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Abstract: 17 

DNA methylation-based biomarkers of aging (epigenetic clocks) promise to lead to new 18 

insights in the evolutionary biology of ageing. Relatively little is known about how the natural 19 

environment affects epigenetic aging effects in wild species. In this study, we took advantage 20 

of a unique long-term (>40 years) longitudinal monitoring of individual roe deer (Capreolus 21 

capreolus) living in two wild populations (Chizé and Trois Fontaines, France) facing different 22 

ecological contexts to investigate the relationship between chronological age and levels of 23 

DNA methylation (DNAm). We generated novel DNA methylation data from n=90 blood 24 

samples using a custom methylation array (HorvathMammalMethylChip40). We present three 25 

DNA methylation-based estimators of age (DNAm or epigenetic age), which were trained in 26 

males, females, and both sexes combined. We investigated how sex differences influenced the 27 

relationship between DNAm age and chronological age through the use of sex-specific 28 

epigenetic clocks. Our results highlight that both populations and sex influence the epigenetic 29 

age, with the bias toward a stronger male average age acceleration (i.e. differences between 30 

epigenetic age and chronological ages) particularly pronounced in the population facing harsh 31 

environmental conditions. Further, we identify the main sites of epigenetic alteration that have 32 

distinct aging patterns across the two sexes. These findings open the door to promising 33 

avenues of research at the crossroad of evolutionary biology and biogerontology.  34 
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Introduction 38 

The last decades have seen an increasing interest for the study of ageing in the wild 39 

(Monaghan et al. 2008; Fletcher and Selman 2015; Gaillard and Lemaître 2020). The starting 40 

point of this infatuation is undeniably the compilation of evidence reporting that - in 41 

populations of animals in the wild - senescence occurs in demographic performance (actuarial 42 

senescence: Brunet-Rossinni & Austad, 2006; Nussey et al., 2013; reproductive senescence: 43 

Lemaître & Gaillard, 2017; Nussey et al., 2013), phenotypic performance (body mass: 44 

Douhard et al., 2017; Nussey et al. 2011; foraging efficiency: Lecomte et al., 2010; MacNulty 45 

et al., 2009) and physiological traits (e.g. immune parameters, Nussey et al. 2012; 46 

haematological parameters, Jégo et al. 2014; steroid levels, Sugianto et al. 2020). Nowadays, 47 

the age-specific decline in demographic and physiological performance is considered to be the 48 

rule rather than the exception in the wild, at least in mammals and birds (Gaillard & Lemaître, 49 

2020; Nussey et al., 2013; but see also Zajitschek et al., 2020).  50 

Animal populations in which individuals are monitored from birth to death in the wild 51 

provide a unique (but largely untapped) resource for studying individual differences in health 52 

and mortality risk at old ages (Gaillard and Lemaître 2020; Lemaître et al. 2020b).  Multiple 53 

lines of evidence emphasize the relevance of such longitudinal and individually-based data. 54 

First, the vast majority of the current research in biogerontology focused on inbred laboratory 55 

organisms with no or low genetic variation and maintained under controlled conditions (e.g. 56 

Caenorhabditis elegans, Drosophila melanogaster, laboratory rodents, Partridge, 2010). 57 

Studies performed on those species have led to major breakthrough in the mechanisms 58 

regulating the ageing process from the molecular to the individual level (López-Otín et al. 59 

2013; Kennedy et al. 2014). However, their findings can be difficult to extrapolate to species 60 

living in more complex environments (Briga and Verhulst 2015), with diverse genetic 61 

background and much longer lifespan and thereby different life history strategies, such as 62 

humans (Perlman 2016). Even if studies of non-human primates kept in captive conditions are 63 

increasing (Languille et al. 2012; Jasinska 2020), the full diversity of mammalian species 64 

displaying life-history traits and life styles similar to the ones observed in humans (i.e. 65 

whether there are socially monogamous, long-lived, provide extensive periods of parental 66 

care or create tight social bounds with conspecifics) is yet to be considered. In addition, the 67 

study of the ageing process in the wild enables - by essence - to investigate the role played by 68 

the environment, an important piece of the ageing conundrum. Similar to what has been 69 

described in human populations (e.g. Robine et al., 2012 in the context of climatic variables), 70 

there is increasing evidence that environmental factors modulate ageing patterns in the wild 71 
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(Nussey et al. 2007; Holand et al. 2016). For instance, it is increasingly recognized that the 72 

social environment can have a major influence on health and mortality risk at late ages 73 

(Berger et al. 2018; Snyder-Mackler et al. 2020), by notably interacting with some hallmarks 74 

of ageing (e.g. telomere dynamics in Seychelle warblers, Acrocephalus sechellensis, 75 

Hammers et al., 2019). In addition, while mammalian females generally live longer than 76 

males in the wild (Lemaître et al. 2020c), as commonly observed in humans or laboratory 77 

rodents (Austad and Fischer 2016; Zarulli et al. 2018), the exact mechanisms modulating 78 

these sex differences in survival are yet to be deciphered (Tower 2017; Marais et al. 2018). In 79 

that context, the focus on wild populations can be particularly relevant as the magnitude of 80 

sex differences in lifespan is likely modulated by environmental conditions, in interaction 81 

with the sex differences in genetic background (Lemaître et al. 2020c; Tidière et al. 2020). 82 

Finally, widening the scope of model species for ageing research can provide important 83 

insights for ‘healthspan extension’, notably by targeting wild animal populations displaying 84 

extended lifespan compared to the one expected for their body size (Austad 2010) and by 85 

including more appropriate senescence metrics (Lemaître et al. 2020a; Ronget and Gaillard 86 

2020). To reach these goals, accurate markers of both chronological and biological ages on a 87 

wide range of organisms are required. The pan tissue epigenetic clock based on DNA 88 

methylation (see Horvath, 2013) is a promising indicator of biological age in humans (Paoli-89 

Iseppi et al. 2017; Parrott and Bertucci 2019; Bell et al. 2019). 90 

DNA methylation (DNAm) of cytosine residues within CpG dinucleotides (5-methyl-91 

cytosine) across the genome constitutes a key epigenetic DNA modification tightly linked to 92 

the ageing process (Horvath and Raj 2018). Indeed, DNA methylation patterns accurately 93 

predict chronological age in humans (Horvath 2013; Jung and Pfeifer 2015) and captive 94 

mammals reared in laboratory conditions. Such strong relationship between age and DNAm 95 

has been found in many cell types (e.g. white blood cells, brain, liver; see Horvath, 2013). A 96 

comparative analysis of methylomes indicates that methylation can also be used to assess 97 

reliably physiological aging across mammals (Wang et al. 2020). The discrepancy between 98 

pigenetic age and chronological age (epigenetic acceleration) is associated in humans with a 99 

wide range of metabolic, infectious and degenerative diseases (Horvath et al. 2014; Horvath 100 

and Levine 2015), as well as cancer (Levine et al. 2015) and mortality (Marioni et al. 2015; 101 

Chen et al. 2016; Christiansen et al. 2016). We hypothesize that DNA methylation profiles 102 

integrates environmental effects that might modulate the pace of the epigenetic clock. To 103 

address this hypothesis. we studied epigenetic ageing in the wild and in a sex-specific way. 104 
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In this study, we took advantage of a unique long-term (>40 years) longitudinal 105 

monitoring of individual roe deer (Capreolus capreolus) living in two populations facing 106 

different ecological contexts to investigate the relationship between chronological age and 107 

levels of DNA methylation. All roe deer used in this study have been captured within their 108 

first year of life, when age can be accurately assigned (Hewison et al. 1999). First, we 109 

expected that the epigenetic clock built from peripheral blood leucocyte DNA should provide 110 

an accurate estimation of chronological age in roe deer in the wild. Second, we performed an 111 

epigenome wide association analysis (EWAS) to identify CpGs that were the most likely to be 112 

associated with aging in roe deer. Third, based on evidence that the pace of epigenetic age is 113 

modulated by environmental factors and provides reliable information on time to death (see 114 

above), we expected that the Average age acceleration (i.e. average difference between 115 

DNAm age and chronological age) would be higher in the population facing harsh 116 

environmental conditions than in the population facing favorable environmental conditions. 117 

Finally, since male roe deer show higher initial adult mortality and rate of actuarial 118 

senescence than females (Gaillard et al. 2004), we expected that the Average age acceleration 119 

would be higher for males than for females. Moreover, thanks to the epigenome wide 120 

association analysis, we expected to identify specific CpGs displaying sex-specific DNAm 121 

aging profiles.  122 

 123 

Methods 124 

Study populations 125 

We sampled roe deer living in two enclosed forests with markedly different environmental 126 

contexts: Trois Fontaines (TF) and Chizé (CH). The Trois Fontaines forest (1,360 ha) is 127 

located in north-eastern France (48°43’N, 4°55’E) and is characterized by a continental 128 

climate, moderately severe winters and warm and rainy summers. This site has rich soils and 129 

provides high quality habitat for roe deer (Pettorelli et al. 2006). In contrast, the Chizé forest 130 

(2,614 ha) is located in western France (46°50’N, 0°25’W) and is characterized by temperate 131 

oceanic climate with Mediterranean influences. This site has a low productivity due to poor 132 

quality soils and frequent summer droughts (Pettorelli et al. 2006), and thereby provides a 133 

quite poor habitat for roe deer in most years. Individuals from these two populations have 134 

been intensively monitored using a long-term Capture-Mark-Recapture program since 1975 135 

and 1977 (for Trois Fontaines and Chizé, respectively). In each site, 10-12 days of capture 136 

using drive-netting are organized every year between December and March (see Gaillard et 137 

al., 1993 for details on capture sessions), which allows capturing and measuring about half the 138 
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population every year. Once a roe deer is captured, its sex and body mass (to the nearest 50g) 139 

are recorded and a basic clinical examination is performed. All individuals included in our 140 

analyses were of known age because they were either caught as newborn in spring (see 141 

Delorme et al. 1988 for further details) or as c.a. 8 months old during winter captures, when 142 

they still have their milk teeth (most often incisors and always premolars, Flerov 1952).  143 

 144 

Roe deer blood samples and dna extraction 145 

In 2016 and 2017, we collected blood samples (up to 1mL per kg of body mass) from the 146 

jugular vein. Within 30 min of sampling, the blood was centrifuged at 3000 g for 10 min and 147 

the plasma layer was removed before washing the cells with an equivalent volume of 0.9% 148 

w/v NaCl solution. After a second centrifugation, the intermediate buffy coat layer, 149 

comprising mainly leukocytes, was collected in a 1.5‐mL Eppendorf tube and immediately 150 

frozen at −80 °C in a portable freezer (Telstar SF 8025) until further use. 151 

We extracted genomic DNA from leucocytes using the Macherey-Nagel NucleoSpin® 152 

Blood QuickPure kit. DNA purity was assessed using a Nanodrop ND-1000 153 

spectrophotometer (Thermo Scientific, Wilmington DE, USA). For all samples, the purity 154 

absorption range was 1.7 - 2.0 for the 260/280 nm ratio and > 1.8 for the 260/230 nm ratio. 155 

We selected 96 samples by balancing the numbers of individuals among ages, and between 156 

populations and sexes. DNA concentration was determined spectrophotometrically using the 157 

Qubit assay kit. DNA samples were then diluted in ultrapure water to reach a concentration of 158 

~70 ng.µl-1 and displayed in a microplate to complete the DNA methylation protocol (see 159 

below). For 6 samples, the concentrations obtained after dilution were too low compared to 160 

the expected concentrations of 70 ng/µl and were excluded from the dataset. The 90 roe deer 161 

samples analysed in this study correspond to 79 individuals aged from 8 months to 13.5 years 162 

of age. This age range encompasses most of the roe deer lifespan as individuals older than 15 163 

years of age are rarely observed in the wild (the oldest age ever recorded for a roe deer 164 

monitored in the wild being 17.5 years old, Gaillard et al. 1998). 165 

 166 

DNA Methylation data 167 

We generated DNA methylation data using the custom Illumina chip 168 

"HorvathMammalMethylChip40". The mammalian methylation array is attractive because it 169 

provides very high coverage (over thousand X) of highly conserved CpGs in mammals. Two 170 

thousand out of 38k probes were selected based on their utility for human biomarker studies: 171 

these CpGs, which were previously implemented in human Illumina Infinium arrays (EPIC, 172 
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450K) were selected due to their relevance for estimating age, blood cell counts, or the 173 

proportion of neurons in brain tissue. The remaining 35,988 probes were chosen to assess 174 

cytosine DNA methylation levels in mammalian species. Each probe is designed to cover a 175 

certain subset of species, such that overall all species have a high number of probes (Arneson, 176 

Ernst, and S. H., unpublished data). The particular subset of species for each probe is 177 

provided in the chip manifest file can be found at Gene Expression Omnibus (GEO) at NCBI 178 

as platform GPL28271. The SeSaMe normalization method was used to define beta values for 179 

each probe (Zhou et al. 2018). 180 

 181 

Statistical analyses 182 

We first aimed to detect the function providing the best fit of the relationship linking 183 

DNAm age and chronological age. We thus compared three models corresponding to (1) an 184 

absence of relationship (constant model), (2) a constant increase of DNAm with age (linear 185 

model), and (3) a non-linear increase of DNAm with age (quadratic model, Table S1). The 186 

most parsimonious model was selected using the Akaike Information Criterion (AIC). We 187 

calculated AIC weights (AICw) to assess the relative likelihood that a given model was the 188 

best among the three fitted models (Burnham and Anderson 2002). We selected the model 189 

with the lowest AIC, but when the difference in AIC (denoted ΔAIC) between two competing 190 

models was less than two units, we retained the simplest model in accordance with parsimony 191 

rules (Burnham and Anderson 2002).  192 

Second, we analyzed factors that could explain the between-sample variation in the 193 

average age acceleration.  We computed the ‘Average age acceleration’ as the difference 194 

between DNAm age and chronological age following Horvath (2013). We then investigated 195 

whether the average age acceleration was influenced by sex, population and roe deer body 196 

mass (measured at capture) for the three main life stages in terms of survivorship in roe deer 197 

(Gaillard et al. 1993): juvenile (< 1 year of age), prime-age (1 to 8 years of age), and 198 

senescent (>8 years of age). For both prime-age and senescent life stages we ran a set of 14 199 

models with the Average age acceleration as the dependent variable and sex, population and 200 

body mass as the independent variables (see Table S2 for a full list of models). To avoid 201 

fitting over-parameterized models, we did not include any three-way interactions. Due to the 202 

low number of individuals of 1 year of age (N=8), we only fitted 4 models for the juvenile life 203 

stage, the constant model (i.e. no detectable influence of any independent variable) and 204 

models including either a linear effect of body mass, sex differences, or population 205 

differences. In all cases, the best fitting model was selected using AIC (see above).  206 
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Third, we investigated further how sex influenced the relationship between DNAm age 207 

and chronological age through the use of sex-specific epigenetic clocks. For this purpose, we 208 

first built an epigenetic clock (called ‘female clock’) using data from females’ samples only, 209 

and then investigated the relationship between the female clock and both male and female 210 

chronological age. We performed a similar analysis with an epigenetic clock built using data 211 

from males’ samples only (called ‘male clock’). The 90 samples analyzed in our study 212 

correspond to 79 different individuals (i.e. 11 individuals were sampled both in 2016 and 213 

2017). To account for this pseudo-replication problem (sensu Hurlbert 1984) we thus 214 

replicated all analyses using linear mixed-effects models, which included a random effect of 215 

individual roe deer, using the R-package lme4 (Bates et al. 2015). For all models, results were 216 

qualitatively unchanged (see Electronic Supplementary Material, Table S3) and for the sake 217 

of simplicity, we only report results from simple linear models below. 218 

Fourth, we performed an epigenome wide association study of chronological age in 219 

roe deer. Unfortunately, a good genome assembly is not available for roe deer. Therefore, we 220 

performed an EWAS analysis based on the related White-tailed deer, Odocoileus virginianus, 221 

(Ovir.te_1.0) genome assembly). In total, 32,767 probes from the 222 

HorvathMammalMethylChip40 were aligned to loci that are proximal to 6,314 genes in the 223 

Ovir.te_1.0 genome assembly. Due to the high inter-species conservation of the probes on the 224 

array, findings can probably be extrapolated to roe deer, and even humans or other 225 

mammalian species. To assess the potential mechanism, we used a multivariate regression 226 

model to identify the CpGs that have a distinct pattern of DNAm aging between the sexes. 227 

We used two multivariate models. In the first model, DNAm levels of an individual CpGs 228 

were regressed on sex-specific chronological age to identify the loci with DNAm aging that 229 

are shared between sexes (“Age” main effect), and also the basal sex difference that is 230 

independent of chronological age (“Sex” main effect). In the second model, we included an 231 

interaction term to identify the CpGs with distinct DNAm aging between males and females.  232 

 233 

Results 234 

Relationship between DNAm and chronological age 235 

The model that best described the relationship between DNAm and chronological age was the 236 

quadratic model (Table 1a; Figure 1a; Table S1). This might be due to the fact that DNA 237 

methylation accumulates at a faster rate during the growth and development of juveniles than 238 

later in life when roe deer have reached their full size (at 2 years of age, roe deer have reached 239 

> 90% of their asymptotic mass, Hewison et al. 2011). Accordingly, the model that best 240 
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described the relationship between DNAm and chronological age in adults only (2 to 14 years 241 

of age) was the linear model (slope of 0.79 ± 0.02, N=82, R2 = 0.93; Figure 1b; Table S1). 242 

For a subset of 25 adults from the Trois-Fontaines population, the exact date of birth was 243 

known meaning that it was possible to compute age at a very fine-scale resolution (i.e. in 244 

days). The use of this chronological age data measured in days slightly improved the fit of the 245 

relationship compared to the one obtained with the chronological age measured in years but 246 

the slope was left unchanged (slope of 0.79 ± 0.04, N= 25, R2 = 0.95; Figure 1c). 247 

 248 

Factors affecting the average age acceleration 249 

When focusing on juveniles only, the average age acceleration was best explained by 250 

body mass (Table S2) as shown by the positive relationship between these two variables 251 

(slope of 0.09 ± 0.03, R2 = 0.59; N=8, Figure 2a). On the contrary, for adults, the constant 252 

model of the average age acceleration was selected, even if we observed a trend for a higher 253 

average acceleration in males than in females (difference in intercepts of 0.36 ± 0.20, N=82, 254 

Figure 2b). We then investigated in more details the factors potentially explaining the 255 

average age acceleration in adults by running separate analyses for prime-age and senescent 256 

adults. In prime-aged adults, the selected model was again the constant model of the average 257 

age acceleration, whereas in senescent individuals, the selected model included a sex by 258 

population interaction (Table S2). The Average age acceleration was higher in males at Chizé 259 

(0.44 ± 0.37) than both in females at Chizé (-1.06 ± 0.23) and in males at Trois-Fontaines (-260 

1.32 ± 0.14) (Table 1b; Figure 2c). 261 

 262 

Influence of sex on the relationship between DNAm age and chronological age in adults 263 

When using the female clock, a trend for interactive effects of age and sex occurred 264 

(Table 2a). As expected, the fit was much better in females (slope of 0.85 ± 0.01, N=42, 265 

R2=0.99) than in males (slope of 0.76 ± 0.05, N=40, R2=0.86). Interestingly, most male’s 266 

DNAm located above the line where DNAm age exactly matched chronological age, meaning 267 

that males are biologically older than their chronological age estimated using the female clock 268 

(Figure 3a). The opposite pattern occurred when using the male clock (Table 2b, Figure 3b). 269 

Beyond 7 years of age, females were consistently biologically younger than their 270 

chronological age estimated from the male clock (Figure 3b). As expected, the fit was also 271 

much better for males (slope of 0.73 ± 0.02, N=40, R2=0.98) than for females (slope of 0.48 ± 272 

0.03, N=42, R2=0.86) when using the male clock. 273 

 274 
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Epigenome wide association study of chronological age 275 

The EWAS results revealed that chronological age alters DNAm in a large number of Loci 276 

(Figure 4). At a genome significance level (p<10-8), a total of 1992 loci showed DNAm 277 

aging. The top affected CpGs with DNAm aging were proximate to GRHL2 5’UTR (z = 278 

12.5), ADRB1 exon (z = 12.3), and PURA 3’UTR (z = -11.4) (Figure 4A). Aging-associated 279 

CpGs in deer blood were distributed in all genic and intergenic regions that can be defined 280 

relative to transcriptional start sites (Figure 4B). However, promoter regions had a higher 281 

proportion of hypermethylated CpGs compared to others. This result paralleled a higher 282 

positive association of CpG islands with age than non-island CpGs (Figure 4C).  283 

Transcriptional factor enrichment analysis suggested TFAP2C motifs are 284 

hypermethylated with age in the leucocyte’s DNA of roe deer (Figure 4D). This motif is 285 

involved in cell-cycle arrest, germ cell development, and it is implicated in several types of 286 

cancer (Bryant et al. 2012; Penna et al. 2013). Understanding the functional outcome of this 287 

change in roe deer will require further studies.  288 

Gene level enrichment analysis of the significant CpGs highlighted changes in 289 

development, the nervous system, O-Glycan metabolism, cancer, and immune system, all of 290 

which are associated with aging biology in humans and other species (Figure 4E). The 291 

analysis suggested that aging mediated hypermethylation is marked by H3K27Me3 and 292 

potentially regulated by polycomb protein EED targets. EED is a member of the multimeric 293 

Polycomb family protein complex that maintains the transcriptional repressive states of genes. 294 

These proteins also regulate H3K27Me3 marks, DNA damage, and senescence states of the 295 

cells during aging (Ito et al. 2018).  296 

 297 

CpGs whose aging patterns depend on sex 298 

The epigenetic age acceleration was faster in male than in female roe deer. At genome-wide 299 

significance (p<10-8), age and sex altered DNAm of 1726 and 1022 CpGs, respectively 300 

(Figure 5A). This suggests both age and sex have a large effect size on DNAm levels. For 301 

sex, differentially methylated CpGs (DMCs) were biased in specific scaffold chromosomes, 302 

which are expected to be the homologs of sex chromosomes in humans and other mammals. 303 

For the interaction of age and sex, only three CpG proximate to RAI2 5’UTR, FAM155B 304 

exon, and ZIC3 exon had p-values <10-8. At a 5% false discovery rate (FDR), a total of 22 305 

CpGs showed a statistically significant interaction of age and sex in roe deer blood samples. 306 

This suggests sex influences DNAm aging in roe deer.  307 
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We overlaid the CpGs that interacted between sexes on a scatter plot of aging z-scores 308 

of male and female roe deer. The analysis identified five kinds of interaction (Figure 5B). The 309 

strongest pattern was for CpGs that were hypermethylated with age in males, but not females. 310 

CpGs proximate to RAI2, FAM155B, and ZIC3 (Figure 5C) genes had the aforementioned 311 

pattern. In contrast, some CpGs such as BCOR promoter and EFNB1 downstream only 312 

influenced DNAm aging in females (Figure 5C).  313 

 314 

Discussion 315 

Our findings highlight a very tight correlation between epigenetic and chronological age in 316 

two populations of roe deer intensively monitored in the wild. The quality of the fit of the 317 

selected model describing the relationship between epigenetic and chronologic age over the 318 

roe deer entire lifespan was particularly high (with a correlation coefficient of 0.975 leading 319 

to a R2 of 0.95; Median absolute difference: 0.588 years), which adds to the increasing 320 

evidence that the epigenetic tool constitutes an accurate method to estimate age in vertebrate 321 

populations in the wild (Paoli-Iseppi et al. 2017). So far, a wide range of technics based on 322 

tooth wear are generally used to assign age in wild mammals (Morris 1972, Pérez-Barbería et 323 

al. 2014 for a review in red deer, Cervus elaphus). In roe deer, tooth wear that leads the first 324 

molar height to decline with increasing age throughout the lifespan allows assessing age of 325 

individual roe deer (Veiberg et al. 2007). However, this method is much less accurate than the 326 

epigenetic clock (R2= 0.69 vs. 0.94 when a linear regression is used, Fig. S1). 327 

Interestingly, the fit of the roe deer epigenetic clock outperforms the few epigenetic 328 

clocks previously developed from other mammalian populations. All studies performed so far 329 

have investigated the relationship between epigenetic and chronologic age through linear 330 

regressions, and did not account for non-linearities. The linear regression provided a better fit 331 

in roe deer here (i.e. a coefficient of correlation of 0.97) than that reported in humpback 332 

whales (Megaptera novaeangliae, correlation of 0.89, Polanowski et al. 2014); wood mice, 333 

(Apodemus sylvaticus, correlation of 0.92, Little et al. 2020) or Bechstein's bat (Myotis 334 

bechsteinii, correlation of 0.80, Wright et al. 2018), which might be due to the broad age 335 

range we included in the analysis or to differences in the biological tissue used to extract 336 

DNA (e.g. leukocytes vs wing or ear punches). Overall, the epigenetic clocks used in our 337 

study constitute a particularly accurate method for estimating age in roe deer on the basis of 338 

leucocyte DNA.  339 

We found that the relationship between epigenetic and chronologic ages was better 340 

described by a quadratic than linear model when juveniles were included, but any deviation 341 
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from a linear model vanished when considering only adults. This discrepancy and the 342 

negative second order term of the quadratic model clearly indicate that the relationship 343 

between epigenetic and chronological ages is steeper in growing juveniles than in adults. A 344 

similar pattern has been reported in humans where the rate of change in DNA methylation 345 

profiles (also called ‘tick rate’) was higher during the developmental period than during 346 

adulthood, when a constant tick rate seems to be the rule (Horvath 2013). The growth period 347 

is associated with a high rate of mitotic division and constitutes a particularly demanding life 348 

stage in terms of resource allocation in mammals (Reiss 1989). Although overlooked for a 349 

while, the ageing consequences of a fast growth during early life are increasingly investigated 350 

(Metcalfe and Monaghan 2003) and recent evidence suggests that fast growth can shorten 351 

lifespan on the long-run (Lee et al. 2013; Kraus et al. 2013), even though the exact 352 

physiological mechanisms underlying this association are likely to be multiple and complex 353 

(Metcalfe and Monaghan 2003; Monaghan and Ozanne 2018). In roe deer, individuals reach 354 

their asymptotic mass  around the age of 4 years in both males and females (Hewison et al. 355 

2011). However, juveniles (i.e. at eight months when individuals are captured for the first 356 

time) have already gained about two-third of their adult body mass (Hewison et al. 2011), 357 

with a high amount of individual variation, which makes winter juvenile body mass a reliable 358 

measure of growth intensity. We found that the average age epigenetic acceleration increases 359 

with juvenile body mass, suggesting that individuals who allocate substantially in their 360 

growth are biologically older than their chronological age indicates, which might contribute to 361 

explain why, in roe deer, a fast-post-weaning growth is associated with a steeper rate of body 362 

mass senescence (Douhard et al. 2017). A positive association between DNA methylation 363 

profiles (as measured with the Horvath pan tissue clock) and height has also been observed 364 

among teenagers (Simpkin et al. 2016), which suggests that the discrepancies between 365 

biological and chronological age following fast growth might be widespread across mammals 366 

and also offer new perspectives for the study of the relationships between growth and ageing. 367 

 Despite the limited sample size, our analyses suggest that for a given age, male roe 368 

deer from the Chizé population are biologically older than females, a difference that is 369 

particularly pronounced at old ages. As the epigenetic age acceleration is associated with 370 

mortality risk in humans (e.g. Marioni et al. 2015), this result is in line with previous roe deer 371 

survival analyses, which showed that males at Chizé have a shorter lifespan than females - 372 

especially when born during years of strong environmental harshness (Garratt et al. 2015). 373 

Alike humans or laboratory rodents, there is compelling evidence that mammalian males in 374 

the wild display shorter lives than females (Lemaître et al. 2020c), as predicted by several 375 
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(and non-mutually exclusive) evolutionary theories (e.g. heterogametic sex hypothesis, 376 

mother’s curse hypothesis, sex differences in life history strategies, see Austad and Fischer 377 

2016; Marais et al. 2018 for reviews). However, the magnitude of sex differences in lifespan 378 

remains highly variable among populations and species (Lemaître et al. 2020c). This 379 

discrepancy might partly result from the high variation in environmental conditions faced by 380 

populations in the wild (Lemaître et al. 2020c; Tidière et al. 2020). More specifically, harsh 381 

environmental conditions (e.g. low availability in resources, high pathogen richness) are 382 

expected to amplify the survival cost of male reproductive expenditure (e.g. allocation to 383 

sexual traits, territory defence) due to the acute resource-based allocation trade-offs between 384 

reproduction and survival insurance mechanisms (Kirkwood and Rose 1991; Kirkwood 385 

2017). At Chizé, environmental conditions are much harsher than at Trois Fontaines due to 386 

low quality resources, which might explain the clear epigenetic age acceleration in old males 387 

from this population. 388 

More generally, our findings suggest that the epigenetic age acceleration might 389 

constitute a relevant biological marker of sex differences in health and biological conditions 390 

in mammals. For sex-related CpGs, the top enriched datasets were related to X-linked and 391 

Gonosomal inheritance. Other basal sex differences were related to the nervous system (e.g. 392 

synapse function), cognition (e.g. intellectual disability, spatial learning), and development 393 

(e.g. nervous system, teeth, muscles). For interaction, the enrichment analysis suggested a 394 

difference in heparan sulfate glucosaminoglycan biosynthesis between male and female 395 

aging. In humans, Alzheimer’s disease patients have higher distribution and localization of 396 

heparan sulfate glucosaminoglycan in neurons, microglia, and often colocalize with amyloid 397 

plaques (Su et al. 1992). Moreover, these macromolecules are involved in aging through 398 

neurogenesis (Yamada et al. 2017),and skin homeostasis (Bucay et al. 2020). Our results 399 

suggest a sex difference in heparan sulfate glucosaminoglycan biosynthesis during aging, 400 

which could also contribute to sex differences in human neurodegenerative disorders. 401 

Moreover, our analysis suggests DNAm underlie some of these differences. While 402 

mammalian females undeniably live longer than males (Lemaître et al. 2020c), studies that 403 

have sought to decipher the genetic and physiological correlates of these sex differences in 404 

survival have remained rather inconclusive. For instance, other biological markers of aging 405 

such as telomere length or immune performance do not show clear differences between males 406 

and females in wild mammals (Peters et al. 2019; Remot et al. 2020). We emphasize that 407 

using the epigenetic age acceleration across longitudinal follow-ups of mammalian 408 

populations does constitute to date the most promising approach to i) estimate accurately the 409 
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chronological age of individual mammals, (ii) assess precisely sex differences in 410 

physiological condition, iii) disentangle the complex ecological and biological origins of these 411 

differences, and iv) establish reliable predictions in terms of individual trajectories. In the 412 

current context of a growing age in human populations associated with pronounced sex 413 

differences in the occurrence of age-associated diseases in the elderly (Austad and Fischer 414 

2016; Clocchiatti et al. 2016), this research avenue is extremely promising. 415 
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TABLES 630 

 631 

Table 1: Parameters of the selected models discussed in the main text. (a) Quadratic model 632 
describing the relationship between DNAm age and chronological age in roe deer (N=90; R2 633 
= 0.95). (b) Best model explaining variation in the Average age acceleration for senescent roe 634 
deer (i.e. >8 years of age) (N=23; R2 = 0.35) (*p<0.05, **p<0.01,*** p< 0.001). 635 
 636 

Dependent Variables   Estimate  SE t 

(a) DNAm age Intercept 0.29 0.21 1.39 

 
Age 1.13 0.07 15.002*** 

  Age2 -0.02 0.006 -3.98*** 

(b) Average age acceleration Intercept -1.09 0.24 -4.48*** 

 
Sex 1.53 0.53 2.92** 

 
Population 0.04 0.43 0.1 

  Sex*Population -1.81 0.75 -2.40* 

 637 
 638 
Table 2: Parameters of the models testing for an interaction between chronological age and 639 
sex using the female (a) or (b) the male clock (*p<0.05, **p<0.01,*** p< 0.001). 640 
 641 

Dependent Variables   Estimate  SE t 

(a) DNAm age [Female epigeneitic clock] Intercept 1.03 0.2 5.17*** 

 
Age 0.85 0.03 32.205*** 

 
Sex 0.8 0.3 2.38** 

  Age * Sex -0.08 0.04 -1.89 

(b) DNAm age [Male epigeneitic clock] Intercept 3.35 0.18 18.58*** 

 
Age 0.48 0.02 20.25*** 

 
Sex -1.93 0.27 -7.10*** 

  Age * Sex 0.25 0.04 6.10*** 

  642 
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CAPTIONS FOR FIGURES 643 

 644 

Figure 1: Epigenetic clock for roe deer built with individual methylation profiles from 645 
white blood cells DNA. (a) Epigenetic clock for known-aged individuals between 8 months 646 
and 14 years of age (N=90; R2=0.95); (b) Epigenetic clock for adult roe deer (i.e. >1 year old, 647 
N=82; R2=0.93); (c) Epigenetic clock for individuals where the exact age in days was known 648 
(N=25; R2=0.95). The epigenetic age (DNAmAgeLoo) is expressed in years. In all graphs, the 649 
dashed line corresponds to the regression line y = x. 650 

 651 
Figure 2: Average age acceleration in the epigenetic clock of wild roe deer. (a) Relationship 652 
between the average age acceleration and the body mass for juveniles (i.e. 8 months, N=8), (b) 653 
Sex-differences in the average age acceleration between adult males and adult females (i.e. > 1 654 
years old, N=82) (c) Average age acceleration for senescent individuals (i.e. > 8 years old, 655 
N=23) split by sex and population. 656 
 657 
Figure 3: Sex-specific epigenetic clock in roe deer. (a) Relationship between DNAm age 658 
estimated with the female clock and both male and female chronological ages (b) Relationship 659 
between DNAm age estimated with the male clock and both male and female chronological 660 
ages. In all graphs, the dashed line corresponds to the regression line y = x. Females are 661 
displayed in light blue and males in dark blue. 662 

 663 
Figure 4: Epigenome-wide association (EWAS) of chronological age in the blood of roe 664 
deer. A) Manhattan plot of the EWAS of chronological age. Since the genome assembly is not 665 
available for roe deer, the coordinates are estimated based on the alignment of Mammalian 666 
array probes to White-tailed deer (Ovir.te_1.0) genome assembly, a related species to roe deer. 667 
The direction of associations with p < 10-8 (red dotted line) is highlighted by red 668 
(hypermethylated) and blue (hypomethylated) colors. The top 30 CpGs were labeled by the 669 
neighboring genes. B) Location of top CpGs in each tissue relative to the closest transcriptional 670 
start site. Top CpGs were selected at p < 10-8 and further filtering based on z score of 671 
association with chronological age for up to 500 in a positive or negative direction. The grey 672 
color in the last panel represents the location of 32767 mammalian BeadChip array probes 673 
mapped to Ovir.te_1.0 genome. C) CpG islands have a higher positive association with age 674 
(hypermethylation) than other sites. D) Transcriptional motif enrichment for the top CpGs in 675 
the promoter and 5`UTR of the neighboring genes. The motifs were predicted using the MEME 676 
motif discovery algorithm, and the enrichment was tested using a hypergeometric test. E) 677 
Enrichment analysis of the top CpGs in cat blood. The analysis was done using the genomic 678 
region of enrichment annotation tool (McLean et al. 2010). The gene-level enrichment was 679 
done using GREAT analysis (McLean et al. 2010) and human Hg19 background. The top 3 680 
enriched datasets from each category (Canonical pathways, diseases, gene ontology, human 681 
and mouse phenotypes, and upstream regulators) were selected and further filtered for 682 
significance at p < 10-4. 683 
 684 
Figure 5 : Sex influence on DNAm aging. A) Manhattan plots of DNAm aging loci that are 685 
shared between sexes (Aging main effect), basal sex differences (Sex main effect), and the 686 
interaction of sex and aging. The analysis is done by multivariate regression models with or 687 
without (to estimate the main effect) interaction term for age and sex. For sex, the male is the 688 
reference variable to estimate the direction of change. Sample sizes:  Males, 45 ; Females, 49. 689 
The coordinates are estimated based on the alignment of Mammalian array probes to White 690 
tailed deer (Ovir.te_1.0) genome assembly. The red line in the Manhattan plot indicates p <1e-691 
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3. B) Scatter plots DNAm aging between male and female roe deer. The highlighted CpGs are 692 
the loci with statistically significant interaction between species at a 5% FDR rate. In total, five 693 
categories of interaction were defined based on the aging z-score of each sex. C) DNAm aging 694 
in selected loci with a statistically significant sex interaction. D) Enrichment analysis of the 695 
genes proximate to CpGs related to age (shared between sexes), sex, and age:sex interaction. 696 
The gene-level enrichment was done using GREAT analysis (McLean et al. 2010) and human 697 
Hg19 background. The top CpGs were selected at a 5% FDR rate and based on Beta values of 698 
association for up to 500 in a positive or negative direction.699 
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FIGURE 2 712 
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ELECTRONIC SUPPLEMENTARY MATERIAL 729 
 730 
 731 
Table S1: Model selection procedure from the set of linear models fitted to test the 732 
relationship between DNAm age and chronological age for all individuals in the dataset (A) 733 
or for adults only (B). The selected model is highlighted in bold, k is the number of 734 
parameters in the model, ΔAIC is the difference in AIC between the candidate model and the 735 
selected model. The AIC weight (AICw) is calculated to measure the relative likelihood that a 736 
given model is the best among the set of fitted models. 737 
 738 

      k AIC ∆AIC AICw 

A 
All individuals 

(N=90) 

Constant 2 448.09 260.46 0.00 

 
Linear 3 200.72 13.09 0.00 

  Quadratic 4 187.63 0.00 1.00 

B Individuals older 
than 1-year-old 

(N=82) 

Constant 2 334.37 165.86 0.00 

 
Linear 3 169.06 0.55 0.43 

  Quadratic 4 168.51 0.00 0.57 

 739 
 740 
 741 

  742 
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Table S2: Model selection procedure from the set of linear models fitted to test the 743 
relationship between the Average age acceleration in the epigenetic clock and chronological 744 
age, sex, population and body mass for adults (A), juveniles (B), Prime-aged individuals (C) 745 
and senescent individuals (D). The selected model is highlighted in bold, k is the number of 746 
parameters in the model, ΔAIC is the difference in AIC between the candidate model and the 747 
selected model. The AIC weight (AICw) is calculated to measure the relative likelihood that a 748 
given model is the best among the set of fitted models. 749 
 750 
 751 
 752 

      k AIC ∆AIC AICw 

A 

Individuals older than 
1-year-old (N=82) 

Constant 2 222.78 1.14 0.25 

 
Body mass 3 224.35 2.70 0.60 

 
Sex 3 221.65 0.00 0.00 

 
Population 3 224.73 3.08 0.69 

 
Body mass + Sex 4 223.64 2.00 0.45 

 
Body mass + Population 4 226.32 4.68 1.04 

 
Sex + Population 4 223.63 1.99 0.44 

 
Body mass + Sex + Population 5 225.61 3.96 0.88 

 
Body mass*Sex 5 225.50 3.85 0.86 

 
Body mass*Population 5 228.24 6.59 1.47 

 
Sex*Population 5 221.96 0.31 0.07 

 
Body mass*Sex + Population 6 227.48 5.83 1.30 

 
Body mass*Population + Sex 6 227.59 5.95 1.33 

  Sex*Population + Body Mass 6 223.93 2.28 0.51 

B 
Individuals of 1-year-

old (N=8) 

Constant 2 7.72 5.14 0.06 

 
Body mass 3 2.57 0.00 0.83 

 
Sex 3 9.65 7.08 0.02 

 
Population 3 7.15 4.58 0.08 

C 

Individuals between 
1-year-old and 8-
years-old (N=59) 

Constant 2 109.50 0.00 0.25 

 
Body mass 3 111.01 1.50 0.12 

 
Sex 3 111.37 1.86 0.10 

 
Population 3 110.25 0.74 0.17 

 
Body mass + Sex 4 112.48 2.97 0.06 

 
Body mass + Population 4 112.22 2.72 0.07 

 
Sex + Population 4 112.11 2.60 0.07 

 
Body mass + Sex + Population 5 113.95 4.45 0.03 

 
Body mass*Sex 5 114.06 4.56 0.03 

 
Body mass*Population 5 114.07 4.56 0.03 

 
Sex*Population 5 113.07 3.56 0.04 

 
Body mass*Sex + Population 6 115.64 6.14 0.01 

 
Body mass*Population + Sex 6 115.73 6.23 0.01 

 
Sex*Population + Body Mass 6 114.93 5.42 0.02 
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D 

Individiduals older 
than 8-years-old 

(N=23) 

Constant 2 64.93 64.93 0.04 

 
Body mass 3 65.24 65.24 0.03 

 
Sex 3 65.33 65.33 0.03 

 
Population 3 65.80 65.80 0.03 

 
Body mass + Sex 4 63.66 63.66 0.08 

 
Body mass + Population 4 67.23 67.23 0.01 

 
Sex + Population 4 65.15 65.15 0.04 

 
Body mass + Sex + Population 5 65.65 65.65 0.03 

 
Body mass*Sex 5 61.97 61.97 0.18 

 
Body mass*Population 5 68.50 68.50 0.01 

 
Sex*Population 5 61.07 61.07 0.28 

 
Body mass*Sex + Population 6 63.94 63.94 0.07 

 
Body mass*Population + Sex 6 67.15 67.15 0.01 

  Sex*Population + Body Mass 6 62.07 62.07 0.17 

 753 
 754 
 755 
 756 
Table S3: Quadratic model describing the relationship between DNAm age and chronological 757 
age in roe deer (N=90). Contrary to Table 1, the model was fitted with roe deer identity 758 
included as a random effect. Results are qualitatively unchanged (*p<0.05, **p<0.01,*** p< 759 
0.001). 760 
 761 
 762 
 763 

  Estimate  SE t 
Intercept 0.28 1.31 1.39 
Age 1.13 0.08 14.90*** 

Age2 -0.02 0.006 -4.02*** 
 764 
 765 

  766 
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Table S4: Parameters of the models including the interaction between chronological age and 767 
sex using the female (a) or the male (b) clock; and of the models including the interaction 768 
between chronological age and population using the Trois Fontaines (c) or the Chizé (d) 769 
clock. Contrary to Table 2, these models were fitted with the roe deer identity as a random 770 
effect. Results are qualitatively unchanged (*p<0.05, **p<0.01,*** p< 0.001). 771 
 772 
 773 

Dependent Variables   Estimate  SE t 

(a) DNAm age [Female epigeneitic clock] Intercept 1.03 0.2 5.09*** 

 
Age 0.85 0.03 30.91*** 

 
Sex 0.7 0.3 2.41** 

  Age * Sex -0.07 0.04 -1.57 

(b) DNAm age [Male epigeneitic clock] Intercept 3.32 0.18 18.40*** 

 
Age 0.48 0.02 19.86*** 

  Sex -1.92 0.27 -7.10*** 

  Age * Sex 0.25 0.04 6.06*** 

 774 
 775 
 776 

  777 
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 778 
 779 
 780 
FIGURE S1:  Relationship between molar height (M1, in mm) and age (in years) for roe deer 781 
from Chizé and Trois-Fontaines (slope ± se: -0.34 ± 0.02, N=88, R2= 0.69). 782 
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