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Running title: Characterization of triple negative breast cancer by DIA 

Abbreviations: 

AGC: auto-gain control 

BIC: Bayesian information criterion 

CNS: central nervous system 

DDA: data-dependent acquisition 

DFS: disease-free survival 

DIA: data-independent acquisition 

FDR: False discovery rate 

FFPE: formalin-fixed paraffin-embedded 

HCD: higher-energy collisional dissociation 

HCL: hierarchical cluster 

PGM: Probabilistic graphical model 

SAM: Significance analysis of microarrays 

TNBC: triple negative breast cancer
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Abstract 

Triple negative breast cancer (TNBC) accounts for 15-20% of all breast carcinomas and it is 

clinically characterized by an aggressive phenotype and bad prognosis. TNBC does not benefit 

from any targeted therapy, so further characterization is needed to define subgroups with 

potential therapeutic value. In this work, the proteomes of one hundred twenty-five formalin-

fixed paraffin-embedded samples from patients diagnosed with triple negative breast cancer 

were analyzed by mass spectrometry using data-independent acquisition. Hierarchical 

clustering, probabilistic graphical models and Significance Analysis of Microarrays were used to 

characterize molecular groups. Additionally, a predictive signature related with relapse was 

defined. Two molecular groups with differences in several biological processes as glycolysis, 

translation and immune response, were defined in this cohort, and a prognostic signature 

based on the abundance of proteins RBM3 and NIPSNAP1 was defined. This predictor split the 

population into low-risk and high-risk groups. The differential processes identified between the 

two molecular groups may serve to design new therapeutic strategies in the future and the 

prognostic signature could be useful to identify a population at high-risk of relapse that could 

be directed to clinical trials.   
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Introduction 

Triple negative breast cancer (TNBC) is defined by lack of expression of estrogen and 

progesterone receptors, as well as human epidermal growth factor receptor 2 (HER2). TNBC 

accounts for 15-20% of all invasive breast carcinomas. TNBC usually exhibits an aggressive 

behavior and is associated with high relapse and mortality rates, most relapses occurring 

within the first three years after diagnosis (1-4). Relapses usually affect visceral sites, such as 

the lung and central nervous system (CNS) (5-9). The standard treatment consists of surgery 

and adjuvant or neoadjuvant chemotherapy based on a combination of anthracyclines and 

taxanes. 

TNBC is a heterogeneous disease. Genomic studies have determined the existence of 

molecular subtypes, (10-13) which have different clinical evolution and response to 

chemotherapy (14). A molecular classification of TNBC is not currently being used in clinical 

practice because it does not help clinicians in making treatment decisions. New and more 

informative prognostic biomarkers would be useful to select the most effective treatment. 

In a recent publication, we have identified a proteomics-based biomarker combination to 

better stratify TNBC patients according to the benefits of the adjuvant chemotherapy (15). We 

used an initial discovery phase with a small cohort of patients (n=26), followed by a validation 

phase of a subset of proteins using targeted proteomics in a large patient cohort (n=114). In 

that study we defined a protein-based signature that predicted response to adjuvant 

chemotherapy. The protein signature consisted of the combination of proteins RAC2, RAB6A, 

BIEA and IPYR, and its classification performance was confirmed in publicly available 

transcriptomics datasets from independent cohorts. 
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Proteomics analyses based on data-independent acquisition (DIA) methods have shown an 

increased reproducibility of peptide quantification across multiple samples and have become 

the method of choice to quantify entire proteomes in large patient cohorts (16, 17). DIA 

methods rely on the use of several broadband isolation windows to select and fragment all 

detectable peptides within a sample (17) and several isolation schemes have been described to 

maximize specificity, sensitivity and speed (18-20). These methods have demonstrated a high 

quantitative accuracy and reproducibility on previous studies and they have been successfully 

used to characterize breast cancer subtypes using fresh-frozen tissue samples (21, 22). 

In this study we relied on the high sensitivity and improved properties of data-independent 

acquisition methods (20) to analyze full proteomes in a large cohort of formalin-fixed paraffin 

embedded TNBC samples, to define molecular subgroups and stratify patients with TNBC into 

a group with high or low risk of relapse that improve current and future therapeutic strategies. 
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Experimental procedures 

Experimental design and statistical rationale 

One hundred and forty-two formalin-fixed paraffin-embedded samples from patients 

diagnosed of triple negative breast cancer were analyzed using a DIA+ approach (20). Neither 

technical replicate analyses nor control normal tissue samples were necessary due to the large 

size of the clinical cohort, the nature of the samples and the objectives of the study. In 

addition, this study was focused in the molecular characterization of the disease and its 

evolution instead of the carcinogenesis mechanisms (in which comparing normal and tumor 

tissues are necessary); therefore, normal tissue was not used as a control. 

Patient samples and clinical-pathological variables 

A cohort of TNBC patients analyzed in a previous study was now analyzed by DIA+ proteomics 

(15, 20). A total of 136 patients diagnosed of TNBC between 1997 and 2004, and treated in 

daily clinical practice at two Spanish institutions (Hospital Universitario La Paz and Hospital 

Universitario 12 de Octubre) were identified and retrospectively analyzed.  The inclusion 

criteria were: patients diagnosed with triple negative invasive breast carcinoma, non-

metastatic (stage I-III) disease at diagnosis, and a minimum follow-up of two years. Collected 

clinical variables were: TNM (based on TNM 7th edition), histological grade, age at diagnosis, 

chemotherapy treatment, relapse, disease-free survival (DFS), and location of the first relapse. 

DFS was defined as the time from surgery of the primary tumor to local and/or distant tumor 

relapse. This project was approved by the Ethical Committees of Hospital Universitario La Paz 

and Hospital 12 de Octubre and all patients signed the corresponding informed consent.  

Sample processing and protein isolation 

Formalin-fixed paraffin-embedded (FFPE) samples were reviewed by an experienced 

pathologist and only samples with at least 50% of tumor cells were selected for the study. 
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Proteins were isolated as described previously (15, 23). Briefly, FFPE sections were 

deparaffined in xylene and washed twice in ethanol. Protein extracts were eluted in 2% SDS 

and protein concentration was measured using MicroBCA Protein Assay Kit (Thermo Fisher 

Scientific). Peptide isolations were digested by trypsin and SDS was removed employing 

Detergent Removal Spin Columns (Thermo Fisher Scientific). Desalted peptides were 

solubilized in 0.1% formic acid and 3% acetonitrile. Isotopically labeled peptides were added to 

peptide mixes and used as internal standard for quantification. 

DIA+ data acquisition 

Peptide mixtures derived from the FFPE samples were analyzed using a DIA+ method in a LTQ-

Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) 

coupled to an EASY-nLC 1000 (Thermo Fisher Scientific (Proxeon), Odense, Denmark). Peptides 

were loaded directly onto the analytical column and separated by reversed-phase 

chromatography using a 50-cm column with an inner diameter of 75 μm, packed with 2 μm 

C18 particles spectrometer (Thermo Scientific, San Jose, CA, USA). 

Chromatographic gradients started at 95% buffer A and 5% buffer B with a flow rate of 300 

nl/min for 5 minutes and gradually increased to 22% buffer B and 78% A in 109 min and then 

to 35% buffer B and 65% A in 11 min. After each analysis, the column was washed for 10 min 

with 10% buffer A and 90% buffer B. Buffer A: 0.1% formic acid in water. Buffer B: 0.1% formic 

acid in acetonitrile. 

The mass spectrometer was operated in positive ionization mode with an EASY-Spray 

nanosource with spray voltage set at 2.4 kV and source temperature at 275 °C. The instrument 

was operated in data-independent acquisition mode, with a full MS scans over a mass range of 

m/z 400–1,350 with detection in the Orbitrap (60K resolution) and with auto gain control 

(AGC) set to 200,000. The isolation scheme used was the same as previously reported (20). A 

normalized collision energy of 28% +/-5% was used for higher-energy collisional dissociation 
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(HCD) fragmentation. MS2 scan range was set from 350 to 1850 m/z, with an AGC Target of 

5.0e4 and a maximum injection time of 60 ms. The maximum injection time was set to 20 ms 

per segment, making a total of a maximum injection time of 60 ms per composite window. 

Fragment ion spectra were acquired in the the Orbitrap mass analyzer at 30K resolution. 

Digested bovine serum albumin (New England Biolabs cat # P8108S) was analyzed between 

each sample to avoid sample carryover and to assure stability of the instrument and QCloud 

(24) has been used to control instrument longitudinal performance during the project. 

Acquired raw data were transformed to mzXML file format with msconvert from the 

ProteoWizard suite v3.0.9393. Converted mzXML were further analyzed using DIA Umpire 

v2.1.2 (25) with the search engine Comet v2016.01 rev.0 with trypsin specificity, one allowed 

missed cleavage, and oxidation of methionine as variable modification (+15.9949), and 

carbamidomethylation at cysteine as fixed modification (+57.0214). Error tolerance was set at 

10 ppm for MS1 and 0.02 Da at MS2. The swissprot human protein database with reviewed 

entries and decoys was used as reference database (version April 2016). Peptides and proteins 

identifications were filtered at 1% FDR. Peptide quantitation was based on the sum of the six 

most intense fragment ions. The median of all the spiked heavy peptides was used for data 

normalization. Protein abundances were estimated from normalized peptide abundances using 

the MSstats software (v3.10.6) (26). Two samples that exhibited less than 600 identified 

proteins were removed from the dataset for further analyses. 

Analyses of clinical variables 

A descriptive analysis of the clinical parameters was performed. Statistical comparisons were 

done using Chi-squared test and t-test. For survival analyses, Kaplan-Meier and log-rank 

methods were used. All these analyses were done in SPSS IBM Statistics v20. 

Hierarchical cluster and Significance Analysis of Microarrays 
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Both hierarchical cluster (HCL) and Significance Analysis of Microarrays (SAM) were performed 

using MeV software (27). HCL is a non-supervised analysis that allows grouping samples by 

similar expression patterns. All the identified proteins were used to build an HCL based on 

Pearson correlation. After HCL, a SAM was used to characterize differences between groups 

identified by HCL.  On the other hand, SAM allows establishing differential expressed proteins 

between groups. This analysis consists in a t-test corrected by permutations over the number 

of samples. False Discovery Rate (FDR) was used to determine the significance (28). 

Probabilistic graphical models and functional node activities 

The probabilistic graphical model (PGM) was built using grapHD package (29), R v3.2.5 and 

proteomics data without any a priori information. PGM are useful to analyze high-dimensional 

data. The analysis consists in two sequential steps: first, the searching of the spanning tree 

with the maximum likelihood, and, then, an edge depuration based on Bayesian Information 

Criterion (BIC) (30). The resulting network was divided in branches or functional nodes and, by 

gene ontology analyses, a main biological function for each branch was established. Gene 

ontology analyses were done using DAVID webtool (31) selecting “homo sapiens” as 

background and GOTERM-FAT, KEGG and Biocarta as categories. Functional node activity was 

calculated as the mean expression of these proteins that are related with the main function of 

each node, as previously described (32-34). Functional node activities were compared using 

Mann-Whitney tests. 

Predictor construction 

BRB Array Tool was used to correlate protein expression with tumor relapse (35). These 

proteins were selected according to their p-values (p<0.01) and used to build a prognostic 

signature that classified patients into two groups (high- and low-risk) through a Cox regression. 

The predictor was internally validated using leave-one-out cross validation.  
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Statistical analyses 

Statistical analyses were done in GraphPad Prism v6 and SPSS IBM Statistics v20. P-values were 

considered as statistically significant under 0.05.
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Results 

Patient characteristics 

One hundred and thirty-six patients with stage I to III TNBC were identified. One patient was 

excluded because no paraffin sample was available. Eight cases were excluded because they 

did not meet inclusion criteria (three with a follow-up under two years, four had received 

neoadjuvant therapy, and one had metastasis at diagnosis). Two samples were excluded due 

to the poor quality of the protein measurements. The final analyses included one hundred and 

twenty-five tumors.  

Clinical characteristics are summarized in Table 1. This is an update of the clinical information 

included in our previous work (15). Median age was 56.8 years, 10% of the patients were 

younger than 40 years at diagnosis. Median follow-up was 64.6 months (1.1-257 months). 

Fifty-six (44.8%) patients had a relapse. Most of the relapses occurred in women with tumors 

greater than 2 cm, grade 3 and positive lymph nodes. Median follow-up of patients who did 

not relapse was 8.0 years (2.0-21.4 years).  

Ten (18%) patients had a local and/or regional relapse, whereas 82% had a distant relapse (11 

patients presented more than one location at first relapse) being the most frequent locations 

CNS and lung. 

More than half of the relapses (n=33, 59%) occurred in the first two years since surgery of the 

primary tumor (median=20.2, range=1-135 months, median 22.8 months for local relapses and 

18.6 for distant relapses) (Figure 1). 

Seven patients did not receive any treatment after surgery (three of them, older than 80 

years). Thirty-three patients received chemotherapy that did include neither anthracyclines 

nor taxanes (CMF was still widely used in the late 90s). Only six patients of those who received 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.21.306654doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.306654


Characterization of triple negative breast cancer by DIA 
 

12 
 

CMF had a relapse (11 patients with stage I, 21 with stage II, and only one patient with stage 

III).  

Proteomics experiments 

 As a first step towards the molecular characterization of TNBC tumors, we quantified the 

proteome of 140 formalin-fixed paraffin-embedded TNBC samples using the DIA+ acquisition 

method (20). This analysis enabled the quantification of 3,092 proteins, of which 1,206 

proteins were consistently detected and quantified in at least 66% of the samples. Three 

samples were excluded from further analysis because they had significantly less quantified 

proteins (Figure 2). A gene ontology analysis showed that the identified proteins were mainly 

related with translational processes and extracellular membrane. 

Molecular classification 

Using an unsupervised hierarchical cluster analysis (HCL), two different molecular groups were 

defined (Sup Fig 1). Group 1 included 76 patients and group 2 included 49 patients. However, 

we did not find significant differences in disease-free survival (DFS) between both groups (Sup 

Fig 2).  

By SAM, 439 differentially expressed abundant proteins between the two groups were 

identified (Figure 3). Most of these proteins were related to membrane, adhesion, translation, 

glycolysis, and mitochondria. The main functions of the proteins more abundant in Group 2 

were focal adhesion and membrane whereas those proteins predominant in Group 1 were 

related to mRNA translation and splicing, antigen presentation and T cells, focal adhesion and 

the anaphase process. 

Functional proteomics 
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A probabilistic graphical model (PGM) was built using the 1,206 quantified proteins to study 

protein functional relationships. The resulting network was divided into 10 functional nodes by 

gene ontology analyses: immune, cytoskeleton, glycolysis, transcription, mitochondria and 

oxidative phosphorylation, lysosome, splicing, exosome and two functional nodes related to 

cell adhesion (Figure 4). 

Functional node activities were then calculated as the mean of the expression of those 

proteins related to the biological function of each functional node. Comparing the two 

molecular groups, there were significant differences in glycolysis, immune response, 

extracellular matrix, exosomes, lysosomes, and cytoskeleton functional activities (Figure 5). 

Proteins related with tumor relapse and disease-free survival signature 

Next, proteins related to relapse and disease-free survival were identified and a prognostic 

signature was defined. Initially, twenty-nine out of 1,206 identified proteins were prioritized 

based on their association with relapse (p <0.01, Table 2).  

These 29 proteins associated with relapse were then used to build a prognostic signature. This 

predictor split the patient cohort into low- and high-risk groups (p-value= 0.0002, Hazard ratio 

[HR]=6.51, 20-80%). The predictor was based on the expression of proteins NIPSNAP1 

(NipSnap homolog 1) and RBM3 (RNA-binding protein 3) (Figure 6). The formula to calculate 

the prognostic index is   , where PI is the prognostic index, and x refers to 

protein abundances, w to the weights of each protein and i to the sample. A sample is being 

classified in the high-risk group when the prognostic index (PI) is higher than -0.584. Known 

characteristics of each protein are provided in Table 3. 

Univariate and multivariate analysis of risk factors for tumor relapse are shown in Table 4. 

Tumor size, positive lymph nodes and the prognostic signature were significantly associated 

with an increased risk of relapse based on the univariate analysis. Multivariate statistical 
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analysis showed that the prognostic signature was an independent prognostic factor for 

relapse.  

Discussion 

Breast cancer is the most frequent malignant tumor in women and among them, TNBC is 

associated with a worst prognosis. For this reason, most of patients with TNBC receive 

adjuvant or neoadjuvant chemotherapy, but it leads to overtreatment in some of them. 

Therefore, the identification of patients with low-risk of relapse would allow avoiding 

unnecessary treatments and toxicities. On the other hand, a better understanding of the 

underlying molecular biology could help to select those high-risk patients that could benefit 

from intensive follow-up and participation in clinical trials with new drugs. In this work, clinical 

and molecular features of a group of TNBC patients were analyzed.  

Most of the patients included in this study presented grade III tumors, a size greater than 2cm, 

and lymph node involvement, similar characteristics to other TNBC patient series (1, 36, 37). 

Forty-five percent of the patients included in this study presented a relapse (local or distant). 

The local relapse rate was 8%, and the distant relapse rate 37%. In a similar study that included 

83 TNBC patients treated with anthracyclines, distant relapse rate was 34% (36). In Dent et al., 

34% of the patients experienced a distant relapse and 15%, a local relapse (1). TNBC has a 

greater incidence of visceral metastases than estrogen-receptor positive tumors (1, 6-9, 38), 

particularly at the CNS and lungs. In our cohort, CNS was the most frequent site of distant 

relapse (n=12, 10%), followed by lung metastases (n=10, 8%). Therefore, our sample was 

representative of the TNBC population.  

Proteomics provides direct information about biological processes. Many efforts have been 

devoted to identifying proteomics signatures with prognostic value (15, 36, 39).  Until now, 

proteomics based on mass-spectrometry has been the most used technique to identify 

therapeutic targets and prognostic biomarkers. However, despite the recent advances, only a 
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few biomarkers have been identified and proteomics technology still has limitations for clinical 

application. The standard in proteomics experiments used to be LC-MS/MS using data-

dependent acquisition (DDA) mode. Recently, data-independent acquisition methods have 

emerged, which enable the reproducible quantification and identification of proteins in large 

patient cohorts (40) with high accuracy and consistency(41).  

A previous study using SWAT-MS in breast cancer samples established that TNBC was an 

heterogeneous group (22). In this study, fresh-frozen breast tissue samples were used to 

classify breast tumors in proteomics-based groups. A different study, which analyzed breast 

cancer cell lines of all subtypes and four TNBC tumor samples by LC-MS/MS, also established 

differences at protein level between breast cancer subtypes (42). Data obtained by our DIA 

experiments in breast cancer FFPE TNBC samples allowed us to divide patients with TNBC into 

two different groups (with 76 and 49 patients, respectively). Although no difference in survival 

appeared between these two groups, this molecular classification might provide patient 

stratification and be the basis for a targeted therapy for each one of these groups. The SAM 

found 439 proteins differentially expressed between these two molecular groups. Proteins 

were related to glycolysis, membrane, adhesion, mitochondria and translation. Molecular 

characterization of tumors is useful to define common biological alterations within subsets of 

patients that may become therapeutic targets. For example, SAM analysis showed that one of 

these differential processes is mitochondrial function. Metformin has an action on 

mitochondria and has been shown to affect cell viability in TNBC cell lines, so it could be useful 

in tumors that overexpress proteins related to mitochondria (43). Glycolysis was another 

relevant process, for which targeted drugs such as 2-D-deoxy-glucose are also available (44). 

With the aim of studying protein relationships in TNBC, a PGM was built with the 1,206 protein 

abundances. This allowed us creating a graphical representation with ten functional nodes.  

There were differences in functional node activities between the two proteomics molecular 
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groups in glycolysis, immune response, extracellular matrix, exosomes, lysosomes, and 

cytoskeleton. The characterization of differences at immune level has acquired a great 

relevance with the advent of immunotherapy. Differences in the immune functional node 

could be related to immunotherapy response.  Recent studies suggests some role of anti-PD1 

therapy in TNBC (45). Therefore, it would be interesting to find a good biomarker in this 

scenario to select patients for immunotherapy. Strikingly, there were significant differences in 

glycolysis functional node between the two groups that also appeared in SAM analyses. This 

functional approach offers complementary information to conventional analyses.  

Moreover, in this work we have achieved the identification of a prognostic predictor based on 

proteomics data in TNBC. Twenty-nine proteins were related with relapse and the analysis of 

these proteins allowed us to build a prognostic signature based on two proteins: RBM3 and 

NIPSNAP1. RBM3 was associated with a lower risk of relapse, and NIPSNAP1, with worse 

prognosis. This protein signature is simpler and better, based on the obtained HR, than the P5 

protein signature presented in previous works (15). 

RBM3 is a member of the cold-shock protein family that regulates mRNA metabolism and has 

pleiotropic effects in cellular stress and oncogenesis (46). RBM3 protein is rarely 

overexpressed in normal tissues, but it is overexpressed in some solid tumors and, in recent 

studies, its expression levels seem to be related to prognosis and cytostatic sensitivity. High 

levels of RBM3 are an independent prognostic factor for DFS and overall survival in breast 

cancer (47, 48), ovarian carcinoma (49), gastric cancer(50), colon cancer (51, 52), prostate 

cancer (53), and melanoma (54). Our study confirms that RBM3 maintains its prognostic value 

in tumors with negative hormone receptors. 

NIPSNAP1 is a protein usually expressed in CNS, liver and kidney. Its function is not clearly 

defined (55, 56). NIPSNAP1 is only expressed in neuronal tissues and it has been previously 

related to Alzheimer disease and phenylketonuria. Its association with cancer remains 
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undefined. However, the fact that in our study, which comprehends a cohort with a significant 

presence of CNS metastases, NIPSNAP1 expression was associated with high-risk of relapse, 

suggests that it deserves future studies. 

Despite the interest of our results, this study does not come without some limitations. First, it 

is worth mentioning that this was a retrospective study, and some patients received 

chemotherapy combinations that differ from the current standard. Moreover, the prognostic 

signature defined for predicting the risk of relapse is still a candidate prognostic signature and 

it will need prospective independent validation before its potential clinical application. 

Overall, data-independent acquisition mass-spectrometry (DIA-MS) has demonstrated its 

utility in molecular characterization of archived triple negative breast cancer (TNBC FFPE) 

samples. In this study, we established two different molecular groups in TNBC patients with 

differential abundance of proteins related to mitochondria, membrane, adhesion and 

translation. The use of probabilistic graphical models (PGM) allowed the study of differences in 

biological processes between groups of patients and also suggested some processes with 

different activity between the two molecular groups. These processes could be exploited in the 

future as potential new therapeutic targets. In addition, proteomics data analysis allowed us to 

build a prognostic signature in TNBC population based on RBM3 and NIPSNAP1 abundances 

and the relationship between RBM3 and low-risk of relapse previously shown in other studies 

was confirmed. 
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Tables and legends 

Table 1: Patients’ characteristics. 

 Total (n=125) Percentage (%) 
Age at diagnosis. Median 
(range) 

56.8 (24.7-85.2)  

Tumor size   
T1 44 35.2% 
T2 67 53.6% 
T3 7 5.6% 
T4 7 5.6% 

Lymph node status   
N0 63 50.4% 
N1 39 31.2% 
N2 8 6.4% 
N3 14 11.2% 

Unknown 1 0.8% 
Grade   

1 3 2.4% 
2 17 13.6% 
3 103 82.4% 

Unknown 2 1.6% 
TNM stage   

I 31 24.8% 
IIA 39 31.2% 
IIB 25 20.0% 

IIIA 10 8.0% 
IIIB 5 4.0% 
IIIC 14 11.2% 

Unknown 1 0.8% 
Treatment   

Anthracyclines and taxanes 31 24.8% 
Anthracyclines 48 38.4% 

Taxanes 1 0.8% 
Neither anthracyclines nor 

taxanes 
33 26.4% 

None 7 5.6% 
Unknown 5 4.0% 

 

Table 2: Proteins associated with relapse (p <0.01). 

order Parametric 
p-value 

FDR Hazard 
Ratio 

SD of log 
intensities 

Protein ID Gene ID 

1 1.68E-05 0.0202 1.609 1.232 Q9BPW8|NIPS1_HUMAN NIPSNAP1 

2 5.12E-05 0.0308 1.414 1.691 Q00610|CLH1_HUMAN CLTC 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.21.306654doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.306654


Characterization of triple negative breast cancer by DIA 
 

24 
 

3 0.0001144 0.0459 0.862 2.651 Q8NCX0|CC150_HUMAN CCDC150 

4 0.0001758 0.0529 1.408 1.55 Q14204|DYHC1_HUMAN DYNC1H1 

5 0.0007118 0.142 0.71 1.372 Q5SSJ5|HP1B3_HUMAN HP1BP3 

6 0.0007492 0.142 1.31 1.73 Q12931|TRAP1_HUMAN TRAP1 

7 0.000827 0.142 0.689 1.285 Q92522|H1X_HUMAN H1FX 

8 0.0013019 0.18 1.262 1.871 Q01082|SPTB2_HUMAN SPTBN1 

9 0.0013466 0.18 0.838 1.76 P55795|HNRH2_HUMAN; 
P52597|HNRPF_HUMAN; 
P31943|HNRH1_HUMAN 

HNRNPH2 
HNRNPF 
HNRNPH1 

10 0.0016436 0.191 1.302 1.697 P38646|GRP75_HUMAN HSPA9 

11 0.0017466 0.191 0.69 1.21 P16403|H12_HUMAN; 
P22492|H1T_HUMAN; 
P16402|H13_HUMAN; 
Q02539|H11_HUMAN 

HIST1H1C 
HIST1H1T 
HIST1H1D 
HIST1H1A 

12 0.0019854 0.192 0.863 1.893 Q8N257|H2B3B_HUMAN; 
Q6DN03|H2B2C_HUMAN 

HIST3H2BB 
HIST2H2BC 

13 0.0020735 0.192 0.787 1.847 P51608|MECP2_HUMAN MECP2 

14 0.0036046 0.31 0.789 1.59 P98179|RBM3_HUMAN RBM3 

15 0.0047713 0.322 0.735 1.246 P16401|H15_HUMAN HIST1H1B 

16 0.0050095 0.322 1.316 1.342 O75323|NIPS2_HUMAN NIPSNAP2 

17 0.0050886 0.322 0.778 1.524 Q13151|ROA0_HUMAN HNRNPA0 

18 0.0052312 0.322 1.395 1.196 P36957|ODO2_HUMAN DLST 

19 0.005341 0.322 0.776 1.418 O75367|H2AY_HUMAN H2AFY 

20 0.0053512 0.322 0.83 1.696 P35754|GLRX1_HUMAN GLRX 

21 0.0056807 0.324 0.847 2.466 Q8WU39|MZB1_HUMAN MZB1 

22 0.0061962 0.324 0.768 1.277 Q9UKM9|RALY_HUMAN RALY 

23 0.0062543 0.324 0.861 2.343 Q9Y5P6|GMPPB_HUMAN GMPPB 

24 0.0066871 0.324 1.306 1.579 Q13011|ECH1_HUMAN ECH1 

25 0.006735 0.324 1.226 1.85 O43776|SYNC_HUMAN NARS 

26 0.0094255 0.399 1.275 1.461 P55084|ECHB_HUMAN HADHB 

27 0.0094698 0.399 1.266 1.488 O95831|AIFM1_HUMAN AIFM1 

28 0.0095317 0.399 0.887 2.806 Q9NYL4|FKB11_HUMAN FKBP11 

29 0.009621 0.399 0.732 1.215 Q07666|KHDR1_HUMAN KHDRBS1 

 

Table 3: Characteristics of the proteins identified by the predictor. 
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Gene ID Protein name Uniprot ID Molecular function Subcellular 
location 

NIPSNAP1 
 

Protein NipSnap 
homolog 1 

Q9BPW8| 
NIPS1_HUMAN 

- Neurotransmitter binding.  Mitochondria 

RBM3 RNA-binding 
protein 3 

P98179| 
RBM3_HUMAN 

- RNAm 3’-UTR binding. 
- Poli(U) RNA binding. 
- Ribosomal junction of large subunits  
- RNA binding. 
- RNAr binding of small ribosomal 
subunit. 
-Translation repressor activity. 

Nucleus 

 

Table 4. Risk factors associated with tumor relapse. HR= hazard ratio; CI= confidence Interval; 

P= p-value.  

 Univariate Analysis Multivariate Analysis 
HR (95% CI) P HR (95% CI) P 

Grade 10.31 (0.01-10401.00) 0.509 --- --- 
Tumor size (T) 1.92 (1.43-2.56) <0.001 1.59 (1.14-2.22) 0.007 
Nodal status (N) 1.83 (1.45-2.30) <0.001 1.47 (1.14-1.88) 0.003 
Prognostic signature 6.66 (2.07-21.37) 0.001 5.19 (1.19-16.94) 0.006 

 

Figures and legends 

Figure 1: Time of relapse (months since surgery of the primary tumor to tumor relapse). 

 

Figure 2: Number of proteins identified by sample using DIA+. 
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Figure 3: SAM between the two groups defined by HCL. G1= Group 1; G2= Group 2. Green= 

underexpressed, Red= overexpressed. 

 

 

Figure 4: The probabilistic graphical model (PGM) functionally characterized built using the 

expression of the 1,206 identified proteins. 
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Figure 5: Functional node activities calculated for each molecular group. G1= group 1, G2= 

group 2. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. 
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Figure 6: Predictor of relapse in TNBC based on the expression of NIPSNAP1 and RBM3. DFS = 

disease-free survival. 
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