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Abstract1

Microbes tend to organize into communities consisting of hundreds of species involved in complex2
interactions with each other. 16S ribosomal RNA (16S rRNA) amplicon profiling provides3
snapshots that reveal the phylogenies and abundance profiles of these microbial communities.4
These snapshots, when collected from multiple samples, have the potential to reveal which5
microbes co-occur, providing a glimpse into the network of associations in these communities.6
The inference of networks from 16S data is prone to statistical artifacts. There are many tools7
for performing each step of the 16S analysis workflow, but the extent to which these steps affect8
the final network is still unclear. In this study, we perform a meticulous analysis of each step9
of a pipeline that can convert 16S sequencing data into a network of microbial associations.10
Through this process, we map how different choices of algorithms and parameters affect the11
co-occurrence network and estimate steps that contribute most significantly to the variance.12
We further determine the tools and parameters that generate the most accurate and robust13
co-occurrence networks based on comparison with mock and synthetic datasets. Ultimately,14
we develop a standardized pipeline (available at https://github.com/segrelab/MiCoNE) that15
follows these default tools and parameters, but that can also help explore the outcome of any16
other combination of choices. We envisage that this pipeline could be used for integrating17
multiple data-sets, and for generating comparative analyses and consensus networks that can18
help understand and control microbial community assembly in different biomes.19

Keywords— Microbiome, 16S rRNA, Pipeline, Interaction, Denoising, Taxonomy, Network20
Inference, Correlations, Qiime, Co-occurrence, Networks21

Importance22

To understand and control the mechanisms that determine the structure and function of microbial23
communities, it is important to map the interrelationships between its constituent microbial species.24
The surge in the high-throughput sequencing of microbial communities has led to the creation of25
thousands of datasets containing information about microbial abundances. These abundances can be26
transformed into networks of co-occurrences across multiple samples, providing a glimpse into the27
structure of microbiomes. However, processing these datasets to obtain co-occurrence information28
relies on several complex steps, each of which involves multiple choices of tools and corresponding29
parameters. These multiple options pose questions about the accuracy and uniqueness of the inferred30
networks. In this study, we address this workflow and provide a systematic analysis of how these31
choices of tools and parameters affect the final network, and on how to select those that are most32
appropriate for a particular dataset.33
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Introduction34

Microbial communities are ubiquitous and play an important role in marine and terrestrial envi-35

ronments, urban ecosystems, metabolic engineering, and human health [1, 2]. These microbial36

communities, or microbiomes, often comprise several hundreds of different microbial strains37

interacting with each other and their environment, often through intricate metabolic and signaling38

relationships. Understanding how these interconnections shape community structure and functional-39

ities is a fundamental challenge in microbial ecology, with applications in the study of microbial40

ecosystems across different biomes. With the advancement in DNA sequencing technologies [3]41

and data processing methods, more information can be extracted from these microbial commu-42

nity samples than ever before. In particular, high-throughput sequencing, including community43

metagenomic sequencing and sequencing of 16S rRNA gene amplicons, has the potential to help44

detect, identify and quantify a large portion of the constitutive microorganisms of a microbiome45

[4, 5]. These advances have led to large-scale data collection efforts involving environmental46

(Earth Microbiome Project) [2], marine (Tara Oceans Project) [6] and human-associated microbiota47

(Human Microbiome Project) [7].48

This wealth of information on the composition and functions of a community at different49

times and under different environmental conditions has the potential to help us understand how50

communities assemble and operate. A powerful tool for translating microbiome data into knowledge51

is the construction of possible inter-dependence networks across species. The importance of these52

networks of relationships is two fold: first, such networks can serve as maps that help identify hubs of53

keystone species [8, 9], or basic microbiome changes that occur as a consequence of environmental54

perturbations or underlying host conditions [10]; second, networks of inter-dependencies can serve as55

a key bridge towards building mechanistic models of microbial communities, greatly enhancing our56
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capacity to understand and control them. For example, multiple studies have shown the importance57

of specific microbial interactions in the healthy microbiome [5] and others have shown how changes58

in these interactions can lead to dysbiosis [11, 10, 12]. In the context of terrestrial bio-geochemistry,59

co-occurrence networks have been proposed as a valuable approach towards reconstructing the60

processes leading to microbiome assembly [13], and understanding the response of microbial61

communities to environmental perturbations [14].62

Direct high-throughput measurement of interactions, e.g. through co-culture micro-droplet63

experiments [15, 16], or spatial visualization of natural communities [17] is possible, but it requires64

specific technological capabilities, and has yet to be extensively used. In parallel, sequencing data65

across multiple samples can be used for estimating co-occurrence relationships between taxa. While66

the the relationship between directly measured interactions and statistically inferred co-occurrence is67

still poorly understood [18], a significant amount of effort has gone into estimating correlations from68

large microbiome sequence datasets. Co-occurrence networks have microbial taxa as nodes, and69

edges that represent the frequent co-occurrence (or negative correlations) across different datasets.70

One of the most frequently used avenues for inferring co-occurrence networks is the parsing and71

analysis of 16S sequencing data [9, 19]. A large number of software tools and pipelines have been72

developed to analyze 16S sequencing data, often focused on addressing the many known limitations73

of this methodology, including resolution, sequencing depth, compositional nature, sequencing74

errors and copy number variations [20, 21]. Popular methods for different phases of the analysis of75

16S data include tools for: (i) denoising and clustering sequencing reads [22, 23]; (ii) assigning76

taxonomy to the reads [24, 25]; (iii) processing and transforming the taxonomy count matrices77

[26]; and (iv) inferring the co-occurrence network [27, 28]. Different specific algorithms are often78

aggregated into popular platforms (like MG-RAST [29], Qiita [30]) and packages (such as QIIME79

[22]) that provide pipelines for 16S data analysis. The different methods and tools developed to solve80
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issues arising in 16S analysis can lead to vastly different inferences of community compositions and81

co-occurrence networks [31, 32], making it difficult to reliably compare networks across different82

publications and studies. This is partially due to the fact that existing platforms are typically focused83

on Operational Taxanomic Unit (OTU) generation and not on the effects of upstream statistical84

methods on the inferred co-occurrence networks. Furthermore, no organized framework currently85

exist to systematically analyze and compare existing components of the data analysis from amplicons86

to networks. More broadly, given the lack of comprehensive comparisons between directly observed87

microbial interactions (e.g. from co-culture experiments) and co-occurrence networks, there is no88

straightforward way to determine which set of tools or methods generate the most accurate networks.89

In this study, we present a standardized 16S data analysis pipeline calledMicrobial Co-occurrence90

Network Explorer (MiCoNE) that produces robust and reproducible co-occurrence networks from91

community 16S sequence data, and allow users to interactively explore how the network would92

change upon using different alternative tools and parameters at each step. Our pipeline is coupled to93

an online integrative tool for the organization, visualization and analysis of inter-microbial networks.94

In addition to making this tool freely available, we implemented a systematic comparative analysis95

to determine which steps of the pipeline have the largest influence on the final network, and what96

choice seems to provide best agreement with the tested mock and synthetic datasets. We believe97

that these steps will ensure better reproducibility and easier comparison of co-occurrence networks98

across datasets. We expect that our tool will also be useful for benchmarking future alternative99

methods, and for ensuring a transparent evaluation of the possible biases introduced by the use of100

specific tools.101
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Results102

Microbial Co-occurrence Network Explorer (MiCoNE)103

We have developed MiCoNE, a flexible and modular pipeline for 16S amplicon sequencing rRNA104

data (hereafter mentioned simply as 16S data) analysis, that allows us to infer microbial co-occurrence105

networks. It incorporates various popular, publicly available tools as well as custom Python modules106

and scripts to facilitate inference of co-occurrence networks from 16S data (see Methods). Using107

MiCoNE one can obtain co-occurrence networks by applying to 16S data (or to already processed108

taxonomic count matrices) any combination of the available tools. The effects of changing any of109

the intermediate step can be monitored and evaluated in terms of its final network outcome, as well110

as on any of the intermediate metrics and data outputs. The MiCoNE pipeline workflow is shown in111

Figure 1. The different steps for going from 16S data to co-occurrence networks can be grouped112

into four major modules; (i) the denoising and clustering (DC) step, which handles denoising of the113

raw 16S sequencing data into representative sequences; (ii) the taxonomy assignment (TA) step114

that assigns taxonomic labels to the representative sequences; (iii) the OTU processing (OP) step115

that filters and transforms the taxonomy abundance table; and finally (iv) the network inferences116

(NI) step which infers the microbial co-occurrence network. Each process in the pipeline supports117

alternate tools for performing the same task (see Methods and Figure 1). A centralized configuration118

file contains all the specifications for what modules are used in the pipeline, and can be modified119

by the user to choose the desired set of tools. In what follows, we perform a systematic analysis120

of each step of the pipeline to estimate how much the final co-occurrence network depends on the121

possible choices at each step. We also evaluate a large number of tool combinations to determine a122

set of recommended default options for the pipeline and provide the users with a set of guidelines to123
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facilitate tool selection as appropriate for their data.124

Our analysis involves two types of data: The first type consists of sets of 16S sequencing data125

from real communities sampled from human Stool and Oral microbiomes. The second are datasets126

synthetically or artificially created for the specific goal of helping evaluate computational analysis127

tools (see Methods). In particular, in order to objectively compare, to the extent possible, how well128

each step in MiCoNE best captures the underlying data, we use both mock data (labelled mock4,129

mock12 and mock16) from mockrobiota [33] as well as, synthetically generated reads from an130

Illumina read simulator called ART [34]. These mock datasets consist of fake sequencing reads131

generated from reads obtained from synthetic microbial isolates mixed in know proportions. They132

contain the expected compositions along with the reference sequences for the organisms in the133

mock community. The synthetic reads were simulated using three different taxonomy distribution134

profiles, namely soil and water microbiomes obtained Earth Microbiome Project (EMP) [2] and135

Stool microbiome that is used in our real community analysis [35]. Reference sequences were136

generated using National Center for Biotechnology Information (NCBI) and the Decard package [31]137

for these taxonomy profiles. Detailed information on the mock communities and the settings used to138

generate the synthetic data are provided in the Methods section.139

The choice of reference database has the biggest impact on inferred networks140

In order to analyze the effect of different statistical methods on the inferred co-occurrence networks,141

we generated co-occurrence networks using all possible combinations of methods and estimated142

the variability in the networks due to each choice (Figure 1). This analysis is performed while143

keeping the network inference algorithm (NI step) the same throughout the analysis. The effects144

of various steps on the final co-occurrence network is estimated by building a linear model of the145

edges of the network as a function the various step in the analysis pipeline (see Methods). Figure146
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2B, shows the fraction of total variation among the co-occurrence networks due to the first three147

steps of the pipeline. In other words, each point corresponds to a different combination of tools,148

and captures how much the final network is affected by such choice. The 16S reference database149

contributes the most (∼ 25%) to variation in the networks. This is also reflected in the fact that150

the networks can be clearly separated based on the database used (Figure 2B). This indicates that151

the taxonomy assigned to the reference sequences drastically alters the co-occurrence network. In152

fact the variability induced by taxonomy assignment is much more significant than that due to the153

variability induced based on how the reference sequences themselves are identified (in the DC step).154

The grouping of the networks by taxonomy assignment into clusters (Figure 2B) seems to derive155

from the mislabelling of constitutive taxa that are present in high abundance in the community,156

which drastically alter the nodes and hence the underlying network topology. The residual variation157

(Figure 2A) can be seen as an artifact that arises when multiple steps are changed at the same time.158

Another interesting observation (elaborated in detail in the denoising and clustering section) is159

that the dissimilarity between the networks decreases when the low abundance OTUs are removed160

from the network. These results suggest that the most important criterion for accurate comparative161

analyses of co-occurrence networks is the taxonomy reference database.162

Denoising and clustering methods differ in their identification of less common163

reference sequences164

Denoising and clustering are commonly carried out to generate representative sequences from the165

raw 16S sequencing data and to obtain the OTU/Exact Sequence Variant (ESV) tables (counts of166

these representative sequences for each sample). In order to compare the OTU tables generated167

by different tools we processed the same 16S sequencing reads (healthy samples from a fecal168

microbiome transplant study [35]) using 5 different methods: open-reference clustering, closed-169

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.09.23.309781doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.309781
http://creativecommons.org/licenses/by-nc-nd/4.0/


reference clustering, denovo clustering, Divisive Amplicon Denoising Algorithm 2 (DADA2) [23]170

and Deblur [36]. The first three methods are from the Quantitative Insights Into Microbial Ecology171

1 (QIIME1) [22] package. We find that there is good agreement in the OTU/ESV tables when172

different combinations of methods are used to generate them (Supplementary Figure S1).173

To compare the representative sequences generated by these methods we employ both the174

weighted [37] (Figure 3A) and unweighted UniFrac method [38] (Figure 3B). The weighted UniFrac175

distance metric takes into account the counts of the representative sequences, whereas the unweighted176

UniFrac distance metric does not and hence gives equal weights to each sequence. From Figure 3A177

one can see that the representative sequences generated by the different methods are similar to178

each other when weighted by their abundance. Figure 3B on the other hand shows an increase in179

dissimilarity between each pair of methods suggesting that the methods might differ in the treatment180

of sequences of low abundance. In order to verify this claim, for each of these methods we use the181

Greengenes (GG) taxonomy database to assign taxonomies to the representative sequences. We then182

correlate the abundances of matching taxonomies between a pair of DC methods (Figure S1A and B).183

The ESV tables generated by methods that perform denoising are very similar to each other (∼ 0.91)184

and the OTU tables generated by the clustering methods are very similar to each other (∼ 0.9), but185

results of denoising and clustering are highly uncorrelated with each other (∼ 0.4) (Figure S1C).186

These comparisons only elucidate the pairwise similarity or dissimilarity of a pair of methods.187

In order to determine the tool that most accurately recapitulates the reference sequences in the188

samples, we used the 16S sequences from the mock datasets. In particular, we used the pipeline189

to process mock community datasets using each of the possible methods included for this step.190

We next compared predicted representative sequences with expected representative sequences and191

their distribution. The results (Figure 3C and D) show that, for the mock datasets, the different192

methods perform similar to each other, exactly as observed in the case of the real dataset. However,193
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the mock predicted sequence distributions are substantially different from the expected sequence194

distribution. This result is more exaggerated in the case of the unweighted UniFrac metric, where195

some of the datasets show a very high deviation from the expected sequences. These high deviations196

are primarily in two of the three datasets that were analyzed and show that the datasets themselves197

play a big role in the performance of these methods. This can be clearly seen in the performance198

(weighted UniFrac distance) of DADA2 and Deblur on mock12 and mock16 datasets, where, Deblur199

outperforms DADA2 on mock12 but the under-performs on mock16.200

There is no method that clearly outperforms the rest in all datasets. Based on their slightly201

better performance on the mock datasets, their de novo error correcting nature and other previous202

studies [39], DADA2 and Deblur seem to be in general the most reliable. Given the unexpected203

poor performance of Deblur on the synthetic data, the default algorithm in the pipeline was chosen204

to be DADA2 (Supplementary Figure S3).205

Taxonomydatabases varywidely in taxonomyhierarchy andupdate frequency206

Taxonomy databases are used to assign taxonomic identities to the representative sequences obtained207

after the DC step. In order to compare the assigned taxonomies from different databases, we use208

the same reference sequences and assign taxonomies to them using different taxonomy reference209

databases. The three 16S taxonomic reference databases used in this study are SILVA [25],210

GG [24] and NCBI RefSeq [40]. SILVA and GG are two popular 16S databases used for taxonomy211

identification. The NCBI RefSeq nucleotide database contains 16S rRNA sequences as a part of two212

BioProjects - 33175 and 33317. The three databases vastly differ in terms of their last update status -213

GG was last updated on May 2013, SILVA was last updated on December 2017 at the time of writing214

and NCBI is updated as new sequences are curated. Since updates to taxonomic classifications215

are frequent, these databases vary significantly in terms of taxonomy hierarchies including species216
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names and phylogenetic relationships [41].217

The representative sequences obtained from the DADA2 method in DC step were used for218

taxonomic assignment using the three reference databases. Figure 4A depicts a flow diagram219

that shows how the top 50 representative sequences (sorted by abundance) are assigned a Genus220

according to the three different databases. We observe that not only does the assigned Genus221

composition vary significantly, but the percentage of unassigned representative sequences (gray)222

also differ. Even the most abundant representative sequence is assigned to an "unknown" Genus223

in two of the three databases. A representative sequence might be assigned an "unknown" Genus224

for one of two reasons: the first is if the taxonomy identifier associated with the sequence in the225

database did not contain a Genus; the second (more likely) reason is that the database contains226

multiple sequences that are very similar to the query (representative) sequence and the consensus227

algorithm (from Quantitative Insights Into Microbial Ecology 2 (QIIME2)) is unable to assign one228

particular Genus at the required confidence. After assigning all the representative sequences to229

taxonomies we perform a pairwise comparison of the similarity between assignments from different230

databases at every taxonomic level (Figure 4B). The assignments beyond Family level (Family,231

Genus and Species) are very dissimilar with < 70% similarity between any pair of databases. There232

are no two reference databases that are more similar than the other pairs, with GG and SILVA233

producing only marginally similar assignments compared to NCBI. This implies that the taxonomy234

assignments from each reference database are fairly unique and are largely responsible for the235

differences observed in the co-occurrence networks generated from different taxonomy databases.236

Supplementary Figure S4 shows that the top 20 most abundant genera in the three resulting237

taxonomy composition tables are different. For example, the most abundant genus in the GG238

taxonomy table was Escherichia whereas in the SILVA taxonomy table it was Escherichia-Shigella.239

Although these are minor differences, when comparing a large number of taxonomy composition240

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.09.23.309781doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.309781
http://creativecommons.org/licenses/by-nc-nd/4.0/


tables these problems are hard to diagnose.241

As in the previous section, these comparisons only indicate similarity or dissimilarity between242

methods. In order to obtain an absolute measure of accuracy of the taxonomic assignments we use243

the expected reference sequences from the mock datasets as the query sequences for the databases244

and the expected taxonomic composition as the standard to compare against (Figure 4C). Again, we245

observe that none of the databases perform better than the others in absolute terms.246

Given that no database performs better than others against mock datasets, and that databases are247

almost equally distant from each other in terms of final output, the choice of which database to use248

should be driven by other reason. One user-specific way to choose, would be based on the known249

representation of taxa for the microbiome of interest (see also Discussion). Another reason could be250

the frequency of updates and the potential for future growth, which prompted us to set NCBI as the251

MiCoNE standard for taxonomy assignment. In addition to being regularly maintained and updated252

the NCBI database already has the advantage that its accuracy of assignments is still comparable to253

the SILVA and GG reference databases that are routinely used as reference databases.254

Networks generated using different network inference methods show notable255

difference in edge-density and connectivity256

The six different network inference methods used in this study are Microbial Association257

Graphical Model Analysis (MAGMA) [27], metagenomic Lognormal-Dirichlet-Multinomial258

(mLDM) [42], Sparse InversE Covariance estimation for Ecological Association and Statisti-259

cal Inference (SpiecEasi) [28], Sparse Correlations for Compositional data (SparCC) [19], Spearman260

and Pearson. These network inference methods fall into two groups, the first set of methods (Pear-261

son, Spearman, SparCC) infer pairwise correlations while the second set infer direct associations262

(SpiecEasi, mLDM, MAGMA). Pairwise correlation methods involve calculating the correlation263
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coefficient between every pair of OTU/ESVs leading to the detection of spurious indirect connections.264

On the other hand, direct association methods use conditional independence to avoid the detection265

of correlated but indirectly connected OTUs [28, 8].266

For the analysis presented in this section, we used the taxonomy composition table obtained267

using the NCBI reference database as the input for algorithms that infer co-occurrence associations268

between the microbes. Figure 5A shows the networks inferred from this dataset using the different269

inference algorithms. The different networks differ vastly in their edge-density and connectivity;270

even some of the edges in common to these networks have their signs inverted. Note, however,271

that some of these comparisons depend on the threshold that has to be applied to the pairwise272

correlations methods (currently 0.3, based on [19]). To get a more quantitative picture of the273

differences between the inferred networks, we checked the distribution of common nodes and edges274

(Figure 5B) using UpSet plots [43] (only MAGMA, mLDM, SpiecEasi, SparCC are used in the275

comparison since Pearson and Spearman add a large number of spurious edges since they are not276

intended for compositional datasets). The results for the node intersections show that the networks277

have a large number of nodes in common (63 out of 67 nodes in the smallest network - MAGMA)278

and no network possesses any unique node. The edge intersections in contrast show that only279

19 edges (out of 98 edges in the smallest network - MAGMA) are in common between all the280

methods and each network has a large number of unique edges. These results indicate that there is a281

substantial rewiring of connections in the inferred networks.282

Unlike the previous steps of the pipeline, where were we evaluated the performance of methods on283

mock datasets, there is no equivalent dataset that contain a set of known interactions for the evaluation284

of the network inference algorithms. Therefore, we propose the construction of a consensus network285

(Figure 5C) involving MAGMA, mLDM, SpiecEasi and SparCC. This consensus network is built286

by merging the p-values generated from bootstraps of the original taxonomy composition table287
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using the Browns p-value combining method [44] (see Methods section). Based on this approach,288

MiCoNE reports as default output the consensus network, annotated with weights (correlations for289

SparCC and direct associations for the other methods) for all four methods.290

The default pipeline291

The systematic analyses performed in the previous sections clearly show that the choice of tools and292

parameters can have a big impact on the final co-occurrence network. For some of these choices (e.g.293

DADA2 vs. deblur) there is no clear metric to establish a best protocol. For other choices, the mock294

communities provide an opportunity to select combination of parameters that yield more accurate295

and robust results. Despite this partial degree of assessment, we wish to suggest a combination296

of tools and parameters that produce networks that are derived from the combination of tools297

which performed best on the mock communities, and displayed highest robustness to switching to298

alternative methods. These tools and parameters are chosen as the defaults for the pipeline and are299

given in Table 1.300

The recommended tool for the Denoising and Clustering (DC) step (DADA2 or Deblur) were301

chosen based on their accuracy in recapitulating the reference sequences in mock communities and302

synthetic data. The choice of the taxonomy reference database in the Taxonomy Assignment (TA)303

step is dictated largely by the species expected to be present in the sample as well the database used304

in similar studies if comparison is a goal. Nevertheless, we suggest NCBI RefSeq along with blast+305

as the query tool since the database is updated regularly and has a broad collection of taxonomies.306

The abundance threshold at the OTU Processing (OP) step is determined automatically based on the307

number of samples and the required statistical power. Finally, we use the Browns p-value combining308

method on the networks generated using MAGMA, mLDM, SpiecEasi and SparCC to obtain a final309

consensus network in the Network Inference (NI) step.310
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Figure 6A shows the default network compared against networks generated by altering one of the311

steps of the pipeline from the default. These results indicate that the biggest differences in networks312

occur when the reference database or the network inference algorithm are changed. Furthermore, the313

L1 distance of networks generated by altering one of the steps of the pipeline from the default against314

the default network (Figure 6B) shows that the biggest deviations from the default network occur315

when the TA and NI steps are changed, reinforcing the same results observed in Figure 2. Figure 7316

shows the co-occurrence networks inferred for the hard palate for healthy subjects in a periodontal317

disease study [45] and the healthy stool microbiome in fecal microbial transplant study [35]. These318

consensus networks were generated using the default tools and parameters from Table 1.319

Discussion320

Co-occurrence associations in microbial communities help identify important interactions that drive321

microbial community structure and organization. Our analysis shows that networks generated using322

different combinations of tools and approaches can look significantly different from each other,323

highlighting the importance of a clear assessment of the source of variability and of tools that provide324

the most robust and accurate results. Our newly developed integrated software for the inference325

of co-occurrence networks from 16S rRNA data, MiCoNE, constitutes a freely customizable and326

user friendly pipeline that allows users to easily test combinations of tools and to compare networks327

generated by multiple possible choices (see Methods). Importantly, in addition to revisiting the test328

cases presented in this work, users will be able to explore the effect of various tool combinations on329

their own datasets of interest. The MiCoNE pipeline is built in a modular fashion. Its plug-and-play330

architecture will make it possible for users to add new tools and steps, either from existing packages,331

or from packages that were not examined in the present work, as well as future ones.332

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.09.23.309781doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.309781
http://creativecommons.org/licenses/by-nc-nd/4.0/


The main outcome of this work is thus two-fold: on one hand we transparently reveal the333

dependence of co-occurrence networks on tool and parameter choices, making it possible to more334

rigorously assess and compare existing networks. On the other hand, we take advantage of our335

spectrum of computational options and the availability of mock and synthetic datasets, to suggest a336

default standard setting, and a consensus approach, likely to yield networks that are robust across337

multiple tool/parameter choices.338

An important caveat related to this last point is the fact that our conclusions are based on the339

specific datasets used in our analysis. While our datasets cover a relatively broad spectrum of340

biomes and sequencing pipelines, datasets that have drastically different distributions may require a341

re-assessment of the best settings through our pipeline.342

It is worth pointing out some additional more specific conclusions stemming from the individual343

steps of our analysis.344

The different denoising/clustering methods differ mostly in their identification of sequences that345

are in low abundances. Hence, they do not have much of an impact on the inferred co-occurrence346

networks when the sequences of low abundance are removed. However, comparison of inferred and347

expected reference sequences and their abundances in mock community datasets has allowed us to348

identify DADA2 as the method which best recapitulates the expected sequence composition. For349

the current work we have decided to focus on the tools most widely used at the time of the analysis.350

Some tools that we recently published (e.g. dbOTU3 [46]) as well as older popular methods like351

mothur [47] have not been included in the study, but could be added into the pipelines in future352

updated analyses.353

The choice of taxonomy database was found to be the most important factor in the inference of a354

microbial co-occurrence network, contributing ∼ 20% of the total variance. The frequent changes355

in the taxonomy nomenclature coupled with the frequency of updates to the various 16S reference356
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databases create inherent differences [41] in taxonomy hierarchies in these databases. Our analysis357

revealed that no particular reference database performs better than the others across all scenarios.358

We suggest that that choice of the database should be made based on possible reported or inferred359

biases in the representation of given biomes in a specific databases [41]. The default reference360

database in the pipeline is the NCBI 16S RefSeq database as it is more frequently updated and is361

most compatible with the blast+ query tool. We also enable users to use custom databases [48] with362

the blast+ and naive bayes classifiers that are incorporated into the pipeline (from QIIME2).363

Filtering out taxa that are present in low abundances in all samples did not increase (in most364

datasets tested) the proportion of taxa in common between taxonomy tables generated using different365

reference databases. However, we do observe that the reduction in the number of taxa leads to better366

agreement in the networks inferred through different methods. Moreover, filtering is necessary in367

order to increase the power in tests of significance when the number of taxa is much greater than the368

number of samples.369

The networks generated by different network inference methods show considerable differences in370

edge-density and connectivity. One reason for this is the underlying assumptions regarding sparsity,371

distribution and compositionality that the algorithms make. The consensus network created by372

merging the networks inferred using the different network inference methods enables the creation of373

a network whose links have evidence based on multiple inference algorithms.374

Exploring the effects of these combinations of methods on the resultant networks is difficult and375

inconvenient since different tools differ in their input and output formats and require inter-converting376

between the various formats. The pipeline facilitates this comparative exploration by providing a377

variety of modules for inter-conversion between various formats, and by allowing easy incorporation378

of new tools as modules.379

We envision that MiCoNE, and the underlying tools and databases that help process amplicon380
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sequencing data into co-occurrence networks, will be increasingly useful towards building large381

comparative analyses across studies. By having a unified transparent tool to compute networks, it382

will be possible to reprocess available 16S datasets to obtain networks that are directly comparable383

to each other. Furthermore, even in the analysis of published networks across studies and processing384

methods, MiCoNE could help understand underlying biases of each network, which could in turn be385

taken into account upon making cross-study comparisons.386

Materials and Methods387

Datasets388

The study uses three kinds of 16S rRNA sequencing datasets: real datasets, mock datasets and389

synthetic datasets. Real datasets are collections of sequencing reads obtained from naturally390

occurring microbial community samples. The current study used healthy stool samples from a fecal391

microbiome transplant study [35] and healthy saliva samples from a periodontal disease study [45]392

as real datasets for analysis. The mock community 16S datasets are real sequencing data obtained393

for artificially assembled collections of species in known proportions. The mock datasets used394

for this study, obtained from mockrobiota [33], are labelled mock4, mock12 and mock16. The395

mock4 community is composed of 21 bacterial strains. Two replicate samples from mock4 contain396

all species in equal abundances, and two additional replicate samples contain the same species in397

unequal abundances. The mock12 community is composed of 27 bacterial strains that include398

closely related taxa with some pairs having only one to two nucleotide difference from another. The399

mock16 community is composed of 49 bacteria and 10 archea, all represented in equal amount.400

The synthetic datasets were generated using an artificial read simulator called ART [34]. Three401

different microbial composition profiles were used as input; reads were generated using a soil and402
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water microbiome composition profiles from the EMP [2] and healthy gut microbiome project403

from the fecal microbiome transplant study [35]. The reads are simulated using the NCBI RefSeq404

database as the reference sequence pool and the "art_illumina" sequence profile with a mutation405

rate of 2%. The scripts used to generate the synthetic data are in the scripts folder of the repository406

(https://github.com/segrelab/MiCoNE-pipeline-paper).407

MiCoNE408

The flowchart describing the workflow of MiCoNE (Microbial Co-occurrence Network Explorer),409

our complete 16S data-analysis pipeline, is shown in Figure 1. The pipeline integrates many410

publicly available tools as well as custom R or Python modules and scripts to extract co-occurrence411

associations from 16S sequence data. Each of these tools corresponds to a distinct R or python412

module that recapitulates the relevant analyses. All such individual modules are available as part413

of the MiCoNE package. The inputs to the pipeline by default are the raw community 16S rRNA414

sequence reads, but the software can be alternatively configured to use trimmed sequences, OTU415

tables and other types of intermediate data. The final output of the pipeline is the inferred network416

of co-occurrence relationships among the microbes present in the samples.417

The MiCoNE pipeline provides both a Python API as well as a command-line interface and418

only requires a single configuration file. The configuration file lists the inputs, output and the steps419

to be performed during runtime, along with the parameters to be used (if different from defaults)420

for the various steps. Since the entire pipeline run-through is stored in the form of a text file (the421

configuration file), subsequent runs are highly reproducible and changes can be easily tracked using422

version control. It uses the nextflow workflow manager [49] under the hood, making it readily usable423

on local machines, cluster or cloud with minimal configuration change. It also allows for automatic424

parallelization of all possible processes, both within and across samples. The pipeline is designed to425
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be modular: each tool or method is organized into modules which can be easily modified or replaced.426

This modular architecture simplifies the process of adding new tools (refer to modules section in427

the MiCoNE documentation). The main components of the pipeline are detailed in the subsequent428

sections.429

Denoising and Clustering (DC)430

This module deals with processing the raw 16S sequence data into OTU or ESV count tables. It431

consists of the following processes: quality control, denoising (or clustering) and chimera checking.432

The quality control process handles the demultiplexing and quality control steps such as trimming433

adapters and trimming low-quality nucleotide stretches from the sequences. The denoise/cluster434

process handles the conversion of the demultiplexed, trimmed sequences into OTU or ESV count435

tables (some methods, like closed reference and open reference clustering, perform clustering and436

taxonomy assignment in the same step). The chimera checking process handles the removal of437

chimeric sequences created during the Polymerase Chain Reaction (PCR) step. The output of this438

module is a matrix of counts, that describes the number of reads of a particular OTU or ESV (rows439

of the matrix) present in each sample (columns of the matrix). The options currently available in440

the pipeline for denoising and clustering are: open reference clustering, closed reference clustering441

and de novo clustering methods from QIIME1 v1.9.1 [22] and denoising methods from DADA2442

v1.14 [23] and Deblur v1.1.0 [36]. The quality filtering and chimera checking tools are derived443

from those used in QIIME2 v2019.10.0 and DADA2.444

Taxonomy Assignment (TA)445

This module deals with assigning taxonomies to either the representative sequences of the OTUs or446

directly to the ESVs. In order to assign taxonomies to a particular sequence we need a taxonomy447

database and a query tool. The taxonomy database contains the collection of 16S sequences of448
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micro-organisms of interest and the query tool allows one to compare a sequence of interest to all449

the sequences in the database to identify the best matches. Finally, a consensus method is used450

to identify the most probable match from the list of best matches. The pipeline incorporates GG451

13_8 [24], SILVA 132 [25] and the NCBI (16S RefSeq as of Oct 2019) [40] databases for taxonomy452

assignment and the Naive Bayes classifier from QIIME2 and NCBI blast as the query tools (from453

QIIME2). The consensus algorithm used is the default method used by the classifiers in QIIME2.454

OTU and ESV Processing (OP)455

This module deals with normalization, filtering and applying transformations to the OTU or ESV456

counts matrix. Rarefaction is a normalization technique used to overcome the bias that might arise457

due to variable sampling depth in different samples. This is performed either by sub-sampling or458

by normalization of the matrix to the lowest sampling depth [26]. Rarefaction is usually followed459

by filtering, which is performed to remove samples or features (OTUs or ESVs) from the count460

matrix that are sparse. In order to determine the filtering threshold we fix the number of samples461

and correlation detection power needed and determine the number of features to be used. Finally,462

transformations are performed in order to correct for and overcome the compositional bias that is463

inherent in a counts matrix (in most cases this is handled by the network inference algorithm).464

Network Inference (NI)465

This module deals with the inference of co-occurrence associations from the OTU or ESV counts466

matrix. These associations can be represented as a network, with nodes representing taxonomies of467

the micro-organisms and edges representing the association between them. A null model is created468

by re-sampling and bootstrapping the correlation/interaction matrix and is used to calculate the469

significance of the inferred associations by calculating the p-values against this null model [50]. The470

pipeline includes Pearson, Spearman and FastSpar v0.0.10 (a faster implementation of SparCC) [50]471
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as the pairwise correlation metrics, and SpiecEasi v1.0.7 [28], mLDM v1.1 [42] and MAGMA [27]472

as the direct association metrics. The empirical Browns method [44] is used for combining p-values473

from the various methods to obtain a consensus p-value, which is used to create the consensus474

network.475

Network Variability476

In order to compare across different networks, and analyze the degree of variability induced by477

the choice of different modules and parameters, we organized multiple networks into a single478

mathematical structure that we could use for linear regression. In particular, we transformed the479

adjacency matrix of each co-occurrence network into a vector. We then merged the networks480

generated from all possible combinations of tools into a table (N, see below) in which each column481

represents one network.482

# =



43641,1 43642,1 · · · 4364=,1

43641,2 43642,2 · · · 4364=,2

...
...

...
...

43641,= 43642,= · · · 4364=,=


In other words, # is the merged table, each column #8 is the vector representation of one of the483

networks, and each row !8 represents the one particular edge in all networks (assigned 0 if the edge484

does not exist in the network).485

We use linear regression to express each link !8 as a linear function of categorical variables that486

describe the possible options in each of the first three steps of the pipeline.487
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In particular, we infer parameters U8 such that:

!8 =

5∑
9=1

(
U
�� ( 9)
8

.X
�� ( 9)
8

)
+

3∑
9=1

(
U
)�( 9)
8

.X
)�( 9)
8

)
+

2∑
9=1

(
U
$%( 9)
8

.X
$%( 9)
8

)
+ n8

where, U8 are the coefficients of the regression, n8 are the residuals and X8 are the indicator488

variables that correspond to the processes utilized in the pipeline used to create the network #8;489

for example, X�� (1)
8

= 1 if the DC(1) process was used in the generation of the network #8 . Here,490

(i) DC(1) = "closed reference", DC(2) = "open reference", DC(3) = "de novo", DC(4) = "dada2",491

DC(5) = "deblur"; (ii) TA(1) = "GreenGenes", TA(2) = "SILVA", TA(3) = "NCBI"; (iii) OP(1) =492

"no filtering", OP(2) = "filtering".493

The variance contributed by each step of the pipeline is calculated for every connection in the494

merged table through ANOVA using the Python statsmodels package and is shown in Figure 2B.495

The total variance for the network is calculated by adding the variances for each connection. The496

PCA analysis is also performed on the merged table to generate Figure 2C.497

Code and Data Availability498

Pipeline: https://github.com/segrelab/MiCoNE499

Data and scripts: https://github.com/segrelab/MiCoNE-pipeline-paper500

Acknowledgments501

We are grateful to members of the Segrè lab for helpful discussions and for feedback on the502

manuscript. This work was partially funded by grants from the National Institutes of Health503

(National Institute of General Medical Sciences, award R01GM121950; National Institute of Dental504

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.09.23.309781doi: bioRxiv preprint 

https://github.com/segrelab/MiCoNE
https://github.com/segrelab/MiCoNE-pipeline-paper
https://doi.org/10.1101/2020.09.23.309781
http://creativecommons.org/licenses/by-nc-nd/4.0/


and Craniofacial Research, award number R01DE024468; and National Institute on Aging, award505

number UH2AG064704), the U.S. Department of Energy, Office of Science, Office of Biological &506

Environmental Research through the Microbial Community Analysis and Functional Evaluation in507

Soils SFA Program (m-CAFEs) under contract number DE-AC02-05CH11231 to Lawrence Berkeley508

National Laboratory, the National Science Foundation (grants 1457695 and NSFOCE-BSF 1635070),509

the Human Frontiers Science Program (RGP0020/2016), and the Boston University Interdisciplinary510

Biomedical Research Office. KSK was supported by Simons Foundation Grant #409704, by the511

Research Corporation for Science Advancement through Cottrell Scholar Award #24010, by the512

Scialog grant #26119, and by the Gordon and Betty Moore Foundation grant #6790.08.513

Contributions514

Designed the research project: DK, KK, DS, ZH, CDL. Performed analysis: DK, GB. Wrote the515

first draft of the manuscript: DK. Revised and wrote final version of the manuscript: DK, DS, KK.516

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.09.23.309781doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.309781
http://creativecommons.org/licenses/by-nc-nd/4.0/


References517

[1] Melanie Ghoul and Sara Mitri. “The Ecology and Evolution of Microbial Competition.” In:518
Trends in microbiology 24.10 (Oct. 2016), pp. 833–845. issn: 1878-4380. doi: 10.1016/j.519
tim.2016.06.011. url: http://www.ncbi.nlm.nih.gov/pubmed/27546832.520

[2] Luke R. Thompson et al. “A communal catalogue reveals Earth’s multiscale microbial521
diversity”. In: Nature 551.7681 (Nov. 2017), p. 457. issn: 0028-0836. doi: 10.1038/522
nature24621. url: http://www.nature.com/doifinder/10.1038/nature24621.523

[3] Takashi Narihiro and Yoichi Kamagata. “Genomics and Metagenomics in Microbial Ecology:524
Recent Advances and Challenges.” In: Microbes and environments 32.1 (2017), pp. 1–4.525
issn: 1347-4405. doi: 10.1264/jsme2.ME3201rh. url: http://www.ncbi.nlm.nih.526
gov/pubmed/28367917%20http://www.pubmedcentral.nih.gov/articlerender.527
fcgi?artid=PMC5371069.528

[4] Juan Jovel et al. “Characterization of the Gut Microbiome Using 16S or Shotgun Metage-529
nomics.” In: Frontiers in microbiology 7 (2016), p. 459. issn: 1664-302X. doi: 10 .530
3389 / fmicb . 2016 . 00459. url: http : / / www . ncbi . nlm . nih . gov / pubmed /531
27148170%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=532
PMC4837688.533

[5] Jason Lloyd-Price, Galeb Abu-Ali, and Curtis Huttenhower. “The healthy humanmicrobiome.”534
In: Genome medicine 8.1 (2016), p. 51. issn: 1756-994X. doi: 10.1186/s13073-016-535
0307-y. url: http://www.ncbi.nlm.nih.gov/pubmed/27122046%20http://www.536
pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4848870.537

[6] Houjin Zhang and Kang Ning. “The Tara Oceans Project: New Opportunities and Greater538
Challenges Ahead.” In: Genomics, proteomics & bioinformatics 13.5 (Oct. 2015), pp. 275–7.539
issn: 2210-3244. doi: 10.1016/j.gpb.2015.08.003. url: http://www.ncbi.nlm.nih.540
gov/pubmed/26546828%20http://www.pubmedcentral.nih.gov/articlerender.541
fcgi?artid=PMC4678785.542

[7] Barbara A. Human Microbiome Project Consortium et al. “A framework for human543
microbiome research.” In: Nature 486.7402 (June 2012), pp. 215–21. issn: 1476-4687.544
doi: 10 . 1038 / nature11209. url: http : / / www . ncbi . nlm . nih . gov / pubmed /545
22699610%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=546
PMC3377744.547

[8] Rajita Menon, Vivek Ramanan, and Kirill S. Korolev. “Interactions between species introduce548
spurious associations in microbiome studies”. In: PLOS Computational Biology 14.1 (Jan.549
2018). Ed. by Stefano Allesina, e1005939. issn: 1553-7358. doi: 10.1371/journal.pcbi.550
1005939. url: http://dx.plos.org/10.1371/journal.pcbi.1005939.551

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.09.23.309781doi: bioRxiv preprint 

https://doi.org/10.1016/j.tim.2016.06.011
https://doi.org/10.1016/j.tim.2016.06.011
https://doi.org/10.1016/j.tim.2016.06.011
http://www.ncbi.nlm.nih.gov/pubmed/27546832
https://doi.org/10.1038/nature24621
https://doi.org/10.1038/nature24621
https://doi.org/10.1038/nature24621
http://www.nature.com/doifinder/10.1038/nature24621
https://doi.org/10.1264/jsme2.ME3201rh
http://www.ncbi.nlm.nih.gov/pubmed/28367917%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5371069
http://www.ncbi.nlm.nih.gov/pubmed/28367917%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5371069
http://www.ncbi.nlm.nih.gov/pubmed/28367917%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5371069
http://www.ncbi.nlm.nih.gov/pubmed/28367917%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5371069
http://www.ncbi.nlm.nih.gov/pubmed/28367917%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5371069
https://doi.org/10.3389/fmicb.2016.00459
https://doi.org/10.3389/fmicb.2016.00459
https://doi.org/10.3389/fmicb.2016.00459
http://www.ncbi.nlm.nih.gov/pubmed/27148170%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4837688
http://www.ncbi.nlm.nih.gov/pubmed/27148170%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4837688
http://www.ncbi.nlm.nih.gov/pubmed/27148170%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4837688
http://www.ncbi.nlm.nih.gov/pubmed/27148170%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4837688
http://www.ncbi.nlm.nih.gov/pubmed/27148170%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4837688
https://doi.org/10.1186/s13073-016-0307-y
https://doi.org/10.1186/s13073-016-0307-y
https://doi.org/10.1186/s13073-016-0307-y
http://www.ncbi.nlm.nih.gov/pubmed/27122046%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4848870
http://www.ncbi.nlm.nih.gov/pubmed/27122046%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4848870
http://www.ncbi.nlm.nih.gov/pubmed/27122046%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4848870
https://doi.org/10.1016/j.gpb.2015.08.003
http://www.ncbi.nlm.nih.gov/pubmed/26546828%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4678785
http://www.ncbi.nlm.nih.gov/pubmed/26546828%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4678785
http://www.ncbi.nlm.nih.gov/pubmed/26546828%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4678785
http://www.ncbi.nlm.nih.gov/pubmed/26546828%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4678785
http://www.ncbi.nlm.nih.gov/pubmed/26546828%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4678785
https://doi.org/10.1038/nature11209
http://www.ncbi.nlm.nih.gov/pubmed/22699610%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3377744
http://www.ncbi.nlm.nih.gov/pubmed/22699610%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3377744
http://www.ncbi.nlm.nih.gov/pubmed/22699610%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3377744
http://www.ncbi.nlm.nih.gov/pubmed/22699610%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3377744
http://www.ncbi.nlm.nih.gov/pubmed/22699610%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3377744
https://doi.org/10.1371/journal.pcbi.1005939
https://doi.org/10.1371/journal.pcbi.1005939
https://doi.org/10.1371/journal.pcbi.1005939
http://dx.plos.org/10.1371/journal.pcbi.1005939
https://doi.org/10.1101/2020.09.23.309781
http://creativecommons.org/licenses/by-nc-nd/4.0/


[9] Lisa Röttjers and Karoline Faust. “From hairballs to hypotheses–biological insights from552
microbial networks”. In: FEMS Microbiology Reviews 42.6 (Nov. 2018), pp. 761–780.553
issn: 1574-6976. doi: 10.1093/femsre/fuy030. url: https://academic.oup.com/554
femsre/article/42/6/761/5061627.555

[10] Jack A. Gilbert et al. “Microbiome-wide association studies link dynamic microbial consortia556
to disease”. In: Nature 535.7610 (2016), pp. 94–103. issn: 14764687. doi: 10.1038/557
nature18850. arXiv: NIHMS150003.558

[11] Baohong Wang et al. “The Human Microbiota in Health and Disease”. In: Engineering559
3.1 (Feb. 2017), pp. 71–82. issn: 20958099. doi: 10.1016/J.ENG.2017.01.008. url:560
http://linkinghub.elsevier.com/retrieve/pii/S2095809917301492.561

[12] José E Belizário and Mauro Napolitano. “Human microbiomes and their roles in dysbiosis,562
common diseases, and novel therapeutic approaches.” In: Frontiers in microbiology 6563
(2015), p. 1050. issn: 1664-302X. doi: 10.3389/fmicb.2015.01050. url: http:564
//www.ncbi.nlm.nih.gov/pubmed/26500616%20http://www.pubmedcentral.nih.565
gov/articlerender.fcgi?artid=PMC4594012.566

[13] Noah Fierer. Embracing the unknown: Disentangling the complexities of the soil microbiome.567
Oct. 2017. doi: 10.1038/nrmicro.2017.87. url: https://pubmed.ncbi.nlm.nih.568
gov/28824177/.569

[14] Shuo Jiao, Weimin Chen, and Gehong Wei. “Resilience and assemblage of soil microbiome570
in response to chemical contamination combined with plant growth”. In: Applied and571
Environmental Microbiology 85.6 (Mar. 2019). issn: 10985336. doi: 10.1128/AEM.02523-572
18. url: http://aem.asm.org/.573

[15] RyanH. Hsu et al. “Microbial Interaction Network Inference inMicrofluidic Droplets”. In:Cell574
Systems 9.3 (Sept. 2019), 229–242.e4. issn: 24054720. doi: 10.1016/j.cels.2019.06.575
008. url: http://www.cell.com/article/S2405471219302315/fulltext%20http:576
//www.cell.com/article/S2405471219302315/abstract%20https://www.cell.577
com/cell-systems/abstract/S2405-4712(19)30231-5.578

[16] Xingjin Jian et al. “Microbial microdroplet culture system (MMC): An integrated platform for579
automated, high-throughput microbial cultivation and adaptive evolution”. In: Biotechnology580
and Bioengineering 117.6 (June 2020), pp. 1724–1737. issn: 0006-3592. doi: 10.1002/bit.581
27327. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27327.582

[17] Steven A Wilbert, Jessica L Mark Welch, and Gary G Borisy. “Spatial Ecology of the Human583
Tongue Dorsum Microbiome”. In: CellReports 30 (2020), 4003–4015.e3. doi: 10.1016/j.584
celrep.2020.02.097. url: https://doi.org/10.1016/j.celrep.2020.02.097.585

[18] Cristal Zuñiga, Livia Zaramela, and Karsten Zengler. “Elucidation of complexity and586
prediction of interactions in microbial communities”. In: Microbial Biotechnology 10.6587
(2017), pp. 1500–1522. doi: 10.1111/1751-7915.12855.588

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.09.23.309781doi: bioRxiv preprint 

https://doi.org/10.1093/femsre/fuy030
https://academic.oup.com/femsre/article/42/6/761/5061627
https://academic.oup.com/femsre/article/42/6/761/5061627
https://academic.oup.com/femsre/article/42/6/761/5061627
https://doi.org/10.1038/nature18850
https://doi.org/10.1038/nature18850
https://doi.org/10.1038/nature18850
https://arxiv.org/abs/NIHMS150003
https://doi.org/10.1016/J.ENG.2017.01.008
http://linkinghub.elsevier.com/retrieve/pii/S2095809917301492
https://doi.org/10.3389/fmicb.2015.01050
http://www.ncbi.nlm.nih.gov/pubmed/26500616%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4594012
http://www.ncbi.nlm.nih.gov/pubmed/26500616%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4594012
http://www.ncbi.nlm.nih.gov/pubmed/26500616%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4594012
http://www.ncbi.nlm.nih.gov/pubmed/26500616%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4594012
http://www.ncbi.nlm.nih.gov/pubmed/26500616%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4594012
https://doi.org/10.1038/nrmicro.2017.87
https://pubmed.ncbi.nlm.nih.gov/28824177/
https://pubmed.ncbi.nlm.nih.gov/28824177/
https://pubmed.ncbi.nlm.nih.gov/28824177/
https://doi.org/10.1128/AEM.02523-18
https://doi.org/10.1128/AEM.02523-18
https://doi.org/10.1128/AEM.02523-18
http://aem.asm.org/
https://doi.org/10.1016/j.cels.2019.06.008
https://doi.org/10.1016/j.cels.2019.06.008
https://doi.org/10.1016/j.cels.2019.06.008
http://www.cell.com/article/S2405471219302315/fulltext%20http://www.cell.com/article/S2405471219302315/abstract%20https://www.cell.com/cell-systems/abstract/S2405-4712(19)30231-5
http://www.cell.com/article/S2405471219302315/fulltext%20http://www.cell.com/article/S2405471219302315/abstract%20https://www.cell.com/cell-systems/abstract/S2405-4712(19)30231-5
http://www.cell.com/article/S2405471219302315/fulltext%20http://www.cell.com/article/S2405471219302315/abstract%20https://www.cell.com/cell-systems/abstract/S2405-4712(19)30231-5
http://www.cell.com/article/S2405471219302315/fulltext%20http://www.cell.com/article/S2405471219302315/abstract%20https://www.cell.com/cell-systems/abstract/S2405-4712(19)30231-5
http://www.cell.com/article/S2405471219302315/fulltext%20http://www.cell.com/article/S2405471219302315/abstract%20https://www.cell.com/cell-systems/abstract/S2405-4712(19)30231-5
https://doi.org/10.1002/bit.27327
https://doi.org/10.1002/bit.27327
https://doi.org/10.1002/bit.27327
https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.27327
https://doi.org/10.1016/j.celrep.2020.02.097
https://doi.org/10.1016/j.celrep.2020.02.097
https://doi.org/10.1016/j.celrep.2020.02.097
https://doi.org/10.1016/j.celrep.2020.02.097
https://doi.org/10.1111/1751-7915.12855
https://doi.org/10.1101/2020.09.23.309781
http://creativecommons.org/licenses/by-nc-nd/4.0/


[19] Jonathan Friedman and Eric J. Alm. “Inferring Correlation Networks from Genomic Survey589
Data”. In: PLoS Computational Biology 8.9 (Sept. 2012). Ed. by Christian von Mering,590
e1002687. issn: 1553-7358. doi: 10.1371/journal.pcbi.1002687. url: http://dx.591
plos.org/10.1371/journal.pcbi.1002687.592

[20] Richa Bharti and Dominik G Grimm. “Current challenges and best-practice protocols for593
microbiome analysis”. In: Briefings in Bioinformatics 2019.00 (Dec. 2019), pp. 1–16. issn:594
1477-4054. doi: 10.1093/bib/bbz155. url: https://academic.oup.com/bib/595
advance-article/doi/10.1093/bib/bbz155/5678919.596

[21] Jolinda Pollock et al. The madness of microbiome: Attempting to find consensus "best597
practice" for 16S microbiome studies. Apr. 2018. doi: 10.1128/AEM.02627-17. url:598
https://doi.org/10.1128/AEM.02627-17..599

[22] J Gregory Caporaso et al. “QIIME allows analysis of high-throughput community sequencing600
data”. In: Nature Methods 7.5 (May 2010), pp. 335–336. issn: 1548-7091. doi: 10.1038/601
nmeth.f.303. url: http://www.nature.com/articles/nmeth.f.303.602

[23] Benjamin J Callahan et al. “DADA2: High-resolution sample inference from Illumina603
amplicon data”. In: Nature Methods 13.7 (July 2016), pp. 581–583. issn: 1548-7091. doi:604
10.1038/nmeth.3869. url: http://www.nature.com/articles/nmeth.3869.605

[24] T Z DeSantis et al. “Greengenes, a chimera-checked 16S rRNA gene database and workbench606
compatible with ARB.” In: Applied and environmental microbiology 72.7 (July 2006),607
pp. 5069–72. issn: 0099-2240. doi: 10.1128/AEM.03006- 05. url: http://www.608
ncbi.nlm.nih.gov/pubmed/16820507%20http://www.pubmedcentral.nih.gov/609
articlerender.fcgi?artid=PMC1489311.610

[25] Christian Quast et al. “The SILVA ribosomal RNA gene database project: improved data611
processing and web-based tools”. In: Nucleic Acids Research 41.D1 (Nov. 2012), pp. D590–612
D596. issn: 0305-1048. doi: 10.1093/nar/gks1219. url: http://academic.oup.com/613
nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-614
project.615

[26] Sophie J Weiss et al. “Effects of library size variance, sparsity, and compositionality on the616
analysis of microbiome data”. In: PeerJ PrePrints 3 (2015), e1408. issn: 2167-9843. doi:617
10.7287/peerj.preprints.1157v1. arXiv: peerj.preprints.270v1 [10.7287].618
url: https://doi.org/10.7287/peerj.preprints.1157v1%7B%5C%%7D5Cnhttps:619
//peerj.com/preprints/1157v1/%7B%5C#%7Dsupp-8.620

[27] Arnaud Cougoul, Xavier Bailly, and Ernst C Wit. “MAGMA: inference of sparse microbial621
association networks”. In: (2019). doi: 10.1101/538579. url: https://doi.org/10.622
1101/538579.623

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.09.23.309781doi: bioRxiv preprint 

https://doi.org/10.1371/journal.pcbi.1002687
http://dx.plos.org/10.1371/journal.pcbi.1002687
http://dx.plos.org/10.1371/journal.pcbi.1002687
http://dx.plos.org/10.1371/journal.pcbi.1002687
https://doi.org/10.1093/bib/bbz155
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbz155/5678919
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbz155/5678919
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbz155/5678919
https://doi.org/10.1128/AEM.02627-17
https://doi.org/10.1128/AEM.02627-17.
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
http://www.nature.com/articles/nmeth.f.303
https://doi.org/10.1038/nmeth.3869
http://www.nature.com/articles/nmeth.3869
https://doi.org/10.1128/AEM.03006-05
http://www.ncbi.nlm.nih.gov/pubmed/16820507%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1489311
http://www.ncbi.nlm.nih.gov/pubmed/16820507%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1489311
http://www.ncbi.nlm.nih.gov/pubmed/16820507%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1489311
http://www.ncbi.nlm.nih.gov/pubmed/16820507%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1489311
http://www.ncbi.nlm.nih.gov/pubmed/16820507%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1489311
https://doi.org/10.1093/nar/gks1219
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
http://academic.oup.com/nar/article/41/D1/D590/1069277/The-SILVA-ribosomal-RNA-gene-database-project
https://doi.org/10.7287/peerj.preprints.1157v1
https://arxiv.org/abs/peerj.preprints.270v1
https://doi.org/10.7287/peerj.preprints.1157v1%7B%5C%%7D5Cnhttps://peerj.com/preprints/1157v1/%7B%5C#%7Dsupp-8
https://doi.org/10.7287/peerj.preprints.1157v1%7B%5C%%7D5Cnhttps://peerj.com/preprints/1157v1/%7B%5C#%7Dsupp-8
https://doi.org/10.7287/peerj.preprints.1157v1%7B%5C%%7D5Cnhttps://peerj.com/preprints/1157v1/%7B%5C#%7Dsupp-8
https://doi.org/10.1101/538579
https://doi.org/10.1101/538579
https://doi.org/10.1101/538579
https://doi.org/10.1101/538579
https://doi.org/10.1101/2020.09.23.309781
http://creativecommons.org/licenses/by-nc-nd/4.0/


[28] Zachary D. Kurtz et al. “Sparse and Compositionally Robust Inference ofMicrobial Ecological624
Networks”. In: PLOS Computational Biology 11.5 (May 2015). Ed. by Christian von625
Mering, e1004226. issn: 1553-7358. doi: 10.1371/journal.pcbi.1004226. url:626
http://dx.plos.org/10.1371/journal.pcbi.1004226.627

[29] Kevin P. Keegan, Elizabeth M. Glass, and Folker Meyer. “MG-RAST, a Metagenomics628
Service for Analysis of Microbial Community Structure and Function”. In: Humana Press,629
New York, NY, 2016, pp. 207–233. doi: 10.1007/978-1-4939-3369-3_13. url:630
http://link.springer.com/10.1007/978-1-4939-3369-3%7B%5C_%7D13.631

[30] Qiita - open-source microbial study management platform. url: https://qiita.ucsd.632
edu/ (visited on 05/22/2018).633

[31] Jonathan L. Golob et al. “Evaluating the accuracy of amplicon-based microbiome computa-634
tional pipelines on simulated human gut microbial communities”. In: BMC Bioinformatics635
18.1 (2017), p. 283. issn: 1471-2105. doi: 10.1186/s12859-017-1690-0. url: http:636
//bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859- 017-637
1690-0.638

[32] Sophie Weiss et al. “Correlation detection strategies in microbial data sets vary widely639
in sensitivity and precision”. In: Isme J 10.7 (2016), pp. 1–13. issn: 1751-7362. doi:640
10.1038/ismej.2015.235. url: http://dx.doi.org/10.1038/ismej.2015.235%641
7B%5C%%7D5Cn10.1038/ismej.2015.235.642

[33] Nicholas A Bokulich et al. “mockrobiota: a Public Resource for Microbiome Bioinformatics643
Benchmarking.” In: mSystems 1.5 (2016). issn: 2379-5077. doi: 10.1128/mSystems.644
00062- 16. url: http://www.ncbi.nlm.nih.gov/pubmed/27822553%20http:645
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5080401.646

[34] Weichun Huang et al. “ART: a next-generation sequencing read simulator.” In: Bioin-647
formatics (Oxford, England) 28.4 (Feb. 2012), pp. 593–4. issn: 1367-4811. doi: 10 .648
1093/bioinformatics/btr708. url: http://www.ncbi.nlm.nih.gov/pubmed/649
22199392%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=650
PMC3278762.651

[35] Dae-Wook Kang et al. “Microbiota Transfer Therapy alters gut ecosystem and improves652
gastrointestinal and autism symptoms: an open-label study”. In: Microbiome 5.1 (Dec.653
2017), p. 10. issn: 2049-2618. doi: 10.1186/s40168-016-0225-7. url: http://654
microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0225-655
7.656

[36] Amnon Amir et al. “Deblur Rapidly Resolves Single-Nucleotide Community Sequence Pat-657
terns.” In:mSystems 2.2 (Apr. 2017), e00191–16. issn: 2379-5077. doi: 10.1128/mSystems.658
00191- 16. url: http://www.ncbi.nlm.nih.gov/pubmed/28289731%20http:659
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5340863.660

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.09.23.309781doi: bioRxiv preprint 

https://doi.org/10.1371/journal.pcbi.1004226
http://dx.plos.org/10.1371/journal.pcbi.1004226
https://doi.org/10.1007/978-1-4939-3369-3_13
http://link.springer.com/10.1007/978-1-4939-3369-3%7B%5C_%7D13
https://qiita.ucsd.edu/
https://qiita.ucsd.edu/
https://qiita.ucsd.edu/
https://doi.org/10.1186/s12859-017-1690-0
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1690-0
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1690-0
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1690-0
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1690-0
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1690-0
https://doi.org/10.1038/ismej.2015.235
http://dx.doi.org/10.1038/ismej.2015.235%7B%5C%%7D5Cn10.1038/ismej.2015.235
http://dx.doi.org/10.1038/ismej.2015.235%7B%5C%%7D5Cn10.1038/ismej.2015.235
http://dx.doi.org/10.1038/ismej.2015.235%7B%5C%%7D5Cn10.1038/ismej.2015.235
https://doi.org/10.1128/mSystems.00062-16
https://doi.org/10.1128/mSystems.00062-16
https://doi.org/10.1128/mSystems.00062-16
http://www.ncbi.nlm.nih.gov/pubmed/27822553%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5080401
http://www.ncbi.nlm.nih.gov/pubmed/27822553%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5080401
http://www.ncbi.nlm.nih.gov/pubmed/27822553%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5080401
https://doi.org/10.1093/bioinformatics/btr708
https://doi.org/10.1093/bioinformatics/btr708
https://doi.org/10.1093/bioinformatics/btr708
http://www.ncbi.nlm.nih.gov/pubmed/22199392%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3278762
http://www.ncbi.nlm.nih.gov/pubmed/22199392%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3278762
http://www.ncbi.nlm.nih.gov/pubmed/22199392%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3278762
http://www.ncbi.nlm.nih.gov/pubmed/22199392%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3278762
http://www.ncbi.nlm.nih.gov/pubmed/22199392%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3278762
https://doi.org/10.1186/s40168-016-0225-7
http://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0225-7
http://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0225-7
http://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0225-7
http://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0225-7
http://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0225-7
https://doi.org/10.1128/mSystems.00191-16
https://doi.org/10.1128/mSystems.00191-16
https://doi.org/10.1128/mSystems.00191-16
http://www.ncbi.nlm.nih.gov/pubmed/28289731%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5340863
http://www.ncbi.nlm.nih.gov/pubmed/28289731%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5340863
http://www.ncbi.nlm.nih.gov/pubmed/28289731%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5340863
https://doi.org/10.1101/2020.09.23.309781
http://creativecommons.org/licenses/by-nc-nd/4.0/


[37] Catherine A Lozupone et al. “Quantitative and qualitative beta diversity measures lead661
to different insights into factors that structure microbial communities.” In: Applied and662
environmental microbiology 73.5 (Mar. 2007), pp. 1576–85. issn: 0099-2240. doi: 10.1128/663
AEM.01996-06. url: http://www.ncbi.nlm.nih.gov/pubmed/17220268%20http:664
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1828774.665

[38] Catherine Lozupone and Rob Knight. “UniFrac: a new phylogenetic method for comparing666
microbial communities.” In: Applied and environmental microbiology 71.12 (Dec. 2005),667
pp. 8228–35. issn: 0099-2240. doi: 10.1128/AEM.71.12.8228-8235.2005. url: http:668
//www.ncbi.nlm.nih.gov/pubmed/16332807%20http://www.pubmedcentral.nih.669
gov/articlerender.fcgi?artid=PMC1317376.670

[39] Jacob T. Nearing et al. “Denoising the Denoisers: an independent evaluation of microbiome671
sequence error-correction approaches”. In: PeerJ 6 (Aug. 2018), e5364. issn: 2167-8359.672
doi: 10.7717/peerj.5364. url: https://peerj.com/articles/5364.673

[40] Eric W Sayers et al. “Database resources of the National Center for Biotechnology Infor-674
mation.” In: Nucleic acids research 37.Database issue (Jan. 2009), pp. D5–15. issn: 1362-675
4962. doi: 10.1093/nar/gkn741. url: http://www.ncbi.nlm.nih.gov/pubmed/676
18940862%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=677
PMC2686545.678
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Tables and Figures714

Process Tool Parameters
Denoising and Clustering Dada2/Deblur default
Taxonomy Assignment NCBI with Blast RefSeq database

OTU Processing Based on statistical power Dynamic cutoff
Network Inference Consensus method -

Table 1: Default tools and parameters for the pipeline
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Figure 1: The workflow of the microbial co-occurrence analysis pipeline. The steps can be
grouped into four major groups: (DC) Denoising andClustering, (TA) TaxonomyAssignment, (OP)
OTU or ESV Processing, and (NI) Network Inference. Each step incorporates several processes,
each of which in turn have several alternate algorithms for the same task (indicated by the text to the
right of the blue boxes). The text along the arrows describes the data that is being passed from one
step to another. For details on each process and data types, see Methods.
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Figure 2: The choice of database contributes to the most variance in the networks. (A) The
total relative variance in the networks contributed by the DC, TA and OP steps of the pipeline (right)
and the linear model used to calculate the relative variance (left), see the Methods section for details.
(B) All combinations of inferred networks are shown as points on a PCA plot. The color of the
points corresponds to the taxonomy database, the shape corresponds to the denoising/clustering
method and the size corresponds to whether low abundance OTUs were removed or not. (B inset)
The network generated using DC=dada2, TA=GG, OP=no and NI=SPARCC and represents the
particular point shown (big red square). The plot clearly shows that the points can be separated
based on the TA step and that the differences due to the DC and OP steps are not as significant.
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Figure 3: The representative sequences generated by the different denoising/clustering meth-
ods are very similar but differ in the sequences that are in low abundance. (A) The average
weighted UniFrac distance between the representative sequences shows that the representative
sequences and their compositions are fairly identical between the methods, (B) The relatively
larger average unweighted UniFrac distance indicates that methods differ in their identification of
sequences of low abundance, (C, D) The distributions of the average weighted UniFrac distance
between the expected sequence profile and the calculated sequence profile in mock datasets. (D)
The distributions of the average unweighted UniFrac distance show that dada2 and Deblur were the
best performing methods in most of the datasets.
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Figure 4: Taxonomic reference databases vary widely in terms of their taxonomy assignments.
(A) The assignment of the top 50 representative sequences to their respective taxonomies using
the three different reference databases shows how the same sequences are assigned to different
Genus. (B) The percentage of OTUs assigned to the same taxonomic label when using different
reference databases. The percentage of mismatches decrease at higher taxonomic levels but even at
the Phylum level there exists around 10% of mismatches. (C) The Bray-Curtis dissimilarity between
the expected taxonomy profile and calculated taxonomy profile in the mock datasets shows that there
is no singular best choice of database for every dataset.
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Figure 5: Networks generated using different network inference methods show notable differ-
ences both in terms of edge-density and connectivity. (A) The six different networks generated by
the different network inference methods are very dissimilar. The green links are positive associations
and the orange links are negative associations. A threshold of 0.3 was set for the methods that infer
pairwise correlations (SparCC, Spearman, Pearson) and no threshold was set for the other methods.
(B) The node overlap Upset plot [43] indicates that all the networks have a large number of common
nodes involved in connections. Whereas, (C) The edge overlap Upset plot shows that a very small
fraction of these connections are actually shared.
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Figure 6: Network inference and taxonomic assignment have the highest influence on the
inferred network structures. (A) The network constructed using the default pipeline parameters
(DC=DADA2, TA=NCBI, OP=on, NI=SparCC) is compared with networks generated when one of
the steps use a different tool. The common connections (common with the default network) are in
black, connections unique to the network are colored purple and connections in the default network
but not present in the current network are gray. (B) The L1 distance between the networks generated
by changing one step of the default pipeline and the network generated using the default parameters.
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Figure 7: The consensus networks generated using the default pipeline settings. (A) Co-occurrence
network of the Hard Palate microbiome generated from samples of healthy subjects in a periodontal
diseases study. (B) Co-occurrence network of the Stool microbiome generated from samples of
healthy subjects in a fecal microbiome transplant study.
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Step Task Tool Parameter Value

Denosing and Clustering

Sequence Processing

join_reads min_overlap 6
perc_max_diff 8

demultiplex_illumina rev_comp_barcodes False
rev_comp_mapping_barcodes False

demultiplex_454 - -

trim_filter_fixed

seq_sample_size 10,000
ncpus 1
trunc_q 2
max_ee 2

Chimera Checking
uchime - -

remove_bimera ncpus 1
chimera_method consensus

Denoise Cluster

de_novo
enable_rev_strand_match True
suppress_de_novo_chimera_detection True
ncpus 1

closed_reference

enable_rev_strand_match True
suppress_de_novo_chimera_detection True
ncpus 1
reference_sequences 97_otus.fasta

open_reference

enable_rev_strand_match True
suppress_de_novo_chimera_detection True
ncpus 1
reference_sequences 97_otus.fasta
picking_method uclust

dada2 ncpus 1
big_data FALSE

deblur
ncpus 1
mind_reads 2
min_size 2

Taxonomy Assignment Assign

naive_bayes
confidence 0.7
mem_per_core 8G
ncpus 1

blast

max_accepts 10
perc_identity 0.8
evalue 0.001
min_consensus 0.51

OTU/ESV Processing

Filter
abundance

count_thres 500
prevalence_thres 0.05
abundance_thres 0.01

group tax_levels [’Phylum’, ’Class’, ’Order’,
’Family’, ’Genus’, ’Species’]

partition - -

Transform normalize

count_thres 500
axis sample
prevalence_thres 0.05
abundace_thres 0.01
rm_sparse_obs True
rm_sparse_samples True

Export biom2tsv - -

Network Inference

Bootstrap resample
bootstraps 1000
ncpus 1
filter_flag True

pvalue ncpus 1

Correlation

sparcc iterations 50
ncpus 1

pearson - -
spearman - -

spieceasi

method mb
ncpus 1
nreps 50
nlambda 20
lambda_min_ratio 1e-2

mldm z_mean 1
max_iteration 1500

magma - -
Network make_network - -

Table S1: The default parameters used in the various tools of the pipeline
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Figure S1: Comparison of various denoising and clustering algorithms used in the pipeline.
(A, B) Correlation of the abundances of the taxa that are in common between the count matrices
created by two different methods. (A) The worst correlation (least similar methods) is between
open-reference and dada2. (B) The best correlation (most similar methods) is between open-reference
and denovo. (C) A heatmap showing the R2 of all pairwise comparisons of the methods.
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Figure S2: Heatmaps showing the weighted and unweighted unifrac distances for the hard
palate dataset analysis. (A) weighted unifrac distances and (B) unweighted unifrac distances
between the representative sequences generated by different denoising and clustering algorithms.
These results are in agreement with the stool microbiome dataset.
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Figure S3: The distributions of the average weighted UniFrac distance between the expected
sequence profile and the calculated sequence profile in the synthetic datasets. We observe no
significant difference between the various methods on the synthetic datasets used for this study.
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Figure S4: (A) Taxonomy composition of the 20 most abundant genera predicted for the stool
microbiome dataset generated using different taxonomy references databases: Greengenes, SILVA
and NCBI. The legend shows the common and the unique genera among the taxonomy assignments.
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Figure S5: The bray-curtis dissmilarity between the expected taxonomic composition and generated
taxonomic composiion for the synthetic datasets.
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Figure S6: The similarity between the networks generated using the different network inference
algorithms for stool dataset (A) and the hard palate dataset (B). The similarity between the various
methods was found to vary with the dataset used.
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B

A

Figure S7: A network showing union (A) and intersection (B) of networks generated using different
denoising and clustering tools on the Stool dataset.
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