1	Crystal structure of GH43 exo-β-1,3-galactanase from the basidiomycete <i>Phanerochaete</i>
2	chrysosporium provides insights into the mechanism of bypassing side chains
3	
4	Kaori Matsuyama ¹ , Naomi Kishine ² , Zui Fujimoto ² , Naoki Sunagawa ¹ , Toshihisa Kotake ³ ,
5	Yoichi Tsumuraya ³ , Masahiro Samejima ^{1,4} , Kiyohiko Igarashi ^{1,5*} , and Satoshi Kaneko ^{6*}
6	
7	1 Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences,
8	The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
9	2 Advanced Analysis Center, National Agriculture and Food Research Organization (NARO),
10	2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
11	3 Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University,
12	255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
13	4 Faculty of Engineering, Shinshu University, 4-17-1, Wakasato, Nagano 380-8533, Japan
14	5 VTT Technical Research Centre of Finland, PO Box 1000, Tietotie 2, Espoo FI-02044 VTT,
15	Finland
16	6 Department of Subtropical Bioscience and Biotechnology, Faculty of Agriculture,
17	University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
18	
19	* Corresponding author
20	KI: aquarius@mail.ecc.u-tokyo.ac.jp

21 SK: sakaneko@agr.u-ryukyu.ac.jp

22

23 Abbreviations	(in order of appearance)
------------------	--------------------------

24	AGPs, arabinogalactan proteins; Gal, D-galactose; <i>Pc</i> 1,3Gal43A, exo-β-1,3-galactanase from

25 Phanerochaete chrysosporium; GH, glycoside hydrolase; GH43_sub24, GH family 43

subfamily 24; CBM, carbohydrate binding module; Ct1,3Gal43A, exo- β -1,3-galactanase from

27 Clostridium thermocellum; BT3683, β-1,3-galactosidase from Bacteroides thetaiotaomicron

28 VPI-5482; PcCel45A, endoglucanase V from P. chrysosporium; SeMet, selenomethionine;

29 Gal3, β -1,3-galactotriose; WT, wild-type; WT_Gal, WT bound with Gal; E208Q_Gal3,

30 E208Q bound with Gal3; E208A_Gal3, E208A bound with Gal3; *Pc*CBM35, CBM35 domain

of Pc1,3Gal43A; Gal_{-1} , Gal residue occupied subsite -1; Gal_{+1} , Gal residue occupied subsite

32 +1; Gal₊₂, Gal residue occupied subsite +2; Gal2, β -1,3-galactobiose; Gal_site 1, the

non-reducing terminal Gal residue of Gal3 bound to *Pc*CBM35; Gal_site 2, the middle Gal

residue of Gal3 bound to *Pc*CBM35; Gal site 3, the reducing terminal Gal residue of Gal3

35 bound to PcCBM35; HPLC, high-performance liquid chromatography; PcLam55A,

36 exo-β-1,3-glucanase from *P. chrvsosporium*; SacteLam55A, GH55 exo-β-1,3-glucanase from

37 Streptomycs sp.; HjCel3A, GH3 β-1,3-glucosidase from Hypocrea jecorina; Cte 2137,

38 CBM35 of *C. thermocellum* cellulosomal protein; PEG, polyethylene glycol

40 Abstract (less than 250) (247)

42	Arabinogalactan proteins (AGPs) are functional plant proteoglycans, but their functions are
43	largely unexplored, mainly because of the complexity of the sugar moieties, which are
44	generally analyzed with the aid of glycoside hydrolases. In this study, we solved the apo and
45	liganded structures of exo- β -1,3-galactanase from the basidiomycete <i>Phanerochaete</i>
46	chrysosporium (Pc1,3Gal43A), which specifically cleaves AGPs. It is composed of a
47	glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a
48	carbohydrate-binding module family (CBM) 35 binding domain. GH43_sub24 lacks the
49	catalytic base Asp that is conserved among other GH43 subfamilies. Crystal structure and
50	kinetic analyses indicated that the tautomerized imidic acid function of Gln263 serves instead
51	as the catalytic base residue. Pc1,3Gal43A has three subsites that continue from the bottom of
52	the catalytic pocket to the solvent. Subsite -1 contains a space that can accommodate the C-6
53	methylol of Gal, enabling the enzyme to bypass the β -1,6-linked galactan side chains of AGPs.
54	Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction
55	mechanism from other sugar-binding CBM35s. Some of the residues involved in ligand
56	recognition differ from those of galactomannan-binding CBM35, including substitution of Trp
57	for Gly, which affects pyranose stacking, and substitution of Asn for Asp in the lower part of
58	the binding pocket. Pc1,3Gal43A WT and its mutants at residues involved in substrate

- 59 recognition are expected to be useful tools for structural analysis of AGPs. Our findings
- 60 should also be helpful in engineering designer enzymes for efficient utilization of various
- 61 types of biomass.

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.310037; this version posted September 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

63 Running title

64 Crystal structure of fungal GH43 galactanase

65

66 Keywords (five from list + include less than 5)

- 67 glycoside hydrolase family 43, carbohydrate binding module family 35 exo-β-1,3-galactanase,
- 68 arabinogalactan-protein, Phanerochaete chrysosporium

70 Introduction

71	Arabinogalactan proteins (AGPs) are proteoglycans characteristically localized in the plasma
72	membrane, cell wall, and intercellular layer of higher land plants (1), in which they play
73	functional roles in growth and development (2). The carbohydrate moiety of AGPs is
74	composed of a β -1,3-D-galactan main chain and β -1,6-D-galactan side chain, decorated with
75	arabinose, fucose, and glucuronic acid residues (1, 2). The chain lengths and frequencies of
76	side chains are different among plant species, organs, and stages of development (3), and the
77	overall structures of the carbohydrate moieties of AGPs are not yet fully understood.
78	Degradation of polysaccharides using specific enzymes is one approach to investigate their
79	structures and roles. In this context, exo- β -1,3-galactanase (EC 3. 2. 1. 145) specifically
80	cleaves the non-reducing end β -1,3-linked galactosyl linkage of β -1,3-galactans to release
81	D-galactose (Gal). In particular, it releases β -1,6-galactooligosaccharides together with Gal
82	from AGPs (4, 5), and is therefore useful for structural analysis of AGPs.
83	The basidiomycete <i>Phanerochaete chrysosporium</i> produces an exo-β-1,3-galactanase
84	(Pc1,3Gal43A; GeneBank accession No. BAD98241) that degrades the carbohydrates of
85	AGPs when grown with β -1,3-galactan as a carbon source (6). <i>Pc</i> 1,3Gal43A consists of a
86	glycoside hydrolase (GH) family 43 subfamily 24 (GH43_sub24) catalytic domain and a
87	carbohydrate-binding module (CBM) belonging to family 35 (designated as PcCBM6 in the
88	previous paper) based on the amino acid sequences in the Carbohydrate-Active enZymes

89	(CAZy) database (http://www.cazy.org; 6-8). The properties of the enzyme have been
90	analyzed using recombinant Pc1,3Gal43A expressed in the methylotrophic yeast Pichia
91	<i>pastoris</i> (6). The CBM35 of <i>Pc</i> 1,3Gal43A was characterized as the first β -1,3-galactan
92	binding module, and Pc1,3Gal43A showed typical GH43_sub24 activity. The enzyme cleaves
93	only β -1,3-linkages of oligosaccharides and polysaccharides, but produces
94	β -1,6-galactooligosaccharides together with Gal. Thus, <i>Pc</i> 1,3Gal43A specifically recognizes
95	β -1,3-linked Gal, but can accommodate β -1,6-bound side chains (6).
96	Glycoside hydrolases are classified into families based on sequence similarity, while
97	they are also divided into major two groups according to their catalytic mechanisms, i.e.,
98	inverting enzymes and retaining enzymes (9, 10). Inverting enzymes typically utilize two
99	acidic residues that act as an acid and a base, respectively, and a hydroxyl group connected to
100	anomeric carbon inverts from the glycosidic linkage after the reaction. GH43 enzymes are
101	members of the inverting group, and share conserved Glu and Asp as the catalytic acid and
102	base, respectively (8), but GH43_sub24 enzymes lack the catalytic base Asp (8, 11, 12). In
103	Ct1,3Gal43A (from Clostridium thermocellum), Glu112 was thought to be the catalytic base
104	(13), but in BT3683 (from Bacteroides thetaiotamicron), Glu367 (corresponding to Glu112 of
105	Ct1,3Gal43A) was found not to act as a base, but to be involved in recognition of the C-4
106	hydroxyl group of the non-reducing terminal Gal, and instead, Gln577 is predicted to be the
107	catalytic base in the form of an unusual tautomerized imidic acid (12). An example of GH

108	lacking a catalytic base, endoglucanase V from P. chrysosporium (PcCel45A), is already
109	known, and based on the mechanism proposed for this enzyme, it is possible that
110	tautomerized Gln functions as a base in GH43_sub24, or that this Gln stabilizes nucleophilic
111	water. PcCel45A lacks the catalytic base Asp that is conserved in other GH45 subfamilies
112	(14), but it uses the tautomerized imidic acid of Asn as the base, as indicated by neutron
113	crystallography (15). However, it is difficult to understand the situation in GH43_sub24, since
114	no holo structure with a ligand at the catalytic center has yet been solved in this family.
115	Moreover, no structure of eukaryotic GH43_sub24 has yet been reported.
116	The CBM35 module is composed of approximately 140 amino acids. This family
117	includes modules with various binding characteristics, and decorated with xylans, mannans,
118	β -1,3-galactans, and glucans (16–21). The family members are divided into four clusters
119	based on their sequences and binding specificities (17). The structures of CBM35s binding
120	with xylan, mannan, and glucan have already been solved (16-21), but no structure of
121	β-1,3-galactan-binding CBM35 has yet been reported.
122	In the present manuscript, we solved the apo and liganded structures of <i>Pc</i> 1,3Gal43A.
123	Based on the results, we discuss the catalytic mechanism and the mode of ligand binding to
124	CBM35 in the two-domain structure.
125	

126 Results

Overall structure of Pc1,3Gal43A 127

The crystal structure of the selenomethionine (SeMet) derivative of *Pc*1,3Gal43A was first 128

- 129 determined by means of the multiwavelength anomalous dispersion method, and this was
- 130 followed by structure determination of the ligand-free wild-type (WT), the WT bound with
- Gal (WT Gal), the E208Q mutant co-crystallized with β -1,3-galactotriose (Gal3; 131
- 132 E208Q Gal3), and the E208A mutant co-crystallized with Gal3 (E208A_Gal3). Data
- 133 collection statistics and structural refinement statistics are summarized in Tables 1 and 2,
- 134 respectively.

135	The recombinant <i>Pc</i> 1,3Gal43A molecule is composed of a single polypeptide chain
136	of 428 amino acids (Gln21-Tyr448) with two extra amino acids, Glu19 and Phe20, derived
137	from the restriction enzyme cleavage site, which are disordered and thus were not observed.
138	The protein is decorated with N-glycans, since it was expressed in Pichia yeast. Up to three
139	sugar chains are attached at Asn79, Asn194, and Asn389; the attached chains vary in position
140	and structure, and most contain one or two N-acetylglucosamine moieties.
141	Pc1,3Gal43A is composed of two domains, and ligands introduced by soaking or
142	co-crystallization are located in a subsite of the catalytic domain or the binding site of
143	CBM35 (Fig. 1). The N-terminal catalytic domain consists of a five-bladed β -propeller
144	(Gln21-Gly325), as in other GH clan-F enzymes, and the C-terminal domain (PcCBM35)

145	takes a β -jellyroll fold (Thr326-Tyr448) structure, as in previously reported CBM35s (16–25).
146	<i>Pc</i> CBM35 contains one calcium ion near the end of the first β -strand on a different domain
147	surface from the plane to which the ligand binds (Fig. 1). The structure of <i>Pc</i> CBM35 is
148	similar to those of other known CBM35s. The interface area is 686 A ² and includes many
149	water molecules. The PDBePISA server
150	(http://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver) indicates that the enzyme forms a
151	complex in the crystal, but this is an effect of crystallization, and the enzyme exists as a
152	monomer in solution (data not shown).
153	
154	Sugar-binding structure of the Pc1,3Gal43A catalytic domain
155	The five-bladed β -propeller exhibits an almost spherical structure, and two central cavities are
156	located at the ends of the pseudo-5-fold axis (Fig. 1). One of them contains the catalytic site
157	and it is common in almost all GH43 enzymes. The catalytic site is located in the center of the
158	five-bladed β -propeller, whose blades are formed by Gln21 or Asn22-Leu87 (I in Fig. 1),
159	Ser88-Asp155 (II in Fig. 1), Ser156-Gly204 (III in Fig. 1), Ala205-Ser247 (IV in Fig. 1), and
160	Ala248-Asp297 (V in Fig. 1).
161	As shown in Fig. 2, the Gal3 molecule co-crystallized with the E208Q mutant occupies
162	subsites -1, +1, and +2 of the catalytic site, from the non-reducing end to the reducing end.
163	Gal-1 is located at the bottom of the catalytic cavity, and Gal+1 and Gal+2 extend linearly

outwards. Gal_{+1} is half buried in the cavity, whereas Gal_{+2} is exposed at the surface (Fig. 2A).

Gal₋₁ adopts a ${}^{1}S_{3}$ skew boat conformation and interacts with many residues via hydrogen 165 166 bonds and hydrophobic interactions. As shown in Fig. 2B and C, the C-2 hydroxyl group of 167 Gal-1 forms hydrogen bonds with NH2 of Arg103 and with OE1 of Gln263 via water. In 168 addition, this water molecule is bound with O of Gly228. The C-3 hydroxyl group of Gal-1 also forms a hydrogen bond with OE2 of Glu57 via water. Glu102, Tyr126, Asp158, Gln208, 169 170 Thr226, Trp229, and Gln263 interact with Gal3 through hydrophobic interactions. Notably, 171 Trp229 supports the flat C3-C4-C5-C6 structure of Gal-1, and Tyr126 recognizes the C-6 172 methylol and C-4 hydroxyl groups, while Glu102 recognizes the C-3 hydroxyl and C-4 173 hydroxyl groups. In Gal₊₁ (as shown in Fig. 2B and C), the C-2 hydroxyl group forms a hydrogen bond with NE2 of Gln208 and N of Gly228, while O5 forms a hydrogen bond with 174 ND2 of Asn180, and C-6 hydroxyl group forms a hydrogen bond with OD1 of Asn179 via 175 176 water. Tyr126, Arg157, Asn180, and Gln208 interact hydrophobically with Gal. In Gal₊₂ (Fig. 177 2B and C), the C-2 and C-4 hydroxyl groups form hydrogen bonds with OG1 of Thr226 and 178 ND2 of Asn180, respectively. In addition, Thr226 interacts with Gal+2 through hydrophobic interaction. Furthermore, the glycosidic oxygen between Gal+1 and Gal+2 interacts with ND2 179

180 of Asn180 through a hydrogen bond.

164

In the structure of WT_Gal, one Gal was found at subsite -1, taking a ${}^{4}C_{1}$ chair conformation with α-anomeric conformation of the C-1 hydroxyl group (data not shown). The

183	binding mode of Gal-1 is almost the same as that in E208Q_Gal3, but the C-1 hydroxyl group
184	in the axial position forms hydrogen bonds with Gly228 and Gln263. No Gal3 molecule was
185	observed at the catalytic domain in the structure of the Gal3 co-crystallized E208A mutant.
186	In order to identify the catalytic residues, we examined the relative activity of WT
187	and the six mutants towards $\beta\text{-}1,3\text{-}galactobiose}$ (Gal2) and Gal3. WT showed 5.58 ±0.35 and
188	11.15±0.39 units of activity (µmol Gal /min/nmol enzyme) towards Gal2 and Gal3,
189	respectively, whereas the six mutants showed no detectable activity (Fig. S1), suggesting that
190	these residues are all essential for the catalysis.
191	
192	Sugar-binding structure of CBM35 in Pc1,3Gal43A
193	Pc1,3Gal43A has one CBM35 domain at the C-terminus. We previously reported that this
194	enzyme has a CBM6-like domain (6), but it has been reclassified into the CBM35 family (7).
195	The β -jellyroll fold domain is accompanied by a single calcium ion binding site on a different
196	domain surface than the surface to which the ligand at the end of the first β chain binds, and
197	this corresponds to a conserved calcium ion binding site in CBM35s. Some CBM35 modules
198	bind another calcium ion at a site at the top of domain (16), but PcCBM35 lacks this second
199	calcium ion binding site (Fig. 1).
200	In E208A_Gal3, electron density of Gal3 was observed in the ligand binding site of
201	<i>Pc</i> CBM35. As illustrated in Fig. 3A and S2, 2Fo-Fc omit maps showed that the binding mode

202	of <i>Pc</i> CBM35 with ligands is "exo-type", corresponding to type-C CBM (26). The asymmetric
203	unit of E208A_Gal3 contained four Pc1,3Gal43A molecules and each molecule binds to the
204	non-reducing end of Gal3 (called Gal_site 1), as in other CBM35 modules. However, the
205	middle Gal (Gal_site 2) and the reducing end Gal (Gal_site 3) are found in two main locations
206	(Fig. 3), though residues involved in the interactions with the ligand in each molecule were
207	mostly shared. The Gal_site 1 forms hydrogen bonds with Tyr355 and Arg388 and interacts
208	hydrophobically with Leu342, Gly354, Tyr438, and Asp441. The Gal_site 2 interacts
209	hydrophobically with Gly383 and Asp384. The main ligand interaction in the Gal_site 3
210	involves Gly409 and Gly410, but in addition to these residues, Asn411 is also involved in
211	ligand recognition in chain C (Fig. 4).

212

213 Ensemble refinement

In order to understand the fluctuation of ligands, ensemble refinements were performed with the refined models. This method produces ensemble models by employing the combination of X-ray structure refinement and molecular dynamics. These models can simultaneously account for anisotropic and anharmonic distributions (27). Four different pTLS values (%) of 0.6, 0.8, 0.9, and 1.0 were set for each model. Table 3 shows the statistical scores of the refinement with the most appropriate pTLS value for each model. Focused views of the catalytic site in the catalytic domain and the ligand binding site of the CBM are shown in Fig.

221	5 and 6, respectively. Note that structures containing multiple molecules in the asymmetric
222	unit (WT and E208A_Gal3) are found for all molecules in this paper.
223	In the catalytic site, the vibration levels of some residues were significantly different
224	between the apo and holo forms. As shown in Fig. 5, Tyr126, Arg157, Asp158, Asn179,
225	Asn180, Gln181, Trp229, and Gln263 in the liganded structures (Fig. 5B, C, F, G, J, and K)
226	showed smaller vibrations than in the apo structures (Fig. 5A, D, E, H, I, and L). These results
227	indicate that side chain fluctuations converge upon ligand binding. Comparison of the
228	Gal-bond structure (i. e. WT_Gal; Fig. 5B, F, J) with the Gal3-bond structure (i. e.
229	E208Q_Gal3; Fig. 5 C, G, K) showed that the fluctuations of Glu(Gln)208, Asn179, and
230	Thr226 of E208Q_Gal3 were smaller than these in WT_Gal. Therefore, it can be inferred that
231	these residues recognize the ligands at the plus subsites. The catalytic acid, Glu208, has two
232	major conformations in WT and WT_Gal. These two conformations were also reported in the
233	BT3683 structure (12). Thus, the movement of this residue appears to be important for
234	catalysis. Gln263 shows one conformation (Fig. 5A-D) that is identical to the result of the
235	ensemble refinement of Asn92, known as imidic acid in PcCel45A (Fig. S3). Glu102 may
236	distinguish non-reducing terminal Gal, since it interacts with the axial C-4 hydroxyl group of
237	Gal-1 (12). The vibration degree of Glu102 was different between WTs and mutants, so its
238	conformation does not depend on the ligand localization, but reflects interaction with Glu208,
239	which serves as a general acid. Asp158 of WT and E208A_Gal3 show greater vibration than

240	WT_Gal and E208Q_Gal3. The role of Asp158 is thought to be a pKa modulator, therefore its
241	function and conformational stability might be related. Focusing on Fig. 5I-L, there were
242	large differences in the fluctuation level of Trp229. E208Q_Gal3 (Fig. 5K) showed small
243	movements of Trp229, but other structures showed much larger fluctuations (Fig. 5I, J, L).
244	These results suggest that this Trp is normally flipped and forms a π - π interaction to anchor
245	the ligand in the proper position upon arrival. A histogram of the dihedral angle is shown in
246	Fig. S4.
247	As regards the ligand binding site of the CBM, a comparison of each chain of the
248	E208A_Gal3 asymmetric unit showed no significant difference in the vibration levels of each
249	residue involved in ligand binding (Fig. 6). However, ensemble refinement revealed that
250	Gal_site 1 and Gal_site 2 do not show huge fluctuations, while Gal_site 3 has many

Gal_site 1 and Gal_site 2 do not show huge fluctuations, while Gal_site 3 has many conformations. They include the same conformation of each chain Gal of X-ray crystallography. Interestingly, a spatial difference in fluctuations was observed between ligands bound to the catalytic site and to the ligand binding site of CBM35 (Fig. 7). At the catalytic site, Gal.₁ is anchored in the appropriate position, and Gal₊₂ appears to fluctuate in a planar fashion as it interacts with the surrounding residues. In the CBM, it was inferred that Gal_site 1 is fixed and Gal_site 3 is adsorbed at the appropriate location at the binding site while fluctuating in three dimensions.

258 **Discussion**

259	Most exo- β -1,3-galactanases belonging to GH43_sub24 possess CBMs that can be classified
260	into CBM35 or CBM13 (8). In this study, we elucidated the structure of a β -1,3-galactan
261	binding module for the first time by solving the structure of a GH43_sub24 containing
262	CBM35, and obtained the ligand-bound structures of both the catalytic and sugar binding
263	domains of Pc1,3Gal43A. This is also the first study to reveal the structure of a eukaryotic
264	exo- β -1,3-galactanase. This information will be useful to understand how the CBM35 module
265	interacts with β -1,3-galactan in combination with the GH43_sub24 catalytic module.

266

267 *How does* Pc1,3Gal43A hydrolyze β -1,3-galactan?

Although catalytic residues such as Glu and Asp are conserved in GH43 as a catalytic acid 268 269 and base, respectively, GH43 sub24 lacks such a base residue. Mewis and co-workers 270 suggested that GH43 sub24 may use Gln in the base role via conversion to imidic acid, or use 271 an exogenous base, or utilize the Grotthuss mechanism of catalysis (8, 12). In this study, we 272 measured the enzyme activity of six variants of the three residues speculated to be involved in 273 the catalytic reaction. As shown in Fig. S1, production of Gal by the mutants was not detected 274 by means of high-performance liquid chromatography (HPLC) analysis, suggesting that all three residues are essential for the catalytic activity of Pc1,3Gal43A. Glu102, Glu208, and 275 276 Gln263 are speculated to serve in C-4 hydroxyl group recognition, as a catalytic acid, and as a catalytic base, respectively. These residues are well conserved in GH43_sub24, as shown inFig. S5.

279	In GH43_sub24, only bacterial enzyme structures have been solved so far
280	(http://www.cazy.org/GH43_24.html). In order to understand the catalytic mechanism of
281	Pc1,3Gal43A, we compared its structure with those of BT3683 and Ct1,3Gal43A (Fig. 8).
282	Most of the residues that interact with ligands are conserved in these three enzymes. In subsite
283	-1, all residues, Glu57, Glu102, Arg103, Tyr126, Asp158, Glu208, Trp229, and Gln263, of
284	Pc1,3Gal43A are conserved, indicating that the binding mode at subsite -1 is fully conserved
285	in GH43_sub24. Based on the results of ensemble refinement, Trp229 showed huge
286	fluctuation, especially in the apo structure (Fig. 5I-L). Trp541 of BT3683, which corresponds
287	to Trp229 of <i>Pc</i> 1,3Gal43A, has a polar interaction with Gal (12). Trp229 fluctuates in solution
288	and plays a role in holding the substrate at the catalytic site through polar interactions. On the
289	other hand, Asn179 and Thr226 of Pc1,3Gal43A are replaced by Asp490 and Cys538 in
290	BT3683 and by Glu199 and Cys247 in Ct1,3Gal43A. Since all of these enzymes can
291	accommodate a β -1,6-branched side chain (6, 12, 28), we considered that these residues are
292	not related the mechanism of side-chain accommodation.
293	The bypass mechanism of Pc1,3Gal43A, which enables accommodation of the

 β -1,6-galactan side-chain so that the β -1,3-galactan main chain can be cleaved, appears to depend on the orientation of the C-6 methylol group of Gal3 at each subsite. The C-6

296	methylol group of Gal-1 is exposed to the solvent, so that the side chain can be accommodated
297	externally. The C-6 methylol groups of Gal_{+1} and Gal_{+2} are also exposed to the solvent, so that
298	the enzyme should be able to cleave the β -1,3-linkage of continuously β -1,6-substituted
299	galactan, and a similar situation has been reported for BT3683 (12). Moreover, there are
300	spaces near the non-reducing terminal Gal in these enzymes (12, 29). This enables the
301	enzymes to degrade the main chain, even if the side chain contains multiple carbohydrates.
302	Similarly, β -1,3-glucanases belonging to GH55 also bypass the β -1,6-glucan side chain and
303	degrade β -1,3-glucan from the non-reducing end (29, 30). Comparing the surface structure of
304	the catalytic site of $Pc1,3Gal43A$ with that of these GH55 exo- β -1,3-glucanase from P .
305	chrysosporium (PcLam55A), we see that Pc1,3Gal43A has a small pocket-like space capable
306	of accepting the C-6 side chain of Gal at subsite -1 (Fig. 9A and B). In addition, the C-6
307	methylol group of Gals, located at the positive subsites of Pc1,3Gal43A, are exposed to
308	solvent in a similar manner to that reported for SacteLam55A, GH55 exo-β-1,3-glucanase
309	from Streptomyces sp. SirexAA-E (Fig. 9A and C). Structures capable of accepting
310	non-reducing terminal Gal with β -1,6-linked Gal are conserved among GH43_sub24 of
311	known structure (Fig. 8 and S5). In the non-bypassing GH3 Hypocrea jecorina β -glucosidase
312	(HjCel3A), the C-6 hydroxyl group of non-reducing glucose is oriented toward the enzyme,
313	introducing steric hindrance (Fig. 9D; 31). In other words, enzymes bypassing side chains
314	have a space adjacent to C-6 of the non-reducing terminal sugar, and the positive subsites are

315 particularly wide, allowing side chains of the substrate to be accommodated. In contrast, 316 enzymes unable to bypass the side chain have no space next to the -1 subsite and have a 317 narrow entrance to the catalytic site, so that they are unable to accommodate side chains (Fig. 318 9D).

319 Although the electron density of Gal3 was observed in the present study, 320 Pc1,3Ga143A is proposed to have four subsites ranging from -1 to +3, based on biochemical 321 experiments (6). As mentioned above, although Pc1,3Gal43A has a structure capable of 322 accepting the C-6 side chain, its degradation activity towards β -1,3/1,6-galactan is only 323 approximately one-fifth that of the linear β -1,3-galactan (6). This difference in reactivity may 324 be due to the structure of the sugar. The β -1,3-galactan in solution has a right-handed triple helical structure with 6 to 8 Gal residues per turn (32, 33), with the C-6 methylol group 325 326 pointing outward to avoid collisions between the β -1,6-bonded Gal side chains (32). However, 327 as shown in Fig. S6, Gal3 bound to the catalytic site of Pc1,3Gal43A is anchored to the 328 enzyme, so that the helix of the glycans differs from the usual state in solution. Therefore, the 329 reason why the hydrolytic activity of *Pc*1,3Gal43A towards β -1,3/1,6-galactan is lower than that towards β -1,3-galactan may be interference between the β -1,6-Gal(s) side chains as a 330 331 result of changes in the helical state of the main chain.

332

333 *How does* PcCBM35 *recognize* β -1,3-galactan?

334 Although the amino acid sequence similarity of CBM35s is not so high, important residues 335 involved in ligand binding are well conserved (17). The modules belonging to CBM35 can be 336 divided into four clades according to the mode of ligand binding, and the diversity in ligand 337 binding and in the calcium ion-coordinating residue account for the various ligand binding 338 specificities (17, Fig. 10A). Moreover, the residues involved in ligand binding of PcCBM35 339 differ from those of CBM35, which binds to α-Gal of galactomannan. This CBM is one part 340 of a protein predicted to be the β -xylosidase of C. thermocellum cellulosomal protein (Cte 2137; Fig. 10), which belongs to the same cluster as PcCBM35 (17). There are some 341 342 differences between the residues interacting with α-Gal of Cte 2137 and those interacting 343 with β-Gal of *Pc*CBM35. For instance, the regions of Ala352 to Tyr355 and Tyr438 to Asp441 of PcCBM35 correspond to Val39 to Gly42 and Ser136 to Asn140 of Cte 2137, which are 344 related to ligand specificity (Fig. 10). Especially, Asn140 of Cte 2137 is not conserved but 345 346 replaced Asp441 in PcCBM35 and is located at the bottom of the ligand binding site. 347 Furthermore, Trp108 of Cte 2137, which is conserved in PcCBM35, plays a key role in 348 stacking the pyranose ring (17), while in CBM35 of Pc1,3Gal43A, this Trp residue is replaced with Gly (Fig. 10B). In other words, although PcCBM35 and Cte 2137 are in the same 349 cluster, the residues involved in ligand recognition are different, and this difference affects the 350 351 discrimination between β -Gal and α -Gal, and between galactan and galactomannan. It is still unclear how CBM35s acquire such variation of binding specificity within a similar binding 352

architecture. However, a detailed understanding of the molecular mechanisms of
 polysaccharide recognition by CBM35 will be essential for efficient utilization of various
 types of biomass.

In conclusion, we have determined the crystal structure of the catalytic and binding 356 357 domains of *Pc*1,3Gal43A with the aim of reaching a detailed understanding of the mechanism of substrate accommodation by side-chain-bypassing galactanase. Pc1,3Gal43A uses Glu as 358 359 the catalytic acid and Gln as the catalytic base, and has a structure in which the side chain of the substrate does not interfere with the catalytic reaction, thus making it possible to degrade 360 361 the β -1,3-galactan main chain of AGPs despite the presence of the β -1,6-galactan side chain. 362 Thus, although polysaccharides have a variety of molecular decorations, it appears that the structures of the degrading enzymes enable them to recognize specific features of the 363 364 substrate while accommodating the variations. The introduction of mutations in substrate recognition residues to create enzymes with altered substrate recognition properties is 365 366 expected to be helpful in the structural analysis of AGP glycans and also for the preparation of 367 useful oligosaccharides.

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.310037; this version posted September 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

368 Experimental procedures

- 369 *Expression of* Pc1,3Gal43A and its mutants
- The E208Q, E208A, E102Q, E102A, Q263E, and Q263A mutants were constructed by
- 371 inverse PCR using PrimeSTAR MAX (Takara, Tokyo, Japan). For crystallization,
- 372 Pc1,3Gal43A WT, E208Q, and E208A from P. chrysosporium were expressed in P. pastoris
- and purified as previously reported (7). For reactivity assay, WT and mutants were purified by
- using SkillPak TOYOPEARL Phenyl-650M (c.v. = 5 ml, Tosoh, Tokyo, Japan) equilibrated
- with 20 mM sodium acetate buffer, pH 4.0, containing 1 M ammonium sulfate, and the
- enzymes were eluted with 20 mM sodium acetate buffer, pH 4.0, containing 0.7 M
- ammonium sulfate. SeMet-labeled *Pc*1,3Gal43A was expressed as previously reported (7).
- 378
- 379 Preparation for β -1,3-galactooligosaccharides and crystallization of Pc1,3Gal43A
- 380 Gal2 and Gal3 were prepared as previously reported (6). The protein solution was
- 381 concentrated to A_{280} of $10 \sim 15$ and used for the crystallization setup. The WT plate crystal
- used for data collection was obtained from a reservoir of 2.1 M ammonium sulfate, 0.1 M
- 383 citrate buffer, pH 5.5. Other WT crystals were obtained from solutions in 16 % (w/v)
- polyethylene glycol (PEG) 10000, 0.1 M ammonium sulfate, 0.1 M bis-tris, pH 5.5, and 5.0 %
- 385 (v/v) glycerol. SeMet crystals were obtained from 16 % (w/v) PEG 10000, 95 mM
- ammonium sulfate, 95 mM bis-tris, pH 5.5, and 4.8 % (v/v) glycerol. Two types of crystals,

387	thin plate crystals (space group $P2_1$) and rod crystals ($P2_12_12_1$) appeared under the same
388	condition. Cocrystallization of the E208Q mutant with 10 mM Gal3 in 16 $\%$ (w/v) PEG
389	10000, 95 mM ammonium sulfate, 95 mM bis-tris, pH 5.5, and 4.8 $\%$ (v/v) glycerol afforded
390	thin plate crystals. The E208A mutant was cocrystallized with 10 mM Gal3 in 0.2 M
391	potassium nitrate, 15% (w/v) PEG 6000, 20 mM sodium citrate, pH 4.5, and 5 % glycerol to
392	afford bipyramidal crystals.
393	
394	Data collection and structure determination
395	Diffraction experiments for Pc1,3Gal43A crystals were conducted at the beamlines of the
396	Photon Factory (PF) or Photon Factory Advanced Ring (PF-AR), High Energy Accelerator
397	Research Organization, Tsukuba, Japan (Table 1). Diffraction data were collected using CCD
398	detectors (Area Detector Systems Corp., Poway, CA, USA). Crystals were cryocooled in a
399	nitrogen gas stream to 95 K. For data collection of the WT enzyme complexed with Gal3,
400	Pc1,3Gal43A crystals were soaked in a drop containing 1 % (w/v) Gal3 for 10 min before the
401	diffraction experiment. The data were integrated and scaled using the programs DENZO and
402	SCALEPACK in the HKL2000 program suite (34)
403	Crystal structure was determined by means of the multiwavelength anomalous dispersion
404	method using a SeMet-labeled crystal (7). Initial phases were calculated using the

405 SOLVE/RESOLVE program (35) from five selenium atom positions. The resultant

406	coordinates were subjected to the auto-modeling ARP/wARP program (36) in the CCP4
407	program suite (37), and manual model building and molecular refinement were performed
408	using Coot (version 0.8.9, University of Oxford, Oxfordshire, England; 46), REFMAC5
409	(version 7.0.063, Science & Technology Facilities Council, England; 47), phenix.refine (40),
410	and phenix.ensemble_refinement (27, 41, 42) in the Phenix suite of programs (version
411	1.13-2998-000, Lawrence Berkeley National Laboratory, USA; 51). The refinement statistics
412	are summarized in Table 2.
413	For the analyses of WT, and ligand bound structures, structural determination was
414	conducted by the molecular replacement method with the MolRep program (44) in the CCP4
415	program suite using the SeMet or ligand-free structure as the starting model. Bound sugars,
416	water molecules and crystallization agents were modelled into the observed electron density
417	difference maps. Calcium ion was modelled based on the electron density map and the
418	coordination distances. Three N-glycans were observed, and the identified sugars were
419	modelled. The stereochemistry of the models was analyzed with LigPlot + (version 1.4.5; 53,
420	54) and structural drawings were prepared using PyMOL (version 2.2.3, Schrödinger, LLC).
421	The atomic coordinates and structure factors (codes 7BYS, 7BYT, 7BYV, and 7BYX) have
422	been deposited in the Protein Data Bank (http://wwpdb.org/).
423	

425	To evaluate the reactivity towards Gal2 and Gal3 of WT and each mutant, 20 nM enzyme was
426	incubated with 0.263 or 0.266 mM galactooligosaccharides in 20 mM sodium acetate, pH 5.0,
427	for 30 min at 30 °C, respectively. The reaction was stopped by heating at 95 °C for 5 min. The
428	supernatant was separated with 75% (v/v) acetonitrile on a Shodex Asahipak NH2P-50 4E
429	column (Showa Denko, Tokyo, Japan), and the amount of released Gal was determined by
430	HPLC (LC-2000 series; Jasco, Tokyo, Japan) with a Corona charged aerosol detector (ESA
431	Biosciences, now Thermo Fisher Scientific Corporation, Massachusetts, USA). One unit of
432	enzyme activity was defined as the amount of enzyme that releases 1 μ mol of Gal per one
433	minute per one nmol of enzyme under our experimental conditions.
434	
435	Acknowledgments
436	We would like to thank Dr. Takuya Ishida (Japan Aerospace Exploration Agency) for helping

437 with the crystallization and structure refinement. We also thank the staff of Photon Factory

438 for X-ray data collection.

439

440 **Author contributions**

441	K. M., N.	K., and Z.F.	solved and	l refined st	tructures; K.	.M. and I	N. S. assa	yed enz	ymatic
-----	-----------	--------------	------------	--------------	---------------	-----------	------------	---------	--------

- 442 activity; T. K. and Y. T. prepared galactooligosaccharides (Gal2 and Gal3); K. M., M. S, K. I,
- and S.K. wrote the manuscript, and all authors commented on the manuscript.

444

445 **Funding and additional information**

- 446 This research was partially supported by a Grant-in-Aid for Scientific Research (B)
- 447 19H03013 to K.I.) from the Japan Society for the Promotion of Science (JSPS) and a
- 448 Grant-in-Aid for Innovative Areas from the Japanese Ministry of Education, Culture, Sports,
- and Technology (MEXT) (No. 18H05494 to K.I.). In addition, K.I. thanks Business Finland
- 450 (BF, formerly the Finnish Funding Agency for Innovation (TEKES)) for support via the
- 451 Finland Distinguished Professor (FiDiPro) Program "Advanced approaches for enzymatic

452 biomass utilization and modification (BioAD)".

453

454 **Conflict of interest**

455 The authors declare no conflicts of interest associated with this manuscript.

457 References

458	1.	Tsumuraya, Y., Hashimoto, Y., Yamamoto, S., and Shibuya, N. (1984) Structure of
459		L-arabino-D-galactan-containing glycoproteins from radish leaves. Carbohydr. Res.
460		134 , 215–228
461	2.	Majewska-Sawka, A., and Nothnagel, E. A. (2000) The Multiple Roles of
462		Arabinogalactan Proteins in Plant Development. Plant Physiol. 122, 3-9
463	3.	Ellis, M., Egelund, J., Schultz, C. J., and Bacic, A. (2010) Arabinogalactan-proteins:
464		Key regulators at the cell surface? Plant Physiol. 153, 403-419
465	4.	Tsumuraya, Y., Nobuyuki, M., Yohichi, H., and Kováč, P. (1990) Purification of an
466		Exo- β -(1-3)-D-galactanase of <i>Irpex lacteus</i> (<i>Polyporus tulipiferae</i>) and its action on
467		arabinogalactan-proteins. J. Biol. Chem. 265, 7207-7215
468	5.	Pellerin, P., and Brillouet, J. M. (1994) Purification and properties of an
469		exo- $(1\rightarrow 3)$ - β -D-galactanase from Aspergillus niger. <i>Carbohydr. Res.</i> 264 , 281–291
470	6.	Ichinose, H., Yoshida, M., Kotake, T., Kuno, A., Igarashi, K., Tsumuraya, Y.,
471		Samejima, M., Hirabayashi, J., Kobayashi, H., and Kaneko, S. (2005) An
472		exo- β -1,3-galactanase having a novel β -1,3-galactan-binding module from
473		Phanerochaete chrysosporium. J. Biol. Chem. 280, 25820–25829
474	7.	Ishida, T., Fujimoto, Z., Ichinose, H., Igarashi, K., Kaneko, S., and Samejima, M.
475		(2009) Crystallization of selenomethionyl exo- β -1,3-galactanase from the

476		basidiomycete Phanerochaete chrysosporium. Acta Crystallogr. Sect. F Struct. Biol.
477		Cryst. Commun. 65, 1274–1276
478	8.	Mewis, K., Lenfant, N., Lombard, V., and Henrissat, B. (2016) Dividing the large
479		glycoside hydrolase family 43 into subfamilies: A motivation for detailed enzyme
480		characterization. Appl. Environ. Microbiol. 82, 1686–1692
481	9.	Davies, G., and Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolases.
482		<i>Structure</i> . 3 , 853–859
483	10.	Rye, C. S., and Withers, S. G. (2000) Glycosidase mechanisms. Curr. Opin. Chem.
484		<i>Biol.</i> 4 , 573–580
485	11.	Cartmell, A., McKee, L. S., Pena, M. J., Larsbrink, J., Brumer, H., Kaneko, S.,
486		Ichinose, H., Lewis, R. J., Viksø-Nielsen, A., Gilbert, H. J., and Marles-Wright, J.
487		(2011) The structure and function of an arabinan-specific α -1,2-arabinofuranosidase
488		identified from screening the activities of bacterial GH43 glycoside hydrolases. J. Biol.
489		<i>Chem.</i> 286 , 15483–15495
490	12.	Cartmell, A., Muñoz-Muñoz, J., Briggs, J. A., Ndeh, D. A., Lowe, E. C., Baslé, A.,
491		Terrapon, N., Stott, K., Heunis, T., Gray, J., Yu, L., Dupree, P., Fernandes, P. Z., Shah,
492		S., Williams, S. J., Labourel, A., Trost, M., Henrissat, B., and Gilbert, H. J. (2018) A
493		surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for
494		arabinogalactan degradation. Nat. Microbiol. 3, 1314–1326

495	13.	Jiang, D., Fan, J., Wang, X., Zhao, Y., Huang, B., Liu, J., and Zhang, X. C. (2012)
496		Crystal structure of 1,3Gal43A, an exo- β -1,3-galactanase from <i>Clostridium</i>
497		thermocellum. J. Struct. Biol. 180, 447–457
498	14.	Igarashi, K., Ishida, T., Hori, C., and Samejima, M. (2008) Characterization of an
499		endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the
500		basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 74, 5628-
501		5634
502	15.	Nakamura, A., Ishida, T., Kusaka, K., Yamada, T., Fushinobu, S., Tanaka, I., Kaneko,
503		S., Ohta, K., Tanaka, H., Inaka, K., Higuchi, Y., Niimura, N., Samejima, M., and
504		Igarashi, K. (2015) "Newton's cradle" proton relay with amide – imidic acid
505		tautomerization in inverting cellulase visualized by neutron crystallography. Sci. Adv.
506		1:e1500263, 1–7
507	16.	Montanier, C., Van Bueren, A. L., Dumon, C., Flint, J. E., Correia, M. A., Prates, J. A.,
508		Firbank, S. J., Lewis, R. J., Grondin, G. G., Ghinet, M. G., Gloster, T. M., Herve, C.,
509		Knox, J. P., Talbot, B. G., Turkenburg, J. P., Kerovuo, J., Brzezinski, R., Fontes, C. M.
510		G. A., Davies, G. J., Boraston, A. B., and Gilbert, H. J. (2009) Evidence that family 35
511		carbohydrate binding modules display conserved specificity but divergent function.
512		Proc. Natl. Acad. Sci. U. S. A. 106, 3065–3070
513	17.	Correia, M. A. S., Abbott, D. W., Gloster, T. M., Fernandes, V. O., Prates, J. A. M.,

514		Montanier, C., Dumon, C., Williamson, M. P., Tunnicliffe, R. B., Liu, Z., Flint, J. E.,
515		Davies, G. J., Henrissat, B., Coutinho, P. M., Fontes, C. M. G. A., and Gilbert, H. J.
516		(2010) Signature active site architectures illuminate the molecular basis for ligand
517		specificity in family 35 carbohydrate binding module. <i>Biochemistry</i> . 49, 6193-6205
518	18.	Couturier, M., Roussel, A., Rosengren, A., Leone, P., Stålbrand, H., and Berrin, J. G.
519		(2013) Structural and biochemical analyses of glycoside hydrolase families 5 and 26
520		β -(1,4)-mannanases from <i>Podospora anserina</i> reveal differences upon
521		manno-oligosaccharide catalysis. J. Biol. Chem. 288, 14624–14635
522	19.	Okazawa, Y., Miyazaki, T., Yokoi, G., Ishizaki, Y., Nishikawa, A., and Tonozuka, T.
523		(2015) Crystal structure and mutational analysis of isomaltodextranase, a member of
524		glycoside hydrolase family 27. J. Biol. Chem. 290, 26339–26349
525	20.	Fujimoto, Z., Kishine, N., Suzuki, N., Suzuki, R., Mizushima, D., Momma, M.,
526		Kimura, K., and Funane, K. (2017) Isomaltooligosaccharide-binding structure of
527		Paenibacillus sp. 598K cycloisomaltooligosaccharide glucanotransferase. Biosci. Rep.
528		37 , 1–11
529	21.	Suzuki, N., Fujimoto, Z., Kim, Y. M., Momma, M., Kishine, N., Suzuki, R., Suzuki, S.,
530		Kitamura, S., Kobayashi, M., Kimura, A., and Funane, K. (2014) Structural
531		Elucidation of the Cyclization Mechanism of α -1,6-Glucan by <i>Bacillus circulans</i>
532		T-3040 Cycloisomaltooligosaccharide Glucanotransferase. J. Biol. Chem. 289, 12040-

533	12051

534	22.	Light, S. H., Cahoon, L. A., Halavaty, A. S., Freitag, N. E., and Anderson, W. F.
535		(2016) Structure to function of an α -glucan metabolic pathway that promotes <i>Listeria</i>
536		monocytogenes pathogenesis. Nat. Microbiol. 2, 1-10
537	23.	Fujimoto, Z., Suzuki, N., Kishine, N., Ichinose, H., Momma, M., Kimura, A., and
538		Funane, K. (2017) Carbohydrate-binding architecture of the multi-modular
539		α -1,6-glucosyltransferase from <i>Paenibacillus</i> sp. 598K, which produces
540		α-1,6-glucosyl-α-glucosaccharides from starch. <i>Biochem. J.</i> 474, 2763–2778
541	24.	Ji, S., Dix, S. R., Aziz, A. A., Sedelnikova, S. E., Baker, P. J., Rafferty, J. B., Bullough,
542		P. A., Tzokov, S. B., Agirre, J., Li, F. L., and Rice, D. W. (2019) The molecular basis
543		of endolytic activity of a multidomain alginate lyase from Defluviitalea phaphyphila, a
544		representative of a new lyase family, PL39. J. Biol. Chem. 294, 18077-18091
545	25.	Mandelli, F., De Morais, M. A. B., De Lima, E. A., Oliveira, L., Persinoti, G. F., and
546		Murakami, M. T. (2020) Spatially remote motifs cooperatively affect substrate
547		preference of a ruminal GH26-type endo-β-1,4-mannanase. J. Biol. Chem. 295, 5012–
548		5021
549	26.	Guillén, D., Sánchez, S., and Rodríguez-Sanoja, R. (2010) Carbohydrate-binding
550		domains: Multiplicity of biological roles. Appl. Microbiol. Biotechnol. 85, 1241-1249
551	27.	Burnley Tom, B., Afonine, P. V., Adams, P. D., and Gros, P. (2012) Modelling

552		dynamics in protein crystal structures by ensemble refinement. <i>Elife</i> . 2012, 1–29
553	28.	Ichinose, H., Kuno, A., Kotake, T., Yoshida, M., Sakka, K., Hirabayashi, J.,
554		Tsumuraya, Y., and Kaneko, S. (2006) Characterization of an exo- β -1,3-galactanase
555		from Clostridium thermocellum. Appl. Environ. Microbiol. 72, 3515–3523
556	29.	Bianchetti, C. M., Takasuka, T. E., Deutsch, S., Udell, H. S., Yik, E. J., Bergeman, L.
557		F., and Fox, B. G. (2015) Active site and laminarin binding in glycoside hydrolase
558		family 55. J. Biol. Chem. 290, 11819–11832
559	30.	Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M.
560		(2009) Crystal Structure of Glycoside Hydrolase Family 55 β -1,3-Glucanase from the
561		Basidiomycete. J. Biol. Chem. 284, 10100-10109
562	31.	Karkehabadi, S., Helmich, K. E., Kaper, T., Hansson, H., Mikkelsen, N. E.,
563		Gudmundsson, M., Piens, K., Fujdala, M., Banerjee, G., Scott-Craig, J. S., Walton, J.
564		D., Phillips, G. N., and Sandgren, M. (2014) Biochemical characterization and crystal
565		structures of a fungal family 3 β -glucosidase, Cel3A from <i>Hypocrea jecorina</i> . J. Biol.
566		<i>Chem.</i> 289 , 31624–31637
567	32.	Chandrasekaran, R., and Janaswamy, S. (2002) Morphology of western larch
568		arabinogalactan. Carbohydr. Res. 337, 2211–2222
569	33.	Kitazawa, K., Tryfona, T., Yoshimi, Y., Hayashi, Y., Kawauchi, S., Antonov, L.,
570		Tanaka, H., Takahashi, T., Kaneko, S., Dupree, P., Tsumuraya, Y., and Kotake, T.

571	(2013) β-galactosyl Yar	iv Reagent Binds To the β -1,3	-Galactan of Arabinogalactan
-----	-------------------------	--------------------------------------	------------------------------

- 572 Proteins. *Plant Physiol.* **161**, 1117–1126
- 573 34. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in
- 574 oscillation mode. *Methods Enzymol.* **276**, 307–326
- 575 35. Terwilliger, T. C., and Berendzen, J. (1999) Automated MAD and MIR structure
- 576 solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 55, 849–861
- 577 36. Perrakis, A., Morris, R., and Lamzin, V. S. (1999) Automated protein model building
- 578 combined with iterative structure refinement. *Nat. Struct. Biol.* 6, 458–463
- 579 37. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R.,
- 580 Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J.,
- 581 Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A.,
- and Wilson, K. S. (2011) Overview of the CCP4 suite and current developments. Acta
- 583 Crystallogr. Sect. D Biol. Crystallogr. 67, 235–242
- 584 38. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and
- development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 486–501
- 586 39. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of
- 587 macromolecular structures by the maximum-likelihood method. *Acta Crystallogr. Sect.*
- 588 *D Biol. Crystallogr.* **53**, 240–255
- 40. Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W.,

590		Mustyakimov, M., Terwilliger, T. C., Urzhumtsev, A., Zwarta, P. H., and Adams, P. D.
591		(2012) Towards automated crystallographic structure refinement with phenix . refine
592		research papers. Acta Crystallogr Sect. D Biol. Crystallogr. 68, 352-367
593	41.	Burnley, B. T., and Gros, P. (2013) phenix.ensemble_refinement: a test study of apo
594		and holo BACE1. Comput. Crystallogr. Newsl. 4, 51–58
595	42.	Forneris, F., Burnley, B. T., and Gros, P. (2014) Ensemble refinement shows
596		conformational flexibility in crystal structures of human complement factor D. Acta
597		Crystallogr. Sect. D Biol. Crystallogr. 70, 733–743
598	43.	Liebschner, D., Afonine, P. V., Baker, M. L., Bunkoczi, G., Chen, V. B., Croll, T. I.,
599		Hintze, B., Hung, L. W., Jain, S., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Poon,
600		B. K., Prisant, M. G., Read, R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D.,
601		Sobolev, O. V., Stockwell, D. H., Terwilliger, T. C., Urzhumtsev, A. G., Videau, L. L.,
602		Williams, C. J., and Adams, P. D. (2019) Macromolecular structure determination
603		using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr.
604		Sect. D Struct. Biol. 75, 861–877
605	44.	Vagin, A., and Teplyakov, A. (2010) Molecular replacement with MOLREP. Acta
606		Crystallogr. Sect. D Biol. Crystallogr. 66, 22–25
607	45.	Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) LIGPLOT: a program to
608		generate schematic diagrams of protein-ligand interactions The LIGPLOT program

609		automatically generates schematic 2-D representations of protein-ligand complexes
610		from standard Protein Data Bank file input. Protein Eng. 8, 127–134
611	46.	Laskowski, R. A., and Swindells, M. B. (2011) LigPlot+: Multiple ligand-protein
612		interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778-2786
613	47.	Ashkenazy, H., Erez, E., Martz, E., Pupko, T., and Ben-Tal, N. (2010) ConSurf 2010:
614		Calculating evolutionary conservation in sequence and structure of proteins and nucleic
615		acids. Nucleic Acids Res. 38, 529–533
616	48.	Landau, M., Mayrose, I., Rosenberg, Y., Glaser, F., Martz, E., Pupko, T., and Ben-Tal,
617		N. (2005) ConSurf 2005: The projection of evolutionary conservation scores of
618		residues on protein structures. Nucleic Acids Res. 33, 299-302
619	49.	Celniker, G., Nimrod, G., Ashkenazy, H., Glaser, F., Martz, E., Mayrose, I., Pupko, T.,
620		and Ben-Tal, N. (2013) ConSurf: Using evolutionary data to raise testable hypotheses
621		about protein function. Isr. J. Chem. 53, 199-206
622	50.	Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., and Ben-Tal, N.
623		(2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary
624		conservation in macromolecules. Nucleic Acids Res. 44, W344–W350
625	51.	Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., and Ben-Tal,
626		N. (2003) ConSurf: Identification of functional regions in proteins by surface-mapping
627		of phylogenetic information. Bioinformatics. 19, 163-164

Korotkova, O. G., Semenova, M. V., Morozova, V. V., Zorov, I. N., Sokolova, L. M.,

628

52.

629		Bubnova, T. M., Okunev, O. N., and Sinitsyn, A. P. (2009) Isolation and properties of
630		fungal β-glucosidases. <i>Biochem.</i> 74 , 569–577
631	53.	Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) MEGA X:
632		Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol.
633		35 , 1547–1549
634	54.	Stecher, G., Tamura, K., and Kumar, S. (2020) Molecular evolutionary genetics
635		analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239
636	55.	Robert, X., and Gouet, P. (2014) Deciphering key features in protein structures with
637		the new ENDscript server. Nucleic Acids Res. 42, 320-324
638	56.	Bohne, A., Lang, E., and Von Der Lieth, C. W. Der (1998) W3-SWEET: Carbohydrate
639		modeling by internet. J. Mol. Model. 4, 33-43
640	57.	Bohne, A., Lang, E., and Von Der Lieth, C. W. (1999) SWEET - WWW-based rapid
641		3D construction of oligo- and polysaccharides. <i>Bioinformatics</i> . 15, 767–768
642		

Data	WТ	SeMet				WT	E208Q	E208A
		(peak)	(edge)	(low	(high	Gal3 soakir	Gal 3 co-cry	Gal3 co-cry
				remote)	remote)			
Space group	<i>P</i> 1	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁	P212121	P21	<i>P</i> 3 ₂ 21
Unit-cell	<i>a</i> =40.5	<i>a=</i> 66.4				<i>a=</i> 50.8	<i>a=</i> 66.1	<i>a</i> =156.7
parameters	<i>b</i> =66.3	b=50.5				<i>b=</i> 66.6	<i>b</i> =50.4,	b=156.7
(Å, °)	<i>c</i> =74.0	<i>c</i> =75.8				<i>c</i> =106.4	c=75.7	<i>c</i> =147.7
	α=72.0	α=90.0				α=90.0	α=90.0	α=90.0
	β=84.7	β=111.9				β=90.0	β=111.3	β=120.0
	γ=82.1	γ=90.0				γ=90.0	γ=90.0	γ=90.0
Beam Line	PF BL-5	PF BL-6A	PF BL-6A	PF BL-6A	PF BL-6A	PF-AR	PF-AR	PF-AR
						NW12	NE3	NE3
Detector	ADSC	ADSC				ADSC	ADSC	ADSC
	Q315	Q4R				Q210	Q270	Q270
Wavelength	0.90646	0.97882	0.97950	0.98300	0.96400	1.0000	1.0000	1.0000
(Å)								
Resolution	50-1.40	50.0-1.80	50.0-2.00	50.0-2.00	50.0-2.00	100.0-1.5	50.0-2.50	100.0-2.3
(Å)	(1.45-1.4	(1.86-1.8	(2.07-2.0	(2.07-2.0	(2.07-2.0	0	(2.54-2.5	0
	0)	0)	0)	0)	0)	(1.55-1.5	0)	(2.38-2.3
						0)		0)
R_{sym}	0.054	0.079	0.061	0.060	0.062	0.046	0.143	0.167
	(0.370)	(0.672)	(0.307)	(0.303)	(0.307)	(0.109)	(0.399)	(0.627)
Completene	95.6	100.0	100.0	100.0	100.0	97.5	96.2	99.1
ss (%)	(89.0)	(99.9)	(100.0)	(100.0)	(100.0)	(94.9)	(83.0)	(92.0)
Multiplicity	3.8 (3.1)	14.0	7.2 (6.9)	7.2 (6.9)	7.2 (7.0)	9.2 (8.9)	4.4 (3.0)	9.7 (5.1)
		(12.6)						
Average	24.4 (2.8)	36.6 (4.7)	30.9 (8.3)	30.8 (8.2)	31.3 (8.2)	48.9	13.5 (2.7)	17.9 (2.7)
<i>Ι/</i> σ(<i>Ι</i>)						(21.0)		
Unique	136 692	43 643 (4	31 744 (3	31 760 (3	31 780 (3	57 278 (5	16 007	92 497 (8
reflections	(12 747)	353)	139)	144)	146)	493)	(702)	510)
Observed	520 085	613 162	227 158	228 381	228 595	524 957	69 939	900 469
reflections								
Ζ	2	1				1	1	4

643 Table 1. Data collection statistics

645 Table 2. Refinement statistics

Data	WT	WT_Gal	E208Q_Gal3	E208A_Gal3
Decolution range	7.997 - 1.398	41.56 - 1.500	29.79 - 2.499	30.66 - 2.300
Resolution range	(1.448 - 1.398)	(1.554 - 1.500)	(2.588 - 2.499)	(2.382 - 2.300
Completeness (%)	95.46 (87.82)	97.51 (94.80)	96.41 (85.67)	98.78 (92.17
Wilson B-factor	12.76	10.11	29.91	30.40
Reflections used in refinement	136655 (12497)	57105 (5474)	15762 (1381)	92011 (8507
Reflections used for R-free	6862 (630)	2884 (272)	799 (64)	4568 (441
R-work (%)	15.47 (22.50)	13.43 (12.71)	16.62 (25.54)	16.10 (22.39
R-free (%)	18.56 (26.28)	16.00 (17.93)	24.39 (42.53)	21.43 (28.28
Number of non-hydrogen atoms	7966	3923	3576	1457
macromolecules	6615	3290	3235	1288
ligands	109	121	114	67
solvent	1242	512	227	100
Protein residues	2106	427	428	170
RMS (bonds)	0.008	0.006	0.008	0.01
RMS (angles)	1.22	0.87	0.94	1.0
Ramachandran favored (%)	97.29	97.41	94.13	95.7
Ramachandran allowed (%)	2.71	2.59	5.87	4.2
Ramachandran outliers (%)	0	0	0	
Rotamer outliers (%)	0.81	0.55	0.29	0.3
Clash score	2.06	1.95	6.94	3.5
Average B-factor (Å ²)	17.21	12.45	30.48	32.9
macromolecules	14.97	10.57	29.77	31.6
ligands	29.38	23.33	52.26	56.1
solvent	28.09	22.02	29.74	35.0
PDB ID	7BYS	7BYT	7BYV	7BY

647 Table 3. Refinement statistics of ensemble refinement

Data	WT	WT_Gal	E208Q_Gal3	E208A_Gal3
Desclution range	7.997-1.398	41.56-1.500	29.79-2.499	30.66-2.300
Resolution range	(1.448-1.398)	(1.554-1.500)	(2.588-2.499)	(2.382- 2.300)
Completeness (%)	95.97(82)	97.52 (95)	96.47 (88)	98.93(87)
pTLS (%)	0.9	0.9	0.9	1.0
Тх	1.0	0.9	0.3	0.4
Wilson B-factor	12.8	10.1	29.9	30.4
Reflections used in refinement	136649	57112	15759	91994
Reflections used for R-free	6862	2885	799	4569
R-work	13.81 (24.36)	12.08 (10.68)	17.82 (24.73)	15.92 (22.56)
R-free	17.08 (26.30)	15.29 (17.10)	23.33 (32.75)	20.71 (28.84)
RMS(bonds)	0.008	0.010	0.007	0.008
RMS(angles)	1.171	1.312	1.078	1.090
Ramachandran favored (%)	94.06	95.39	88.98	92.62
Ramachandran allowed (%)	5.08	4.03	9.19	7.24
Ramachandran outliers (%)	0.86	0.58	1.83	0.74
Rotamer outliers (%)	7.45	7.00	11.05	7.85
Clash score	0	0	0	0
Average B-factor (Å2)	13.65	9.55	28.32	32.83
macromolecules	13.63	9.54	28.30	32.66
ligands	14.97	9.82	28.98	36.05
Molprobity score	1.56	1.45	1.87	1.64
model number	100	103	20	34

650 Figure legends

651	Fig. 1. Overall structure of <i>Pc</i> 1,3Gal43A. In the three-dimensional structure of <i>Pc</i> 1,3Gal43A,
652	the five blades of the catalytic domain are shown in blue (Gln21-Leu87), cyan
653	(Ser88-Asp155), green (Ser156-Gly204), yellow (Ala205-Ser247), and orange
654	(Ala248-Asp297) with successive roman numerals. The CBM (The326-Val448) is shown in
655	orange. The linker connecting the two domains (Phe298-Gly325) is shown in gray.
656	
657	Fig. 2. Gal3 binding mode at the catalytic site.
658	A: The surface structure of the catalytic center. Gal3 is represented as green (carbon) and red
659	(oxygen) sticks. B: Schematic diagram showing the interaction mode at the catalytic center.
660	Black, red, and blue show carbon, oxygen, and nitrogen, respectively. Red lines indicate the
661	hydrophobically interacting residues. This diagram was drawn with LigPlot+ (version 1.4.5).
662	C: The 2Fo-Fc omit map is drawn as a blue mesh (0.8 sigma). Residues are shown in white
663	(carbon), red (oxygen), and blue (nitrogen). Gal3 is shown in green (carbon) and red (oxygen).
664	Yellow dots indicate hydrogen bonds and/or hydrophobic interaction and red spheres show
665	water molecules interacting with ligands or residues.

666

667 Fig. 3. Surface structures of the CBM.

668	A: Substrate binding mode at CBM35. Green, cyan, magenta, and yellow indicate carbons of
669	chains A, B, C, and D of E208A_Gal3, respectively, and red shows oxygen. The left side is
670	the non-reducing end of Gal3, and the right side is the reducing end. B: calcium ion binding
671	mode at CBM35. Calcium ion is represented as green spheres and interacting residues are
672	shown as stick models. Yellow dots indicate interaction.
673	
674	Fig. 4. Ligand interaction mode at CBM35.
675	A and E, B and F, C and G, and D and H are chains A, B, C, and D of E208A, respectively.
676	A to D: Interaction modes between ligand and CBM35 residues. Atoms are indicated in the
677	same colors as in Fig. 2. E to G: Schematic diagram showing the interaction mode at CBM35.
678	Atoms are indicated in the same colors as in Fig. 2. Sugar binding sites are named Gal_site 1,
679	Gal_site 2, and Gal_site 3 from the non-reducing end of the sugar, and in this figure, they are
680	labeled 1, 2, and 3, respectively.
681	
682	Fig. 5. Results of ensemble refinement at the catalytic site.
683	Each model is divided into three parts for clarity. A (E, I), B (F, J), C (G, K), and D (H, L)

- show WT, WT_Gal, E208Q_Gal3, and E208A_Gal3, respectively. Although WT and
- 685 E208A_Gal3 contained multiple molecules in an asymmetric unit, the results obtained with
- 686 multiple molecules were considered as an ensemble of one molecule in the present study.

687	Letters indicate the chain names. Atoms are indicated in the same colors as Fig. 2. Gal3 of the
688	structure of E208Q_Gal3 obtained by X-ray crystallography is arranged in each figure to
689	maximize ease of comparison.
690	
691	Fig. 6. Results of ensemble refinement at the CBM ligand-binding site.
692	A,B, C, and D: Residues related to ligand interaction. In this figure, Gal3 of chain A of
693	refined E208A_Gal3 is drawn for comparison. E, F, G, and H: the ligands of each chain.
694	Green, cyan, and yellow are used in order from the non-reducing terminal Gal. A and E, B and
695	F, C and G, D and H represent chain A, B, C, and D of E208A_Gal3, respectively. Atoms are
696	indicated in the same colors as Fig. 2.
697	
698	Fig. 7. Ligand conformation of ensemble refinement at glance. A: ligand conformation of
699	E208Q_Gal3 ensemble model. B: ligand conformation of E208A_Gal3 ensemble models with
700	four chains aligned. Green, cyan, and yellow are used in order from the non-reducing terminal
701	Gal.
702	
703	Fig. 8. Catalytic domain structure comparison. A: Visualization of the degree of preservation
704	of GH43_sub24. The degree of conservation of amino acid residues in the catalytic domain of

705 GH43_sub24 was visualized using the ConSurf server (https://consurf.tau.ac.il), the query for

706	BLAST was set to Pc1,3Gal43A, and the conservation degree was analyzed based on 150
707	amino acid sequences in the ConSurf server (47-51). The conservation degree is shown in
708	graded color. Preservation degrees are shown in a gradient with cyan for the lowest degree of
709	preservation and blue for the highest. B: Catalytic domain comparison of Pc1,3Gal43A and
710	two GH43_sub24 galactanases. Catalytic center of E208Q_Gal3 of Pc1,3Gal43A (white, PDB
711	ID: 7BYV), BT3683 (cyan, PDB ID: 6EUI), and Ct1,3Gal43A (pink, PDB ID: 3VSF). Red,
712	blue, and yellow represent oxygen atoms, nitrogen atoms, and sulfur atoms, respectively.
713	Residue names mean Pc1,3Gal43A/ BT3683/ Ct1,3Gal43A.
714	
715	Fig. 9. Structure comparison of the catalytic sites of Pc1,3Gal43A (A), GH55
716	exo-β-1,3-glucanase from <i>P. chrysosporium</i> (B; <i>Pc</i> Lam55A; PDB ID: 3EQO), GH55
717	exo-β-1,3-glucanase from <i>Streptomyces</i> sp. SirexAA-E (C; SacteLam55A; PDB ID 4PF0),
718	GH3 β-glucosidase from <i>H. jecorina</i> (C, PDB ID: 3ZYZ).

A, B, and C hydrolyze the main chain of β -1,3-galactan or β -1,3-glucan, bypassing β -1,6-branched side chains (6, 29, 30). D hydrolyzes four types of β -bonds, and it does not bypass side chains (31, 52). The upper panel shows the overall surface structure and the lower panel shows an enlarged view of the catalytic region. Orange dashed circles indicate the space near the C-6 position of Gal or glucose at the non-reducing end.

Figure. 10. Sequence alignment of known CBM35s (A) and structure comparison between
CBM35s of *Pc*1,3Gal43A (B) and Cte 2137 (C).

A: Taxon names are shown as scientific names, ligand specificity and PDB ID only for brevity. 727 728 When the same enzyme contains two CBM35 domains, the taxon name is indicated with 1 on 729 the N-terminal and 2 on the C-terminal. Gal, Glc, Man, Xyl, and Uronic means ligand specificities for Gal, glucose, mannose, xylose, and glucronic acid and/or galacturonic acid, 730 731 respectively. Among these, 3ZM8, 6UEH, and 2BGO, which bind to Man, are Type B CBMs, 732 which show endo-type binding, while the other 14 are all Type C CBMs, which show 733 exo-type binding. The alignment was built by using MUSCLE on MEGAX: Molecular Evolutionary Genetics Analysis (53, 54), and the figure was generated with ESPrint 734 735 3.0 (http://espript.ibcp.fr; 56). Orange and green boxes represent ligand binding and calcium ion binding residues, respectively. B and C: Ligand binding residues of Pc1,3Gal43A (chain A 736 737 of E208A Gal3) and Cte 2137 (PDB ID: 2WZ8). Red and blue mean oxygen and nitrogen, 738 respectively. The green stick model represents Gal3.

739

740 Table titles

741 Table 1. Data collection statistics

742 Table 2. Refinement statistics

743 Table 3. Refinement statistics of ensemble refinement

745 Fig. 1.

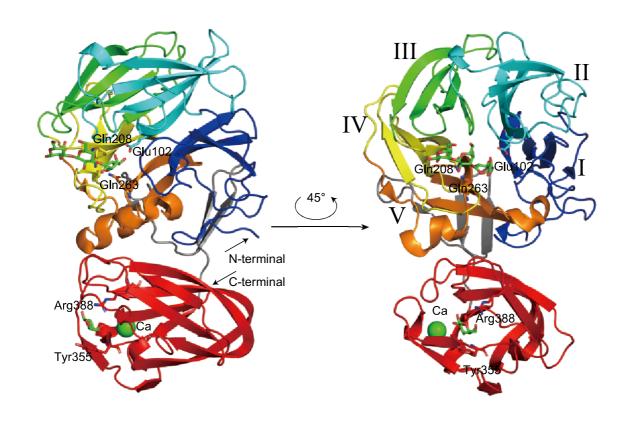
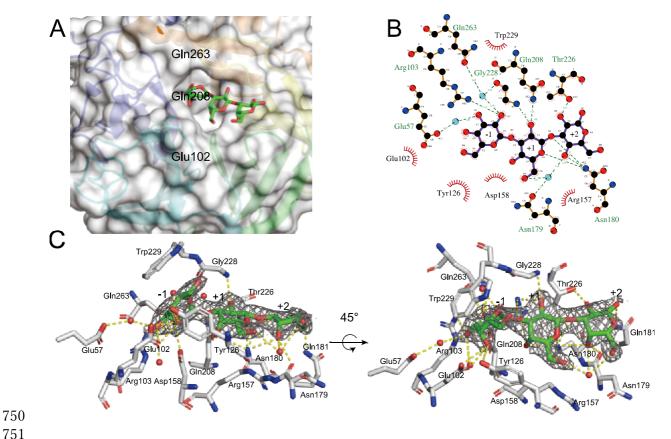
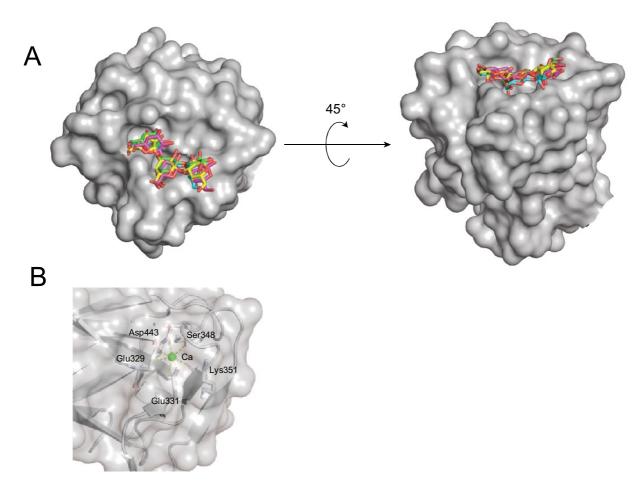
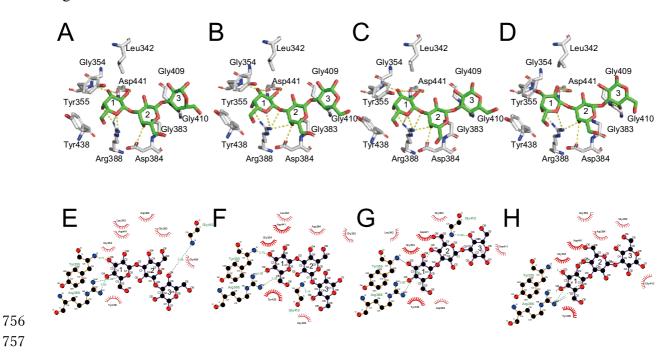
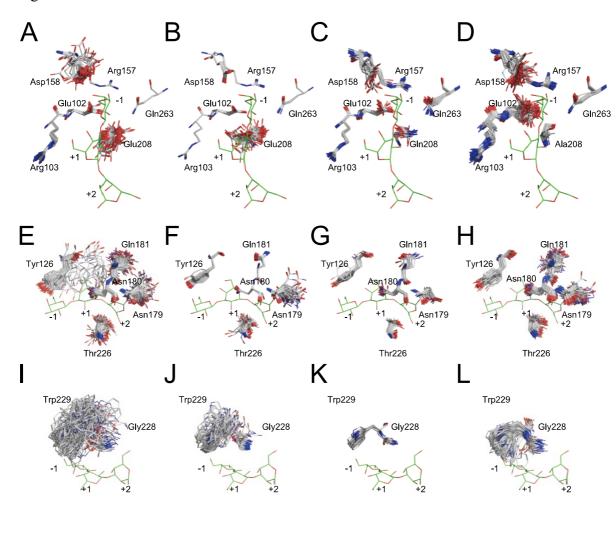




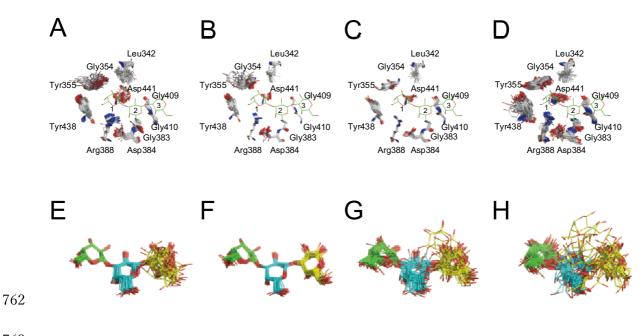
Fig. 2. 749

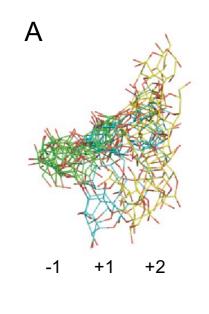


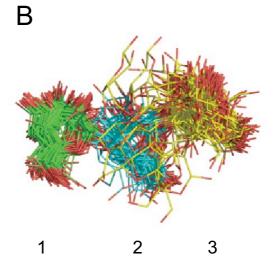
752 Fig. 3.



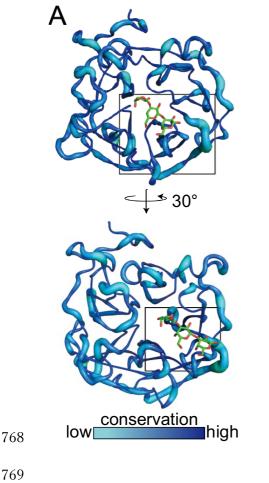
753

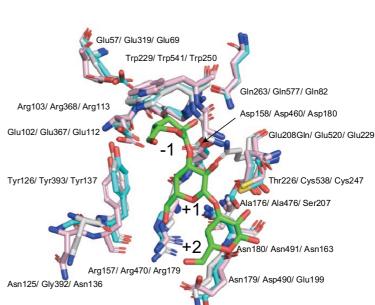

755 Fig. 4.


758 Fig. 5

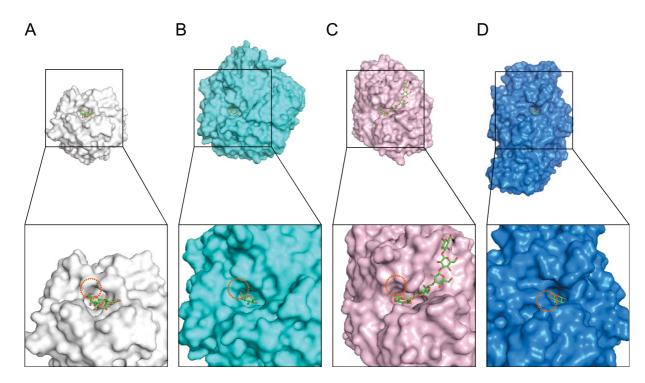

761 Fig. 6.

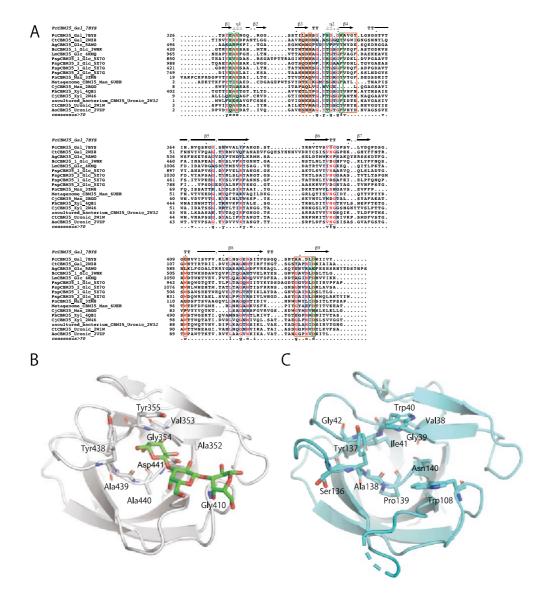
764 Fig. 7.




765

В


Fig. 8. 767


769

771 Fig. 9.

772

774 Fig. 10.

