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Abstract 

Background:  Transcriptomic profiling has been pivotal in better comprehending the 

convoluted biology of tumors including head and neck squamous cell carcinoma (HNSCC). 

Recently, mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK2/MK2) 

has been implicated in many human diseases including tumors.  We recently reported that 

MK2 is a critical regulator of HNSCC and functions via modulating the transcript turnover of 

crucial genes involved in HNSCC pathogenesis. Consequently, to expand our insight into the 

biological relevance of MK2 and intricate cross-talks in tumor milieu, we conceptualized a 

comprehensive transcriptome analysis of HNSCC.  

Results: We performed an extensive transcriptomic profiling to ascertain global patterns of 

gene expression in both in vitro and in vivo experimental models of HNSCC which 

exquisitely emulates the tumor microenvironment. Transcriptomic characterization 

substantiated an intrinsic role of MK2 and certain MK2-regulated genes in HNSCC 

pathogenesis, an outcome that reiterates our recent findings. Annotation and differential gene 

expression analysis revealed candidate genes whilst pathway enrichment analysis 

corroborated the biological significance of findings. Furthermore, advanced gene expression 

assays through nCounter system (primary validation) in conjunction with 

immunohistochemical analysis (secondary validation) validated the transcriptome profiling 

outcomes quite robustly. 

Conclusions: Our results have underpinned the importance of seven differentially expressed 

MK2-regulated genes which are constitutively involved in HNSCC pathogenesis and could 

serve as potential candidates for future endeavors pertaining to therapeutic interventions and 

diagnosis pertaining to HNSCC. Collectively, our findings have paved the way towards the 

identification and development of new effective tumor markers and potential molecular 

targets for HNSCC management and improved clinical outcomes. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.303180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.303180
http://creativecommons.org/licenses/by/4.0/


3 
 

Keywords 

Transcriptomics, Head and neck squamous cell carcinoma, MAPKAPK2, RNA-binding 

proteins, Pathogenesis, Differentially expressed genes, Gene regulation, MK2-regulated 

genes, nCounter Gene expression assays, Therapeutics 

Background 

Multifaceted regulatory networks tend to connect genes within a myriad of cellular processes. 

The involvement of a plethora of genes in fundamental biological processes viz. cell 

differentiation, growth and programmed cell death, and their involvement in many diseases is 

presently known (Spataro et al., 2017). However, the apprehension of their roles at a global 

level is still incomplete. Gene transcription and regulatory networks in conjunction with new 

genome-wide approaches have garnered huge attention in the pretext of gene regulation. 

Nevertheless, post-transcriptional mechanisms like transcript stability and translation are also 

highly crucial and require intricate regulation via a multitude of intracellular signaling 

pathways. Particularly, the control of transcript stability through phosphorylation-mediated 

regulation of RNA-binding proteins (RBPs) by mitogen-activated protein kinases (MAPKs) 

has been a topic of huge interest (Lasa et al., 2000; Venigalla et al., 2012, Soni1 et al., 2019, 

Soni2 et al., 2019).  

Head and neck squamous cell carcinomas (HNSCCs) having an incidence rate of 

~600,000 cases yearly, is the seventh most common cancer worldwide and one of the most 

lethal with overall mortality rate of 40-50% (Jemal et al., 2011; Ferlay et al., 2015). HNSCCs 

are classified either histologically (Woolgar et al., 2011) or via analysis of global 

transcription that employs etiology specific profiles (Martin et al., 2014; Van Waes et al., 

2017). However, when these parameters were used for patient clustering, specific differences 

were observed in clinical behavior of patients as well as their response to therapy (Denaro et 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.303180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.303180
http://creativecommons.org/licenses/by/4.0/


4 
 

al., 2014). The survival rates of HNSCC patients have not improved much, hence, HNSCC 

has been rightly termed as a malignant tumor having a low survival rate (Narayanan et al., 

2015). Consequently, an improved mechanistic insight into the molecular basis of HNSCC 

pathogenesis is urgently required to help in early diagnosis and development of effective 

therapeutics aimed at improved clinical outcomes (Jamali et al., 2015).  

The role of differentially expressed genes (DEGs) and endogenous RNA networks in 

HNSCC is not fully deciphered. Past reports on genome and transcriptome studies in various 

human tumors have revealed aberrant regulatory programs, driver mutations, and disease 

subtypes (Weinberg, 2014). The cancer genome study has acted as a valuable tool for 

classification, diagnosis, and prognosis in HNSCC. There have been many past reports 

pertaining to genomic alterations in HNSCC (Chau et al., 2016; Bossi et al., 2016). Recently, 

the cancer genome atlas (TCGA) led to a global analysis of the major molecular changes, 

comprehensive landscape of transcriptomic alterations and pathogenesis-linked signalling 

pathways in tumors thus contributing to the identification of novel prognostic biomarkers or 

specific anticancer molecular candidate groups (Cancer Genome Atlas Network, 2015; 

Campbell et al., 2018). However, there is still need of extensive research insights to decipher 

the prognostic value attributed by these genomic alterations in tumors like HNSCC. A variety 

of biomarkers like MAPK phosphatase-1 (MKP-1), p16, p27, p53, tumor necrosis factor-α 

(TNF-α), and vascular endothelial growth factor (VEGF) have been shown to be linked with 

HNSCC (Thomas et al., 2005; Soni2 et al., 2019), but they have not proved to be sufficient in 

accurately defining HNSCC pathogenesis. Single biomarkers have generally proved 

insufficient in the prediction of therapeutic response thereby necessitating research on 

combinatorial markers through high-resolution “omic” profiling (Bhatia et al., 2012). 

Consequently, identification of new reliable molecular biomarkers associated with HNSCC 
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using omics-based analysis is the need of the hour in order to develop them as novel potential 

therapeutic targets (Fiore et al., 2016).  

Lately, the mRNA regulatory networks involved in tumor progression have garnered 

huge research interest. Recently, many reports have showcased the role of these intricate 

networks in tumorigenesis (Fang et al., 2018). However, research insights in this area are 

quite limited, thereby pointing to a pertinent need of comprehensive analysis of mRNAs and 

regulatory networks. Next generation sequencing (NGS) has fast evolved as an important tool 

for epigenomic, genomic, and transcriptomic profiling (Cieślik et al., 2018). Technological 

advances in mining and deciphering the vast cancer transcriptomic data has enabled us to 

better comprehend the complexity of various tumors and has streamlined efforts to discover 

novel biomarkers and therapeutic targets aimed at tumor management (Cieślik et al., 2018). 

 In our recent study, we elucidated the role of mitogen-activated protein kinase-

activated protein kinase-2 (MAPKAPK2 or MK2) in HNSCC pathogenesis using clinical 

tissue samples, cell lines and heterotopic xenograft mice model (Soni2 et al., 2019). We 

reported that MK2 is critically important in regulating HNSCC, and acts by modulating the 

transcript stability of crucial pathogenesis-related genes. We also established that knockdown 

of MK2 attenuates tumor progression in a xenograft mice model. Thereupon, in an attempt to 

delve deeper into the mechanistic insights of the role of MK2 and to decipher the molecular 

markers responsible for MK2-mediated changes in HNSCC pathogenesis, we conceptualized 

to perform a comprehensive transcriptome profiling of HNSCC cell line and xenograft-

derived tumor samples evaluated in our recent study. 

In the present study, we have evaluated the global mRNA expression profiles of our 

previously established HNSCC experimental model sets using transcriptome analysis on 

NovaSeq 6000 system (Illumina Inc., USA). The in vitro HNSCC cell line model including 

CAL27-MK2WT (wild-type) and CAL27-MK2KD (knockdown) cells cultured in both 
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normoxic as well as tumor microenvironment mimicking hypoxic conditions comprised the 

first set. The in vivo heterotopic HNSCC xenograft bearing tumors from CAL27-MK2WT and 

CAL27-MK2KD cells in immunocompromised mice as previously described (Soni2 et al., 

2019) formed the second set. The findings of the transcriptomic profiling corroborated with 

our recently published results, hence, ascertaining a crucial role of MK2 in HNSCC 

pathogenesis via transcript stability regulation (Soni2 et al., 2019). Thus, by comprehensive 

transcriptome analysis we have elucidated certain specific MK2-mediated DEGs and 

regulatory networks that play an integral role in HNSCC pathogenesis in our experimental 

models. Furthermore, we performed gene expression assays on the nCounter system 

(NanoString Technologies, Inc., USA) in order to obtain a sensitive, highly multiplexed, and 

reliable detection of the specific mRNA targets based on our initial transcriptomic profiling. 

Finally, we cross validated the nCounter gene expression analysis results in in vitro setting 

using immunohistochemical analysis and found that the findings are in consonance and 

reiterate our recent discovery that MK2 is critically involved in regulating HNSCC 

progression and functions by modulating the transcript stability of crucial pathogenesis-

related genes. The assays yielded highly precise and reproducible data which confirmed 

transcriptomic findings and yielded seven candidate MK2-regulated genes intrinsically 

involved in HNSCC pathogenesis which could potentially aid in discovery of new molecular 

markers for HNSCC management and diagnostic benefit. 

Results 

Qualitative assessment of the generated cDNA library followed by filtering and 

assembly of reads depicted optimum alignment 

The RNA samples used for sequencing were isolated from appropriate cells/tissues using 

RNeasy Mini kit (Qiagen, Germany) and the quality assessment of the isolated total-RNA as 

well as the cDNA library formed was performed using Bioanalyzer (Agilent 2100, Agilent 
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Technologies, USA). The RNA integrity number (RIN) value of all the RNA samples was 

found to be >5 (exclusion criteria for this study). It is quite evident from the outcome of the 

quality check analysis that all the RNA samples utilized, as well as the cDNA library 

constructed were of apt quality for their use in downstream experiments (Figure 1a, S1 and 

S2).  

Deep sequencing of RNA obtained from NovaSeq 6000 platform resulted in 349 

million raw reads (~58.2 million raw reads per sample) of average insert size 210bp. Figure 

1a and S3 summarizes the quality check (QC) results of the sequencing experiment. The raw 

FASTQ sequences were filtered using NGSQC tool kit to obtain high quality (HQ) reads 

based on the set parameters, generating 258 million filtered HQ reads (~43.1 million HQ 

reads per sample), amounting to 74.1% of total raw reads, hence, implying that the obtained 

data was of good quality. A total of 25.7 giga bases of data was generated which foretells the 

enormity and wide complexity of the human genome. 

The HQ reads obtained were further considered for downstream analysis and mapped 

over the human reference genome. The alignment performed employing the Kallisto pipeline 

was optimum with approximately 88.7% of the HQ reads on an average getting mapped to 

the human reference genome (Figure 1a, 1b and S4). 

Annotation and differential gene expression analysis revealed candidate genes 

The present study was conducted using two distinct experimental datasets as mentioned in 

Figure 1a and Table 1. Using the criteria of fragments per kilobase of transcript per million 

mapped (FPKM)≥0.1, we identified on an average around 62791 expressing transcripts in all 

the samples, representing thousands of genes. A-D datasets depicted the in vitro HNSCC cell 

line samples while F vs E illustrated the in vivo xenograft dataset. As detailed in Figure 1a 

and Table 1, we performed analysis in MK2KD vs MK2WT scenario under both normoxic and 

hypoxic conditions to obtain a comprehensive picture of the changes in the global gene 
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expression pattern in the backdrop of tumor core emulating hypoxic niche. Firstly, we 

evaluated the differential gene expression in the various studied datasets and found a large 

pool of DEGs, precisely 1403 in B vs A, 924 in D vs C, 1360 in D vs B, 1456 in C vs A, and 

984 in F vs E as assessed by the pre-set cut-off values. Figure 1c represents the total number 

of upregulated (fold change (FC)>2) and downregulated (FC<-2) genes among all the DEGs 

in the analyzed datasets.  

Pathway enrichment analysis exhibited the biological significance of our findings 

The multitude of DEGs in various experimental datasets in the transcriptomic profiling are 

implicated in hundreds of significant biologies/biological processes as summed up in Figure 

1d. To gain further insight into the biological significance of changes in gene expression and 

to attain a global picture of the molecular pathways possibly contributing to HNSCC 

pathogenesis, pathway enrichment analysis was performed using the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database. It yielded an integrated network analysis and 

revealed the top five biological processes enriched in the experimental datasets. The top gene 

ontology pathway analysis for the DEGs is depicted in Figure 1e. It was notably found that a 

significant percentage (~5%) of the total DEGs in the various studied combinations belonged 

to the pathways involved in cancer progression (Figure 1e). The DEGs showing significant 

changes between various groups were then selected, followed by generation of heat maps to 

assess clustering of gene expression profiles among the experimental datasets (Figure 2a). 

Figure 2b further depicts the distribution of all the transcripts on the two dimensions of -

log(P) and FC by way of volcano plots with differentially expressed transcripts highlighted in 

blue. 

In A-D datasets, the DEGs belonged to a large number of biological processes thereby 

limiting the information that could be harnessed. Henceforth, in an effort to filter down data 

and fulfill the aim of extracting valuable leads, we selected the 77 elements/biological 
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processes that were common in A-D combinations using Venny 2.1.0 

(http://bioinfogp.cnb.csic.es/ tools/) (Figure 2c). These processes belonged to numerous 

categories which are listed in Table S1. On the background of this knowledge, we further 

filtered down the common genes in these 77 biological processes (Figure 2d). Consequently, 

we obtained five genes common in A-D combinations namely EH domain binding protein 1 

(EHBP1), SMC5-SMC6 complex localization factor 2 (SLF2), death associated protein 3 

(DAP3), inositol hexakisphosphate kinase 2 (IP6K2) and runt related transcription factor 1 

(RUNX1) as listed in Table S2. Notably, these genes play specific roles in HNSCC 

pathogenesis possibly via MK2-mediated regulation. 

Gene regulatory networks and pathways depicted the importance of candidate genes in 

HNSCC pathogenesis 

Gene regulatory networks for these five common genes in A-D datasets furnished a detailed 

overview of the various inter-connections and the biological processes affected by them. 

Collectively, the results showed that IP6K2 plays an intrinsic role in nucleotide binding, 

while DAP3 in apoptosis and poly(A) RNA binding as confirmed in past reports (Thomas et 

al., 2014; Wazir et al., 2015). Interestingly, these genes showed differential regulation in 

various experimental datasets (Figure S5-S8), hence, clearly signifying that MK2-knockdown 

as well as hypoxic tumor microenvironment affects the genes and pathways in HNSCC via 

differential regulation, pointing to a central role of MK2 in transcriptional regulation of 

HNSCC. 

Furthermore, to retrieve the information about the MK2-regulated candidate genes 

intrinsic to HNSCC, we narrowed down our search to cancer related processes for further 

analysis. This filtered down our dataset to 16 cancer-specific biological processes that were 

common in A-D datasets (listed in Table S3). In these 16 processes only two genes, DAP3 

and RUNX1, were found to be common as per the analysis performed using Venny 2.1.0 
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(Figure 2e and Table S4). Collectively, these findings have indicated that these two genes are 

intrinsically involved in HNSCC pathogenesis and warrants further investigation in this 

regard. Notably, the 16 processes were found to be clustered in 5 major biological pathways 

(Figure S9), clearly showcasing that MK2 portrays an intrinsic role in the hypoxic tumor 

microenvironment by regulating processes like apoptosis and transcription, hence, 

potentiating and strengthening our latest in vitro findings (Soni2 et al., 2019). 

Similarly, on comparing the mice bearing CAL27-MK2KD tumors with those bearing 

CAL27-MK2WT tumors (F vs E xenograft dataset), we found that the DEGs were clustered in 

14 biological processes of relevance to tumor pathogenesis as listed in Table S5. The genes 

involved in these biological processes were then filtered out and Figure S10 shows the gene 

regulatory network for the same. This analysis provided us with certain candidate genes like 

TRAF2 (apoptosis); EPB41L1 (cytoskeleton); FOXO3, H2AFY and YAP1 (transcriptional 

regulation); and DIDO1 (RNA binding) that are involved in key cellular processes in the 

xenograft model. These findings can be explored further to decipher the putative role of these 

potential candidate genes in HNSCC pathogenesis with an aim to define probable therapeutic 

targets for HNSCC management. 

MK2 mediated master of regulatory network functions by modulating the transcript 

stability 

The prime objective of this study was to gather comprehensive information about the various 

DEGs and pathways rendering essential roles in HNSCC pathogenesis in the presence and 

absence of MK2 in both normoxic as well as the tumor core mimicking hypoxic conditions. 

Thereupon, keeping MK2 at the nexus of further analysis, we shifted the focus on elucidating 

in detail, the regulation of MK2 pathway and its downstream targets in various experimental 

datasets. It was found that MK2 is involved in regulation of six major biological pathways as 

shown in Figure S11. Recent in vitro findings by our team have asserted that MK2 controls 
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transcript stability of critical genes involved in HNSCC pathogenesis via RBP-mediated 

regulation (Soni2 et al., 2019). Hence, we analyzed the transcriptomic data in regard to 

deciphering the role of MK2 in the regulation of mRNA stability. Interestingly, MK2 was 

found to accomplish the task of regulating the transcript stability through RBP-mediated 

regulation with HuR (ELAVL1) and TTP (ZFP36) playing intrinsic roles (Figure 3a), thus 

clearly affirming the hypothesis and corroborating our previous findings (Soni2 et al., 2019). 

The levels of expression of these RBPs and hence regulation was different in various 

experimental datasets clearly suggesting that tumor environment, in association with 

presence/absence of MK2, plays an important role in HNSCC pathogenesis (Figure 3a). 

Next, to attain a clear picture of what was happening at the transcriptional level, we 

narrowed down our analysis by filtering down to selected genes of the MK2 pathway that 

were previously studied in MK2-centric studies and were also analyzed in our recent in vitro 

study. The genes selected for this analysis were p38, MK2, AUF1, TTP, CUGBP1, CEBPδ, 

HuR, MKP-1, p27, TNF-α and VEGF, which have been known to be involved in a number of 

key cellular pathways. The analyzed genes were clustered into eight major biological 

processes as shown in Figure S12. Elucidation of the MAPK signaling cluster in detail 

indicated that in the background of MK2-knockdown in normoxia (B vs A dataset), VEGF 

and TNF-α tend to show downregulation (Figure 3b) which is in complete consonance with 

our previously established findings. Collectively, transcriptomic analysis results were quite 

promising and corroborated very well with previous findings, thereby, strongly validating our 

hypothesis that MK2 is the master regulator of transcript stability of genes critical to HNSCC 

pathogenesis.  

3'-untranslated region-based filtering furnished information regarding important MK2-

regulated downstream target genes 
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In the present study, our prime focus was role of MK2 and MK2-regulated genes in HNSCC 

pathogenesis. MK2 can potentially regulate the transcript stability of only those targets that 

possess the binding regions for RBPs in their 3'-untranslated region (3'-UTR). Practically, 

only these genes could be the probable candidates of MK2 downstream targeting via RBP-

mediated regulation. Hence, we narrowed down the transcriptomic analysis to only those 

DEGs that harbored RBP binding regions in their 3'-UTRs. To accomplish this task, we 

fetched out the 3'-UTR regions of all DEGs using Ensembl (http://www.ensembl.org/) (Aken 

et al., 2016). Next, the domain sequences of RBPs were assessed using catalog of inferred 

sequence binding preferences of RBPs (CISBP-RNA) database. Lastly, the transcripts that 

harbour RBP specific regions in their 3'-UTRs were filtered out using RBPmap v1.1 web tool 

(http://rbpmap.technion.ac.il/). Using this approach, we analyzed the top two upregulated and 

downregulated genes in previously selected 16 cancer specific pathways (Table S3) in the 

transcriptomic profiling of the in vitro HNSCC cell line model (A-D datasets) which resulted 

in 34 MK2-regulated genes listed in Table S6. Similarly, for the in vivo heterotopic HNSCC 

xenograft experimental dataset (F vs E dataset), we filtered down the topmost upregulated 

and downregulated genes in all the cancer specific pathways which provided us 48 MK2-

regulated genes that are listed in Table S7. This specific filter-based transcriptomic analysis 

brought into limelight possible MK2-downstream target genes that could be integral in 

HNSCC pathogenesis. Furthermore, to cross-validate findings of the transcriptomic profiling, 

these filtered candidate genes along with the 5 common genes in the 77 common elements in 

A-D datasets listed in Table S2 were used for further in vitro experimentation. One gene 

(H2AFY) was common in the transcriptomic analysis for both A-D and F vs E datasets 

resulting in a total of 86 genes (34 MK2-regulated genes and 5 common genes for A-D 

datasets, 48 MK2 regulated genes in F vs E dataset, and 1 gene was common in both) that 

were selected for further validation. 
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Highly efficient and precise detection of gene expression via nCounter 

gene expression assays potentiated transcriptomic outcomes  

Routinely, the findings of transcriptomic analysis are generally validated in in vitro setting 

via gene expression analysis employing qRT-PCR and using the same RNA sample in order 

to maintain homogeneity. In lieu of the high-throughput nature of our validation, qRT-PCR 

analysis could have been prone to numerous errors; hence, we employed a latest and highly 

precise gene expression assay-based nCounter system approach (NanoString Technologies, 

Inc.) to validate the transcriptome analysis. To accomplish this assay, 90 specific custom 

designed molecular probes corresponding the selected candidate genes were procured from 

NanoString Technologies, Inc. These probes aided in imaging and detection of multiple 

transcripts (90 in this case) in single reaction with high fidelity rate. The gene set comprised 

of the 86 selected genes from the transcriptomic profiling as well as four housekeeping genes 

(HKG). The HKG were selected based on extensive literature survey which ascertained that 

their levels remain unchanged in HNSCC (listed in Table S8 and S9, respectively).  

The assay was performed using standard procedure as highlighted in Figure S13 and 

S14 and detailed in the methods. Briefly, the custom synthesized probes were hybridized to 

the target RNA samples followed by washing of the excess probes. Further, immobilization 

of the probe/RNA complexes on the nCounter cartridge was performed, samples were run on 

the nCounter instrument and finally data was collected. The statistical analysis (p<0.05) 

indicated that some of these genes were differentially expressed in the various experimental 

datasets. We next performed pathway enrichment analysis of the nCounter gene expression 

assay data to determine the biological significance of changes in gene expression. KEGG 

enrichment analysis revealed the top five biological processes (Figure 4a and 4b), while heat 

map analysis deciphered the clustering of gene expression profiles among various 

combinations (Figure 4c). The results from the nCounter assays correlated with the 

transcriptomic analysis (Table 2 and 3), hence substantiating our findings. 
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Furthermore, considering the individual CodeSet of 39 genes for the in vitro HNSCC 

cell line model (A-D datasets) and 48 genes for the in vivo heterotopic HNSCC xenograft 

experimental dataset (F vs E dataset), the heat-map and box-plot representation of the results 

as analyzed by nCounter gene expression assay have been shown in Figure 4d and 4e, 

respectively. These results indicated the expression profile and variation in FC among DEGs. 

Figure 4d clearly depicts the upregulated and downregulated DEGs in the nCounter assays 

and the results were in consonance with transcriptomic profiling with a high percentage of 

genes showing similar pattern of expression and even matching fold change values as 

showcased in Table 2 and 3. For B vs A dataset, a total of 39 genes were analyzed, out of 

which 24 matched with the transcriptomic analysis (61.6% matching score). The matched 

genes were then analyzed for FC where, BRD2 was found to be the only upregulated gene 

(FC>2) and CLK2 was the only downregulated gene (FC<2). Similarly, after analysis of all 

the datasets we found that 12 DEGs were common in our transcriptomic and nCounter 

analysis (the results have been summed up in Table 4). Notably, these genes are key players 

in important processes like cell cycle progression, apoptosis and transcription regulation, 

hence, potentiating their role as important MK2-regulated genes involved in HNSCC 

pathogenesis. Thus, these results strengthen our recent findings that MK2 is critically 

important in regulating HNSCC and functions by modulating the transcript stability of crucial 

pathogenesis-related genes. Further, detailed statistical analysis accentuated that expression 

of only 7 (MELK, ZNF662, BMP7, CREB3L1, IGFBP2, MUC4, PRKAR2B), out of the 12 

candidate genes were significantly changed (FC>2 or <-2, p<0.05) (Table 2 and 3). MELK 

was the only gene belonging to the C vs A dataset (cell line comparison) while the other 6 

genes were from the F vs E dataset (xenograft comparison). Hence, we next analyzed these 6 

genes (ZNF662, BMP7, CREB3L1, IGFBP2, MUC4, PRKAR2B) in vitro by 

immunohistochemistry (IHC) to ascertain our transcriptomic and nCounter findings in an 

experimental HNSCC xenograft model (Figure 5a).  
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Immunohistochemical analysis indicated probable role of candidate genes in HNSCC 

pathogenesis 

To add another of confidence to the dataset and probe the role of candidate genes in HNSCC 

pathogenesis immunohistochemical analysis was performed in tumor xenograft tissues. The 

six filtered candidate DEGs that were common in transcriptomic and nCounter data analysis 

in F vs E dataset were then analyzed in tumor sections from xenografted animals using IHC 

to evaluate the expression levels of these proteins (Figure 5). Results obtained from IHC 

largely strengthen our findings about the common DEGs in our transcriptomic and nCounter 

analysis. The in situ expression of IGFB2, MUC4, PRKARB2 was mostly present in the 

cellular cytoplasm and stroma of squamous cell carcinoma (Figure 5).  The tumor sections 

with the expression have cellular pleumorphism, mitotic figures and formation of nests of 

tumor cells. It is clearly evident from the IHC outcome that expression levels of three MK2-

regulated candidate genes (IGFB2, MUC4, PRKARB2) were upregulated in tumor xenografts 

created using CAL27-MK2KD cells as compared to CAL27-MK2WT cells (Figure 5). These 

genes are widely considered imperative to processes like cell cycle progression, apoptosis 

and transcription regulation. There was no significant change in the protein expression levels 

of the three other analyzed genes (data not shown). Findings of the Immunohistochemical 

analysis clearly implied the elevated expression level of IGFB2, MUC4, and PRKARB2 in 

tumor xenografts, it corroborates the obtained datasets from transcriptome analysis and 

nCounter gene expression validation. These finding clearly upholds the importance of these 

MK2 regulated candidate genes in HNSCC pathogenesis.  

Discussion 

To improve understanding of the convoluted biology and leverage the outcomes to optimize 

the management of HNSCC, there have been many efforts to characterize HNSCC at the 

transcriptome level. Methodological breakthroughs in the recent past have revolutionized the 
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area of transcriptome profiling by providing a link between the molecular mechanisms and 

cellular phenotypes (Cheng et al., 2018; Cieślik et al., 2018). In recent times, a 

comprehensive landscape of genomic and transcriptomic alterations in squamous tumors 

including HNSCC had emerged from the TCGA network (Lawrence et al., 2015; Campbell et 

al., 2018). Cellular models that can comprehensively characterize metastatic HNSCC are still 

lacking and hence translationally relevant transcriptome profiling underlying the basis of 

HNSCC metastasis has proved to be a powerful tool for preclinical research (Byron et al., 

2016; Nisa et al., 2018). In the context of the present study, this link presented us with an 

opportunity to thoroughly dissect the huge complexity and large heterogeneity in head and 

neck tumors in an attempt to discern novel biomarkers and potential therapeutic targets. 

Generally, there are two well characterized ways to analyze cancer transcriptomic 

data. First is the differential approach, in which tumor expression profiles relative to the 

normal patient-matched or even unmatched tissues are analyzed. Second is the relative 

approach, in which transcript levels across different tumors or other samples are compared. 

The simplest example of the differential approach is identification of the up/down-regulated 

DEGs in a particular sample. There are many established methods that help in detection of 

DEGs for both microarray-based approach as well as RNA-sequencing (Gentleman et al., 

2006; Love et al., 2014). A typical transcriptome profiling result is generally a never-ending 

list comprising of thousands of DEGs, hence, it has always been very difficult to interpret this 

data without additional filtering via functional annotations. A large variety of methods are 

available for analysis of DEGs and for obtaining critical understanding of the pathways, gene 

regulatory and co-expression networks involved (Ackermann et al., 2009; Mitrea et al., 

2013). 

Keeping in mind the critical findings from the previous studies, we performed 

transcriptome profiling of both the in vitro cell line as well as in vivo xenograft tumor 

samples resulting in thousands of DEGs. These genes were segregated based on their 
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clustering in various biological processes (Table S1, S3 and S5). In line with our primary 

goal, we filtered the processes on the basis of relevance in cancer and ended up with five 

DEGs that were common in cell line data sets (A-D) namely EHBP, SLF2, DAP3, IP6K2 and 

RUNX1 as listed in Table S2. Eps15 homology domain binding protein is encoded by the 

EHBP1 gene and this protein has been shown to portray a role in actin reorganization and 

endocytic trafficking (Guilherme et al., 2004). Polymorphism in this gene at a single 

nucleotide level has been reported to cause prostate cancer (Sun et al., 2011). SLF2 is a DNA 

damage response pathway gene and functions by regulating genomic stability by post-

replication repair of damaged DNA (Räschle et al., 2015). DAP3 has been shown to be 

involved in mediating interferon (IFN)-γ induced cell death in addition to its role in organelle 

biogenesis as well as maintenance and mitochondrial translation (Kissil et al., 1995; Tang et 

al., 2009). DAP3 has been characterised by its pro-apoptotic function as a prognostic factor 

in gastric cancer (Jia et al., 2014). The protein encoded by IP6K2 gene has been shown to 

affect growth suppression and apoptotic action of IFN-β in physiologic regulation of 

apoptosis in ovarian cancers (Morrison et al., 2002). It has been reported that deletion of 

IP6K2 leads to HNSCC predisposition (Morrison et al., 2009). Lastly, the protein encoded by 

RUNX1 has been shown to be involved in the process of normal haematopoiesis with 

chromosomal translocations related to this gene showing association with leukemias (Sood et 

al., 2017). Further, it has been reported that RUNX1 depletion in human HNSCC cells caused 

growth arrest (Taniuchi et al., 2012). Collectively, it is quite evident that all these MK2-

regulated genes are playing vital role in tumor pathogenesis, hence showing consistency with 

our finding of their involvement in HNSCC pathogenesis. Therefore, they can be further 

explored as candidates for the development of novel biomarkers and utilized as potential 

therapeutic targets in HNSCC management. 

Additionally, gene regulatory networks in the transcriptome profiling provided 

information of the various biological processes regulated by these candidate genes. It 
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supplied us with a wealth of information which can be further utilized to study the 

pathogenesis of HNSCC in detail especially in the background of MK2-knockdown and 

varied tumor microenvironment (normoxia/hypoxia). Figure 3a is a representation of gene 

regulatory network showing the role of MK2 in regulation of mRNA stability in various 

experimental dataset (F vs E dataset). The figure clearly demonstrates that MK2 regulates 

transcript stability via RBP-mediated regulation with HuR (ELAVL1) and TTP (ZFP36) 

playing integral part. Similarly, Figure 3b portraying the regulatory network that represents 

MAPK signaling cluster of the selected MK2 pathway genes (p38, MK2, AUF1, TTP, 

CUGBP1, CEBPδ, HuR, MKP-1, p27, TNF-α and VEGF) in the transcriptome profiling data 

of the in vitro HNSCC cell line dataset (B vs A, normoxic microenvironment) indicates 

VEGF and TNF-α down regulation. Interestingly, these transcriptomic profiling results are in 

complete consonance with our recently published findings and hence succeed to potentiate 

and validate the fact that MK2-knockdown destabilized VEGF and TNF-α in normoxia via 

RBP-mediated interaction.  

Transcriptome analysis techniques are being commonly utilized in endeavors to 

decipher various molecular mechanisms of tumorigenesis and to fetch out novel prognostic 

and therapeutic markers (Bergers et al., 2008; Trapnell et al., 2010). In this study, we aimed 

to assess the MK2-regulated candidate genes playing prominent role in HNSCC 

pathogenesis. To accomplish this, we filtered out the DEGs based on the presence of adenine 

uridine rich elements (ARE)-regions in their 3'-UTRs where RBPs could bind and modulate 

their function via MK2-mediated regulation. This provided us with a list of 34 genes in A-D 

datasets while 48 genes in the xenograft dataset (listed in Table S6 and S7). The data was 

further validated using the nCounter gene expression assay system (NanoString 

Technologies, Inc.). 

 nCounter gene expression assays enable the digital quantification and single 

molecule imaging of multiple target RNA molecules using multicolor-coded molecular 
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barcodes (Figure S2 and S15). This system provides discrete and accurate counts of RNA 

transcripts at a high level of sensitivity and precision (Brumbaugh et al., 2011). We chose 

four commonly used reference genes viz. ABCF1, GAPDH, POLR2A, and RPL19, in 

nCounter data analysis because of their baseline expression in HNSCC tumorigenesis as well 

as in MK2-knockdown conditions, as listed in Table S9 (Lallemant et al., 2009; Palve et al., 

2018).  

Gene expression assays are independent of any enzymatic reactions or amplification 

protocols and have no reliance on degree of fluorescence intensity to determine target 

abundance. As a result of these characteristics, and also the highly automated nature of bar-

coded sample processing, these assays result in highly precise and reproducible outcomes. On 

an average, we obtained around 52% matching score of transcriptome profiling data with 

nCounter gene expression assay-based validation which is considered a good percentage 

match. Filtering of the DEGs in the matched data revealed a list of 12 genes (6 upregulated 

and 6 downregulated in various experimental datasets) that were common in our 

comprehensive nCounter system-based validation of transcriptomic profiling (Table 4). 

Intriguingly, these genes portray crucial roles in processes like apoptosis (CLK2, MELK, 

MUC4), cell cycle regulation (CLK2, MELK) and transcription regulation (BRD2, H2AFY, 

SAMD4B, ZNF662) suggesting that they could be potentially used as molecular candidates 

for further investigations in regard to design of molecular markers and therapeutics for 

HNSCC management. Hence, transcriptome analysis followed by nCounter assay-based 

validation of our data has provided us with valuable findings that can aid in extending the 

field of HNSCC research.  

Six candidate genes (ZNF662, BMP7, CREB3L1, IGFBP2, MUC4, PRKAR2B) that 

showed statistically significant up/downregulation in F vs E dataset were further analyzed in 

tumor sections from xenografted animals using IHC to evaluate the expression levels of these 

proteins. Interestingly, our IHC findings confirmed the validity of our in-silico findings. 
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Consistent with in silico findings the expression levels of three genes (IGFB2, MUC4, 

PRKARB2) were found to be upregulated, suggesting the roles of these MK2-dependent 

candidate genes in pathogenesis and progression of HNSCC. Insulin like Growth Factor 

Binding Protein 2 (IGFBP2) has been shown as a growth promoter gene in several tumors 

and considered as a central hub of oncogenic signaling network governing transcriptional 

regulation and promoting epithelial to mesenchymal transition, invasion, angiogenesis and 

metastasis (Lindström 2019). Mucin 4 (MUC4) serves as a major constituent of mucus 

secreted by epithelial cells and found overexpressed in a variety of cancers like papillary 

thyroid carcinomas. It is known for promotion of tumor growth, proliferation and migration 

(Yu et al., 2020). Recent insights have been made into the transcriptional regulation of 

protein kinase cAMP-dependent type II regulatory subunit beta (PRKAR2B) by miRNAs and 

X-Box binding protein 1 leading to a better understanding of PRKAR2B-driven prostate 

cancer progression (Xia et al., 2020). Consistent to our findings these genes have been 

suggested to be prognostic indicators and therapeutic targets in various cancers including 

HNSCC (Park et al., 2015; Zhao et al., 2018; Lindström 2019; Xia et al., 2020; Yu et al., 

2020). It is worth mentioning that all of these genes are MK2-regulated and play specific 

roles in pathogenesis. In conclusion, present study vindicates involvement of more MK2-

dependent genes as critically important in regulating HNSCC progression by modulating the 

transcript stability of pathogenesis-related genes via RBP-mediated regulation. This study has 

made it possible to filter down from thousands of DEGs to a few potential candidate genes 

using a comprehensive transcriptomic and in vitro approach.  In an attempt to delve deeper 

into the mechanistic insights and to decipher the molecular markers responsible for MK2-

mediated changes in HNSCC pathogenesis, the role of these potential therapeutic targets 

warrants further detailed investigation. 

Conclusions 
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In conclusion, present study vindicates involvement of more MK2-dependent genes as 

critically important in regulating HNSCC by modulating the transcript stability of 

pathogenesis-related genes possibly via RBP-mediated regulation and these results are in 

perfect consonance and augmentation with our recent findings (Soni2 et al., 2019). 

Comprehensively, few crucial MK2-regulated putative candidate genes were identified in this 

study and their plausible mode of action in HNSCC pathogenesis was elucidated, which 

could be further explained as possible targets in the pathway for HNSCC management 

(Figure 6). This study has made it possible to filter down from thousands of DEGs to a few 

potential candidate genes using a comprehensive transcriptomic and in vitro approach.  In an 

attempt to delve deeper into the mechanistic insights and to decipher the molecular markers 

responsible for MK2-mediated changes in HNSCC pathogenesis, the role of these potential 

therapeutic targets warrants further detailed investigation. 

Methods 

Culturing and maintenance of cell lines 

Homo sapiens tongue squamous cell carcinoma cell line CAL27 (CRL-2095™, ATCC, USA) 

and Homo sapiens palatal mesenchyme cell line HEPM (CRL-1486™, ATCC) were grown in 

specific media supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic 

(Gibco, USA). The cells were cultured in normal conditions (37°C, 5% CO2 incubator with 

95% humidity) and were free from any kind of contamination. Further, MK2-specific short 

hairpin RNA-green fluorescent protein (shRNA-GFP) constructs were used to stably 

knockdown MK2 from cultured CAL27 cells, thus forming CAL27-MK2KD cells (as 

previously described in Soni2 et al., 2019). For hypoxia experimentation, the cultured cells 

plated in petriplates were incubated for 48 hours in 0.5% O2 at 37°C in a hypoxia chamber 

(Bactrox, Shel-Lab, USA).  
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Xenograft mice model generation 

In order to mimic the tumor microenvironment more closely to the human tumors, a 

biologically relevant heterotopic xenograft model of HNSCC was developed in non-obese 

diabetic/severe combined immune deficiency (NOD/SCID) mice. The immunocompromised 

mice were randomly assigned into control (CAL27-MK2WT) and experimental (CAL27-

MK2KD) group based on specific cell-type injected (as previously described in Soni2 et al., 

2019). Briefly, for xenograft generation, one million cultured cells suspended in 100μl of 1x 

phosphate buffered saline were injected subcutaneously in the right flank of mice. Seven 

weeks after graft inoculation, the mice were euthanized by CO2 asphyxiation; tumors were 

aseptically excised, weighed and used for tissue embedding/RNA isolation. 

RNA extraction and sample preparation 

CAL27 cells (both WT and KD) cultured in petriplates and grown in both normoxic and 

hypoxic environment as well as tumors resected from xenografted mice were used for 

isolation of total cellular RNA using RNeasy Mini kit (Qiagen) following manufacturer 

recommended protocol (sample details are provided in Figure 1a and Table 1). Consequently, 

the quality as well as concentration of all the RNA samples was determined by employing 

NanoDrop 2000C spectrophotometer (Thermo Fisher Scientific, USA) and Bioanalyzer 

(Agilent 2100, Agilent Technologies). RNA samples having RIN>5 was used for cDNA 

library preparation. For each sample, RNA was isolated from at least three individual 

plates/tumors and was pooled for library construction and further analysis.  

cDNA library preparation and sequencing  

Total RNA (5µg) from each sample was used to isolate poly-A mRNA and to prepare cDNA 

library using TruSeq mRNA sample preparation kit v2 (Illumina Inc.). Each sample was 

tagged with a unique TruSeq index tag in order to prepare multiplexed libraries. Six paired-
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end adapters with unique six base index sequences were used for the library preparation. The 

index tag permits accurate differentiation between each sample. The quantification of 

prepared libraries was performed on Qubit fluorometer using Qubit dsDNA BR assay kit 

(Life Technologies, USA) and size of the libraries was checked on Bioanalyzer DNA 1000 

series II chip (Agilent Technologies). The flow chart of the sequential steps involved in 

TruSeq library preparation is given in Figure S15. The insert size and purity of libraries were 

then validated on Bioanalyzer DNA 1000 series II chip (Agilent Technologies). All the 

libraries (six in total, 4 from cell line model and 2 from animal model) had an average insert 

size of 210bp and were pooled by taking 10µl from each library. Final pool was loaded in one 

lane of a S2 flow cell using NovaSeq XP protocol. Cluster amplification and sequencing data 

generation were performed on NovaSeq 6000 system (Illumina Inc.) using 2x100 paired-end 

cycles (Figure 1a). Raw data quality control was performed using NGSQC tool kit v2.3 using 

default parameters (Patel et al., 2012).  

Reference based assembly and homology search 

Raw FASTQ files with low-quality reads of sequencing data were filtered to obtain high 

quality reads. High quality filtered data was aligned with the reference genome (genome 

reference consortium human build 38 patch release 12, GRCh38.p12). Kallisto pipeline was 

used for alignment and identification of transcript coding regions followed by quantitation 

and annotation using default parameters (Huang et al., 2009). Furthermore, we performed the 

removal of multi-mapped reads and finally converted them to read counts for annotated 

genes. Figure 1b is a flowchart representation of the various steps involved in the sequencing 

data analysis. 

Annotation, differential gene expression and pathway analysis 
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Expression of the commonly found transcripts in all the samples was analyzed based on their 

FPKM values. Transcripts were given a score for their expression by Cufflinks-based 

maximum likelihood method and values of FPKM≥0.1 were considered significant for 

downstream analysis. Transcripts uniquely expressed in each sample were considered 

specific and were analyzed separately. False discovery rate (FDR) was employed to correct 

the statistical significance of the p-values for multiple tests. DEGs in multiple combinations 

were identified by DESeq analysis pipeline using a fold change threshold of absolute log2 

fold change (FC)≥2 and a statistically significant Student’s t-test p-value threshold adjusted 

for FDR<0.001. Hence, transcripts having FC<-2 were considered as downregulated while 

those with FC>2 were deemed upregulated. Statistically significant enriched functional 

classes with a p-value adjusted for FDR>0.05 derived using the hypergeometric distribution 

test corresponding to DEGs were determined using Student’s t-test with Benjamini 

Hocheberg FDR test.  

 Unsupervised hierarchical clustering of DEGs was performed using Cluster 3.0 and 

visualized using Java TreeView (Huang et al., 2009) (Figure 1b). Gene ontologies and 

pathways that harbour expressed transcripts were identified using DAVID functional 

annotation tool (http://david.abcc.ncifcrf.gov/home.jsp) (Dennis et al., 2003; Sherman et al., 

2009). For DEGs, heat maps and volcano plots were generated using ‘gplots’ and ‘heat map’ 

packages. Gene ontology (GO) as well as KEGG pathway analysis was accomplished for the 

assembled transcripts with reference to UniProt database. The data of total DEGs 

(upregulated and downregulated) was explored further using Cytoscape v3.5.0 

(http://www.cytoscape.org/) to better understand the gene regulatory networks and for 

mapping of the results (Montojo et al., 2010). In figures depicting gene regulatory networks, 

gene nodes are sized according to their p-values and colored according to their FC, where red 
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shows upregulation, green shows downregulation and yellow shows baseline expression; 

processes are showed in rectangular boxes and colored in blue. 

nCounter gene expression assay 

In order to validate the leads obtained from transcriptomic profiling, we utilized custom 

designed molecular barcodes (NanoString Technologies, Inc.) for single molecule imaging, 

thereby making it possible to detect and count hundreds of different transcripts in one 

reaction (Figure 1a and S13). RNA quality was assessed using the Agilent 2100 Bioanalyzer 

(Agilent Technologies) (Figure 1a and S1). Gene expression was analyzed on the nCounter 

system (NanoString Technologies, Inc.) following manufacturer’s recommendations. Briefly, 

the custom synthesized probes were hybridized overnight to target RNA followed by washing 

away of excess probes, immobilization of CodeSet/RNA complexes in the nCounter cartridge 

and finally data collection on the nCounter system. Gene expression levels were measured in 

triplicate for total RNA from the cell line and xenografted tumor samples, normalized to the 

four HKG and analyzed using the nSolver software (NanoString Technologies, Inc.). Each 

nCounter assay contained synthetic spike-in controls in the preparatory mix. These controls 

are necessary to allow correction of sample-to-sample variation arising due to common 

experimental errors such as differences in amount of input transcripts or reagents 

(Brumbaugh et al., 2011). The counts were normalized with the positive controls and 

averaged for the samples of each mRNA type. Normalization involved spiked-in positive and 

negative control probes for background correction in addition to four reference or 

housekeeping genes. Data analysis was performed on nSolver 3.0 analysis and advanced 

analysis software (NanoString Technologies, Inc.). 

Immunohistochemical analysis 

The levels of expression and activation status of specific proteins in xenografted tumor 

sections were analyzed using IHC to validate the overall findings of the transcriptomic and 
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the nCounter gene expression analysis in an in vivo xenograft model. 5 μm thin sections were 

fixed on poly-l-lysine coated slides, followed by deparaffinization and rehydration. Antigen 

retrieval was performed using sodium citrate buffer (pH 6.0) followed by quenching of 

endogenous peroxidases using BLOXALLTM blocking solution (Vector Laboratories, Inc., 

USA). Further, incubation of the sections with 2.5% normal horse serum blocked the exposed 

sites. Sections were incubated with appropriately diluted specific primary antibody overnight 

at 4°C followed by horseradish peroxidase-conjugated secondary antibody for 1 hour at room 

temperature. Rinsed sections were then incubated with 3,3'-diaminobenzidine substrate and 

Mayer’s hematoxylin served as a counterstain. Five field views were obtained from each slide 

having tissue sections for designated antibody and used for analysis. Observations and 

imaging of the sections were carried out by a pathologist in a blinded fashion using BX53 

bright field microscope (Olympus Corporation, Japan). Protein expression was quantified 

using ImageJ software 1.8.0 (https://imagej.nih.gov/ij/).  

Availability of Data 

The generated datasets (raw reads) from NovaSeq 6000 have been deposited to the National 

Centre for Biotechnology Information-Sequence Read Archive (NCBI-SRA) repository 

(https://www.ncbi.nlm.nih.gov/sra). The SRA BioProject accession number for the submitted 

bio projects are PRJNA646850 and PRJNA646851. 
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List of Tables 

Table 1: Sample description and comparison details.  

Tabular representation of the codes and details of all the samples used for transcriptome 
analysis and details of the various experimental datasets (comparisons) used in the study. 

S. No. Analysis Code Sample Type Sample Description 
1. A 

Cultured Cell Line 
(in vitro) 

Normal CAL27 cells (Normoxia) 
2. B MK2-knockdown CAL27 cells (Normoxia) 
3. C Normal CAL27 cells (Hypoxia) 
4. D MK2-knockdown CAL27 cells (Hypoxia) 
5. E Dissected Xenografts 

(in vivo) 
Normal CAL27 cells grafted 

6. F MK2-knockdown CAL27 cells grafted 
 

Comparison/ 
Dataset Code 

 
Comparison/Dataset Detail 

B vs A or  
KD(N) vs N(N) 

MK2-knockdown CAL27 cells (Normoxia) vs 
Normal CAL27 cells (Normoxia) 

D vs C or 
KD(H) vs N(H) 

MK2-knockdown CAL27 cells (Hypoxia) vs 
Normal CAL27 cells (Hypoxia) 

D vs B or 
KD(H) vs KD(N) 

MK2-knockdown CAL27 cells (Hypoxia) vs 
MK2-knockdown CAL27 cells (Normoxia) 

C vs A or 
N(H) vs N(N) 

Normal CAL27 cells (Hypoxia) vs 
Normal CAL27 cells (Normoxia) 

F vs E or 
KD(X) vs N(X) 

MK2-knockdown CAL27 cells grafted vs 
Normal CAL27 cells grafted 

 
Table 2: Summary of the comparison 

Tabular representation of the summary of the comparison between the data obtained from 
transcriptome profiling and nCounter gene expression assay analysis for all the experimental datasets. 

Combination No. of 
genes 

analyzed 

No. and % of genes 
matching with 

transcriptome analysis 

Upregulated 
genes 

Downregulated 
genes 

B vs A 39 24 (61.6 %) 1 (BRD2) 1 (CLK2) 
D vs C 39 17 (43.6%) - - 
D vs B 39 19 (48.7%) - 1 (SAMD4B) 
C vs A 39 20 (51.3%) - 2 (H2AFY, 

MELK) 
F vs E 48 26 (54.2%) 5 (BMP7, 

CREB3L1, 
IGFBP2,  
MUC4, 

PRKAR2B) 

2 (CDSN, 
ZNF662) 
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Table 3: Tabular representation of the list of 39 genes in in vitro HNSCC cell line model (C 
vs A dataset) showing the match of the average log2 fold change values in the last two 
columns in both transcriptome profiling and the NanoString gene expression assay. The 
average log2 fold change values are colored according to the change in gene expression (red 
indicates upregulation while green indicates downregulation). The gene highlighted in yellow 
is the matched candidate DEG that shows statistically significant change in expression. 

S.No. Gene Symbol Entrez_GeneID Gene Name C_VS_A Transcriptome C_VS_A Nanostring

1 ADNP2 22850 ADNP homeobox 2(ADNP2) 0.26 -1.1

2 BAZ2B 29994 bromodomain adjacent to zinc finger domain 2B(BAZ2B) -0.28 -1.12

3 BRD2 6046 bromodomain containing 2(BRD2) - 1.71

4 BRD4 23476 bromodomain containing 4(BRD4) 0.39 1.58

5 CALD1 800 caldesmon 1(CALD1) -0.24 -1.31

6 CAMKK2 10645 calcium/calmodulin dependent protein kinase kinase 2(CAMKK2) 0.78 -1.74

7 CAMTA2 23125 calmodulin binding transcription activator 2(CAMTA2) 0.24 1.07

8 CLK2 1196 CDC like kinase 2(CLK2) -2.71 -1.19

9 CTBP2 1488 C-terminal binding protein 2(CTBP2) -0.14 -1.15

10 DAP3 7818 death associated protein 3(DAP3) -1.49 -1.92

11 DICER1 23405 dicer 1, ribonuclease III(DICER1) 2.57 -2.21

12 EHBP1 23301 EH domain binding protein 1(EHBP1) -3.28 -1.34

13 ERF 2077 ETS2 repressor factor(ERF) -0.04 1.21

14 FER 2241 FER tyrosine kinase(FER) -0.75 1.09

15 FOXJ3 22887 forkhead box J3(FOXJ3) 1.18 1.2

16 H2AFY 9555 H2A histone family member Y(H2AFY) -4.65 -1.95

17 IP6K2 51447 inositol hexakisphosphate kinase 2(IP6K2) 0.55 1.71

18 IRAK1 3654 interleukin 1 receptor associated kinase 1(IRAK1) -8.54 -1.93

19 KDM5C 8242 8242 [Description: lysine demethylase 5C] [Gene Type: protein-coding] 0.25 1.4

20 LATS1 9113 large tumor suppressor kinase 1(LATS1) -0.66 -1.27

21 MAP4K4 9448 mitogen-activated protein kinase kinase kinase kinase 4(MAP4K4) 4.16 -1.36

22 MELK 9833 maternal embryonic leucine zipper kinase(MELK) -3.68 -4.59

23 MINK1 50488 misshapen like kinase 1(MINK1) -0.24 1.37

24 NCOA6 23054 nuclear receptor coactivator 6(NCOA6) - 1.11

25 NCOR1 9611 nuclear receptor corepressor 1(NCOR1) -0.30 -1.05

26 NEK9 91754 NIMA related kinase 9(NEK9) 5.34 -1.1

27 NR3C1 2908 nuclear receptor subfamily 3 group C member 1(NR3C1) -0.15 1.28

28 PAK4 10298 p21 (RAC1) activated kinase 4(PAK4) - 1.03

29 PASK 23178 PAS domain containing serine/threonine kinase(PASK) - -1.99

30 PBRM1 55193 55193 [Description: polybromo 1] [Gene Type: protein-coding] - -1.37

31 PPP1R12A 4659 protein phosphatase 1 regulatory subunit 12A(PPP1R12A) 1.00 1.1

32 RUNX1 861 runt related transcription factor 1(RUNX1) 0.47 -1.03

33 SAMD4B 55095 sterile alpha motif domain containing 4B(SAMD4B) -2.54 -1.52

34 SLF2 55719 SMC5-SMC6 complex localization factor 2(SLF2) -0.81 -1.52

35 SNAPC4 6621 small nuclear RNA activating complex polypeptide 4(SNAPC4) 7.41 1.09

36 SP3 6670 Sp3 transcription factor(SP3) 0.14 -1.02

37 TAF1 6872 TATA-box binding protein associated factor 1(TAF1) -0.76 -1.82

38 UTRN 7402 utrophin(UTRN) -9.26 -1

39 ZNF189 7743 zinc finger protein 189(ZNF189) -1.01 1.3  

 

Table 4: Tabular representation of the list of 48 genes in the in vivo heterotopic HNSCC 
xenograft experimental dataset (F vs E dataset) showing the match of the average log2 fold 
change values in the last two columns in both transcriptome profiling and the NanoString 
gene expression assay. The average log2 fold change values are colored according to the 
change in gene expression (red indicates upregulation while green indicates downregulation). 
The genes highlighted in yellow are the matched candidate DEGs that show statistically 
significant change in expression. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.303180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.303180
http://creativecommons.org/licenses/by/4.0/


38 
 

S.No. Gene Symbol Entrez_GeneID Gene Name F_VS_E Transcriptome F vs E Nanostring

1 APBB2 323 amyloid beta precursor protein binding family B member 2(APBB2) -3.74 -1.16

2 ATP13A2 23400 ATPase 13A2(ATP13A2) 3.75 1.45

3 BMP7 655 bone morphogenetic protein 7(BMP7) 5.95 47.09

4 CDC25B 994 cell division cycle 25B(CDC25B) 0.73 1.18

5 CDSN 1041 corneodesmosin(CDSN) -2.35 1.72

6 CPEB2 132864 cytoplasmic polyadenylation element binding protein 2(CPEB2) -3.07 -1.14

7 CREB3L1 90993 cAMP responsive element binding protein 3 like 1(CREB3L1) 3.46 15.34

8 DDR1 780 discoidin domain receptor tyrosine kinase 1(DDR1) 6.31 -1.18

9 DPYSL3 1809 dihydropyrimidinase like 3(DPYSL3) - 16.6

10 DST 667 dystonin(DST) -6.97 1.09

11 EIF4E 1977 eukaryotic translation initiation factor 4E(EIF4E) 3.08 1.1

12 EZH1 2145 enhancer of zeste 1 polycomb repressive complex 2 subunit(EZH1) - 1.37

13 FOXO3 2309 forkhead box O3(FOXO3) -7.23 -1.5

14 FREM1 158326 FRAS1 related extracellular matrix 1(FREM1) -5.95 1.51

15 GUK1 2987 guanylate kinase 1(GUK1) 0.11 1.2

16 H2AFY 9555 H2A histone family member Y(H2AFY) 3.77 1.34

17 HNRNPD 3184 heterogeneous nuclear ribonucleoprotein D(HNRNPD) -1.10 1.29

18 IGFBP2 3485 insulin like growth factor binding protein 2(IGFBP2) 3.86 12.21

19 ITPR1 3708 inositol 1,4,5-trisphosphate receptor type 1(ITPR1) 7.67 -1.11

20 JAK1 3716 Janus kinase 1(JAK1) -0.08 -1

21 KMT2C 58508 lysine methyltransferase 2C(KMT2C) 8.64 1.1

22 LIMK1 3984 LIM domain kinase 1(LIMK1) -4.37 1.26

23 LIMS1 3987 LIM zinc finger domain containing 1(LIMS1) 6.28 1.27

24 MKL2 57496 MKL1/myocardin like 2(MKL2) 2.40 1.14

25 MUC4 4585 mucin 4, cell surface associated(MUC4) 2.82 7.74

26 NDRG2 57447 57447 Description: NDRG family member 2] [Gene Type: protein-coding] - 2.72

27 PCBP4 57060 poly(rC) binding protein 4(PCBP4) - 1.07

28 PFKM 5213 5213 [Description: phosphofructokinase, muscle] [Gene Type: protein-coding] 1.00 2.62

29 PFKP 5214 phosphofructokinase, platelet(PFKP) -5.36 -1.09

30 PI4KB 5298 phosphatidylinositol 4-kinase beta(PI4KB) 4.87 1.05

31 PPP1R12C 54776 protein phosphatase 1 regulatory subunit 12C(PPP1R12C) -4.14 1.12

32 PPP2R1B 5519 protein phosphatase 2 scaffold subunit Abeta(PPP2R1B) -5.42 1.03

33 PRKAR2B 5577 protein kinase cAMP-dependent type II regulatory subunit beta(PRKAR2B) 2.06 4.28

34 PTPN22 26191 protein tyrosine phosphatase, non-receptor type 22(PTPN22) 0.54 1.09

35 SEMA7A 8482 semaphorin 7A (John Milton Hagen blood group)(SEMA7A) - -1.74

36 SLC35B2 347734 solute carrier family 35 member B2(SLC35B2) 1.57 -1.01

37 SMAD3 4088 SMAD family member 3(SMAD3) 0.00 -1.29

38 SS18 6760 SS18, nBAF chromatin remodeling complex subunit(SS18) -4.34 1.25

39 STK25 10494 serine/threonine kinase 25(STK25) - 1.15

40 TGFBRAP1 9392 transforming growth factor beta receptor associated protein 1(TGFBRAP1) 3.62 1.22

41 TRAK1 22906 trafficking kinesin protein 1(TRAK1) - -1.26

42 UBE3A 7337 7337 [Description: ubiquitin protein ligase E3A] [Gene Type: protein-coding] -0.06 1.14

43 ZBED1 9189 zinc finger BED-type containing 1(ZBED1) -3.63 1.68

44 ZC3H13 23091 zinc finger CCCH-type containing 13(ZC3H13) 0.27 -1.03

45 ZNF131 7690 zinc finger protein 131(ZNF131) - 1.26

46 ZNF48 197407 zinc finger protein 48(ZNF48) -0.98 -3.04

47 ZNF544 27300 zinc finger protein 544(ZNF544) - 1.16

48 ZNF662 389114 zinc finger protein 662(ZNF662) -3.48 -3.44  
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Figure Legends 

 

Fig. 1 Schematic pictorial illustration of the experimental and analysis workflow used 

for transcriptomic profiling.  

a) Detailed experimental work plan and sample preparation scheme indicating the two 

distinct sample types used for the experimental analysis (cell lines and xenografted tumor).  

b) Workflow of sequencing analysis showing sequential steps and various tools and pipelines 

employed for the transcriptome profiling.  

c), d) A comparative bar diagram representation of the number of: (c) Differentially 

expressed genes; (d) Significant biologies/Biological processes, present in various 

experimental datasets in the transcriptome profiling study.  

e) Pie chart representation of the top five gene ontologies and pathways summary on the basis 

of all the differentially expressed genes in the various transcriptome profiling experimental 

datasets showing approximately 5% of the total DEGs belonging to the pathways involved in 

cancer progression. 

Fig. 2 Transcriptomic profiling, analysis and filtering of data. 

a) Non-hierarchical heat map representation depicting the expression profile and variation in 

average log2 fold change among differentially expressed genes in various experimental 

datasets in the transcriptome profiling study. Color bar represents the expression values with 

green representing the lowest (downregulation) and red representing the highest 

(upregulation) expression levels. The various experimental datasets used for expression 

profiling are labelled on the top.  

b) Volcano plot representation of the complete transcript list according to their average log2 

fold change and p-values for various experimental datasets in the transcriptome profiling 

study with differential transcripts highlighted in blue. The plot displays differentially 

expressed genes along the dimensions of biological (average log2 fold change-FC) and 

statistical significance (p). Genes with absolute log2 fold change>2 and a p-value<0.05 were 

considered as differentially expressed genes.  

c) Venn diagram representation created using Venny 2.1.0 showing 77 common elements in 

the transcriptome profiling of the in vitro HNSCC cell line model (A-D datasets).  

d) Venn diagram representation created using Venny 2.1.0 showing the five common genes 

in 77 common elements in the transcriptome profiling of the in vitro HNSCC cell line model 

(A-D datasets).  
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e) Venn diagram representation created using Venny 2.1.0 showing the two common genes in 

16 common elements in the transcriptome profiling of the in vitro HNSCC cell line model 

(A-D datasets). 

Fig. 3 Transcriptomic profiling of MK2 pathway and its regulation. 

a) Gene regulatory network showing the role of MK2 in regulation of mRNA stability in the 

transcriptome profiling of the in vitro HNSCC cell line model (A-D datasets) and the in vivo 

heterotopic HNSCC xenograft experimental dataset (F vs E dataset). The figure clearly 

demonstrates that MK2 regulates transcript stability via RBP-mediated regulation with HuR 

(ELAVL1) and TTP (ZFP36) playing integral part. The gene nodes are sized according to 

their p-values and colored according to their average log2 fold change, where red shows 

upregulation while green shows downregulation and yellow indicates baseline expression; 

processes are showed in rectangular boxes and colored in blue. 

b) Gene regulatory network showing MAPK signaling cluster of the selected MK2 pathway 

genes (p38, MK2, AUF1, TTP, CUGBP1, CEBPδ, HuR, MKP-1, p27, TNF-α and VEGF) in 

the transcriptome profiling data of the in vitro HNSCC cell line dataset (B vs A, normoxic 

microenvironment) indicating VEGF and TNF-α down regulation. The gene nodes are sized 

according to their p-values and colored according to their average log2 fold change, where 

red shows upregulation while green shows downregulation and yellow indicates baseline 

expression; processes are showed in rectangular boxes and colored in blue. 

Fig. 4 nCounter gene expression assay analysis. 

a, b) Pie chart representation of the top five gene ontologies and pathways summary on the 

basis of all the differentially expressed genes in the various experimental datasets used for 

nCounter gene expression assay. (a) in vitro HNSCC cell line model (A-D datasets) and (b) in 

vivo heterotopic HNSCC xenograft experimental dataset (F vs E dataset) shows the total 

DEGs belonging to the various biological processes. 

c) Representative non-hierarchical heat map representation depicting the expression profile 

and variation in average log2 fold change among differentially expressed genes in various 

experimental datasets analyzed by nCounter gene expression assay considering the complete 

CodeSet of 86 genes. Color bar represents the expression values with green representing the 

highest (upregulation) and red representing the lowest (downregulation) expression levels. 

The various experimental datasets used for expression profiling are labelled on the top: in 

vitro HNSCC cell line model (A-D datasets) where Lane 1-KDH is Dataset D (MK2-

knockdown CAL27 cells in Hypoxia; Lane 2-NH is Dataset C (Normal CAL27 cells in 

Hypoxia); Lane 5-KDN is Dataset B (MK2-knockdown CAL27 cells in Normoxia); Lane 6-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.303180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.303180
http://creativecommons.org/licenses/by/4.0/


41 
 

NN is Dataset A (Normal CAL27 cells in Normoxia); and in vivo heterotopic HNSCC 

xenograft experimental dataset where Lane 3-KDX is MK2-knockdown CAL27 cells grafted 

(F dataset) and Lane 4-NX is Normal CAL27 cells grafted (E dataset).  

d) Representative non-hierarchical heat map representation depicting the expression profile 

and variation in average log2 fold change among differentially expressed genes in various 

experimental datasets analyzed by nCounter gene expression assay considering the individual 

CodeSet of 39 genes for the in vitro HNSCC cell line model (A-D datasets) and 48 genes for 

the in vivo heterotopic HNSCC xenograft experimental dataset. Color bar represents the 

expression values with green representing the highest (upregulation) and red representing the 

lowest (downregulation) expression levels. The various experimental datasets used for 

expression profiling are labelled on the top and the two distinct clusters of upregulated and 

downregulated genes are visible in each combination. 

e) Box-plot representation depicting the differences between the expression profile of 

differentially expressed genes in various experimental datasets analyzed by nCounter gene 

expression assay considering the individual CodeSet of 39 genes for the in vitro HNSCC cell 

line model (A-D datasets) and 48 genes for the in vivo heterotopic HNSCC xenograft 

experimental dataset. The counts were normalized with the positive controls and averaged for 

the samples of each mRNA type (p<0.05). 

Fig. 5 Representation of the analysis flow for all datasets, and Secondary validation 

through immunohistochemical analysis.  

a) Figure depicts pictorial representation of the key outcomes obtained with the workplan.  

The primary analysis section represents initial filtering of the transcriptome data for 

identification of crucial biological processes and genes for all the experimental datasets. 

Additionally, expression levels and gene networks were checked for two categories of genes, 

first for the genes that are transcriptionally regulated by MK2 and second, for the genes 

having their mRNA stability controlled by MK2 through RBP-mediated regulation. 

Thereafter, MK2-regulated transcripts that harbor RBP specific regions in their 3’-UTRs 

were identified in all datasets, providing 34 genes in A to D comparisons and 48 in F vs E 

comparisons which are further analyzed by nCounter gene expression analysis. Finally, 7 

common DEGs in transcriptomic and nCounter analysis were identified and 6 of them from F 

vs E dataset were subjected to IHC validation where IGFBP2, MUC4 and PRKAR2B were 

found to be upregulated and hence in consonance with our findings.  

b) Representation of the protein expression levels of the three candidate MK2-regulated 

genes in HNSCC xenografted mice tumor sections by immunohistochemical analysis. Color 
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bar represents the expression values in terms of mean score, blue bar represents the 

expression level in CAL27-MK2WT (Dataset E) and the red bar signifies protein expression in 

CAL27-MK2KD sections (Dataset F). Data clearly implies the upregulation in expression 

levels of IGFB2, MUC4, and PRKARB2 proteins in CAL27-MK2KD tissue sections as 

compared to CAL27-MK2WT. Here, parametric Welch t-test was used for evaluating the 

statistical significance using GraphPad Prism 7.0 software with ** denoting p<0.01; n=5 field 

views for IHC analysis.  

Fig. 6 Pictorial representation of the analyzed MAPK pathway. 

Graphical illustration depicts analyzed MAPK pathway in this study including activation of 

MAPKAPK2 and the plausible mode of action in HNSCC pathogenesis. Figure elucidates the 

final MK2-regulated putative candidate genes obtained in this study which could be further 

explained as possible targets in the pathway for HNSCC management. 
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