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Abstract 27 

Objective: Alcohol use disorder (AUD) has high prevalence and adverse societal impacts, but our 28 

understanding of the factors driving AUD is hampered by a lack of studies that describe the complex 29 

multifactorial mechanisms driving AUD.  30 

Methods: We used Causal Discovery Analysis (CDA) with data from the Human Connectome Project 31 

(HCP; n = 926 [54% female], 22% AUD [37% female]). Our outcome variable was number of AUD 32 

symptoms. We applied exploratory factor analysis (EFA) to parse phenotypic measures into underlying 33 

constructs, and assessed functional connectivity within 12 resting-state brain networks as an indicator of 34 

brain function. We then employed data-driven CDA to generate an integrated model relating phenotypic 35 

factors, fMRI network connectivity, and AUD symptom severity.  36 

Results: EFA extracted 18 factors representing the wide HCP phenotypic space (100 measures). CDA 37 

produced an integrated multimodal model, highlighting a limited set of causes of AUD. The model 38 

proposed a hierarchy with causal influence propagating from brain function to cognition (fluid/crystalized 39 

cognition, language & working memory) to social (agreeableness/social support) to affective/psychiatric 40 

function (negative affect, low conscientiousness/attention, externalizing symptoms) and ultimately AUD 41 

severity. Every edge in the model was present at p < .001, and the SEM model overall provided a good fit 42 

(RMSEA = .06, Tucker-Lewis Index = .91). 43 

Conclusions: Our data-driven model confirmed hypothesized influences of cognitive and affective 44 

factors on AUD, while underscoring that traditional addiction models need to be expanded to highlight 45 

the importance of social factors, amongst others. Results further demonstrated that it is possible to extract 46 

a limited set of causal factors of AUD, which can inform future research aimed at tracking factors that 47 

dynamically predict alcohol use trajectories. Lastly, the presented model identified potential treatment 48 

targets for AUD, including neuromodulation of the frontoparietal network, cognitive/affective 49 

interventions, and social interventions. 50 

Keywords: alcohol use disorder, causal discovery, resting-state fMRI, RDoC, addiction 51 
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1 Introduction 52 

Lifetime incidence of alcohol use disorder (AUD) is as high as 29-30% (1,2), with alcohol use 53 

being a leading cause of death [3 million in the United States, (3); 5.3% of all deaths worldwide; (4)]. 54 

Success rates for quitting drinking in AUD are low [30-40%; (5,6)], which has been attributed to the 55 

multi-causality of the mechanisms underlying AUD and the need for more targeted treatments (7). 56 

However, the development of targeted interventions for AUD is hampered by a lack of studies 57 

investigating multifactorial mechanisms driving AUD.  58 

Early theories of addiction maintenance proposed single key mechanisms, such as allostasis (8), 59 

or hedonic signaling (9). These early theories have given way to multifactorial models of addiction, such 60 

as the “three-stage cycle” model (10), which proposes that negative affect, incentive salience, and 61 

executive function are functional domains involved in addiction. There is a great deal of empirical support 62 

for the involvement of these three domains. The three domains have been mapped onto corresponding 63 

personality profiles that confer addiction risk (11) and have been used to develop a set of proposed 64 

neuroclinical assessment tools (12,13) that were successfully applied to AUD (14). However, a three-65 

domain model is far from encompassing the entire phenotypic space that contributes to AUD. The NIMH 66 

RDoC (15,16) proposed 23 functional domains underlying psychopathology, recognizing a need for 67 

multivariate models that incorporate increasing knowledge of the many functional domains contributing 68 

to psychiatric dysfunction. A recent consensus paper on a multivariate assessment approach for addiction, 69 

identified another seven “addiction-specific” domains in addition to the RDoC domains (17). Critically, in 70 

all of these approaches, the proposed functional domains were identified by expert consensus and 71 

therefore might not exactly match the true underlying domains that exist in the data. For example, in an 72 

exploratory analysis of a large public dataset, Van Dam et al. (18) derived seven phenotypic factors that 73 

only partially mapped onto RDoC domains, but predicted psychiatric distress. A more recent addiction 74 

theory (19) identified ten domains contributing to maladaptive decision-making in addiction. A 75 

systematic review of neuroimaging studies in addicted populations, implicated the involvement of at least 76 

six different neurobiological mechanisms in AUD (20). These recent developments underscore the need 77 
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for data-driven, multivariate analysis methods capable of fully examining and describing the large 78 

phenotypic space underlying addiction, if we are to understand the central question of how multi-causal 79 

factors underlie the maintenance and escalation of alcohol use.  80 

In the current study, we leveraged the deep behavioral and psychiatric phenotyping (21) and high-81 

resolution neuroimaging data (22) from the Human Connectome Project (HCP) (23). Using data from 82 

nearly 1000 participants we first derived a set of data-driven domains underlying the full range of 83 

phenotypic functioning measured in the HCP dataset. We extracted whole-brain connectivity metrics 84 

from 12 data-derived resting-state fMRI networks (24) to measure individual neurobiological differences. 85 

To examine the relationships between fMRI network connectivity, phenotypic domains, and AUD 86 

symptom severity, we applied Causal Discovery Analysis (CDA), a class of machine learning techniques 87 

that learns causal models from input data. These methods search the enormous set of possible structural 88 

models and return a graph representing estimated causal relationships in the data. The particular method 89 

we applied, Greedy Fast Causal Inference (25), uses conditional dependence relations to discover when 90 

unmeasured variables confound the relationships between measured variables, making this method 91 

particularly powerful for real-world data sets that cannot possibly capture every variable of interest. By 1) 92 

deriving data-driven domains encompassing the whole phenotypic space measured in HCP, 2) extracting 93 

whole-brain network connectivity profiles, and 3) applying CDA to the resulting phenotypic and 94 

neurobiological domains, we generated an integrated, multimodal causal model of neurobehavioral 95 

factors contributing to AUD symptom severity. 96 

 97 

2 Methods 98 

2.1 Subjects 99 

 We analyzed data from the final release of the WU-Minn Human Connectome Project (n = 1206, 100 

aged 22 – 35, 54% female). All subjects provided written informed consent at Washington University. 101 

The causal discovery analysis included all subjects who had complete data from all modalities 102 

(phenotypic n = 933, resting-state fMRI n = 1085, final n = 926). Subjects with AUD comprised 22% of 103 
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the included sample, and 37% of subjects with AUD were female. See Table 1 for demographic 104 

characteristics of the included sample. 105 

 106 

Table 1. Demographic characteristics of the final sample (n = 926). 107 

Demographics Options Total N AUD Control AUD - Control Difference 
Gender M 428 128 300 χ2 = 28.74, p < .001 

F 498 76 498 

Race White 700 166 534 χ2 = 19.56, p = .002 
Black/African-American 130 15 115 
Asian/Nat. Hawaiian/Other 
Pacific Islander 57 8 49 
Other 39 15 24 

Age Mean 28.84 28.65 28.88 t(924) = 0.80, p = .43 
Standard Deviation 3.69 3.38 3.74 

AUD 
Symptoms 0 538 

1 184 
2 98 
3 46 
4 43 
5+ 17 

AUD 
Diagnosis Yes 204 

No 722 
      
 108 

 109 

2.2 Outcome Measure: AUD Symptom Severity 110 

Subjects were assessed for symptoms of alcohol abuse and dependence using the Semi-Structured 111 

Assessment for the Genetics of Alcoholism (SSAGA). Symptom count data were provided for DSM-IV-112 

TR alcohol abuse and alcohol dependence. Symptom counts for alcohol abuse were provided as 0, 1, or 113 

2+, and symptom counts for alcohol dependence were provided as 0, 1, 2, or 3+ (i.e. truncated symptom 114 

counts were provided). Given the low number of subjects with the highest symptom counts, it is unlikely 115 
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that including a more fine-grained symptom count would have provided much additional information. It is 116 

therefore also likely that participants mostly had mild/moderate AUD severity, and that as the sample was 117 

young adults (age 22-35), this sample likely represents an early stage of AUD.  118 

DSM-5 re-categorized alcohol abuse and alcohol dependence into a single disorder (AUD) using 119 

the criteria of both alcohol abuse and dependence, with one symptom of alcohol abuse removed (legal 120 

problems) and one symptom added (craving). We reconstructed this change by adding alcohol abuse and 121 

dependence symptom counts for each subject. Given recent interest in dimensional rather than categorical 122 

psychiatric dysfunction, we used the AUD symptom count (severity) as our primary outcome variable.  123 

2.3 Behavioral and Self-Report Measures 124 

 The HCP dataset contains a wide array of self-report, diagnostic and behavioral measures 125 

assessing domains of cognition, emotion, social function, psychiatric dysfunction, and personality. We 126 

selected all available measures from these domains for further analysis (100 in total). We included all 127 

provided measures, but when provided, we used summary scores rather than item-level or minor scores as 128 

long as the summary score encompassed the task construct of interest (26). For example, for the Short 129 

Continuous Penn Test, we included the summary statistics of sensitivity and specificity but not more 130 

specific scores, and for delay discounting we included the area under the curve for $200 and $40k but not 131 

the individual discounting levels. For in-scanner tasks, we included a separate measure for each of the 132 

major conditions. If both age/gender-adjusted and unadjusted scores were provided, we included only the 133 

adjusted scores. We also excluded all items that were linear combinations of other data. For a list of 134 

included variables and excluded variables and descriptive statistics of the included variables see the 135 

Supplement. 136 

2.4 Factor Analysis of Phenotypic Data 137 

To reduce the phenotypic space measured in the Human Connectome Project to a set of 138 

underlying domains, we conducted an exploratory factor analysis (maximum likelihood factor extraction, 139 

oblimin rotation to allow for correlated factors) in the entire HCP sample that had complete phenotypic 140 

data (n = 933, 53.5% female). EFA was calculated in R using the ‘psych’ package (27). The choice of 141 
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EFA over similar data reduction schemes such as PCA was made because EFA explicitly accounts for 142 

error due to unreliability in measurement (28) unlike PCA (29). Oblimin rotation allows for correlated 143 

factors, which is critical to data reduction over a large phenotypic variable space as we expect many 144 

factors to be closely related but separable (for example, negative affect and internalizing 145 

psychopathology). We used Monte Carlo permutation analysis (parallel analysis) (30) to determine how 146 

many factors were statistically significant at p < .05 (31). Monte Carlo simulation was also calculated 147 

using the ‘psych’ package for R (27). 148 

2.5 Resting-State fMRI Acquisition and Preprocessing 149 

 High-resolution structural and functional MRI data were collected on a Siemens 3T Connectome 150 

Skyra scanner with a 32-channel head coil at Washington University. See Uğurbil et al. (22) for a full 151 

description of the acquisition parameters for rfMRI in the HCP database. Structural data were 152 

preprocessed as described in Glasser et al. (32), using the most recent version of the HCP preprocessing 153 

pipeline (4.1). Briefly, anatomical image preprocessing consisted of bias field and gradient distortion 154 

correction, coregistration of T1w and T2w images, and linear and nonlinear registration to MNI space. 155 

Cortical surfaces were constructed using FreeSurfer. Surface files were transformed to MNI space, 156 

registered to the individual’s native-mesh surfaces, and downsampled. 157 

Functional MRI preprocessing is fully described in Glasser et al. (32). Briefly, volumetric fMRI 158 

were subjected to gradient distortion correction, motion correction, and referencing to T1w. All 159 

transforms were concatenated and run in a single nonlinear resampling to MNI space. Data were then 160 

masked by the PostFreeSurfer brain mask and normalized. This volumetric timeseries was then mapped to 161 

a combined cortical surface and subcortical voxel space (“grayordinates”) and smoothed with a 2mm 162 

FWHM Gaussian. 163 

Finally, fMRI data were high-pass filtered (FWHM = 2355 s) and cleaned of artifacts using ICA-164 

FIX (33,34). Artifact components and 24 motion regressors (35) were regressed out of the data in a single 165 

step. This produced the final ICA-FIX denoised version of the data 166 
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(https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release) that 167 

we used for all analyses. 168 

2.6 rfMRI Parcellation and Network Assignment 169 

 We parcellated the whole brain, including cortex, subcortex, and cerebellum, into 718 parcels 170 

using the Cole-Antecevic parcellation (24), a parcellation scheme that builds on the Glasser et al. (36) 171 

multimodal cortex parcellation (360 parcels). We chose the Cole-Antecevic parcellation because while 172 

the Glasser parcellation used multiple measures including myelination, rfMRI activity, and anatomical 173 

landmarks to delineate a fine-grained map of cortical space, it did not include any subcortical voxels, and 174 

did not explicitly assign parcels to large-scale networks using principled statistical methods. The Cole-175 

Antecevic parcellation built on the Glasser parcellation by 1) assigning subcortical and cerebellar voxels 176 

to parcels, and 2) by using Louvain community detection to delineate 12 large-scale networks consisting 177 

of cortical, subcortical, and cerebellar regions.  178 

2.7 Calculation of rfMRI Network Connectivity  179 

For each of the 12 data-derived networks, we computed pairwise Pearson correlations between 180 

each pair of parcels in the network. Pearson correlations were transformed to approximate a normal 181 

distribution using Fisher’s z-transform. Within each of the 12 networks, we then took the average of the 182 

parcel-to-parcel correlations to obtain a summary statistic for within-network connectivity (37–41). This 183 

procedure therefore summarizes how tightly connected (coherent) the regions comprising each of the 12 184 

networks are with each other. This resulted in 12 average network-level connectivity values for each 185 

subject. Figure 1 contains a graphical depiction of whole-brain network assignments. 186 

 187 
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 188 

Figure 1. We conducted a whole-brain parcellation and assigned brain parcels to 12 large-scale 189 

networks according to the Cole-Antecevic Parcellation (24). This parcellation built on the Glasser 190 

multimodal cortical parcellation by including subcortical and cerebellar parcels, and assigned each of 191 

the 718 parcels to a large-scale brain network using Louvain community detection. 192 

 193 

2.8 Causal Discovery Analysis: Greedy Fast Causal Inference (GFCI) 194 

 Causal models represent, often graphically, the set of cause-and-effect relationships that are 195 

present within a set of data (42). As the number of variables in a dataset increases, so too does the space 196 

of possible causal models that could give rise to the observed data, making the problem of identifying 197 

which of the potential causal models best fits the observed data very difficult. Causal Discovery Analysis 198 

(CDA) uses machine learning to determine which causal models are best supported by the data (43). 199 

There are many CDA algorithms that make a wide variety of assumptions and have varying performance 200 

characteristics; for review, see Glymour et al. (44).  201 

In the current study, we applied Greedy Fast Causal Inference (GFCI) (25), an accurate and fast 202 

algorithm for establishing causal relationships from data even in the presence of unmeasured confounds. 203 

GFCI operates in two phases. GFCI begins by searching the space of possible graphs to create a 204 
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preliminary graph that minimizes a penalized likelihood score, in this case the Bayesian Information 205 

Criteria (BIC) (45). This initial search phase is done using the Fast Greedy Equivalence Search method 206 

(46). After the initial search phase, the algorithm refines the discovered graph by conducting a series of 207 

conditional independence tests. This phase rules out any edges that imply conditional dependencies not 208 

borne out by the data (for an example, see Figure 2). The most important distinction of GFCI compared to209 

other causal discovery methods is that GFCI can detect confounding factors, and as such is particularly 210 

suited to analysis of real-world data, where there is no guarantee that every relevant variable has been 211 

measured. The output of the GFCI algorithm is a partial ancestral graph with edge types indicating causal 212 

relationships, uncertain relationships, and the presence of unmeasured confounding variables.  213 

GFCI analysis was implemented using Tetrad v6.7, running in Java. Analysis was run with 214 

default parameters; that is, using alpha = .01, maximum degree of the graph = 100, and a penalty discount 215 

of two. Penalized likelihoods for models were calculated using the Bayesian Information Criteria (45), 216 

which is the default model fit index in Tetrad and the most commonly used model fit index in CDA. To 217 

recover effect sizes of the edges in the model, we fit a structural equation model (SEM) to the graph 218 

structure using the ‘lavaan’ package for R (47). We present the graph GFCI learned from the full dataset 219 

with SEM effect sizes for each edge. As an additional analysis of model stability in smaller samples, we 220 

also conducted a stability analysis by resampling 90% of the sample (48) without replacement with 2000 221 

repetitions (jackknifing); the resampling stability of each edge is presented in the Supplement. 222 

 223 

224 

Figure 2. Four different ways that three variables X, Y, and Z could be causally related. Panel A is a 225 

structure known as a “collider,” in which X and Y both cause Z, but X and Y are not related. In this 226 

structure, X and Z are dependent, and Y and Z are dependent, while X and Y are independent. However, 227 

0 

 to 

al 

nt 
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when Z is conditioned on (controlled for), X and Y are dependent. Meanwhile, in panel B, Z causes both 228 

X and Y. In this structure, X and Y are dependent because of their common cause, and are independent 229 

when Z is conditioned on. In Panels C & D, X and Y are dependent because one causes Z, which then 230 

causes the other. In both of these panels, X and Y are independent when Z is conditioned on, as Z is the 231 

only link from X to Y. GFCI utilizes conditional independence tests to determine causal direction in graph 232 

edges, specifically by identifying “collider” cases in the graph (since these cases imply different 233 

conditional dependencies than the other three cases). 234 

 235 

3 Results 236 

3.1 Exploratory Factor Analysis: Decomposing the Phenotypic Space of the HCP 237 

Based on the results of Monte Carlo simulation we extracted 18 factors (p < .05) from the 100-238 

variable space, which collectively accounted for 47% of common variance. Factor loadings for each item 239 

are described in the Supplement. Results of the Monte Carlo permutation test for eigenvalue significance, 240 

and percent variance explained per factor, eigenvalues, and cumulative variance are presented in the 241 

Supplement. EFA model fit indices indicated good factor separation (RMSEA = .03, Tucker-Lewis Index 242 

= .86). 243 

Factors, in order of common variance accounted for, were associated with: 1) Somaticism (high 244 

DSM/ASR somaticism, high DSM depression, low PSQI sleep quality), 2) Fluid Cognition (high Raven's 245 

progressive matrices performance), 3) Internalizing (high DSM/ASR anxiety, high DSM depression, high 246 

NEO-FFI neuroticism), 4) Gambling Task Reaction Time (slow gambling task reaction time), 5) 247 

Conscientiousness/Attention (low DSM ADHD, low ASR attention problems, and high NEO-FFI 248 

conscientiousness), 6) Visuospatial Processing (high Penn short line orientation task performance), 7) 249 

Social Support (high NIH toolbox friendship, low loneliness, low perceived rejection and perceived 250 

hostility, high emotional and instrumental support), 8) Processing Speed (high NIH toolbox flanker total 251 

score, fast fMRI emotion task RT), 9) Externalizing (high ASR aggression and rule-breaking, high DSM 252 

antisocial, high NIH toolbox aggression), 10) Social Withdrawal (high ASR withdrawal, high DSM 253 
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avoidance, low NEO-FFI extraversion), 11) Language Task Performance (high fMRI language task story 254 

average difficulty, and high math problem accuracy), 12) Relational Task Reaction Time (slow fMRI 255 

relational task RT), 13) Delay Discounting (high delay discounting AUC for $200 and $40k), 14) 256 

Memory Performance (fMRI N-Back task fast RT and high accuracy, fast Penn word memory RT), 15) 257 

Negative Affect (high NIH toolbox anger, fear, sadness and stress), 16) Crystalized IQ (high NIH toolbox 258 

English reading and picture vocabulary, high education, and high NEO-FFI openness), 17) Positive Affect 259 

(high NIH toolbox life satisfaction, positive affect, and meaning and purpose, and NEO-FFI 260 

extraversion), and 18) Agreeableness (low aggression and high NEO-FFI agreeableness).  261 

3.2 Causal Discovery of the Neurobehavioral Underpinnings of Alcohol Use Disorder 262 

 The output of GFCI is presented in Figure 3. The SEM fit to this model indicated a good fit, 263 

RMSEA = .06, Tucker-Lewis Index = .91. Recovered edge weights from SEM were presented overlaid on 264 

the GFCI graph. Jacknife testing demonstrated the stability of the model (2000 repetitions; see 265 

Supplement). 266 

First, we found that brain network connectivity measures and phenotypic factors largely separated 267 

into two interconnected separate clusters. The brain network subgraph indicated several salient points. We 268 

found that high connectivity within the language network during rest caused high connectivity within 269 

default mode (DMN), cingulo-opercular, and multi-modal sensory association networks - networks that 270 

play a central role in self-reflective brain processes. We also found effects indicating causal influences of 271 

cingulo-opercular connectivity on attentional processing (cingulo-opercular -> dorsal attention). Finally, 272 

we found converging causal influences onto the frontoparietal network (cingulo-opercular/posterior 273 

multimodal -> frontoparietal, dorsal attention -> frontoparietal). 274 

Brain connectivity intersected with behavioral phenotypic variables in a link between high 275 

frontoparietal connectivity and high Fluid Cognition. From this point, causal influences propagated from 276 

Fluid Cognition to Visuospatial Processing and Crystalized IQ, replicating a well-studied effect that 277 

individuals high in fluid cognitive ability will also be high in crystalized intelligence (49,50). From there 278 

causal influences proceeded to more specific cognitive measures, including Working Memory, Language 279 
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Task Performance and Delay Discounting. We found a direct link between Crystalized IQ and Delay 280 

Discounting, such that individuals higher in Crystalized IQ also exhibited lower (less impulsive) 281 

discounting rates. These cognitive measures were then in turn causally linked to affective, social and 282 

psychiatric factors.  High Language Task performance and less impulsive Delay Discounting caused 283 

Agreeableness. Low Working Memory performance and low Agreeableness caused lowered Social 284 

Support, and decreased Social Support contributed to increased Negative Affect, increased Social 285 

Withdrawal, and decreased Positive Affect. High Negative Affect in turn contributed to higher 286 

Internalizing symptoms, and lower Conscientiousness/Attention. Low Conscientiousness/Attention and 287 

low Agreeableness caused high Externalizing psychopathology, while high Externalizing 288 

psychopathology directly caused increased AUD symptom severity. 289 

Previous hypotheses have particularly focused on the influences of negative affect, incentive 290 

salience, and executive function in AUD. Our results support a causal role for cognitive and affective 291 

influences on AUD, while expanding our understanding of the complex multifactorial space contributing 292 

to AUD. 293 

 294 
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 295 

Figure 3. Causal Discovery Analysis of the neurobehavioral determinants of AUD symptom severity in 296 

the HCP dataset was done using Greedy Fast Causal Inference (GFCI). GFCI returns a partial ancestral 297 

graph (PAG) depicting causal relationships between a set of variables, while assessing for unmeasured 298 

third variables in relationships (confounders). Standardized edge weights recovered via SEM are 299 

displayed in text next to each edge in the graph. 300 

 301 

4 Discussion 302 

4 

al 
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 Early addiction models posited that addiction was due to single key mechanisms (8,9), but 303 

modern addiction models have begun to emphasize the multifactorial mechanisms underlying addiction 304 

(10,12,17,19,20). In this study, we used a data-driven approach to characterize phenotypic domains in a 305 

large community sample, and examined whole-brain network connectivity at a large scale using a data-306 

driven network analysis and parcellation (24). We then modeled large-scale brain and behavioral 307 

influences on alcohol use disorder (AUD) symptom severity using causal discovery analysis. Our results 308 

shed light on the relationship between brain network connectivity and phenotypic domains in general, as 309 

well as providing specific information on how brain and behavioral factors contribute to the severity of 310 

AUD, and which could be targeted in treatment. 311 

4.1 Expanding the Multifactorial Space of Current Addiction Models 312 

Our factor analysis uncovered a variety of factors that map relatively well onto domains 313 

elaborated in RDoC (Table 2). For example, we found factors that mapped well onto aspects of the RDoC 314 

Cognitive Systems domain, the RDoC Negative Valence Systems domain, and the RDoC Social domain. 315 

To assist in interpreting the large-scale domains that our data-driven factors mapped onto, we grouped 316 

factors based on their correlations. Interestingly, we found that the Conscientiousness/Attention and the 317 

Social Withdrawal factors correlated with other factors in the Negative Valence Systems domain, rather 318 

than the RDoC-assigned grouping of these factors (Cognitive Systems: Attention, and Social Systems: 319 

Affiliation & Attachment, respectively). A previous review found that inattention and anxiety are tightly 320 

linked (51) but our results provide evidence of the direct link between inattention and negative affect. We 321 

also found that the Delay Discounting factor, while considered part of the RDoC Positive Valence 322 

System: Reward Valuation subconstruct (52), correlated instead with Cognitive Systems factors, 323 

suggesting delay discounting is more related to Cognitive Control/Impulsivity domains than to Reward 324 

Valuation (53–55).  325 

 326 

Table 2. Discovered factors (EFA) using 100 phenotypic measures. Factors are grouped according to 327 

correlations between the factors. The right column indicates the RDoC domain each factor most closely 328 
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approximated. Factors whose correlation structure did not match the RDoC domain assignment for that 329 

factor (n = 3) are displayed in red. 330 

Domains Factors grouped according to factor correlations RDoC subdomains  
(non-fitting marked in red) 

Negative 
Valence 

Externalizing (high ASR aggression and rule-breaking, high DSM antisocial, high 
NIH aggression) 

Frustrative Non-Reward 

Conscientiousness/Attention (low DSM ADHD, low ASR attention problems, and 
high NEO-FFI conscientiousness) 

Attention 

Somaticism (high DSM/ASR somaticism, high DSM depression, low PSQI sleep 
quality) 

Sustained Threat 

Internalizing (high DSM/ASR anxiety, high DSM depression, high NEO-FFI 
neuroticism) 

Potential Threat, Sustained 
Threat 

Negative Affect (high NIH anger, fear, sadness and stress) Acute Threat, Loss, 
Sustained Threat 

Social Withdrawal (high ASR withdrawal, high DSM avoidance, low NEO-FFI 
extraversion) 

Affiliation & Attachment 

Cognition Visuospatial Processing (high Penn short line orientation task performance) Visual 

Delay Discounting (high delay discounting AUC for $200 and $40k) Reward Valuation 

Language Task Performance (high fMRI language task story average difficulty, and 
high math problem accuracy) 

Language Behavior 

Crystalized IQ (high NIH English reading and picture vocabulary, high education, and 
high NEO-FFI openness) 

Declarative Memory  

Fluid Cognition (high Raven's progressive matrices performance) Working memory 

Gambling Task Reaction Time (slow gambling task reaction time)  

Memory Performance (fMRI N-Back task fast RT and high accuracy, fast Penn word 
memory RT) 

Declarative/Working 
Memory 

Processing Speed (high NIH flanker total score, fast fMRI emotion task RT)  

Relational Task Reaction Time (slow fMRI relational task RT)  

Social Social Support (high NIH friendship, low loneliness, low perceived rejection and 
perceived hostility, high emotional and instrumental support) 

Affiliation and Attachment 

Positive Affect (high NIH life satisfaction, positive affect, and meaning and purpose, 
and NEO-FFI extraversion) 

Perception and Self 

Agreeableness (low aggression and high NEO-FFI agreeableness) Affiliation and Attachment 

 331 

 332 

Here we summarize several key points from our mapping of causal influences on AUD symptom 333 

severity onto the RDoC framework. First, our analysis uncovered strong evidence for the direct causal 334 

effect of the Negative Valence domain in AUD. This specifically included a causal influence of the 335 

Negative Affect factor on AUD, mediated through Conscientiousness/Attention (which correlated with 336 

other Negative Valence Systems factors). While many neurobiological models of addiction agree on the 337 

importance of negative affect in AUD (10,20), this is not unanimously agreed upon by experts in the 338 
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addiction sciences (17). The presented empirical data hence provides important empirical evidence 339 

implicating the broader Negative Affect Domain (as defined in RDoC) as an important treatment target in 340 

AUD. 341 

Second, our analysis uncovered strong evidence for a mediating/buffering role of the Social 342 

Systems domain in AUD. Low Social Support and low Agreeableness were indirect causes of AUD 343 

severity and fully mediated the effect of cognition on the negative valence domain, providing strong 344 

empirical evidence that addiction models should incorporate measures of social function (56,57). 345 

Epidemiological research has established a solid link between social affiliation and drug addiction (58), 346 

and increased social affiliation is associated with decreased risk of relapse in drug users who are seeking 347 

treatment (59). Despite the considerable evidence research has uncovered for the importance of social 348 

affiliation as a protective factor in addiction (60), current neurobiological models of addiction generally 349 

fail to consider social factors (56) and their close relationship to cognitive/affective factors. 350 

We generally found weak evidence for the involvement of the Positive Valence Systems domain 351 

in this analysis, although this is likely due to a limitation of the dataset employed. Positive Valence 352 

Systems subdomains, including reward-based domains that are particularly important in addiction (17) are 353 

relatively neglected in the HCP dataset (61). We did find a causal influence of Delay Discounting on 354 

AUD severity, but as noted previously the Delay Discounting factor correlated with other Cognitive 355 

factors, suggesting that Delay Discounting (as measured in the HCP study) might be related to Cognitive 356 

Control/Impulsivity more so than Reward Valuation (53–55). 357 

Finally, our analysis provides strong evidence that prefrontal cortex (PFC) brain networks, and 358 

associated cognitive factors, are situated at the top of the causal hierarchy of influences on AUD severity. 359 

The role of prefrontal cortex and associated high-level cognitive factors in addiction is often referenced 360 

and is a part of major current theories of addiction (20,62), but our results are among the first to 361 

empirically demonstrate this hierarchical influence on AUD. Importantly, our causal model indicates that 362 

cognitive influences on AUD severity may extend far beyond the traditional consensus that inhibitory 363 
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control is the most important cognitive influence on addiction (17,62,63), as we also highlighted 364 

influences of fluid and Crystallized IQ, working memory, and language on AUD.  365 

4.2 Impact of Results on Theorized Externalizing and Internalizing Pathways to AUD  366 

Previous research has shown that externalizing symptomatology predicts AUD in young adult 367 

samples (64). Our data-driven causal model revealed that externalizing fully mediated the impact of all 368 

other (measured) causes of AUD; that is, AUD is unrelated to other phenotypic or brain network factors 369 

when externalizing is controlled for. Note that our externalizing factor consisted of ASR rule-breaking, 370 

aggression, and antisocial scales, and NIH toolbox aggression. The ASR rule-breaking scale contains an 371 

item that assesses whether a subject “gets drunk,” but this does not appear to have influenced the current 372 

analysis. First, this is only one out of 14 items on the rule-breaking scale (and 40 items in total that 373 

contributed to the Externalizing factor). Second, all four scales that formed the Externalizing factor 374 

independently correlated with AUD symptom severity (all p < .001), such that each individual aspect of 375 

Externalizing appears to be related to AUD severity. Overall the model hence supports that externalizing 376 

symptoms in general mediate the causal influence of other factors on AUD. 377 

Research has also focused on the high coincidence of AUD and internalizing disorders (65–67). 378 

Previous causal modeling research found a causal path from internalizing disorder to drinking behavior in 379 

AUD (mediated through drinking-to-cope) (68). The current model contains a confounded relationship 380 

between Internalizing and Conscientiousness/Attention, indicating an inability of the model to determine 381 

the relationship between these two factors, possibly due to underlying constructs (e.g. drinking motives) 382 

that were not captured in this data set. Therefore, it remains to be further described by future research if 383 

negative affect is a common underlying cause of internalizing and AUD symptoms (65), or if there is an 384 

independent causal influence of internalizing psychopathology on AUD symptoms. It is possible that this 385 

relationship could be better examined through a longitudinal study, as pathodevelopmental perspectives 386 

on AUD have proposed that early stages of addiction are characterized by low levels of internalizing, but 387 

later stages of addiction are characterized by increasing levels of internalizing (65).  388 

4.3 A Gray Area in the Literature – the Role of Fluid Cognition in AUD  389 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.21.306761doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.306761
http://creativecommons.org/licenses/by-nc-nd/4.0/


CAUSAL DISCOVERY IN ALCOHOL USE DISORDER  19 

 

Executive function is central to neurobiological models of addiction (10,20,62,63). Fluid 390 

cognition (here, measured through performance on an abbreviated form of Raven’s progressive matrices) 391 

(69), or a person’s ability to reason and think abstractly and flexibly, has an intuitive relationship with the 392 

concept of executive function. Authors have often considered working memory to be either indicative of 393 

executive function (70), or of fluid cognition (71), and executive function and fluid cognition are 394 

similarly impacted by brain lesions (72). Our results generate the hypothesis that fluid cognition and 395 

Crystalized IQ, including problem-solving and abstract reasoning, lie at the beginning of a causal 396 

hierarchy eventually influencing AUD severity. This fits previous empirical evidence demonstrating that 397 

AUD is associated with deficits attributed to various fluid cognitive abilities or executive function such as 398 

working memory (73,74) and planning and goal maintenance (75), but expands on this by indicating that 399 

these factors have a causal influence on AUD symptom severity. Previous research has also demonstrated 400 

that high-level cognition predicts initiation of substance use in adolescence (76), lifetime drug use and 401 

abuse (77) and addiction treatment outcomes (78).  Our model thus adds to the growing body of empirical 402 

evidence that proposes a causal role of cognition as a primary resilience factor and potential treatment 403 

target in AUD.  404 

4.4 Brain Network Influences in AUD  405 

We found a direct brain-phenotype link from frontoparietal (executive) network connectivity to 406 

fluid cognition, corroborating previous evidence of this link in healthy populations (79–83). In addiction, 407 

frontoparietal network dysfunction has been implicated in impaired inhibitory control (20,84,85) and self-408 

regulation (51,85). Individuals with AUD show decreased recruitment of frontoparietal network during 409 

social-emotional processing (86,87), decision-making (88), and cognitive control (89), as well as 410 

decreased frontoparietal connectivity during rest (90). Frontoparietal disengagement during social-411 

emotional processing predicts relapse in AUD (91), and decreased frontoparietal activation during 412 

inhibitory control predicts later drinking in adolescents (92,93). Our results indicate that causal influences 413 

of frontoparietal network connectivity on AUD are mediated through deficits in overall cognitive ability 414 

and its downstream effects on the broader Negative Affect domain. A recent systematic review (94) also 415 
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showed that targeting dlPFC (part of the frontoparietal network) (24) can improve cognitive deficits in 416 

addiction, including executive functions. This is particularly relevant, as our data-driven model also 417 

indicates that neuromodulation of frontoparietal network could improve executive functioning, with 418 

downstream effects on AUD severity. 419 

We also found direct effects of cingulo-opercular and dorsal attention network connectivity onto 420 

the frontoparietal network. The Cingulo-opercular network reacts to salient stimuli regardless of 421 

positive/negative valence (95,96), while the dorsal attention network supports the external focusing of 422 

attention (97) and encodes top-down control and working memory load (98). Individuals with AUD also 423 

show decreased cingulo-opercular activation during social-emotional processing (86,87), cognitive 424 

control (89,99,100), and decision-making (88). Our results suggest that dysfunctional connectivity in 425 

salience and attentional networks can contribute to cognitive dysfunction in AUD, with these effects 426 

being mediated through executive network connectivity. The presented causal model hence provides 427 

direct evidence for brain-directed treatment approaches targeted at the frontoparietal network, such as 428 

cognition-enhancing therapy (85,101,102), pharmacological interventions (cognitive enhancers) (101) or 429 

neuromodulation treatment (e.g., by external devices) (94,103) or neurofeedback interventions (51). 430 

A novel result generated from our causal discovery analysis is the role of language network 431 

connectivity as a central “hub” in the brain during resting-state. Language network connectivity caused 432 

cingulo-opercular network connectivity directly, and indirectly caused dorsal attention network 433 

connectivity (mediated through cingulo-opercular connectivity, and posterior multi-modal association 434 

network connectivity). Therefore, language network connectivity exerts influences on frontoparietal 435 

network connectivity through multiple different pathways, and might have long-range impacts on 436 

cognition and eventually on AUD severity. The potential involvement of language network in AUD 437 

appears to have been scarcely investigated. This network encompasses vlPFC regions that are close to left 438 

dlPFC regions that are often targeted in neuromodulation interventions for addiction (103), and therefore 439 

neuromodulation targeted at left DLPFC might also stimulate language networks. Left vlPFC regions are 440 

also implicated in cognitive interventions for addiction (85). Future analysis should examine the 441 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.21.306761doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.306761
http://creativecommons.org/licenses/by-nc-nd/4.0/


CAUSAL DISCOVERY IN ALCOHOL USE DISORDER  21 

 

relationship between brain language networks and cognitive dysfunction in AUD, and the implications for 442 

treatment. 443 

4.6 Limitations 444 

 The analysis method used in the current manuscript is not free of limitations, and other limitations 445 

are also imposed by the nature of the dataset we used. Notably, the fact that we did not find any cycles 446 

(i.e. variable X causes variable Y, and variable Y causes variable X) in the current data does not mean 447 

that they do not exist. The causal discovery algorithm used in this analysis cannot discover recurring 448 

cycles in cross-sectional data, but is capable of discovering recurrent cycles when more than one time 449 

point is measured and the cycles unfold over time. Future analysis should incorporate longitudinal data to 450 

specifically test the possibility that recurrent cycles might contribute to AUD (10). This limitation extends 451 

to the brain network subgraph we recovered as well; the causal discovery algorithm we used cannot 452 

recover bidirectional relationships in cross-sectional data, so some brain network links that are actually 453 

bidirectional processing streams may instead be represented as the predominant causal relationship 454 

between two networks. Finally, the CDA algorithm also uses a penalized likelihood score, therefore 455 

potentially missing weak causal links present in the data; however, this practice also serves to increase the 456 

confidence in the causal relationships the algorithm does find.  457 

An important limitation of the data set is the extremely limited assessment of the Positive 458 

Valence domain in the HCP dataset.  Current perspectives in addiction emphasize the role of Positive 459 

Valence domains (10,17,20,62,63), but the HCP dataset does not contain many measures in this domain. 460 

The data did contain a measure of Delay Discounting, which had causal influences on AUD severity, but 461 

this factor appeared to be grouped with other cognitive factors and could not be interpreted as a unique 462 

measure of Reward Valuation. The HCP dataset also contained a gambling choice fMRI task, but this task 463 

did not provide a phenotypic measure of incentive salience processing. Future analysis will need to 464 

carefully measure Positive Valence domains, in addition to the domains measured in the HCP dataset, to 465 

determine where these domains fit in an overall causal model of AUD. Another limitation of the dataset is 466 

that the cross-sectional design employed by the HCP is also unable to assess certain predictions of 467 
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pathodevelopmental perspectives on addiction, such as the possibility that different causal factors are 468 

involved in early and late stages of AUD (65). 469 

4.6 Conclusions 470 

 This study is the first to conduct a machine learning search for causal influences of AUD 471 

symptoms over a wide phenotypic and neurobiological space. We found phenotypic factors related to 472 

several RDoC domains, and confirmed hypothesized influences of a Negative Valence (Negative affect > 473 

Conscientiousness/Inattention > Externalizing > AUD symptom severity), and Cognitive Systems (Fluid 474 

Cognition > Crystalized IQ > Working Memory/Language> Social/Affective/Psychiatric factors > AUD 475 

symptom severity) on AUD. The model proposed a hierarchy with causal influence propagating from 476 

brain function to cognition (Fluid/Crystalized Cognition, Language & Working Memory) to social 477 

(Agreeableness/Social Support) to affective/psychiatric function (Negative Affect, low 478 

Conscientiousness/Attention, Externalizing symptoms) and ultimately AUD symptoms. These results 479 

underscore a) a strong causal link between prefrontal brain function/cognition and affective/psychiatric 480 

factors and b) an important buffer function of social factors (Social Support, Agreeableness). Our data-481 

driven model hence confirmed hypothesized influences of cognitive and affective factors on AUD, while 482 

underscoring that traditional addiction models need to be expanded to highlight the importance of social 483 

factors, amongst others. Results further demonstrated that it is possible to reduce a broad phenotypic 484 

space (100 measures) to a limited set of causal factors of AUD, which can inform future research. We 485 

argue that the presented causal model of AUD provides evidence for exploring two different kinds of 486 

treatment approaches, specifically for investigating a) “top-down” interventions aimed at enhancing high-487 

level cognition, including brain-directed interventions targeting the executive network and b) 488 

“integrative” interventions that take the interplay between brain/cognitive, affective/psychiatric factors 489 

and social factors into account. We note that we did not investigate the individual heterogeneity of the 490 

causal factors involved in this model, but only provided a static causal model of an “average” individual 491 

with AUD symptoms, as a first step. We believe that this initial step of describing a comprehensive, 492 

integrated, multimodal but also reduced model (in a principled data-driven way) is crucial. We see the 493 
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provided causal model as a working model, which can be further expanded (e.g. by the RDoC Positive 494 

Valence factors), explored with regards to individual heterogeneity and used in predictive modelling 495 

studies on alcohol use trajectories in active users, as well as in individuals with AUD in treatment. 496 
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