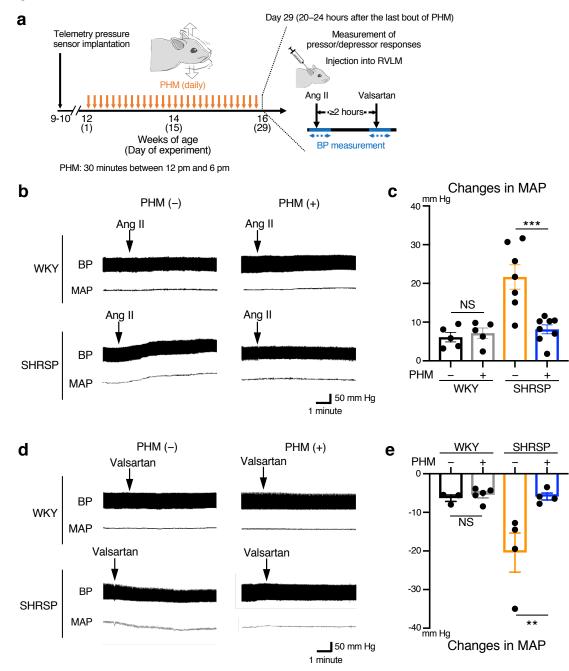


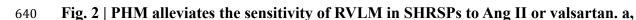


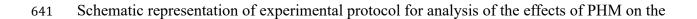
599	in SHRSPs, and AT1R expression in their RVLM astrocytes. a, Schematic representation of
600	experimental protocol for analysis of the effects of PHM on BP in rats. b,c, Time courses (b) and
601	values on Day 29 (c) of MAP of WKY rats and SHRSPs, subjected to either daily PHM or
602	anesthesia only (b : $P = 0.0814$ for Day15, $P = 0.0052$ for Day 22, and $P = 0.0046$ for Day 29. c : P
603	= 0.9739 for column 1 vs. 2 and P = 0.0046 for column 3 vs. 4. n = 7 rats for each group of WKY
604	and $n = 8$ rats for each group of SHRSP). d , HR values on Day 29 ($P = 0.9650$ for column 1 vs. 2
605	and $P = 0.2362$ for column 3 vs. 4. $n = 7$ rats for each group of WKY and $n = 8$ rats for each group
606	of SHRSP). e , Relative heart weight (heart weight / whole body weight) measured on Day 30 [$P =$
607	0.9866 for column 1 vs. 2 and $P = 0.0152$ for column 3 vs. 4. $n = 10$ rats for WKY, PHM (-); $n = 13$
608	rats for WKY, PHM (+); $n = 10$ rats for SHRSP, PHM (-); $n = 14$ rats for SHRSP, PHM (+)]. f ,
609	Twenty-four-hour (Day 29 to Day 30) urinary norepinephrine excretion [$P = 0.9854$ for column 1
610	vs. 2 and $P = 0.0085$ for column 3 vs. 4. $n = 8$ rats for each group of WKY; $n = 16$ rats for SHRSP,
611	PHM (–); $n = 13$ rats for SHRSP, PHM (+)]. g,h , Micrographic images of anti-NeuN (blue), anti-
612	GFAP (green) and anti-AT1R (red) immunostaining of the RVLM of WKY rats (g) and SHRSPs
613	(h), either left sedentary (top) or subjected to PHM (bottom) under anesthesia (30 minutes/day, 28
614	days). Higher magnification images (center and right) refer to the areas indicated by dotted
615	rectangles in low magnification images (left). Arrows point to anti-AT1R immunosignals that
616	overlap with anti-GFAP, but not anti-NeuN, immunosignals in merged images. Scale bars, 50 μ m.

617	Images are representative of three rats. i,j, Quantification of AT1R-positive neurons (i) and
618	astrocytes (j) in the RVLM of WKY rats and SHRSPs, either left sedentary or subjected to PHM.
619	Fifty NeuN-positive (NeuN ⁺) cells and one hundred GFAP-positive (GFAP ⁺) cells were analyzed
620	for each rat (i: $P = 0.7803$. j: $P = 0.9455$ for column 1 vs. 2, $P = 0.0004$ for column 1 vs. 3, and $P =$
621	0.0002 for column 3 vs. 4. $n = 3$ rats for each group). Data are presented as mean \pm s.e.m. * $P < 0.05$;
622	** $P < 0.01$; *** $P < 0.001$; NS, not significant; one-way ANOVA with Tukey's post hoc multiple
623	comparisons test.

Extended Data Fig. 1






decreases AT1R expression in the RVLM astrocytes in SHRSPs. a, Time courses of MAP of 626

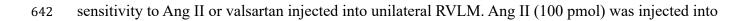
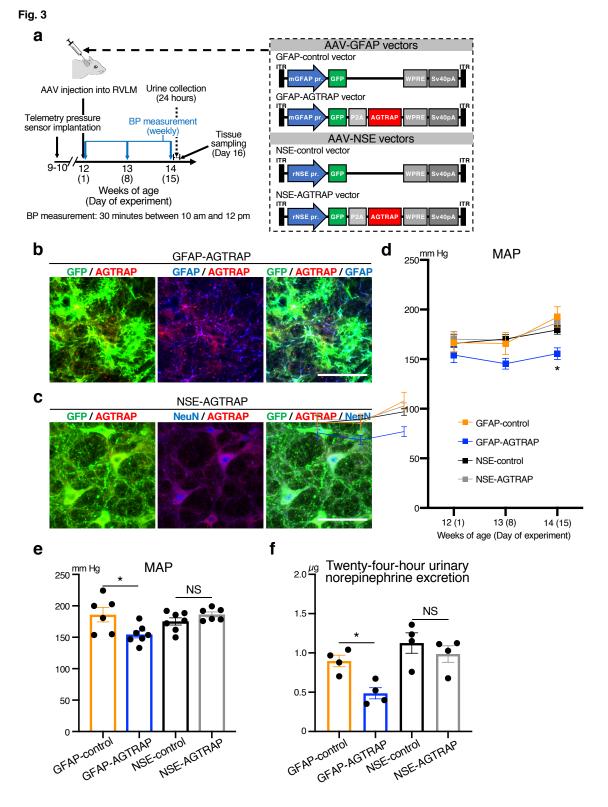
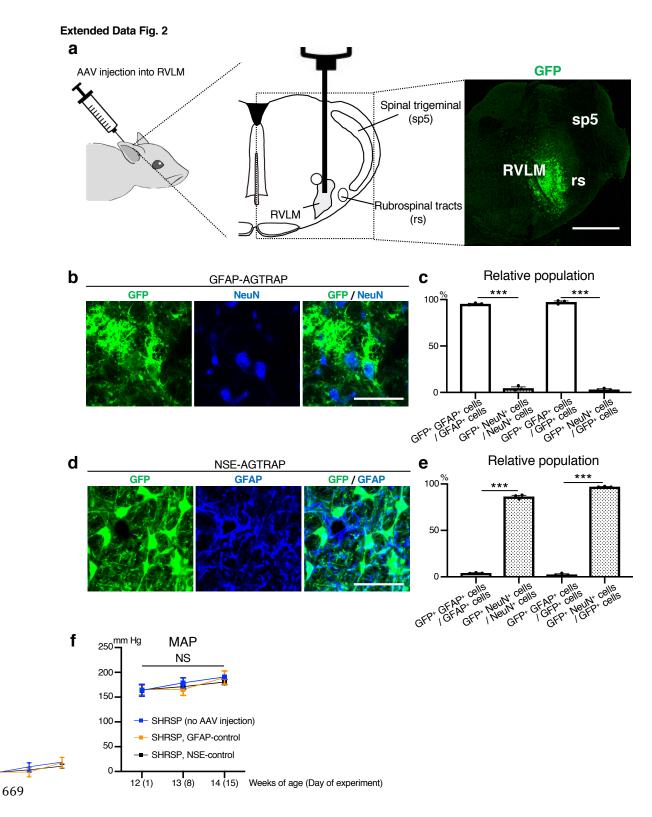

627	SHRSPs either routinely kept in cages (no anesthesia) or subjected to daily anesthesia on the
628	platform of PHM machine without turning on its switch [PHM $(-)$] [$n = 6$ rats for no daily
629	anesthesia and $n = 8$ rats for PHM (–)]. b , Micrographic images anti-NeuN (blue), anti-GFAP
630	(green) and anti-AT1R (red) immunostaining of the RVLM of SHRSPs, either placed in the static
631	treadmill machine or subjected to treadmill running at the velocity of 20 m/minute (30 minutes/day,
632	28 days). Arrows point to anti-AT1R immunosignals that overlap with anti-GFAP, but not anti-
633	NeuN, immunosignals in merged images. Scale bar, 50 μ m. Images are representative of three or
634	four rats. c,d, Quantification of AT1R-positive neurons (c) and astrocytes (d) in the RVLM of
635	SHRSPs with or without 4-week treadmill running. Fifty NeuN ⁺ cells and one hundred GFAP ⁺ cells
636	were analyzed for each rat [c: $P = 0.7056$. d: $P = 0.0048$. $n = 3$ rats for treadmill (-) and $n = 4$ rats
637	for treadmill (+)]. Data are presented as mean \pm s.e.m. ** $P < 0.01$; NS, not significant, unpaired
638	two-tailed Student's t-test.

Fig. 2

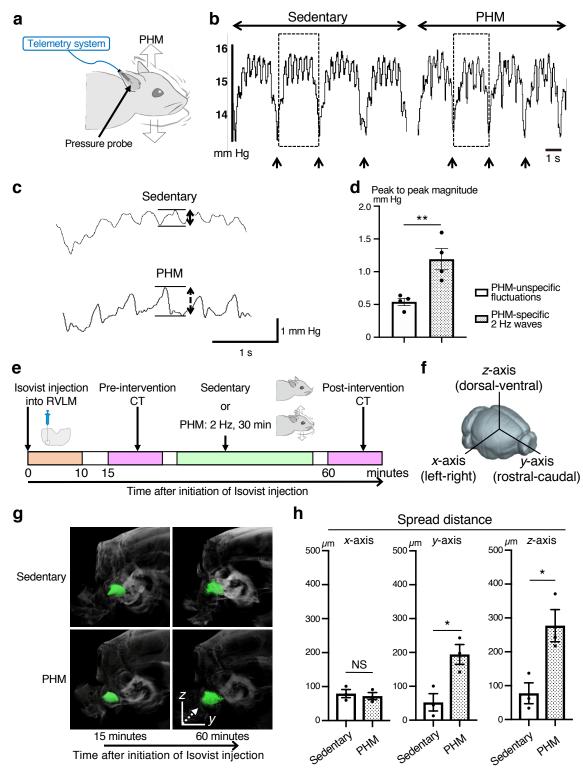



643	the unilateral RVLM of WKY rats and SHRSPs, either left sedentary (daily anesthesia) or subjected
644	to PHM (30 minutes/day, 28 days), with their BP monitored under urethane anesthesia. Injection of
645	valsartan (100 pmol) into the RVLM was conducted at least 2 hours after the injection of Ang II. b,
646	Representative trajectories of BP (top in each panel) and MAP (bottom in each panel). Arrows point
647	to the time of the initiation of RVLM injection of Ang II. c, Quantification of MAP change caused
648	by Ang II injection [$P = 0.9876$ for column 1 vs. 2 and $P = 0.0003$ for column 3 vs. 4. $n = 5$ rats for
649	each group of WKY; $n = 7$ rats for SHRSP, PHM (-); $n = 8$ rats for SHRSP, PHM (+)]. d,e, Effects
650	of RVLM injection of valsartan (100 pmol) examined as in (b,c) [e: $P = 0.9953$ for column 1 vs. 2
651	and $P = 0.0099$ for column 3 vs. 4. $n = 3$ rats for WKY, PHM (-); $n = 5$ rats for WKY, PHM (+); n
652	= 4 rats for each group of SHRSP]. Data are presented as mean \pm s.e.m. ** $P < 0.01$; *** $P < 0.001$;

NS, not significant; one-way ANOVA with Tukey's post hoc multiple comparisons test.

Fig. 3 | **AAV-mediated expression of AGTRAP in RVLM astrocytes, but not neurons, lowers**

656	the BP in SHRSPs. a, Schematic representation of experimental protocol for analysis of the effects
657	of AAV-mediated transduction of RVLM astrocytes or neurons with AGTRAP gene. ITR; inverted
658	terminal repeat. b,c, Astrocyte- (b) and neuron- (c) specific transgene expression by RVLM
659	injection of AAV9 vectors. Micrographic images of GFP (green) and anti-GFAP (b) or anti-NeuN
660	(c) immunostaining (blue) of RVLM of SHRSPs 15 days after the injection of AAV9 vectors
661	indicated at the top of each panel. Scale bars, 50 μ m. Images are representative of three rats. d -f,
662	Time courses (d) and values on Day 15 (e) of MAP (d: $P = 0.0229$ for Day 14. e: $P = 0.0229$ for
663	column 1 vs. 2 and $P = 0.6864$ for column 3 vs. 4. $n = 6$ rats for GFAP-control; $n = 7$ rats for
664	GFAP-AGTRAP; $n = 7$ rats for NSE-control; $n = 6$ rats for NSE-AGTRAP), and 24-hour urinary
665	norepinephrine excretion (f) ($P = 0.0497$ for column 1 vs. 2 and $P = 0.7455$ for column 3 vs. 4. $n =$
666	4 rats for each group) of SHRSPs subjected to RVLM injection of AAV9 vectors. Data are
667	presented as mean \pm s.e.m. * <i>P</i> < 0.05; NS, not significant, one-way ANOVA with Tukey's post hoc
668	multiple comparisons test.


670 Extended Data Fig. 2 | AAV-mediated transduction of RVLM astrocytes or neurons in

F

671	SHRSPs. a, Schematic representation of injection of AAV9 vectors to RVLM. Micrographic image
672	is representative of three rats analyzed in Fig. 3b (15 days after the RVLM injection of GFAP-
673	AGTRAP vector). GFP-derived fluorescence indicates cells expressing the transgene. Scale bar, 1
674	mm. b,c, Efficiency and specificity of astrocyte-specific expression of the transgene. (b)
675	Micrographic images of GFP (green) and anti-NeuN immunostaining (blue) of RVLM of SHRSPs
676	analyzed in Fig. 3b. Scale bar, 50 µm. Images are representative of three rats. (c) Quantification of
677	the efficiency and specificity of transgene expression. The relative populations (%) of GFP- GFAP-
678	double positive (GFP ⁺ GFAP ⁺) or GFP- NeuN-double positive (GFP ⁺ NeuN ⁺) cells were calculated
679	by referring their numbers to those of GFP ⁺ , GFAP ⁺ or NeuN ⁺ cells ($P < 0.0001$ for column 1 vs. 2
680	and $P < 0.0001$ for column 3 vs. 4. $n = 3$ rats for each group). d,e, Efficiency and specificity of
681	neuron-specific expression of the transgene. (d) Micrographic images of GFP (green) and anti-
682	GFAP immunostaining (blue) of RVLM of SHRSPs analyzed in Fig. 3c. Scale bar, 50 μ m. Images
683	are representative of three rats. (e) The efficiency and specificity quantified as in (c) ($P < 0.0001$ for
684	column 1 vs. 2 and $P < 0.0001$ for column 3 vs. 4.). f , BP in SHRSPs injected with control vectors.
685	BP was measured and MAP was quantified as in Fig. 1b ($P = 0.9803$ for Week 12, $P = 0.5914$ for
686	Week 13, and $P = 0.4693$ for Week 14. $n = 6$ rats for no AAV injection; $n = 6$ rats for GFAP-control;
687	n = 7 rats for NSE-control). The data for blue line are identical with those demonstrated with blue
688	line in Extended Data Fig. 1a. Data are presented as mean \pm s.e.m. *** $P < 0.001$; NS, not

- 689 significant; unpaired two-tailed Student's *t*-test (c,e) or one-way ANOVA with Tukey's post hoc
- 690 multiple comparisons test (f).

Fig. 4

692 Fig. 4 | PHM generates pressure waves of low amplitude, but facilitates interstitial fluid

693	movement (flow) in rat RVLM. a, Schematic representation of pressure measurement in rat
694	RVLM. b, Representative pressure waves recorded in rat RVLM during sedentary condition and
695	PHM. Arrows point to the time of transition from inhalation to exhalation detected by simultaneous
696	respiration monitoring. Scale bar, 1 s. Images are representative of three independent experiments
697	with similar results. c, Respiration-unsynchronized pressure changes. Respiration-synchronized
698	pressure waves indicated by dotted rectangles in (b) are presented with high magnification. Right-
699	angled scale bar, 1 s / 1 mm Hg. Note that 2-Hz pressure waves indicated by a two-headed dotted
700	line arrow were specifically generated during PHM. d, Magnitude of PHM-specific and -unspecific
701	pressure changes unsynchronized with respiration. Peak to peak magnitudes indicated by two-
702	headed arrows in (c) were quantified ($P = 0.0089$. $n = 4$ rats for each group, 10 segments analyzed
703	for each rat). e , Schematic representation of experimental protocol for μ CT analysis of Isovist
704	injected in rat RVLM. f, Definition of x-(left-right), y-(rostral-caudal), and z-(dorsal-ventral) axes
705	used in this study. g, Representative Isovist spreading presented on X-ray images. Isovist clusters
706	are indicated by green. Images are representative of three rats. A dotted line arrow indicates the
707	main direction of spreading in this sample. h, Quantification of Isovist spreading along each axis
708	(left chart: $P = 0.6666$. middle chart: $P = 0.0218$. right chart: $P = 0.0244$. $n = 3$ rats for each group).
709	Data are presented as mean \pm s.e.m. * $P < 0.05$; ** $P < 0.01$; NS, not significant, unpaired two-tailed
710	Student's <i>t</i> -test.

а	Property	Value
	Pressure changes (ΔP ; mmHg)	1.19
·	Viscosity (µ; mPa•s)	1–20 #
	Spread distance along <i>x</i> -axis per each PHM cycle (Δx ; μ m)	-0.002
·	Spread distance along y-axis per each PHM cycle (Δy ; μ m)	0.039
	Spread distance along <i>z</i> -axis per each PHM cycle (Δz ; μ m)	0.055
·	Velocity of interstitial fluid flow along x-axis ($u_{\infty,x}$; μ m/s)	-0.004
	Velocity of interstitial fluid flow along y-axis ($u_{\infty,y}$; μ m/s)	0.079
	Velocity of interstitial fluid flow along z-axis ($u_{\infty,z}$; μ m/s)	0.111

b

FSS (τ_x) along x-axis at the cell surface:

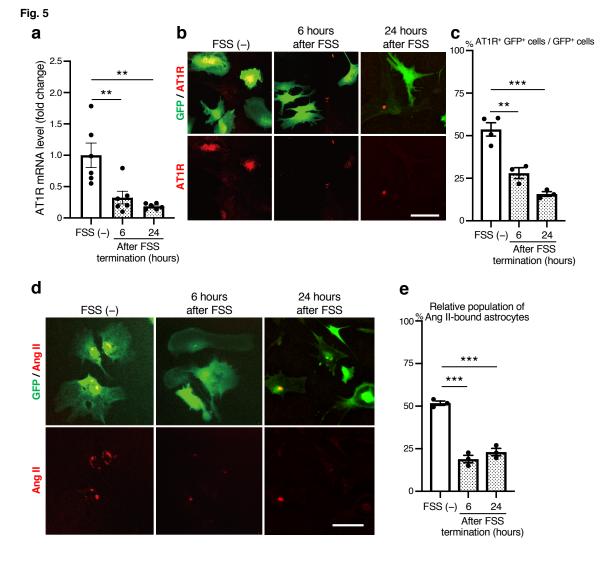
$$\tau_x = \frac{\mu u_{\infty,x}}{\sqrt{K_{p,x}}}$$

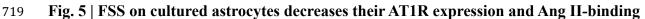
$$K_{p,x} = \frac{\mu u_{\infty,x} \Delta x}{\Delta P}$$

, where $K_{p,x}$ is the Darcy permeability of brain tissue along *x*-axis.

The shear stresses along *y*- and *z*-axes can be calculated in a similar manner.

When the values listed in \mathbf{a} are introduced in these equations, the magnitude of FSS is estimated as 0.59–2.64 Pa.


711

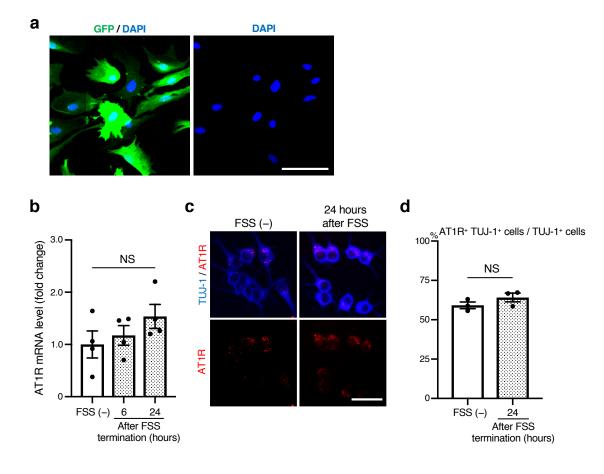

712Supplementary Table 1 | Simulative calculation of the magnitude of PHM-generated FSS on

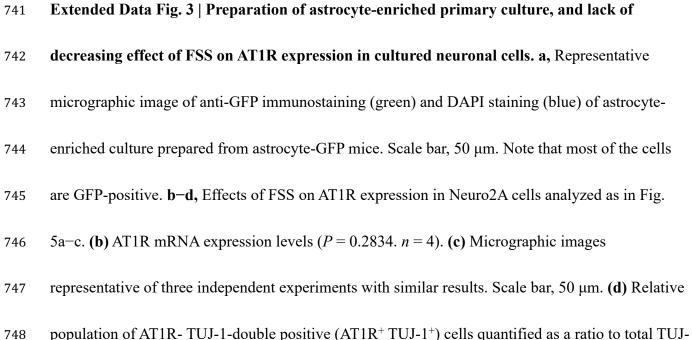
rat RVLM cells. a, Values referenced for simulative calculation of the magnitude of FSS that PHM

generated in rat RVLM. All referenced values except viscosity (marked with \$\$) were drawn from

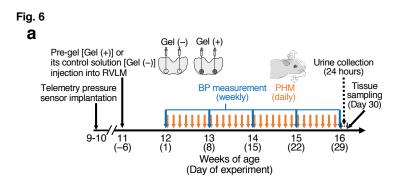
- analyses with IBP measurement and Isovist-enhanced µCT scanning (Fig. 4d,h). The property of
- interstitial fluid viscosity was referenced from previous studies⁵⁷⁻⁵⁹. **b**, Calculation of the magnitude
- of FSS generated by PHM. FSS (τ) at the cell surface can be calculated as reported previously⁶⁰.

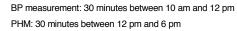
potential in vitro. a–c, AT1R expression in cultured astrocytes with or without exposure to FSS.

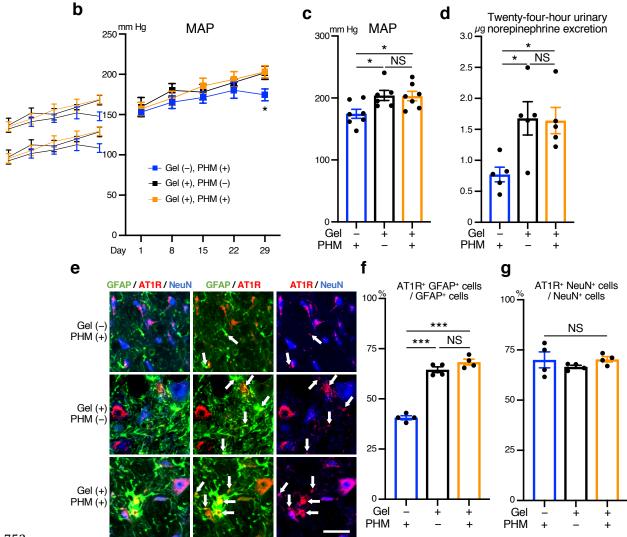

Astrocytes prepared from astrocyte-GFP mice, either left unexposed or exposed to pulsatile FSS


(average 0.7 Pa, 0.5 Hz, 30 minutes) were analyzed 6 and 24 hours after the cessation of 30-minute

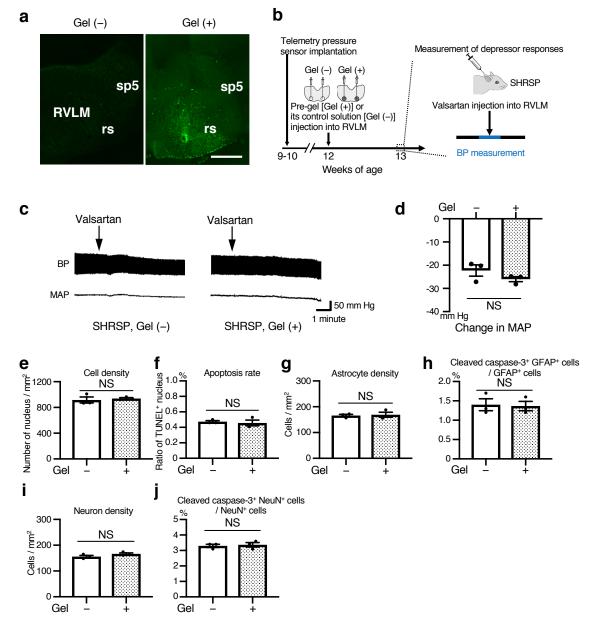
- FSS application. (a) AT1R mRNA expression levels normalized against GAPDH expression and
- scaled as the mean value from control samples (cells left unexposed to FSS) set as 1 (P = 0.0050 for)


725	column 1 vs. 2 and $P = 0.0011$ for column 1 vs. 3. $n = 6$). (b) Microscopic images of anti-AT1R
726	(red) and anti-GFP (green) immunostaining. Images are representative of three or four independent
727	experiments with similar results. Scale bar, 50 µm. (c) Relative population of AT1R- GFP-double
728	positive (AT1R ⁺ GFP ⁺) cells were quantified as a ratio to total GFP-positive (GFP ⁺) cells in each
729	sample [$P = 0.0021$ for column 1 vs. 2 and $P = 0.0002$ for column 1 vs. 3. >100 GFP-positive cells
730	were analyzed in each sample; $n = 4$ for FSS (-), $n = 3$ for 6 and 24 hours after FSS]. d,e, Effect of
731	FSS on astrocytes' Ang II-binding potential. Cultured astrocytes were either left unexposed or
732	exposed to FSS as in (a-c). Six and twenty-four hours after the cessation of 30-minute FSS
733	application, cells were subjected to fluorescent Ang II binding assay. (d) Microscopic images
734	representative of three independent experiments with similar results. Scale bar, 50 μ m. (e) GFP-
735	positive cells with punctate red fluorescence (TAMRA-Ang II-bound astrocytes) were quantified as
736	a ratio (%) to total GFP-positive cells in each sample ($P < 0.0001$ for column 1 vs. 2 and $P = 0.0001$
737	for column 1 vs. 3. 100 GFP-positive cells were analyzed in each sample; $n = 3$ for each group).
738	Data are presented as mean \pm s.e.m. ** $P < 0.01$, *** $P < 0.001$, one-way ANOVA with Tukey's post
739	hoc multiple comparisons test.


Extended Data Fig. 3



- 1-positive (TUJ-1⁺) cells in each sample (P = 0.2308. >100 TUJ-1-positive cells were analyzed in
- each sample; n = 3). Data are presented as mean \pm s.e.m. NS, not significant, one-way ANOVA with
- 751 Tukey's post hoc multiple comparisons test (b) or unpaired two-tailed Student's *t*-test (d).

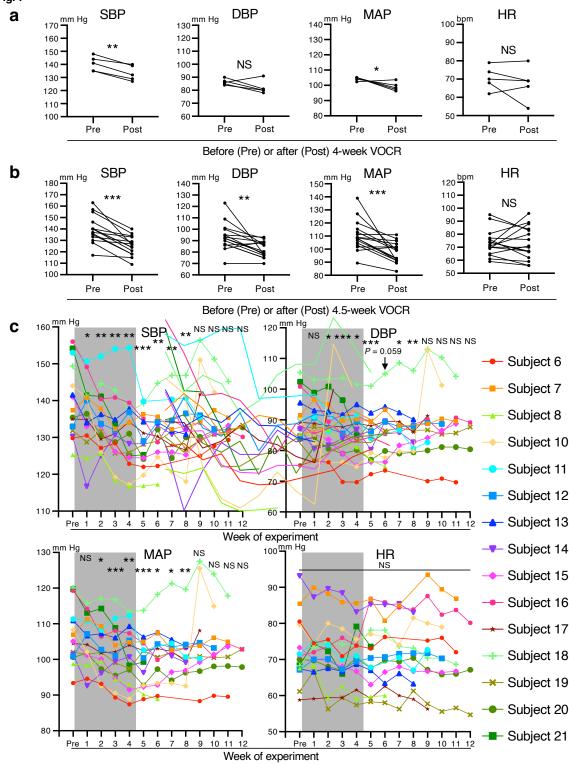




755	protocol for analysis of the effects of PHM with and without PEG hydrogel introduction in bilateral
756	RVLMs of SHRSPs. PHM was applied daily for consecutive 28 days. b-d , Time courses (b) and
757	values on Day 29 (c) of MAP, and 24-hour urinary norepinephrine excretion (d) of SHRSPs,
758	subjected to various combinations of daily PHM application and hydrogel introduction in bilateral
759	RVLMs. Note the absence of significant difference in BP (b,c) and urinary norepinephrine excretion
760	(d) of SHRSPs with hydrogel introduced RVLMs [Gel (+)] between with and without PHM [b: $P =$
761	0.0372 for Day 29. c : $P = 0.0387$ for column 1 vs. 2, $P = 0.0372$ for column 1 vs. 3, and $P = 0.9959$
762	for column 2 vs. 3. $n = 7$ rats for Gel (-), PHM (+) and for Gel (+), PHM (+); $n = 6$ rats for Gel (+),
763	PHM (–); d : $P = 0.0247$ for column 1 vs. 2, $P = 0.0307$ for column 1 vs. 3, and $P = 0.9920$ for
764	column 2 vs. 3. $n = 5$ rats for each group]. e, Micrographic images of anti-GFAP (green), anti-AT1R
765	(red), and anti-NeuN (blue) immunostaining of the RVLM in SHRSPs subjected to various
766	combinations of hydrogel introduction in bilateral RVLMs and 4-week PHM application. Arrows
767	point to anti-AT1R immunosignals that overlap with anti-GFAP, but not anti-NeuN, immunosignals
768	in merged images. Scale bar, 50 μ m. Images are representative of four rats. f , g , Quantification of
769	AT1R-positive astrocytes (f) and neurons (g) in the RVLM. Note the absence of significant
770	difference in the ratio of AT1R-positive astrocytes of SHRSPs with hydrogel introduced RVLMs
771	[Gel (+)] between with and without PHM (f, columns 2 and 3). Fifty NeuN ⁺ cells and one hundred
772	GFAP ⁺ cells were analyzed for each rat (f: $P < 0.0001$ for column 1 vs. 2, $P < 0.0001$ for column 1

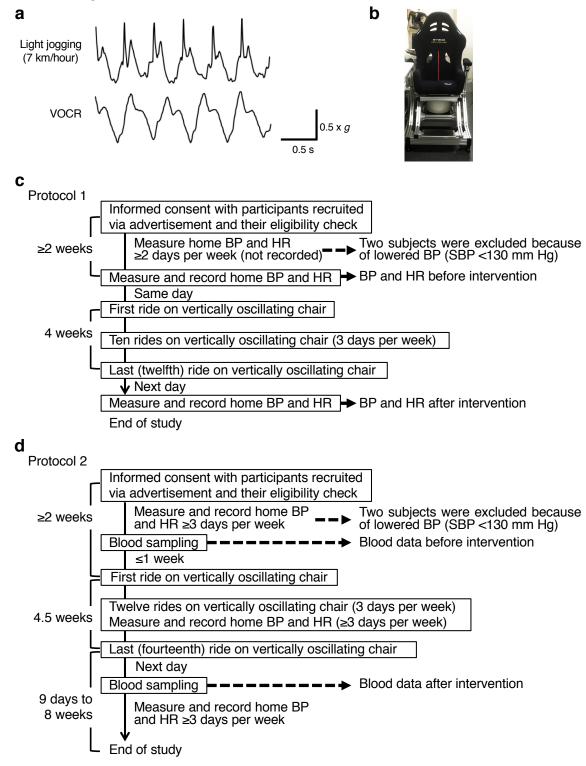
- vs. 3, and P = 0.1597 for column 2 vs. 3. g: P = 0.5182. n = 4 rats for each group). Data are
- presented as mean \pm s.e.m. **P* < 0.05; ****P* < 0.001; NS, not significant, one-way ANOVA with
- Tukey's post hoc multiple comparisons test.

Extended Data Fig. 4



- 779 Introduction of PEG hydrogel in rat RVLM. Twenty-four hours after the injection of control
- ungelatable fluorescent PEG solution (left) or 1 week after the injection of pre-gel fluorescent PEG

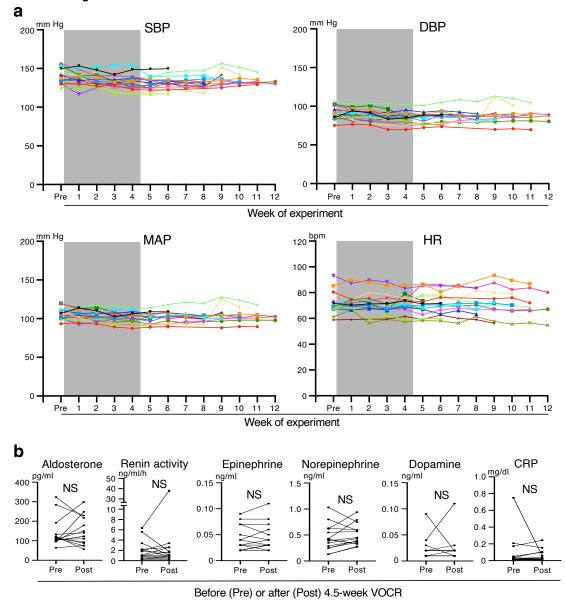
781	solution (right), brainstem samples were prepared. Coronal-section images representative of three
782	rats with similar results are shown. Scale bar, 1 mm. b, Schematic representation of experimental
783	protocol. One week after the injection of pre-gel PEG solution or its ungelatable control, depressor
784	response was analyzed as in Fig. 2. c,d, Representative trajectories (c) and quantification (d) of BP
785	descent upon valsartan injection to the RVLM of SHRSPs with or without hydrogel introduction (d:
786	P = 0.2342. $n = 3$ rats for each group). e - j , Effects of hydrogel introduction on survival/apoptosis
787	of RVLM cells in SHRSPs. Rat RVLM sections prepared in the experiments for Fig. 6e-g [PHM
788	(+), Gel (-) and PHM (+), Gel (-)] were subjected to TUNEL assay (e,f), or combinations of anti-
789	GFAP, anti-NeuN and anti-cleaved caspase-3 immunostaining (g-j). DAPI-positive nuclei (e),
790	GFAP- (g) or NeuN- (i) positive cells were counted, and the relative populations of cells doubly
791	positive for indicated combinations of TUNEL (f) and cleaved caspase-3 (h,j) were quantified. Each
792	value represents an average from five images of 1 x 1-mm area analyzed for each rat (e: $P = 0.6518$.
793	f : $P = 0.6943$. g : $P = 0.7938$. h : $P = 0.8722$. i : $P = 0.1679$. j : $P = 0.7247$. $n = 3$ rats for each group).
794	Data are presented as mean \pm s.e.m. NS, not significant; unpaired two-tailed Student's <i>t</i> -test.

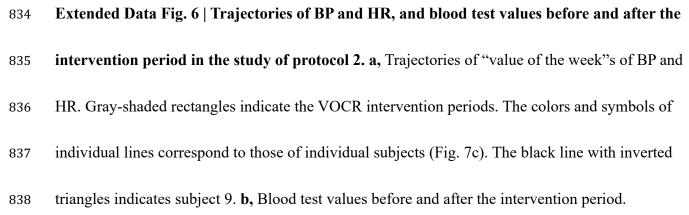

797	"value of the day"s immediately before and after 4-week VOCR in the study of protocol 1 (SBP: P
798	= 0.0018. DBP: <i>P</i> = 0.1509. MAP: <i>P</i> = 0.0459. HR: <i>P</i> = 0.3900. <i>n</i> = 5). b , BP and HR "value of the
799	week"s immediately before and after 4.5-week VOCR in the study of protocol 2 (SBP: $P < 0.0001$.
800	DBP: <i>P</i> = 0.0031. MAP: <i>P</i> = 0.0009. HR: <i>P</i> = 0.9817. <i>n</i> = 15). c , Subject number-corresponding
801	trajectories and statistical analysis of BP and HR in the study of protocol 2. Gray-shaded rectangles
802	indicate the VOCR intervention periods (4.5 weeks). The colors and symbols of individual lines
803	correspond to those of individual subject numbers listed on the right, excluding subject 9 (see
804	Supplementary Table 2). Each "value of the week" was statistically compared with that of the week
805	immediately before the initiation of VOCR intervention (SBP: $P = 0.0293$ for Pre vs. Week 1, $P =$
806	0.00228 for Pre vs. Week 2, $P = 0.0013$ for Pre vs. Week 3, $P = 0.0035$ for Pre vs. Week 4, $P =$
807	0.0002 for Pre vs. Week 5, $P = 0.0078$ for Pre vs. Week 6, $P = 0.0035$ for Pre vs. Week 7, $P =$
808	0.0075 for Pre vs. Week 8, $P = 0.2132$ for Pre vs. Week 9, $P = 0.1314$ for Pre vs. Week 10, $P =$
809	0.0973 for Pre vs. Week 11, and $P = 0.3993$ for Pre vs. Week 12. DBP: $P = 0.3022$ for Pre vs. Week
810	1, $P = 0.0436$ for Pre vs. Week 2, $P = 0.0010$ for Pre vs. Week 3, $P = 0.0100$ for Pre vs. Week 4, $P =$
811	0.0006 for Pre vs. Week 5, $P = 0.0599$ for Pre vs. Week 6, $P = 0.0488$ for Pre vs. Week 7, $P =$
812	0.0096 for Pre vs. Week 8, $P = 0.9346$ for Pre vs. Week 9, $P = 0.7850$ for Pre vs. Week 10, $P =$
813	0.0769 for Pre vs. Week 11, and $P = 0.3137$ for Pre vs. Week 12. MAP: $P = 0.1075$ for Pre vs. Week
814	1, $P = 0.0132$ for Pre vs. Week 2, $P = 0.0008$ for Pre vs. Week 3, $P = 0.0063$ for Pre vs. Week 4, $P =$

815	0.0003 for Pre vs. Week 5, $P = 0.0251$ for Pre vs. Week 6, $P = 0.0136$ for Pre vs. Week 7, $P =$
816	0.0071 for Pre vs. Week 8, $P = 0.6795$ for Pre vs. Week 9, $P = 0.4295$ for Pre vs. Week 10, $P =$
817	0.0704 for Pre vs. Week 11, and $P = 0.3662$ for Pre vs. Week 12. HR: $P = 0.6287$ for Pre vs. Week
818	1, $P = 0.7840$ for Pre vs. Week 2, $P = 0.1573$ for Pre vs. Week 3, $P = 0.5380$ for Pre vs. Week 4, $P = 0.7840$ for Pre vs. Week 2, $P = 0.1573$ for Pre vs. Week 3, $P = 0.5380$ for Pre vs. Week 4, $P = 0.1573$ for Pre vs. Week 3, $P = 0.5380$ for Pre vs. Week 4, $P = 0.1573$ for Pre vs. Week 3, $P = 0.5380$ for Pre vs. Week 4, $P = 0.1573$ for Pre vs. Week 3, $P = 0.5380$ for Pre vs. Week 4, $P = 0.1573$ for Pre vs. Week 3, $P = 0.5380$ for Pre vs. Week 4, $P = 0.5380$ for Pre vs. Week
819	0.7331 for Pre vs. Week 5, $P = 0.6995$ for Pre vs. Week 6, $P = 0.9110$ for Pre vs. Week 7, $P =$
820	0.9875 for Pre vs. Week 8, $P = 0.5866$ for Pre vs. Week 9, $P = 0.9566$ for Pre vs. Week 10, $P =$
821	0.6487 for Pre vs. Week 11, and $P = 0.9905$ for Pre vs. Week 12. $n = 15$ for Pre and Weeks 1 to 5, n
822	= 13 for Week 6, $n = 12$ for Week 7, $n = 11$ for Weeks 8 and 9, $n = 9$ for Week 10, $n = 7$ for Week
823	11, $n = 3$ for Week 12). * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; NS, not significant, paired two-tailed

824 Student's *t*-test.

Extended Data Fig. 5


825


826 Extended Data Fig. 5 | Vertically oscillating chair that reproduces mechanical impacts on the

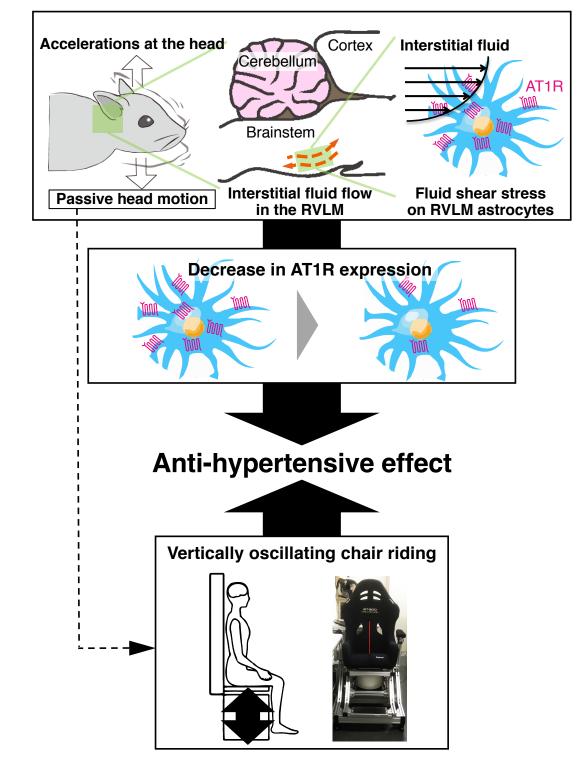
head during light jogging, and protocols of clinical study to examine antihypertensive effect of VOCR on hypertensive adult humans. a, Vertical accelerations generated at adult human head during light jogging on a treadmill machine (velocity: 7 km/hour) and VOCR (frequency: 2 Hz). The VOCR system was adjusted to produce ~1.0 x g vertical acceleration peaks. Right-angled scale bar, 0.5 x g / 0.5 s. Images are representative of three independent experiments with similar results. b, Photograph of the chair. c,d, Protocol 1 (c) and 2 (d).

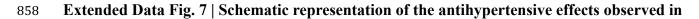
Extended Data Fig. 6

839	Significant change was not observed in any of tested parameters. NS, not significant; paired two-
840	tailed Student's <i>t</i> -test. (Aldosterone: $P = 0.6265$. Renin activity: $P = 0.3794$. Epinephrine: $P =$
841	0.5103. Norepinephrine: $P = 0.2653$. Dopamine: $P > 0.9999$. CRP: $P = 0.4412$.). A participant
842	(subject 18) showed a large increase in plasma renin activity after VOCR. We advised him to
843	consult his primary care physician, who ruled out the disqualifying conditions for this study (e.g.,
844	severe renal disease; see Methods) based on comprehensive evaluation. Therefore, we did not
845	exclude subject 18 from our statistical analysis of BP and HR.

Supplementary Table 2

	Age (years)	Period since diagnosis o self-recognition as hypertension	Smoking		SBP/DBP (mm Hg) and HR Habitual exercise just before (left) and after			
Subject #	Body weight (kg) Height (cm) BMI	Health problems and diseases other than hypertension	Alcohol (if yes, how often)	Current medication (dose per day)		VOCR period (motor) bout of V	onth of first - I	
	Male 60	13 years	No	Azilsartan · Amlodin (20 mg • 5 mg)	Walking	148/85 62	139/78 66	
1	73 165.2 27.2	Hyperuricemia	Almost every day	Febuxostat (10 mg) Bisoprolol fumarate (5 mg)	90 minutes (3 or 4 times)	February	- March	
	Female 53	14 years	No		Sit-ups 2 x 30	135/90 70	127/81 69	
2	50 159 19.8	None	Almost every day	None	times (every day)	March		
	Male 37	19 years	No	. None	Judo	135/86 68	129/91 54	
3	113 186 32.7	None	Occasionally		(once)	Mar	ch	
	Female 60	6 years	No			141/87 79	132/80 80	
4	73 156 30	None	Occasionally	None	None	April -	April - May	
_	Female 52	1 year	No	Azilsartan (20 mg)		144/84 74	140/80 69	
5	50 148 22.8	None	Occasionally	Amlodin (2.5 mg)	None	April -	Мау	
	Female 57	10 years	No			128/70 77	109/70 76	
6	68 164 25.3	None	Occasionally	None	None	November - December		
	Male 61	Uncertain (<1 year)	No	Metformin hydrochloride (1000 mg) Rosuvastatin calcium (5 mg) Sitagliptin phosphate hydrate (50 mg)	Walking 120 minutes (once)	146/100 92	128/86 84	
7	67 168 23.7	Diabetes mellitus Hyperlipidemia	No			November -	December	
	Male 46	3 months	Yes	Montelukast sodium (10 mg) Ebastine (10 mg)	Walking 60 minutes	135/95 61	118/78 59	
8	72 178 22.7	Allergic rhinitis	Occasionally		(once) Stretching 30 minutes (once)	November - December		
	Male 55	7 months	No	None	Karate (2 or 3 times)	156/89 74	145/94 67	
9	87 173 29.1	Diabetes mellitus	No			November -	December	
	Male 70	6 months	No		Walking 40 minutes (4 times)	140/92 81	121/79 89	
10	62 166 22.5	None	Occasionally	None		November -	December	
	Female 60	Uncertain (>1year)	No		None	155/92 74	136/81 67	
11	45 157 18.3	Breast cancer (post-surgery)	Almost every day			November -	December	
10	Male 68 72	Uncertain (<1 year)	No	None	None	133/86 70	129/88 70	
12	171 24.6	None	No			January -	February	
10	Female 56	7 years	No	Telmisartan • Amlodipine (40 mg • 5 mg)	Nie	137/95 65	133/93 71	
13	58 160 22.7	None	No		None	January -	February	
14	Male 49	Uncertain (<1 year)	No	- Sitagliptin phosphate hydrate (50 mg) Acetazolamide (250 mg)		140/90 95	124/77 83	
	69 168 24.5	Diabetes mellitus	No		None	January -	February	


	Sex Age (years)	Period since diagnosis or self-recognition as	Smoking	Current medication (dose per day)		SBP/DBP (mm Hg) and HR		
Subject #	# Body weight (kg) Height (cm) BMI	hypertension Health problems and diseases other than hypertension	Alcohol (if yes, how often)		Habitual exercise (times per week)	(bpm) just before	e (left) and after eriod (month of	
	Male 43	Uncertain (<1 year)	No			140/87	124/75	
15	69 165 25.3	None	Occasionally	None	None	76 August - S	62 September	
	Female 48	15 years	No		Walking 60 minutes	157/101 72	140/92 96	
16	45.3 157.2 18.3	None	Occasionally	None	(6 times)	October - November		
	Male 65	8 years	Yes	None		140/93 59	134/89 56	
17	60.1 167.1 21.5	None	Almost every day		None	October		
	Male 55	8 years	No	Azilsartan (20 mg) Lansoprazole (15 mg) Atorvastatin calcium hydrate (10 mg) Benidipine hydrochloride (4 mg)	None	172/123 69	115/78 88	
18	93.4 168.1 33.1	Reflex esophagitis Hyperlipidemia	Almost every day			November -		
	Male 41	2 years	No		Walking	130/83 64	127/89 56	
19	92.3 183.2 27.5	None	Almost every day	None	60 minutes (3 times)	January - February		
	Female 65	1 year	No	Amlodipine besilate (5 mg) Atorvastatin calcium hydrate (10 mg) Limaprost alfadex (15 μg) Loxoprofen sodium hydrate (120 mg) Rebamipide (200 mg)		Swimming	136/87	118/75
20	48.7 158.6 19.4	Hyperlipidemia Lumbar spinal canal stenosis (post-surgery)	Almost every day		40 minutes (5 times)	70 January -	67 February	
	Male 32	2 years	No			163/109 71	126/86 80	
21	65.1 168.9 22.8	None	Almost every day	None	None	January -		


850 Supplementary Table 2 | Information of subjects who participated in the human studies.

Subjects 1–5 were participants in the study of protocol 1, and subjects 6–21 participated in the
study of protocol 2. Subject 9 was excluded from our statistical analysis because of high serum CRP
value before VOCR (2.85 mg/dL), which made it difficult to rule out acute infection, a possible
disqualifier, at the time of initiation of VOCR, albeit the lack of specific complaint or local
symptom related to acute physical problem(s). His serum CRP after the VOCR period was within

the normal range (0.12 mg/dL).

Extended Data Fig. 7

859	PHM of hypertensive rats and VOCR of hypertensive humans. The results from our animal
860	experiments indicate that cyclical mechanical impact on the head generates interstitial fluid
861	movement in the RVLM, leading to FSS-induced decrease in AT1R expression in astrocytes in situ,
862	and thereby ameliorates hypertension. Our studies also show that the VOCR of hypertensive adult
863	humans, which produces vertical accelerations at their heads, lowers their BP.

864 Methods

865	Animal experiments and human studies. Animals were housed under a 12/12 hour light-dark
866	cycle with controlled temperature (23–25°C), and treated with humane care under approval from
867	the Animal Care and Use Committee of National Rehabilitation Center for Persons with Disabilities
868	(approval number: 30-07). Male SHRSP/Izm and WKY/Izm rats were provided from the Disease
869	Model Cooperative Association (Kyoto, Japan) and astrocyte-GFP mice (Aldh1L1-GFP mice) ³⁷
870	were obtained from GENSAT (New York, NY), acclimated to the laboratory environments for at
871	least 1 week, randomly divided into experimental groups, and used for experiments.
872	All participants in our human studies provided written informed consent. The studies were
873	approved by the Ethics Committees of the Iwai Medical Foundation and the National Rehabilitation
874	Center for Persons with Disabilities (approval number: 30-01).
875	
876	Chemicals and antibodies. All the chemicals were purchased from Sigma-Aldrich unless noted
877	otherwise. Primary antibodies and their dilution rates used in this study are as follows: mouse
878	monoclonal anti-GFAP (MAB360; Millipore, Billerica, MA) at 1:1,000; rabbit polyclonal anti-
879	GFAP (Z0334; Dako, Glostrup, Denmark) at 1:1,000; chicken polyclonal anti-GFAP (ab4674;
880	Abcam, Cambridge, UK) at 1:2,000; rabbit polyclonal anti-cleaved caspase-3 (9661; Cell Signaling
881	Technology, Danvers, MA) at 1:1,000; mouse monoclonal anti-NeuN (MAB377; Millipore) at

882	1:200; rabbit polyclonal anti-NeuN (ABN/8; Millipore) at 1:1,000, rabbit polyclonal anti-AI IR
883	(HPA003596; Sigma-Aldrich, St. Louis, MO) at 1:200; rabbit polyclonal anti-AGTRAP
884	(HPA044120; Sigma-Aldrich) at 1:1000; rabbit polyclonal anti-GFP (598; MBL, Nagoya, Japan) at
885	1:2,000; chicken polyclonal anti-GFP (ab13970; Abcam) at 1:2,000; mouse monoclonal anti-TUJ-1
886	(ab78078; Abcam) at 1:1000. Secondary antibodies conjugated with Alexa Fluor 350, 488, 568,
887	633, and 647 (Thermo Fisher Scientific, Waltham, MA) were used at the dilution rate of 1:400. Cell
888	nuclei were stained with DAPI (D9542; Sigma-Aldrich).
889	

1 0 0 0

890 PHM application to rats. Rats were subjected to PHM in a prone position using a platform that we developed to move their heads up and down²⁴ (schematically represented in Fig. 1a). During PHM, 891 animals were kept anesthetized with 1.5% isoflurane except for the µCT study, in which we used 892 893 intraperitoneal injection of 2 mg/kg of midazolam (Sandoz, Basel, Switzerland), 2.5 mg/kg of butorphanol (Meiji Seika, Tokyo, Japan) and 0.15 mg/kg of medetomidine (Kyoritsu Seiyaku, 894 Tokyo, Japan) for anesthesia. Body temperature of tested animals was maintained using a light 895 896 heater. The PHM system was set up to reproduce the head motion (5 mm, 2 Hz) of treadmill running (20 m/minute) which made 1.0 x g vertical acceleration peaks at the head of rats 897 examined²⁴. The control rats in PHM experiments were anesthetized likewise, and placed in a prone 898 899 position with their heads on the platform that was left static.

901	Treadmill running of rats. Rats were subjected to compulsive running using a belt drive treadmill
902	equipped with an electrical shock system (MK-680S; Muromachi, Tokyo, Japan). We habituated the
903	rats to the treadmill system by placing them in the machine several times without turning on the
904	treadmill belt during the acclimation period. The electrical stimulation was turned on only once or
905	twice during the first 5 minutes of the 30-minute treadmill running on the first day of the 4-week
906	treadmill running period. Thereafter, we did not need to turn on the electrical shock system to have
907	the animals keep running, perhaps because the velocities we employed (20 m/minute) were
908	moderate. The control rats in treadmill running experiments were placed on the belt daily for 30
909	minutes without turning on the treadmilling.
910	
911	Measurement of BP and HR of rats by radio-telemetry. Rats were implanted with a telemetry
912	pressure probe (Millar, Houston, TX) in the abdominal aorta at 9–10 weeks of age, following the
913	
	surgical procedure described previously ⁶¹ . Rats were allowed to recover for at least 14 days before
914	the initiation of experimental interventions or analyses. During the periods of experimentation that
914 915	
	the initiation of experimental interventions or analyses. During the periods of experimentation that

Mean arterial pressure (MAP) was calculated with a standard formula as follows: MAP = diastolic
BP (DBP) + 1/3 [systolic BP (SBP) – DBP].

920

Measurement of urinary norepinephrine excretion of rats. Urine excreted during the indicated
24-hour period was collected by means of a metabolic cage (KN-646; Natsume Seisakusho, Tokyo,
Japan), and stored at -80°C until assayed. Excretion of urinary norepinephrine was calculated by
multiplying its concentration measured using an enzyme-linked immunosorbent assay (ELISA) kit
(KA1891; Abnova, Taipei, Taiwan) with the urine volume.

926

Microinjection into rat RVLM. Rats were anesthetized with intraperitoneal injection of 927 midazolam, butorphanol, and medetomidine except for Ang II or valsartan injection studies, in 928 929 which we used 1.2–1.4 g/kg of urethane (Sigma-Aldrich), and subjected to microinjection as described previously⁶². In brief, a 25s-G microsyringe (Hamilton, Bonaduz, Switzerland) was 930 stereotaxically positioned on anesthetized rats after exposure of dorsal surface of medulla. The 931 932 needle placement was defined according to an atlas of the rat with stereotaxic coordinates⁶³; anteroposterior angle: 18°, 1.8 mm lateral to the calamus scriptorius, 3.5 mm ventral to the dorsal 933 surface of the medulla. The placement of the needle tip in RVLM was confirmed by ensuring the 934 pressure response to a test-dose injection of L-glutamate^{12,64} (100 nL of 1 mmol/L in PBS). 935

936	Microinjection of various compounds or mediums was made through a needle reinserted at the
937	same coordinates with fixed infusion rates using a microsyringe pump instrument (KD scientific,
938	Holliston, MA). Except for experiments to analyze pressor or depressor responses, we held the
939	syringe for 5 minutes after the injection to avoid reflux, pulled out the needle carefully, and sutured
940	the skin. The volumes and rates of microinjection were as follows; Ang II (Auspep, Tullamarine,
941	Australia) and valsartan (Tocris Bioscience, Bristol, UK): 100 nL of 1 mmol/L in PBS at 0.1
942	$\mu L/minute,$ AAV solutions: 300 nL at 0.03 $\mu L/minute,$ PEG solutions: 1 μL at 0.1 $\mu L/minute,$
943	Isovist: 1 μ L at 0.2 μ L/minute.
944	
945	Analysis of pressor/depressor responses. Rats implanted with a telemetry pressure probe were
946	anesthetized with urethane, and subjected to the analysis of pressor/depressor responses. Monitoring
947	the BP, we injected Ang II or valsartan (100 pmol) stereotaxically into the unilateral RVLM
947 948	the BP, we injected Ang II or valsartan (100 pmol) stereotaxically into the unilateral RVLM following the microinjection procedures described above. The injection side (right or left) was
948	following the microinjection procedures described above. The injection side (right or left) was
948 949	following the microinjection procedures described above. The injection side (right or left) was chosen randomly. When both pressor and depressor responses were analyzed, at least 2 hours

953 Production of AAV vectors. To obtain astrocyte- and neuron-specific transduction, we used AAV9

954	vectors that expressed a transgene under the control of mouse GFAP and rat NSE promoters,
955	respectively. The astrocyte-specific GFAP promoter consists of 0.6-kb hybrid fragments containing
956	ABC1D genomic regions upstream of the mouse GFAP gene ⁶⁵ . The neuron-specific NSE promoter
957	is composed of the 1.2-kb genomic region upstream of the rat NSE gene ⁶⁶ . Full-length rat AGTRAP
958	cDNA was synthesized (Eurofins Genomics, Tokyo, Japan) and inserted into plasmid pAAV-GFAP-
959	GFP-P2A-Cre-woodchuck hepatitis virus post-transcriptional regulatory element (WPRE)-simian
960	virus 40 polyadenylation signal (SV40pA) and pAAV-NSE-GFP-P2A-Cre-WPRE-SV40pA to
961	generate pAAV-GFAP-GFP-P2A-AGTRAP-WPRE-SV40pA and pAAV-NSE-GFP-P2A-
962	AGTRAP-WPRE-SV40pA. pAAV-GFAP-GFP-WPRE-SV40pA and pAAV-NSE-GFP-WPRE-
963	SV40pA were used for experimental controls. Recombinant single-strand AAV2/9 vectors were
964	produced by transfection of HEK293T cells (Thermo Fisher Scientific) with the respective pAAV
965	expression plasmid, pAAV2/9 and a helper plasmid (Stratagene, La Jolla, CA) as previously
966	described ⁶⁷ . After harvesting conditioned medium, the viral particles were precipitated using
967	polyethylene glycol 8000 and iodixanol continuous gradient centrifugation as previously
968	described ⁶⁸ . The genomic titer of purified AAV9 vectors was determined by qPCR that targeted the
969	WPRE sequence.

Measurement of pressure in rat RVLM. Intra-brainstem pressure (IBP) was measured using a

972	blood pressure telemeter by means of the procedure we previously reported ^{24,69} . The pressure sensor
973	was placed in rat RVLM using the same approach with the microinjection described above. During
974	IBP measurement, respiration was monitored using a respiration sensor attached to the tested rats.
975	Low-pass (50 Hz) filtered IBP waves were analyzed using LabChart 8 software (ADInstruments).
976	We observed \sim 0.5-Hz respiration-synchronized IBP changes with \sim 2.5 mm Hg magnitude (peak to
977	peak) as well as 2-Hz PHM-specific waves with ~1.2 mm Hg magnitude (peak to peak).
978	
979	In vivo analysis of the distribution dynamics of interstitial fluid in rat RVLM using μ CT.
980	Isovist (Bayer, Berlin, Germany) was stereotaxically microinjected into RVLM of anesthetized 12-
981	week-old male WKY rats following the procedure described above, and visualized using μCT
982	(inspeXio SMX-100CT, Shimadzu, Kyoto, Japan). After Isovist injection, rats were subjected to
983	two serial brain μ CT scans between which PHM was either applied or left unapplied (kept
984	sedentary) for 30 minutes (Fig. 4e). μ CT images were analyzed using software for 3D morphometry
985	(TRI/3D-BON-FCS64, RATOC System, Tokyo, Japan). Voxels with ≥1.02 times signal intensity as
986	compared with that of air was defined as Isovist cluster in rat RVLM.
987	
988	Simulative calculation of the magnitude of FSS on the cells in rat RVLM during PHM. We
989	calculated interstitial fluid flow-derived FSS imposed on cells in rat RVLM by referring the results

990	from our μ CT analysis (Fig. 4g,h) to the Henry Darcy's law, which defines the flux density of
991	penetrating fluid per unit time ⁷⁰). The velocity of interstitial fluid flow (u) is assumed to approach
992	the superficial velocity (u_{∞}) and zero $(u=0)$ at the cell surface (i.e., a no-slip condition). Using these
993	two boundary conditions together with the Brinkman equation, FSS (τ) at the interstitial cell surface
994	can be obtained as described in Supplementary Table 160.
995	
996	Cell culture. Primary cultures of astrocytes were prepared from the cortex of neonatal (2–3 days
997	old) astrocyte-GFP mouse ³⁷ pups by physical dissociation as previously described ⁷¹ . Cells were
998	maintained in DMEM/F12 supplemented with 10% FBS (GE Healthcare Life Science,
999	Marlborough, MA), 100 I. U./mL penicillin and 100 μ g/mL streptomycin at 37°C in a humidified
1000	incubator (5% CO ₂ and 95% air). Culture medium was replaced with fresh one every 3–4 days until
1001	confluent. Astrocytes were detached with trypsin/EDTA (0.05% trypsin, 0.53 mM EDTA in PBS),
1002	replated at a ratio of 1:10, and grown to approximately 80–90% confluence prior to use.
1003	Mouse neuroblastoma-derived Neuro2A cells (provided from Dr. Yokota, Tokyo Medical and
1004	Dental University, Japan), which exhibit neuronal phenotypes and morphology ^{39,40} , were cultured in
1005	DMEM (Wako, Japan) supplemented with 10% FBS, 100 I. U./mL penicillin and 100 $\mu g/mL$
1006	streptomycin at 37°C in a 5% CO ₂ incubator.
1007	

1008	Application of FSS to astrocytes or Neuro2A cells in culture. Astrocytes or Neuro2A cells grown
1009	in a poly-D-lysine-coated 35-mm culture dish (Corning Life Sciences, Corning, NY) were exposed
1010	to pulsatile FSS (average 0.7 Pa) for 30 minutes. As we previously reported ^{23,24,35} , a parallel plate
1011	flow-chamber and a roller pump (Masterflex; Cole-Parmer, Vernon Hills, IL) were used to apply
1012	FSS. The flow-chamber, which was composed of a cell culture dish, a polycarbonate I/O unit, and a
1013	silicone gasket, generated a 23-mm-long 10-mm-wide 0.5-mm-high flow channel. To maintain pH
1014	and temperature of culture medium, we used a 5% CO2-containing reservoir and a temperature-
1015	controlled bath.
1016	
1017	Tissue preparation and immunostaining (immunohistochemical or immunocytochemical
1017 1018	Tissue preparation and immunostaining (immunohistochemical or immunocytochemical analysis). Rats were anesthetized with intraperitoneal injection of midazolam, butorphanol, and
1018	analysis). Rats were anesthetized with intraperitoneal injection of midazolam, butorphanol, and
1018 1019	analysis). Rats were anesthetized with intraperitoneal injection of midazolam, butorphanol, and medetomidine, and perfused transcardially with 4% paraformaldehyde (PFA; TAAB Laboratories
1018 1019 1020	analysis). Rats were anesthetized with intraperitoneal injection of midazolam, butorphanol, and medetomidine, and perfused transcardially with 4% paraformaldehyde (PFA; TAAB Laboratories Equipment, Aldermaston, UK). The brainstems were excised and post-fixed with 4% PFA in PBS
1018 1019 1020 1021	analysis). Rats were anesthetized with intraperitoneal injection of midazolam, butorphanol, and medetomidine, and perfused transcardially with 4% paraformaldehyde (PFA; TAAB Laboratories Equipment, Aldermaston, UK). The brainstems were excised and post-fixed with 4% PFA in PBS overnight at 4°C. The tissues were cryoprotected by soaking in 20% sucrose/PBS for 24 hours and
1018 1019 1020 1021 1022	analysis). Rats were anesthetized with intraperitoneal injection of midazolam, butorphanol, and medetomidine, and perfused transcardially with 4% paraformaldehyde (PFA; TAAB Laboratories Equipment, Aldermaston, UK). The brainstems were excised and post-fixed with 4% PFA in PBS overnight at 4°C. The tissues were cryoprotected by soaking in 20% sucrose/PBS for 24 hours and in 30% sucrose/PBS for additional 24 hours at 4°C. Fixed brainstems were frozen in optimal cutting

1026	Burlington, MA) in Tris-buffered saline, blocked with, and stained by incubating with primary
1027	antibodies at appropriate dilutions followed by their species-matched secondary antibodies. Cell
1028	nuclei were stained with DAPI (Sigma-Aldrich). The slides were mounted with ProLong Gold
1029	Antifade Reagent (Thermo Fisher Scientific) and images were captured with a BZ-9000 digital
1030	microscope system (Keyence, Osaka, Japan).
1031	For immunocytochemistry, cultured cells were fixed with 4% PFA in PBS for 20 minutes at
1032	room temperature (RT) and permeabilized and blocked with 0.1% Triton X-100 and 10% FBS
1033	(Thermo Fisher Scientific) in PBS for 30 minutes at RT. The cells were then incubated with primary
1034	antibodies for 2 hours and then with secondary antibodies for 1 hour at RT.
1035	
1036	Quantitative PCR Analysis (reverse transcription and real-time PCR). 500 ng of total RNA
1037	extracted from cell culture were subjected to reverse transcription, using ISOGEN II (NIPPON
1038	GENE, Tokyo, Japan) and PrimeScript RT reagent Kit (TaKaRa, Kusatsu, Japan). The resulting
1039	cDNA was subjected to real-time PCR analysis using glyceraldehyde-3-phosphate dehydrogenase
1040	(GAPDH) as an internal control in Applied Biosystems 7500 Real Time PCR System with Power
1041	SYBR Green PCR Master Mix (Thermo Fisher Scientific).
1042	The primers (sense and antisense, respectively) were as follows: mouse Agtr1a (AT1R-encoding
1043	gene); 5'-AAAGGCCAAGTCGCACTCAAG-3'

1044 and 5'-TCCACCTCAGAACAAGACGCA-3',

mouse *Gapdh* (GAPDH-encoding gene); 5'-GCAAAGTGGAGATTGTTGCCAT-3' and
5'-CCTTGACTGTGCCGTTGAATTT-3', WPRE (for genomic titration of purified AAV9 vectors);
5'-CTGTTGGGCACTGACAATTC-3' and 5'-GAAGGGACGTAGCAGAAGGA-3'.

1048

1049	Fluorescent Ang II binding assay. Six or twenty-four hours after the termination of FSS
1050	application, cultured astrocytes were incubated with Ang II type 2 receptor inhibitor, PD123319
1051	(10 ⁻⁶ mol/L in PBS; ab144564, Abcam), for 20 minutes, and then with tetramethylrhodamine
1052	(TAMRA)-labeled Ang II (10 ⁻⁸ mol/L in PBS; AS-61181, AnaSpec, Fremont, CA) for 30 minutes.
1053	After 3 times wash with PBS, samples were fixed and subjected to anti-GFP immunostaining to
1054	strengthen the GFP-derived green fluorescence signals and corroborate our analysis on astrocytes
1055	prepared from astrocyte-GFP mice as well as to secure the binding of fluorescent Ang II. Green and
1056	red fluorescence was viewed with a fluorescence microscope (BZ-9000 HS, Keyence). Samples
1057	from astrocytes left unexposed to FSS were prepared and viewed likewise, and provided an
1058	experimental control.
1059	
1060	Hindrance of interstitial fluid movement (flow) by introduction of hydrogel in rat RVLM. Just

1061 before use, a pre-mixture of polyethylene glycol (PEG) with functional groups (25 g/L in PBS) was

1062	prepared from tetra-armed thiol-terminal (TetraPEG-SH) (Yuka-Sangyo, Tokyo, Japan) and
1063	acrylate-terminal (Tetra-PEG-ACR) (JenKem Technology, TX, USA) PEG solutions as we
1064	previously described ²⁴ . Tetra-armed polyethylene glycol without functional groups (25 g/L in PBS)
1065	was used as an ungelatable control. For the analysis of hydrogel distribution in rat RVLM, we used
1066	Tetra-PEG-SH fluorescently labeled with a thiol-reactive probe (Merck KGaA, Darmstadt,
1067	Germany). Microinjection of PEG solutions into rat RVLM was conducted as described above.
1068	To specifically analyze the consequences of PHM and hydrogel introduction by minimizing
1069	possible invasive influences of microinjection itself, we gave 1-week recovery time before the first
1070	BP measurement, and then applied PHM to the rats (daily 30 minutes, 14 or 28 days). Immediately
1071	subsequent to post-PHM 24-hour urine collection (Fig. 6a), rats were sacrificed by transcardial
1071 1072	subsequent to post-PHM 24-hour urine collection (Fig. 6a), rats were sacrificed by transcardial infusion of PFA and subjected to histological analysis.
1072	
1072 1073	infusion of PFA and subjected to histological analysis.
1072 1073 1074	infusion of PFA and subjected to histological analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Rat
1072 1073 1074 1075	infusion of PFA and subjected to histological analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Rat RVLM sections were stained using a TUNEL kit (Biotium, Fremont, CA) according to the
1072 1073 1074 1075 1076	infusion of PFA and subjected to histological analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Rat RVLM sections were stained using a TUNEL kit (Biotium, Fremont, CA) according to the manufacturer's protocols, counterstained with DAPI, and then viewed using a 20x objective with a

1081	Measurement of accelerations at human head. To measure the accelerations at the human head
1082	during treadmill running or VOCR, we fixed an accelerometer (NinjaScan-Light; Switchscience,
1083	Tokyo, Japan) on foreheads with a surgical tape. Vertical acceleration was evaluated using the
1084	software application provided from the manufacture.
1085	
1086	Blood sampling and measurement of parameters in plasma and serum of humans. Blood
1087	sampling in the human study of protocol 2 was conducted between 12 PM and 3 PM. Participants
1088	were rested in a sitting position for at least 10 minutes before starting the sampling procedures.
1089	After plasma (for catecolamines and renin activity) and serum (for aldosterone and CRP) separation
1090	by centrifugation, we outsourced the measurement of parameters be tested (BML, Kawagoe, Japan).
1091	
1092	Design and participants of clinical study on antihypertensive effects of vertically oscillating
1093	chair riding. We conducted single-arm clinical studies. The study of protocol 1 (Extended Data
1094	Fig. 5c) was carried out at the affiliated health services facility of Iwai Medical Foundation (Iwai
1095	Keiaien, Tokyo, Japan). The study of protocol 2 (Extended Data Fig. 5d) was carried out at the
1096	National Rehabilitation Center for Persons with Disabilities Hospital.
1097	Subjects were considered eligible if they were 20-75 years old of age and confirmed to have

1098	130–160 mm Hg of SBP at the time of interview for informed consent and eligibility check.
1099	Subjects with mental or psychological illnesses, history or presence of cardiovascular events,
1100	history or presence of severe dysfunction/disorder of liver, kidney, lung, gastrointestinal tract, and
1101	spine, or presence of acute injuries/diseases (e.g., recent traumas and infectious diseases) were
1102	excluded with the exception of those who were given permission for participating in this study from
1103	their primary care physicians. Whereas antihypertensive medication did not disqualify the subjects
1104	(Supplementary Table 2), they were advised not to change their medication from at least one month
1105	prior to the first bout of VOCR through the study period (i.e., up to 8 weeks after the last bout of
1106	VOCR). At a certain (approximately fixed) time point in the morning (typically just before
1107	breakfast), they conducted 3 consecutive measurements of BP (mm Hg) and HR (bpm) using an
1108	automated upper arm-cuff sphygmomanometer, and recorded the values from all those
1109	measurements. These procedures of BP measurement and recording accord with the Japanese
1110	Society of Hypertension Guidelines for the management of hypertension (JSH2019) ⁷² . Subjects
1111	were directed to start periodical (≥3 days per week) BP/HR measurements at least 2 weeks before
1112	the initiation of the intervention (i.e., daily VOCR) and continue to measure BP/HR throughout the
1113	study period using the same sphygmomanometers. Particularly at the study of protocol 2 (i.e., the
1114	study at the National Rehabilitation Center for Persons with Disabilities), participants were advised
1115	to record all the data of those measurements. Those whose BP lowered below the eligibility

1116	requirement of the study (≥130 mm Hg of SBP) prior to the initiation of VOCR intervention were
1117	eliminated from the study. Participants were directed to be rested and keep calm for at least 1
1118	minute before starting to measure BP/HR. The mean BP/HR value from 3-time measurements was
1119	defined as "value of the day", and used for statistical analysis. When BP and HR were measured
1120	and recorded on \geq 3 days during a particular week in the study of protocol 2, the mean of all the
1121	"value of the day"s through the week was defined as "value of the week". For the participants who
1122	agreed. periodical BP/HR measurement and recording (≥3 days per week) was extended up to 8
1123	weeks after the last bout of VOCR.
1124	
1125	Statistical analysis. All the quantitative data are presented as mean \pm s.e.m. Parametric statistical
1126	analyses were conducted by paired or unpaired two-tailed Student's t-test for two-group
1127	comparison, and ANOVA with Tukey's post hoc test for multiple (\geq 3) group comparison, using
1128	Prism software (Version 8, GraphPad Software, San Diego, CA). Differences were considered as
1129	significant at P values below 0.05.