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Abstract 

Cellular senescence is the natural program by which cells enter a permanent cell cycle arrest in 

response to stresses including replicative exhaustion, oncogenic signaling, or DNA damage. Although 

senescence exerts beneficial effects by acting as a barrier against tumorigenesis, senescent cells can 

also drive chronic inflammation and age-related diseases through secretion of cytokines and other 

inflammatory proteins. Therefore, the identification of senolytic compounds that specifically eliminate 

senescent cells has become an area of great therapeutic promise. Here, we used mass spectrometry-

based proteomics to identify senescence biomarkers in primary human mammary epithelial cells 

(HMECs), a model system for aging. By integrating proteomic data from replicative senescence, 

immortalization by telomerase reactivation, and drug-induced senescence, we identified a robust HMEC 

proteomic signature of senescence consisting of 57 upregulated and 29 downregulated proteins. This 

senescence signature identified both well-known senescence biomarkers, including downregulation of 

the nuclear lamina protein lamin-B1 (LMNB1), as well as novel biomarkers such as upregulation of the 

β-galactoside-binding protein galectin-7 (LGALS7). Then, we integrated our proteomic signature of 

senescence with large-scale drug screening databases to predict that EGFR inhibitors, MEK inhibitors, 

and dasatinib are novel senolytics in HMEC. Taken together, our results support that the combination of 

quantitative proteomics and public drug screening databases is a powerful approach to identify 

senescence biomarkers and novel senolytic compounds. 
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Introduction 

Cellular senescence is a complex stress response that results in permanent cell cycle arrest. 

Multiple stressors can induce senescence, including replicative stress (e.g., telomere attrition), DNA 

damage (e.g., DNA double strand breaks), reactive oxygen species, oncogene activation, and even drug-

induced stress (Campisi 2013). Senescence plays a role in development (Muñoz-Espín et al. 2013; Storer 

et al. 2013) and wound healing (Demaria et al. 2014; Jun & Lau 2010) but is most famous as a protective 

stress response against cancer (Collado & Serrano 2010). However, as senescent cells accumulate in 

aging tissues (Krishnamurthy et al. 2004), they drive multiple age-related pathologies including 

atherosclerosis (Childs et al. 2016), cardiac dysfunction (Demaria et al. 2017), diabetes (Thompson et 

al. 2019), kidney dysfunction (Valentijn et al. 2018), osteoarthritis (Jeon et al. 2018), and overall 

decrements in healthy lifespan (Baker et al. 2016; Baker et al. 2011). Many of the pro-disease effects of 

senescence are mediated by the senescence-associated secretory phenotype (SASP), a complex 

mixture of cytokines secreted by senescent cells that promote inflammation, wound healing, and growth 

responses in nearby cells (Tchkonia et al. 2013; Tominaga 2015). 

 

Senolytic drugs are agents that selectively induce death of senescent cells. Given their role in 

age-related disease, the targeted elimination of senescent cells using senolytic drugs is an active area 

of basic and translational research (Kirkland et al. 2017; Childs et al. 2015; Kirkland & Tchkonia 2020). 

Since the identification of dasatinib and quercetin as the first senolytic drugs (Zhu et al. 2015), rapid 

progress has been made in identification of other senolytic drugs including HSP90 inhibitors (Fuhrmann-

Stroissnigg et al. 2017), the BCL-2 / BCL-xL inhibitor navitoclax (Zhu et al. 2016; Chang et al. 2016), the 

naturally-occurring flavonoid polyphenol fisetin (Yousefzadeh et al. 2018), FOXO4-p53 interfering 

peptides (Baar et al. 2017), and others. Cell-based therapies including chimeric antigen receptor (CAR)-

expressing T cells that recognize senescent cells have also shown great promise as senolytic agents 

(Amor et al. 2020). Importantly, however, senolytic compounds vary by cell type. For example, the 
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combination of dasatinib plus quercetin is senolytic in adipocytes but not in human umbilical vein 

endothelial cells (HUVECs), whereas navitoclax but not dasatinib plus quercetin is senolytic in HUVECs 

but not adipocytes (Zhu et al. 2016; Zhu et al. 2015). The cell type-specificity of senolytics is not surprising 

because the molecular mechanisms underlying senescence and SASP depend on the senescence 

inducer and cell type (Basisty et al. 2020; Casella et al. 2019). Therefore, continued progress in the 

characterization of senescent cells and the identification of cell type-specific senolytic compounds is 

imperative to improve aging and disease through senolytic therapies.  

 

One limitation to the therapeutic targeting of senescent cells has been the lack of robust 

senescence biomarkers. The identification of cell type-specific senescence biomarkers is particularly 

essential for therapeutic approaches such as CAR-T cells or drug-loaded nanoparticles that kill senescent 

cells on the basis of molecular recognition (Amor et al. 2020; Muñoz-Espín et al. 2018). Liquid 

chromatography-mass spectrometry (LC-MS) proteomics offers the potential for unbiased, quantitative 

profiling of biological systems at the protein level (Aebersold & Mann 2016). Proteomic approaches are 

particularly important for the characterization of senescence because of the frequent discordance 

between RNA and protein expression (Zhang et al. 2014). In this study, we used LC-MS-based 

proteomics to characterize the proteome of senescent primary human mammary epithelial cells 

(HMECs). These normal diploid cells have been previously shown to accurately represent the molecular 

changes that occur during replicative senescence in vivo (Stampfer et al. 2013). By integrating proteomic 

data across three data sets, we identify a core HMEC senescence signature of 86 proteins. This signature 

includes both well-characterized senescence biomarkers (e.g., downregulation of lamin B1) and novel 

biomarkers of senescence (e.g., upregulation of LGALS7 (galectin-7)). By integrating our proteomics 

signature of senescence with large-scale drug screening efforts in cancer cell lines (Corsello et al. 2020; 

Ghandi et al. 2019), we predict that EGFR inhibitors (e.g., dacomitinb, AZD8931), MEK inhibitors, and 

the tyrosine kinase inhibitor dasatinib are novel senolytic drugs in senescent HMECs. Taken together, 
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our results identify novel biomarkers of senescence in primary HMECs and demonstrate that -omics 

profiling can be used to infer senolytic compounds from public drug screening databases. 
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Results 

 

Replicative senescence alters the HMEC proteome 

To identify protein biomarkers of replicative senescence, we analyzed primary human mammary 

epithelial cells (HMECs) using quantitative, label-free LC-MS-based proteomics. We have previously 

found that HMECs enter senescence at ~40 population doublings (PD) (Fig. 1A) and exhibit molecular 

markers of senescence including upregulation of senescence-associated β-galactosidase (SA-β-gal), 

upregulation of the cell cycle inhibitor p21, and cessation of DNA synthesis (Delfarah et al. 2019). 

Comparing proliferating and senescent HMECs with LC-MS, we measured 1,234 proteins in two 

independent biological replicates (Fig. 1B and Table S1). Of these proteins, 55 were significantly 

upregulated and 34 were significantly downregulated in senescent HMECs (FDR-corrected p-value < 

0.01 and average absolute log2 fold change > 1) (Fig. 1C). Among the most upregulated proteins in 

senescent cells was annexin A1 (ANXA1), which is associated with aging in the rat prostate (Das et al. 

2013). Additionally, the β-galactosidase GLB1, which is associated with SA-β-gal activity (Lee et al. 

2006), was significantly upregulated in senescent HMECs. Significantly downregulated proteins in 

senescent HMECs included histone H4 (HIST1H4A) and SLC3A2 (also known as 4F2), a component of 

several heterodimeric amino acid transporter complexes including the cystine-glutamate antiporter xCT. 

Hierarchical clustering of the individual sample values for significantly changing proteins demonstrated 

high reproducibility across biological and technical replicates (Fig. 1D). Next, to understand the functional 

classes of proteins altered upon replicative senescence, we performed gene ontology (GO) enrichment 

analysis. The most significantly upregulated GO terms in senescent HMECs included vesicle, 

extracellular organelle, lysosome, and vacuole, consistent with the known upregulation of secretory 

pathways and lysosomes in senescence (Fig. 1E, Table S2) (Coppé et al. 2010). The most significantly 

downregulated GO terms in senescent cells were ribosomal, translational, and RNA-related terms, 

consistent with reports that reduced RNA turnover and alterations in translation drive cellular senescence 
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(Mullani et al. 2020; Gonskikh & Polacek 2017). Taken together, our proteomic profiling reveals significant 

changes in the proteome of senescent HMECs including upregulation of secretory pathways and 

downregulation of protein translation. 

 

The proteome of hTERT-immortalized HMECs resembles that of proliferating HMECs 

We have previously shown that expression of human telomerase reverse transcriptase (hTERT) 

immortalizes HMECs and enables bypass of replicative senescence (Delfarah et al. 2019). We thus used 

LC-MS proteomics to compare hTERT-immortalized HMECs to senescent HMECs expressing the 

negative control protein luciferase. At ~60 days in culture, corresponding to 35 and 85 PD for luciferase 

and hTERT, respectively, hTERT-expressing HMECs continue to proliferate but luciferase-expressing 

HMECs are senescent (Fig. 2A). By performing LC-MS proteomic analysis on hTERT-expressing and 

luciferase-expressing HMECs in technical duplicate, we quantified 1,436 proteins (Table S3), of which 

142 and 126 were significantly upregulated and downregulated, respectively, in senescent luciferase-

expressing HMECs (Fig. 2B). Interestingly, we found that five members of the lipid regulatory protein 

family of annexins were significantly upregulated in senescent luciferase-expressing HMECs: ANXA1, 

ANXA2, ANXA3, ANXA4, and ANXA5. Among the most downregulated proteins were the nucleolar RNA 

helicase DDX21 and the nuclear lamina component lamin-B1 (LMNB1), both of which have decreased 

expression in other senescence models (Freund et al. 2012; Lessard et al. 2018). Consistent with results 

from replicative senescence (Fig. 1), GO enrichment analysis revealed that vesicle, extracellular 

organelle, lysosome, and vacuole were significantly enriched in senescent luciferase-expressing HMECs, 

whereas mRNA metabolic processes, ribonucleoprotein complex, RNA binding, and RNA splicing were 

among the most significantly downregulated GO terms in senescent luciferase-expressing HMECs (Fig. 

2C, Table S4). Lastly, we compared the proteomic signature of proliferating hTERT-expressing versus 

senescent luciferase-expressing HMECs to replicative senescence and found that the signatures were 

broadly correlated (Pearson’s r = 0.71) (Fig. 2D). Notably, two members of the cathepsin family of 

proteases, CTSA and CTSD, were significantly upregulated in both data sets. Several proteins were 
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significantly downregulated in both data sets including SLC3A2, the serine protease HTRA1, lamina-

associated polypeptide 2 (TMPO, also known as thymopoietin or LAP2), and histone H1.5 (HIST1H1B). 

Taken together, proteomic analysis of hTERT-immortalized HMECs compared to senescent luciferase-

expressing HMECs revealed broad similarity to replicative senescence both at the individual protein and 

pathway level. 

 

The proteome of RRM2 inhibition-induced senescence resembles that of replicative senescence 

We have previously shown that inhibition of the nucleotide synthesis enzyme RRM2 induces 

senescence in proliferating HMECs (Delfarah et al. 2019). Thus, we next sought to investigate the 

proteomic signature of RRM2 inhibition-induced senescence. After 3 days of treatment with either DMSO 

(control) or the RRM2 inhibitor triapine, HMECs were analyzed in biological triplicate using LC-MS 

proteomics (Fig. 3A). Here, we identified 1,840 proteins (Table S5), of which 32 and 15 were significantly 

upregulated and downregulated, respectively, in triapine-treated senescent HMECs (Fig. 3B). Galectin-

7 (LGALS7), a β-galactosidase-binding protein that can regulate cell-cell and cell-matrix interactions, was 

the most significantly upregulated protein in triapine-treated senescent HMECs. The tumor suppressor 

protein p63 (TP63) and the nuclear lamina component lamin-B1 (LMNB1) were among the significantly 

downregulated proteins in triapine-treated senescent HMECs. GO enrichment analysis revealed that 

extracellular organelle, vesicle, cytosol, and cytoskeleton were enriched in triapine-treated senescent 

HMECs (Fig. 3C, Table S6). Conversely, RNA processing, RNA splicing, and nucleoplasm were 

downregulated GO terms in triapine-treated HMECs. We next compared the proteomic signatures of 

replicative senescence (Fig. 1) with that of triapine-induced senescence and found that the two signatures 

were broadly correlated (Pearson’s r = 0.65) (Fig. 3D). Several proteins were significantly upregulated in 

both signatures including ANXA1, LGALS7, and heat shock protein beta-1 (HSPB1). One protein, MCM3, 

a member of the minichromosome maintenance protein complex (MCM) that is essential for genomic 

DNA replication, was significantly downregulated in both replicative senescence and triapine-induced 
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senescence. Taken together, senescence induced by the inhibition of nucleotide synthesis comprises 

proteomic changes that broadly resemble replicative senescence. 

 

Data integration identifies a proteomic signature of HMEC senescence 

To identify a core signature of HMEC senescence, we integrated the proteomic data from 

replicative senescence (Fig. 1), hTERT immortalization (Fig. 2), and RRM2 inhibition-induced 

senescence (Fig. 3). In total, 958 proteins were quantified in all three data sets (Fig. 4A and Table S7). 

Overall, 57 and 29 proteins were significantly upregulated and downregulated across all three 

senescence signatures, respectively (FDR-corrected p-value < 0.01 and average absolute log2 fold 

change > 1). Among the most significantly upregulated proteins were annexin 1 (ANXA1), the tumor 

suppressor serpin B5 (SERPINB5, also known as maspin), and four members of the cathepsin family of 

proteases: CTSA, CTSB, CTSD, and CTSZ (Fig. 4B). Among the most downregulated proteins were 

SLC3A2 (4F2), lamina-associated polypeptide 2 (TMPO), and six individual histones: H1.3 (HIST1H1D), 

H1.5 (HIST1H1B), H2A.Z (H2AFZ), H2B type 1-J (HIST1H2BJ), H2B type 2-F (HIST2H2BF), and H4 

(HIST1H4A). Hierarchical clustering of the individual biological and technical replicates demonstrated 

consistent upregulation or downregulation for the most significantly changing proteins across the three 

individual proteomic signatures (Fig. 4C). Next, to identify transcription factors that might regulate 

senescence, we performed enrichment analysis on the combined proteomics data using transcription 

factor target (TFT) gene lists (Yevshin et al. 2019) (Table S8). This analysis identified 3 TFTs that were 

significantly upregulated in senescent HMECs (TFEB, MAFG, PCGF1), and 40 TFTs that were 

significantly downregulated in senescent HMECs including SUPT20H, SETD1A, and ZFKX3 (Fig. 4D, p-

value < 0.05 and FDR q-value < 0.1). Taken together, our combined analysis identified a core proteomic 

signature of HMEC senescence including potential novel senescence biomarkers and transcription factor 

regulators of senescence. 
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Defining a senescence score that predicts HMECs senescence 

Having identified an HMEC proteomic signature of senescence, we next asked whether our 

signature could predict senescence in an independent data set. Because we are unaware of other HMEC 

proteomic data sets, we turned to transcriptomic profiling data from pre-stasis HMECs (i.e., proliferating), 

intermediate HMECs, or HMECs at stasis (i.e., a stress-associated senescence barrier associated with 

elevated levels of p16 and/or p21, G1 arrest, and the absence of genomic instability) (Garbe et al. 2009). 

We then defined a weighted voting scheme (Golub et al. 1999) where the log2 fold change of the 86 core 

senescence proteins (Fig. 4) was multiplied by gene expression data from the same 86 genes. The result 

is a “senescence score” for each individual sample where increasing scores predict senescence (Fig. 

5A). Testing this approach, we found that the senescence score was significantly increased for five 

independent HMEC cell lines as they entered stasis (Fig. 5B). The average increase in senescence score 

from pre-stasis to stasis was 3.6 ± 1.4 (p = 0.0014). These results indicate that the senescence score 

can predict whether HMEC cultures are proliferating or senescent. 

 

Large-scale drug screening databases predict that EGFR inhibitors, MEK inhibitors, and dasatinib 

are senolytic compounds in HMECs 

We next sought to leverage our HMEC proteomic signature of senescence to identify novel 

senolytic compounds in HMEC. We hypothesized that large panels of molecularly characterized human 

cancer cell lines (e.g., the Cancer Cell Line Encyclopedia (CCLE)) (Ghandi et al. 2019) paired with large-

scale drug screening databases (e.g., PRISM Repurposing Screen from the Cancer Dependency Map 

(DepMap)) (Corsello et al. 2020) would enable us to identify drugs that are selectively toxic to senescent 

cells (i.e., senolytic compounds). To test this hypothesis, we first asked whether we could use gene 

expression data from senescent adipocytes to recapitulate the discovery of dasatinib as a senolytic 

compound in adipocytes (Zhu et al. 2015). Using the 104 most differentially expressed genes between 

proliferating and senescent adipocytes (log2 fold change > 2.5), we first calculated an “adipocyte 

senescence score” for ~500 cell lines present in both CCLE and the DepMap drug screening databases. 
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This weighted voting approach is analogous to calculation of the HMEC senescence score (Fig. 5A) 

except that log2 fold change values were derived from transcriptomic analysis of proliferating and 

senescent adipocytes instead of HMEC proteomic profiling. We then correlated the adipocyte 

senescence score with sensitivity to 1,448 drugs in the DepMap drug sensitivity database (Table S9). 

Here, because a smaller dose-response area under the curve (AUC) indicates higher sensitivity to the 

small molecule, compounds with negative correlations are more toxic to senescent cells. Confirming the 

validity of this approach, the drug whose sensitivity was most negatively correlated with the adipocyte 

senescence score was dasatinib (FDR-corrected p-value 9x10-4) (Fig. S1A,B). In contrast, the drug 

navitoclax, which is senolytic in human umbilical vein epithelial cells (HUVECs) but not in adipocytes, 

was not significantly correlated with the adipocyte senescence score (FDR-corrected p-value 0.6) (Fig. 

S1C). Taken together, this confirms that combining senescence signatures with large-scale databases 

of transcriptomic profiling and drug sensitivity data can be used to identify senolytic compounds. 

 

Next, we applied this approach to discovery of senolytic compounds in HMECs. We first asked 

whether the 86 proteins in our HMEC proteomic signature of senescence were correlated in the CCLE 

gene expression data. Strikingly, most of the upregulated HMEC senescence proteins were positively 

correlated with one another and negatively correlated with the downregulated HMEC senescence 

proteins (Fig. S2). Analysis of proteomic profiling data from CCLE (Nusinow et al. 2020) revealed similar 

trends (Fig. S3). These results indicate that the HMEC senescence proteins are co-regulated and could 

be used to predict an HMEC senescence-like signature in cancer cell lines. Therefore, we calculated the 

HMEC senescence score for ~500 cancer cell lines present in both the CCLE and the DepMap drug 

screening databases. Although no voting proteins overlap between HMEC and adipocyte senescence 

scores, the two senescence scores were significantly correlated (Pearson’s r = 0.34) (Fig. S4A). Next, 

we correlated the HMEC senescence scores with drug sensitivity (AUC) (Fig. 6A, Table S10). 

Interestingly, the two drugs whose sensitivity was most negatively correlated with the HMEC senescence 

score (i.e., senolytics) were the EGFR inhibitors dacomitinib and AZD8931 (Fig. 6B,C). Dasatinib but not 
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navitoclax was also significantly negatively correlated with the HMEC senescence score (Fig. 6B). 

Conversely, the two drugs whose sensitivity was most positively correlated with the HMEC senescence 

score were anguidine and indisulum, inhibitors of protein synthesis and cyclin-dependent kinases, 

respectively (Fig. S4B). This result suggests that these drugs are more toxic to proliferating rather than 

senescent HMEC. Lastly, we used Drug Set Enrichment Analysis (DrugSEA), a variant of gene set 

enrichment analysis (GSEA) (Subramanian et al. 2005) that identifies enriched drug targets, to analyze 

the list of correlation coefficients between HMEC senescence score and drug sensitivity. Overall, both 

EGFR and MEK inhibitors were significantly negatively enriched, indicating selective toxicity against cell 

lines with HMEC senescence-like signatures (Fig. 6D, Table S11). Taken together, these results suggest 

that EGFR inhibitors, MEK inhibitors, and dasatinib are senolytic in HMECs.  
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Discussion 

Cellular senescence is a state of irreversible cell cycle arrest that contributes to degenerative and 

hyperplastic phenotypes in aging, cancer, and many other diseases. The targeted elimination of 

senescent cells with senolytic compounds has emerged as a promising therapeutic approach for both 

disease and healthy aging. Here, we were motivated by the paucity of senescence biomarkers and the 

need to identify cell type-specific senolytic compounds. First, we used LC-MS proteomics to characterize 

the proteome of senescent primary HMECs and identified a robust signature of 86 HMEC senescence 

biomarkers (Fig. 4). Then, we integrated our proteomic signature of HMEC senescence with large-scale 

drug screening databases to predict that EGFR inhibitors, MEK inhibitors, and dasatinib are novel 

senolytic drugs for HMEC. Taken together, our study adds to the growing literature on senescence 

biomarkers, senolytic agents, and computational approaches to identify novel therapeutics from large-

scale public databases. 

 

Proteomics has emerged as a powerful tool for the identification of novel senescence biomarkers 

(Althubiti et al. 2014), proteomic alterations in the aging lung (Angelidis et al. 2019), the therapy-induced 

senescence proteome (Flor et al. 2017), SASP (Basisty et al. 2020), and signatures of aging in biofluids 

like plasma (Tanaka et al. 2018; Lehallier et al. 2019). Here, in our HMEC model system of aging, several 

proteins identified as members of the HMEC senescence proteomic signature are previously known 

senescence biomarkers. For example, in HMECs, expression of lamin-B1 (LMNB1), a component of the 

nuclear lamina, was significantly decreased (average log2 fold change in senescent cells -1.09, FDR-

corrected p-value 2.26 x 10-8). Loss of lamin-B1 expression in senescent cells has been extensively 

documented, including in replicative senescence, oncogene-induced senescence, and UV-induced 

senescence (Freund et al. 2012; Dreesen et al. 2013; Sadaie et al. 2013; Shah et al. 2013; Wang et al. 

2017). Notably, the lamin-B1-binding partner TMPO (LAP2) was also part of our senescence signature, 

although decreases in TMPO expression are not unique to senescent cells, as downregulation also 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.309351doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.309351


Proteomic profiling enables prediction of novel senolytics 

14 of 41 

 

occurs in quiescent cells (Dreesen et al. 2013). Regardless, the concordance of LMNB1 expression in 

our HMEC system and other studies adds additional support that loss of LMNB1 expression is a bona 

fide senescence biomarker.  

  

The most upregulated protein in our HMEC senescence signature was the calcium-dependent 

phospholipid-binding protein annexin 1 (ANXA1) with an average log2 fold change in senescent cells of 

2.35 (Fig. 4B). We also observed significant upregulation of two other annexins, ANXA3 and ANXA5, in 

senescent HMEC, although these proteins were less upregulated than ANXA1 (average log2 fold change 

1.08 for both proteins). Interestingly, the upregulation of annexins has been previously linked to increased 

lipid metabolism in a model of therapy-induced senescence (Flor et al. 2017). Moreover, ANXA1 is 

upregulated in aged rat prostate (Das et al. 2013), accumulation of nuclear ANXA5 is a biomarker of 

replicative and therapy-induced fibroblast senescence (Klement et al. 2012), and secretion of ANXA1, 

ANXA3, and ANXA5 is upregulated in senescent fibroblasts (Basisty et al. 2020). In addition, we observed 

upregulation of several lysosomal proteins in senescent HMEC including GLB1 (β-galactosidase), four 

cathepsins (CTSA, CTSD, CTSD, and CTSZ), and the glycosylase MAN2B1. These results are 

consistent with previous reports of increased lysosomal activity in senescence (Nixon et al. 2000; Stoka 

et al. 2016). Additionally, cathepsins are known to regulate senescence (Byun et al. 2009) and 

pathogenesis of age-related disease (Nixon et al. 2000) and are also secreted by senescent cells (Basisty 

et al. 2020). Moreover, the upregulation of ANXA1 and CTSD has been reported as candidate biomarkers 

of spinal cord injury (Moghieb et al. 2016) which involves the appearance of senescent cells (Pavlicek et 

al. 2017; Swenson et al. 2019; Takano et al. 2017). Finally, both the β-galactoside-binding proteins 

galectin-3 (LGALS3) and galectin-7 (LGALS7) were significantly upregulated in senescent HMECs. 

Galectin-3 can coordinate repair, removal, and replacement of lysosomes (Jia et al. 2020), and its 

upregulation may reflect attempts by senescent cells to repair deteriorating lysosomes (Park et al. 2018). 

To our knowledge, galectin-7 has not been reported to be involved in senescence, but we speculate that 

it may also play a role in lysosomal repair and homeostasis in senescent HMEC. Taken together, these 
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results suggest that annexins, cathepsins, and galectins are potential senescence biomarkers across 

many cell types. 

 

The most downregulated protein in our proteomic signature of HMEC senescence was the histone 

H1.5 (HIST1H1B) with an average log2 fold change in senescent cells of -2.13 (Fig. 4B). We additionally 

observed downregulation of five additional histone proteins in our combined proteomics analysis (Fig. 4) 

including H1.3 (HIST1H1D), H2A.Z (H2AFZ), H2B type 1-J (HIST1H2BJ), H2B type 2-F (HIST2H2BF), 

and H4 (HIST1H4A). Consistent with our findings, several studies have reported loss of histone H1 and 

DNA methylation in senescence and aging (Funayama et al. 2006; Heyn et al. 2012; Kane & Sinclair 

2019). In addition, increased lysosomal activity has been linked to proteolysis of histones in senescent 

cells (Ivanov et al. 2013). These results support the regulatory role of chromatin remodeling and reduced 

DNA methylation in senescence of HMECs. 

 

Our analysis of transcription factors targets (Fig. 4D) revealed significant upregulation or 

downregulation of several transcription factors that have been previously linked to senescence and aging 

including downregulation of SETD1A (Tajima et al. 2019), KAT5 (Kwan et al. 2020), and DOT1L (Kim et 

al. 2012, p.1) as well as upregulation of TFEB (Niu et al. 2019). Interestingly, we also identified significant 

upregulation of MAFG and PCG1 targets and significant downregulation of NKX2-2, ZFHX3 and 

SUPT20H targets. To our knowledge, these transcription factors do not have reported roles in aging or 

senescence. Future studies are necessary to investigate whether these transcription factors are 

regulators of cellular senescence in HMECs and other cell types. 

 

Senolytics have emerged as an exciting area with great therapeutic promise in aging (Xu et al. 

2018; Zhu et al. 2015), cancer (Dörr et al. 2013; Guerrero et al. 2019), and other diseases. In mice, 

clearance of senescent cells restores tissue homeostasis and delays age-related dysfunction (Baar et al. 

2017; Baker et al. 2011; Cai et al. 2020; Baker et al. 2016). Furthermore, clinical trials of the senolytic 
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combination dasatinib and quercetin have shown encouraging results (Hickson et al. 2019). Our study is 

the first, to our knowledge, to leverage proteomic or transcriptomic signatures of senescence with large-

scale drug screening (e.g., the PRISM drug repurposing resource from DepMap) to predict novel 

senolytic agents. Although these drug screening is conducted using non-senescent cancer cell lines, the 

fact that the top hit in our computational analysis of senescent adipocytes was the senolytic drug dasatinib 

proved the validity of our approach (Zhu et al. 2015) (Fig. S1). Here, based on our proteomic signature 

of senescence, we predicted that EGFR inhibitors (e.g., dacomitinib, AZD8931), MEK inhibitors, and 

dasatinib are senolytic agents for HMECs. Interestingly, MEK inhibitors have been shown to eliminate 

senescent Ras-expressing cells (Kochetkova et al. 2017). Moreover, in IMR90 and HUVECs, the 

cytokine-mediated induction of senescence can be blocked by pharmacological inhibition or genetic 

knockdown of EGFR (Shang et al. 2020). Taken together, our results suggest that large-scale drug 

screening databases are a powerful resource for senolytic discovery in HMECs and other senescence 

models. 

 

In conclusion, our results support that the combination of quantitative proteomics and public drug 

screening databases is a powerful approach to identify senescence biomarkers and novel senolytic 

compounds. Future research into the mechanisms affecting the efficacy and cell-type specificity of 

senolytic drugs will have important implications for the usage of senolytics in clinical trials. Furthermore, 

unlocking the transformative power of senolytics will require minimizing off-target effects and an improved 

understanding of the impact of eliminating senescent cells on health and age-related disease. 
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Materials and methods 

Cell culture 

HMEC cells were purchased from Thermo Scientific and cultured in M87A medium (50% MM4 medium 

and 50% MCDB170 supplemented with 5 ng/ml EGF, 300 ng/ml hydrocortisone, 7.5 µg/ml insulin, 35 

µg/ml BPE, 2.5 µg/ml transferrin, 5 µM isoproterenol, 50 µM ethanolamine, 50 µM o-

phosphoethanolamine, 0.25 % FBS, 5 nM triiodothyronine, 0.5 nM estradiol, 0.5 ng/ml cholera toxin, 0.1 

nM oxytocin, 1% anti-anti, no AlbuMax) in atmospheric oxygen. Glucose and glutamine-free DMEM was 

purchased from Corning (90-113-PB), Ham’s F12 was purchased from US Biological (N8542-12), and 

MCD170 medium was purchased from Caisson Labs (MBL04). Glucose and glutamine were added to 

the media at the appropriate concentration for each media type. Cells were lifted with TrypLE at 80-90% 

confluency and seeded at a density of 2.3× 103/cm2. 

 

LC-MS proteomics 

Cell culture dishes were placed on ice and washed with PBS. Cells were then scraped and pelleted by 

centrifugation. The cell pellets were lysed by probe sonication in 8 M urea (pH 7.5), 50 mM Tris, 1 mM 

activated sodium vanadate, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, and 100 mM 

sodium phosphate. The above procedures were performed in 0-4˚C. Insoluble cell debris were filtered by 

0.22 um syringe filter. Protein concentration was measured by BCA assay (Pierce, PI23227). Lysates 

were reduced with 5 mM DTT, alkylated with 25 mM iodoacetamide, quenched with 10 mM DTT, and 

acidified to pH 2 with 5% trifluoracetic acid. Proteins were then digested to peptides using a 1:100 trypsin 

to lysate ratio by weight. Tryptic peptides were desalted by reverse phase C18 StageTips and eluted with 

30% acetonitrile. The eluents were vacuumed dried, and 250 ng/injection was submitted to LC-MS. 

Samples were randomized and injected into an Easy 1200 nanoLC ultra high-performance liquid 

chromatography coupled with a Q Exactive quadruple orbitrap mass spectrometry (Thermo Fisher). 

Peptides were separated by a reverse-phase analytical column (PepMap RSLC C18, 2 µm, 100Å, 75 µm 
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x 25 cm). Flow rate was set to 300 nL/min at a gradient from 3% buffer B (0.1% formic acid, 80% 

acetonitrile) to 38% B in 110 min, followed by a 10-min washing step to 85% B. The maximum pressure 

was set to 1,180 bar and column temperature was maintained at 50˚C. Peptides separated by the column 

were ionized at 2.4 kV in the positive ion mode. MS1 survey scans were acquired at the resolution of 70k 

from 350 to 1800 m/z, with maximum injection time of 100 ms and AGC target of 1e6. MS/MS 

fragmentation of the 14 most abundant ions were analyzed at a resolution of 17.5k, AGC target 5e4, 

maximum injection time 65 ms, and normalized collision energy 26. Dynamic exclusion was set to 30 s 

and ions with charge +1, +7, and >+7 were excluded. MS/MS fragmentation spectra were searched with 

Proteome Discoverer SEQUEST (version 2.2, Thermo Scientific) against in-silico tryptic digested Uniprot 

all-reviewed Homo sapiens database (release Jun 2017, 42,140 entries) plus all recombinant protein 

sequences used in this study. The maximum missed cleavages was set to 2. Dynamic modifications were 

set to oxidation on methionine (M, +15.995 Da) and acetylation on protein N-terminus (+42.011 Da). 

Carbamidomethylation on cysteine residues (C, +57.021 Da) was set as a fixed modification. The 

maximum parental mass error was set to 10 ppm, and the MS/MS mass tolerance was set to 0.02 Da. 

The false discovery threshold was set strictly to 0.01 using the Percolator Node validated by q-value. The 

relative abundance of parental peptides was calculated by integration of the area under the curve of the 

MS1 peaks using the Minora LFQ node. The RAW and processed LC-MS files have been uploaded to 

the PRIDE database (Perez-Riverol et al. 2019) (PXD019057, Username: reviewer29534@ebi.ac.uk, 

Reviewer password: djc8bohx). 

 

Data processing and normalization 

Missing peptide abundances were imputed using the K-nearest neighbor algorithm (Webb-Robertson et 

al. 2015). The optimized number of neighbors was determined to be n = 10. Protein abundance log2 ratios 

and statistical significance were calculated using DEqMS in R software (Zhu et al. 2020). Briefly, peptide 

sequences were aggregated into protein log2 ratios by the median sweeping method: raw intensity values 

were log2 transformed, the median of log2 intensity was subtracted for each PSM, and then for each 
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protein, the relative log2 ratio was calculated as the median of log2 ratio of the PSMs assigned to that 

protein. 

 

Hierarchical clustering 

Clustering was performed using Morpheus web tool by the Broad Institute. One minus Pearson 

correlation coefficient metric was used for clustering. Data was transformed following the clustering by 

subtracting row mean and dividing by row standard deviation. 

 

Gene Ontology Enrichment Analysis 

Proteins were ranked by their log2 (senescent / proliferating) values, and Gene Ontology 1D-Enrichment 

analysis was performed in Perseus (version 1.6.2.2). 

 

Transcription Factor Targets Enrichment Analysis 

Proteins were ranked by their log2 (senescent / proliferating) values. Gene Set Enrichment Analysis 

(GSEA) (Subramanian et al. 2005) was run with the unweighted statistic using the GSEA java applet 

using Broad Institute C3 TFT:GTRD gene sets. 

 

Senescence score 

Log2-transformed, RMA-normalized Entrez gene expression values for adipocyte senescence 

(GSE66236) were averaged for senescent and proliferating conditions. For each gene, the average value 

for proliferating samples was subtracted from the average of senescent samples to obtain log2 (senescent 

/ proliferating) values. Data was filtered for genes with absolute log2 (senescent / proliferating) > 2.5 to 

create the adipocyte signature matrix. HMEC senescence signature matrix was created using proteins 

with absolute average log2 (senescent / proliferating) > 1 and FDR-corrected p-value < 0.01 of our 

combined HMEC proteomics analysis (Fig. 4B). CCLE log2 transformed RNAseq TPM gene expression 

data for protein coding genes using RSEM “CCLE_expression_v2.csv” was downloaded from DepMap 
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portal (https://depmap.org/portal/download/). The appropriate genes (i.e., adipocyte or HMEC 

senescence signatures) were selected to create the CCLE gene expression matrix. CCLE senescence 

scores vector (of adipocyte or HMEC) was calculated by multiplying senescence signature matrix (of 

adipocyte or HMEC) with CCLE gene expression matrix. 

 

PRISM analysis 

CCLE PRISM Repurposing 19Q4 data “secondary-screen-dose-response-curve-parameters.csv” was 

downloaded from DepMap portal (https://depmap.org/portal/download/). For each drug, the Pearson 

correlation coefficient and t-test p-value was calculated between CCLE senescence scores and PRISM 

area-under-the-curve (AUC) values (only cell lines present in both CCLE gene expression and PRISM 

Repurposing were used). p-values were corrected for false-discovery rate using the Benjamini-Hochberg 

method. Drugs with most negative correlation coefficients were selected as potential senolytics. Similar 

analysis was performed using HMEC or adipocyte senescence signature matrix to calculate CCLE 

senescence scores and correlate them with PRISM AUC values. 

 

Drug Set Enrichment Analysis (DrugSEA) 

DrugSEA is a variant of GSEA designed to identify enriched classes of drug targets. Drugs were mapped 

to their metabolic pathway using the annotated target(s) and genes from KEGG metabolic pathways. 

Since the PRISM database contains both activators and inhibitors, we annotated all activators by 

mechanism of action and multiplied their correlation coefficients by -1. Therefore, a pathway activator 

would be counted similarly to a pathway inhibitor. Pathways with 4 or more drugs were kept. Then, GSEA 

was run on the rank lists of 1,448 correlation coefficients.  
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Figures 

 

Figure 1: Replicative senescence alters the HMEC proteome 
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A. Primary HMECs proliferate for ~40 population doublings (PD). Proteomics samples were 

collected at PD ~10 and PD ~40 to compare proliferating and senescent HMECs. At each time, 

two biologically independent replicates were collected. The growth curve represents the 

approximate collection times of the proliferating and senescent samples.  

B. Number of proteins quantified in two independent biological replicates as described in A. 

Proteomics sample prep was performed as two independent experiments with one proliferating 

and one senescent sample in each experiment. For each experiment, duplicate injections 

(technical replicates) were run from each proliferating and senescent sample. 

C. Volcano plot representing average of log2 fold change of protein levels comparing senescent 

versus proliferating HMECs plotted against the -log10 p-value. Red and blue denote the 55 

significantly upregulated and 34 significantly down-regulated proteins, respectively (FDR-

corrected p-value < 0.01 and average absolute log2 fold change > 1). 

D. Hierarchical clustering of protein expression levels for differentially expressed proteins in 

senescent (Sen.) and proliferating (Prol.) HMECs across biological (Expt) and technical replicates 

(Rep). Proteins with FDR-corrected p-value < 0.0001 and average absolute log2 fold change > 1 

are shown. 

E. Gene Ontology enrichment analysis performed in Perseus software (1D-enrichment analysis). 

The color of the circle denotes the enrichment score, and the size of the circle denotes the 

statistical significance of the enrichment, as shown in the legend. 
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Figure 2: The proteome of hTERT-immortalized HMECs resembles that of proliferating HMECs 

A. Representative growth curve for HMECs infected with either luciferase (negative control, 

senescent) or hTERT (immortalized). Circles represent the approximate time of sample collection. 

One biological replicate was collected and analyzed in technical duplicate by LC-MS proteomics. 

B. Volcano plot representing log2 fold change of protein levels for luciferase versus hTERT plotted 

against the -log10 p-value. Red and blue denote significantly up- and down-regulated proteins, 

respectively (FDR-corrected p-value < 0.01 and absolute log2 fold change > 1). 
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C. Gene Ontology enrichment analysis performed in Perseus software (1D-enrichment analysis). 

The color of the circle denotes the enrichment score, and the size of the circle denotes the 

statistical significance of the enrichment, as shown in the legend. 

D. Comparison of protein expression changes in luciferase versus hTERT HMECs against 

senescent versus proliferating HMECs (i.e., replicative senescence). Red and blue circles denote 

proteins that were significantly upregulated and downregulated, respectively, in both data sets 

(FDR corrected p-value < 0.01, and absolute log2 fold change > 1). Green and orange circles 

represent proteins that were significantly changed in senescent versus proliferating cells but not 

in luciferase versus hTERT cells or in luciferase versus hTERT cells but not senescent versus 

proliferating cells, respectively. The Pearson correlation coefficient is shown. 
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Figure 3: The proteome of RRM2 inhibition-induced senescence resembles that of replicative 

senescence 

A. Representative growth curve for HMECs treated with either DMSO (negative control, proliferating) 

or triapine (senescent). Circles represent the approximate time of sample collection. Three 

biological replicates were collected and analyzed in technical singlicate by LC-MS proteomics. 

B. Volcano plot representing log2 fold change of protein levels for triapine versus DMSO plotted 

against the -log10 p-value. Red and blue denote significantly up- and down-regulated proteins, 

respectively (FDR-corrected p-value < 0.01 and absolute log2 fold change > 1). 
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C. Gene Ontology enrichment analysis performed in Perseus software (1D-enrichment analysis). 

The color of the circle denotes the enrichment score, and the size of the circle denotes the 

statistical significance of the enrichment, as shown in the legend. 

D. Comparison of protein expression changes in triapine versus DMSO HMECs against senescent 

versus proliferating HMECs (i.e., replicative senescence). Red and blue circles denote proteins 

that were significantly upregulated and downregulated, respectively, in both data sets (FDR 

corrected p-value < 0.01, and absolute log2 fold change > 1). Green and orange circles represent 

proteins that were significantly changed in senescent versus proliferating cells but not in triapine 

versus DMSO cells or in triapine versus DMSO cells but not senescent versus proliferating cells, 

respectively. The Pearson correlation coefficient is shown. 
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Figure 4: Data integration identifies a proteomic signature of HMEC senescence 

A. Venn diagram showing the overlap in the number of proteins identified in each dataset: senescent 

versus proliferating HMECs (Fig. 1), luciferase- versus hTERT-expressing HMECs (Fig. 2), and 

triapine- versus DMSO-treated HMECs (Fig. 3).  

B. Volcano plot representing average of log2 (senescent / proliferating) vs. -log10 p-value combined 

statistical significance of data from 3 datasets shown on Figures 1-3. Red and blue circles show 

proteins that were consistently up- or down-regulated upon integration of the 3 datasets, 

respectively (FDR corrected p-value < 0.01, average absolute log2 fold change > 1). 

C. Hierarchical clustering of significantly altered proteins across all 3 datasets. Proteins with FDR 

corrected p-value < 1 x 10-6 and average absolute log2 fold change > 1 are shown. All biological 

and technical replicates are shown. 

D. Gene Set Enrichment Analysis (GSEA) to identify enrichment of transcription factor targets gene 

lists. The color of the circle denotes the enrichment score, and the size of the circle denotes the 

statistical significance of the enrichment, as shown in the legend. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.309351doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.309351


Proteomic profiling enables prediction of novel senolytics 

38 of 41 

 

 

Figure 5: Defining a senescence score that predicts HMECs senescence 

A. Schematic representing calculation of HMEC senescence score using weighted voting (Golub 

et al. 1999) The proteomic signature of HMEC senescence (Fig. 4C) was used as voting 

weights (log2 fold change of protein expression comparing senescent and proliferating HMEC, 

86 proteins total). Weights were multiplied by gene expression data to calculate a HMEC 

senescence score for each sample.  

B. Gene expression data from five independent HMEC cell lines (Garbe et al. 2009) was 

analyzed using weighted voting as in panel A. Samples for each cell line are arranged in 

increasing passage number and colored according to pre-stasis (i.e., proliferating), 

intermediate, or stasis (i.e., senescent) as in the original publication. M85, M85X, and MCDB 
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represent different media formulations. Samples profiled at the same passage are connected 

by a thin dark gray line. p = 0.0014 comparing the senescence scores from pre-stasis and 

stasis using a paired (by cell line) t-test.   
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Figure 6: Large-scale drug screening databases predict that EGFR inhibitors, MEK inhibitors, 

and dasatinib are senolytic compounds in HMECs 
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A. Schematic of analysis workflow. The senescence score was calculated for ~500 cancer cell 

lines present in both the CCLE and the DepMap drug screening databases using the 

proteomic signature of HMEC senescence. For each drug, we calculated a Pearson 

correlation coefficient between PRISM AUC and senescence scores. Because smaller AUC 

indicates increased sensitivity to drug treatment, negative correlation coefficients indicate 

increased toxicity to senescent cells. 

B. Waterfall plot of the Pearson correlation coefficients for all 1,448 drug sensitivities correlated 

with the HMEC senescence score. Red and blue indicate EGFR and MEK inhibitors, 

respectively. The tyrosine kinase dasatinib and the BCL-2 / BCL-xL inhibitor navitoclax are 

also indicated. 

C. The EGFR inhibitors dacomitinib and AZD8931 were predicted to be the most senolytic drugs 

for HMECs. P-values shown have been FDR corrected using the Benjamini-Hochberg 

method. r, Pearson correlation coefficient. 

D. Drug Set Enrichment Analysis (DrugSEA) revealed that EGFR and MEK inhibitors are 

enriched among predicted senolytic drugs for HMECs. p, permutation p-value. q, false 

discovery rate. 
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