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Abstract 

Visual validation is an essential step in structural variant (SV) detection to eliminate false 
positives. We present Samplot, a tool for quickly creating images that display the read 
depth and sequence alignments necessary to adjudicate purported SVs across multiple 
samples and sequencing technologies, including short, long, and phased reads. These 
simple images can be rapidly reviewed to curate large SV call sets. Samplot is easily 
applicable to many biological problems such as prioritization of potentially causal variants 
in disease studies, family-based analysis of inherited variation, or de novo SV review. 
Samplot also includes a trained machine learning package that dramatically decreases 
the number of false positives without human review. Samplot is available via the conda 
package manager or at https://github.com/ryanlayer/samplot. 
 
Contact:  
Ryan Layer, Ph.D., Assistant Professor, University of Colorado Boulder, 
ryan.layer@colorado.edu. 

Introduction 

Structural variants, which include mobile elements, deletions, duplications, inversions, 
and translocations larger than 50bp, can have serious consequences for human health 
and development1–3 and are a primary source of genetic diversity.4,5 Unfortunately, state-
of-the-art SV discovery tools still report large numbers of false positives.6–9 While filtering 
and annotation tools can help,10,11 tuning these filters to remove only false positives is still 
quite difficult. As the human eye excels at pattern recognition, visual inspection of 
sequence alignments in a variant region can quickly identify erroneous calls, making 
manual curation a powerful part of the validation process.6,12,13 For example, a recent 
study of SVs in 465 Salmon samples6 found that 91% of SVs reported using Illumina 
paired-end sequencing data were false positives. However, the false positive rate 
plummeted to 7% (according to long-read sequence validation) subsequent to visual 
inspection12. This study highlights the essential step of removing false positives from SV 
calls and the effectiveness of visual review to identify the real variants. 

Tools such as the Integrative Genomics Viewer (IGV)14 and svviz13 enable visual 
review of SVs, but they can be cumbersome or complicated, slowing down the review 
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process and often limiting the number of SVs that can be considered. IGV is optimized 
for single-nucleotide variant visualization, making it easy to zoom into particular loci to 
identify base mismatches in read pileups. While IGV can be configured for SV viewing 
(i.e., viewing reads as pairs, sorting by insert size), visualizing large variants is difficult. 
The software often loads slowly for large variants which require plotting large numbers of 
reads. To address slow loading, IGV defaults to sampling a subset of reads and stops 
displaying alignment data when viewing broad regions, both of which further complicate 
SV interpretation. IGV has a batch image generation mode for curating many SV calls, 
but it lacks the full suite of options necessary for SV image optimization.  

Svviz provides an innovative view of the sequencing data. Alignments are divided 
into two plots. One plot shows reads that align to the reference allele and the second 
shows reads that align to the alternate allele created by the SV. Althought the clear 
separation of evidence by reference and alternate alleles is an improvement, svviz plots 
can be large, complex, and time-consuming to review. Svviz plots also depend on the 
purported SV breakpoints. Since reads are realigned to a specific alternate allele, any 
imprecision in the SV breakpoints will affect the visualization making it impossible to 
differentiate between an absent SV and a slightly incorrect call. 

Samplot provides a set of tools designed specifically for SV curation. Samplot’s 
plotting function creates images designed for rapid and simple, but comprehensive, visual 
review of sequencing evidence for the occurrence of an SV. The Samplot VCF 
functionality generates plots for large numbers of SVs contained in a VCF file and 
provides powerful and easy-to-use filters to refine which SVs to plot, enhancing and 
streamlining the review process. Finally, the Samplot-ML tool automates much of the 
review process with high accuracy, minimizing required human-hours for curation. 

Results 

Samplot provides a quick and straightforward platform for rapidly identifying false 
positives and enhancing the analysis of true positive SV calls. Samplot images are a 
concise SV visualization that highlights the most relevant evidence in the variable region 
and hides less informative reads. This view provides easily curated images for rapid SV 
review. Samplot supports all major sequencing technologies and excels at the 
comparison between samples and technologies.  Users generally require less than 5 
seconds to interpret a Samplot image,12 making Samplot an efficient option for reviewing 
thousands of SVs. The simple images contrast with existing tools such as IGV and svviz 
which allow more in-depth, but more complex and time consuming, SV-region plotting 
(see Figure 1, Supplemental Figures 1-2). 

Samplot is also designed for easy application to various types of SV study, such 
as comparing the same region across different samples (Supplemental Figure 4) and 
sequencing technologies (Supplemental Figure 5) for family, case-control, or tumor-
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normal studies. Annotations such as genes, repetitive regions, or other functional 
elements can be added to help add context to SV calls (Figure 1).  

 
Samplot supports short-read sequencing from Illumina, long-read sequencing from 
Pacific Biosciences or Oxford Nanopore Technologies, and linked-read sequencing from 
10X Genomics. Since genome sequencing technology advances often drive genomic 
discoveries, Samplot can easily support new sequence types in the future. Samplot works 
well for most SV types with each of these sequencing technologies and can also plot 
images without specifying a variant type, enabling review of complex or ambiguous SV 
types, or non-SV regions. 

Producing images that appropriately summarize the evidence supporting an SV 
without overwhelming the viewer is an intricate task. Samplot includes the three most 
essential categories of SV evidence: split reads, discordant pairs, and coverage 
anomalies. To reduce confusion, we distinguish between sequences and alignments. A 
sequence (also called a read) is a series of nucleotides produced by a short or long-read 
sequencing platform. An alignment describes how a sequence (or read) maps to the 
reference genome. Sequences that originate from a region of a sample's genome that 
does not include an SV will have a single complete continuous alignment. When a 
sequence includes an SV, it will produce multiple alignments or unaligned segments. The 

Figure 1. Samplot creates multi-technology images specialized for SV call review. A putative deletion call is 
shown, with the call and confidence intervals at the top of the image (represented by a dark bar and smaller lines). 
Two sequence alignment tracks follow, containing Illumina paired-end sequencing and Pacific Biosciences 
(PacBio) long-read sequencing data, each alignment file plotted as a separate track in the image. PacBio data is 
further divided by haplotype (HP) into subplots. Reads are indicated by horizontal lines and color-coded for 
alignment type (concordant/discordant insert size, pair order, split alignment, or long read). The coverage for the 
region is shown with the grey-filled background, which is split into map quality above or below a user-defined 
threshold (in dark or light grey respectively). An annotation from the Tandem Repeats Finder18 indicates where 
genomic repeats occur. A gene annotation track shows the position of introns (thin blue line) and exons (thick blue 
line) near the variant; a small blue arrow on the right denotes the direction of transcription for the gene. 
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configuration of these alignments indicates the SV type. Deletions create gaps between 
alignments, duplications create overlapping alignments; inversions produce alignments 
that switch between strands, etc. 

An SV in the unsequenced region between the paired-end sequencing reads will 
have a discordant alignment whose configuration similarly indicates the SV type. Samplot 
identifies, color-codes, and elevates split or discordant alignments so that users can 
clearly and quickly distinguish between normal reads and reads supporting different SV 
types (Figure 2). These plots often include scatterings of misaligned reads that can fool 
automated tools. A visual review can generally quickly determine whether or not groups 
of reads support an SV, allowing rapid high-confidence variant review.  

Coverage depth is also an essential piece of data for evaluating the SVs that affect 
genomic copy number (copy number variants or CNVs) and can, in some cases, provide 
the best signal of a CNV. Samplot includes a background track with up to base-pair 
resolution of the fluctuations in coverage depth across the plot region. Samplot follows a 
minimal decision-making strategy and makes no computational attempt to assign reads 
or coverage deviations to putative variant coordinates; this task is left instead to the user 
via visual curation. 

Figure 2. Samplot images of duplication, inversion, and translocation variants. A) A 
duplication variant plotted by Samplot with Illumina short-read sequencing evidence. Reads 
plotted in red have large insert sizes and inverted pair order (reverse strand followed by forward 
strand instead of forward followed by reverse), indicating potential support for a duplication. B) 
An inversion variant, with Illumina sequencing evidence. Reads plotted in blue have large insert 
sizes and same-direction pair alignments (both reads on forward strand, or both on reverse 
strand). C) A translocation variant, with Illumina sequencing. Discordant pairs align to each 
breakpoint. The blue color of the reads and extremely large insert sizes of these grouped 
discordant pairs indicate a large inverted translocation. 
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Samplot is implemented in the Python language and utilizes the pysam19 module 
to extract read information from alignment (BAM or CRAM) files, then plots reads for 
review in static images. Speed is a key goal of Samplot, in keeping with the overall focus 
on simple and rapid SV review, so plots are created using the Matplotlib library, which 
has been optimized for rapid creation of high-quality images. 

Filtering and viewing SV call sets with Samplot VCF 

When working with large SV call sets, especially multi-sample VCF files, users often need 
to review evidence for SVs in multiple samples together. Samplot provides a VCF-specific 
option to interrogate such call sets using cohort genotypes, an optional pedigree file in 
family-based cohorts, and additional annotation fields for filtering and plotting multiple 
SVs across multiple samples. This enables users to focus on rare variation, variants in 
certain genome regions, or other criteria related to a research goal. A simple query 
language that is inspired by slivar20 allows users to customize filters based on variant 
annotations in the VCF file. From the chosen variants, a web page is dynamically created 
with a table of variant information, additional filtering options, and quick access to Samplot 
images for visual review (Figure 3). 

 Samplot VCF can be readily adapted to experimental needs common in SV 
studies. For example, a team attempting to identify a causal SV in a familial rare disease 
study might include a small number of control samples as well as the affected family and 
use built-in filtering options to plot only variants which appear uniquely in the offspring, 
with controls included in the resulting images for comparison. Samplot VCF is equally 

Figure 3. Samplot creates images for quick review of SV VCF files. Samplot’s `samplot vcf` command 
will plot all SVs in a VCF file or filter to a subset via user-defined statements, as shown in the example 
command. `samplot vcf` creates an index page and sends commands to `samplot plot`, which generates 
images for each variant that passes the filters. The index.html page displays a table of variant info. Clicking 
on a row loads a Samplot image, allowing additional filtering or variant prioritization. 
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well-suited for other problems such as cohort-based analysis of common SVs or tumor-
normal comparison (potentially with multiple samples in each category). 

Automated SV curation with Samplot-ML 

Convolutional neural networks (CNNs) are an effective tool for image classification tasks. 
Since Samplot generates images that allow the human eye to adjudicate SVs, it motivated 
us to test whether a CNN could discern the same patterns. To that end, we developed 
Samplot-ML, a CNN built on top of Samplot to classify putative SVs automatically. 
Samplot-ML currently supports deletions. As additional data becomes available, Samplot-
ML will support other SV classes as well. The workflow for Samplot-ML is simple: given 
a whole-genome sequenced sample (BAM or CRAM15) as well as a set of putative 
deletions (VCF16), Samplot-ML re-genotypes each putative deletion using the Samplot-
generated image (see Supplemental Figure 6). The result is a call set where most false 
positives are flagged. 

Using Samplot-ML, we demonstrate a 51.4% reduction in false positives while 
keeping 96.8% of true positives on average across short-read samples from the Human 
Genome Structural Variation Consortium.17 We also trained a proof-of-concept long-read 
model with the same architecture, and reduced false positives by 27.8%. We expect the 
long-read performance to improve as more data becomes available. Our model is highly 
general and can classify SVs in sequences generated by libraries that differ in depth, read 
length, and insert size from the training set. The Samplot-ML classification process is 
completely automated and runs at about 100 SVs per second using a GPU and 10 SVs 
per second using only a CPU. Most SV call sets from methods such as LUMPY20 and 
MANTA21 running on a single genome that yield between 7,000 and 10,000 SVs will finish 
in about one minute. The result is an annotated VCF with the classification probabilities 
encoded in the FORMAT field.  

While Samplot-ML inherently supports any SV type, the current model only 
includes deletions. There are too few called duplications, insertions, inversions, and 
translocations in the available data to train a high-quality model. For example, the 1,000 
Genomes Project phase 3 SV call set4 included 40,922 deletions, 6,006 duplications, 162 
insertions, 786 inversions, and no translocations. We expect this limitation to be 
temporary.  

To evaluate the short-read model, we considered the samples from the HGSVC 
with long-read-validated SVs. First we called SVs in HG00514, HG00733, and NA19240 
using LUMPY/SVTYPER10 (via smoove23) and MANTA. Next we filtered those SVs using 
the heuristic-based method duphold11 and our CNN. In each case, we measured the 
number of true positives and the number of false positives with respect to the long-read 
validated deletions using Truvari24 (Figure 4A-C, Supplementary Table 1). In all cases 
both duphold and Samplot-ML removed hundreds of false positives while retaining nearly 
every true positive. On average duphold reduces the number of false positives by 32.2% 
and reduces true positives by 1.1%. Samplot-ML reduces false positives by 53.4% and 
true positives by 2.4%. A more refined analysis that evaluates the performance by 
genotype could measure the extent to which the model learns one copy and two copy 
loss states, but this truth set did not include genotypes. The Genome in a Bottle (GIAB) 
truth set25 discussed next had genotypes, and one- and two-copy loss results are 
decomposed below. 
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The long-read model uses the same architecture and process as the short-read 
model, except it is trained on genomes sequenced using PacBio Single Molecule, Real-
Time (SMRT) Sequencing. Given the limited number of long-read genomes available for 
training, we consider the model a proof-of-concept that will improve as more long-read 
genomes become available  Since training used the HGSVC samples, the evaluation is 
based on the GIAB truth set25 which includes multiple validations, including visual review, 
for long-read sample HG002. We called SVs using Sniffles26, filtered those SVs using the 
CNN, and measured the number of true positives and false positives with Truvari (Figure 
4D, Supplementary Table 1). Samplot-ML reduces false positives by 27.8% and true 
positives by only 1.4%. 

 
Generality can be an issue with machine learning models. A distinct advantage of 

training and classifying with Samplot is that its images are relatively consistent across 
different sequencing properties and the models still perform well when using different 
sequencing libraries. For example, our short-read model was trained on paired-end 
sequences 20X with 150 base pair (bp) reads and a 400 bp insert size and the samples 
in the evaluations above (Figure 4A-C) had shorter reads (126 bp reads), a large insert 
size (500bp), and were sequenced at greater depth (68X). Additionally, we considered 
two libraries from the same Genome in a Bottle sample (HG002), where one was 
sequenced at 20X coverage with 150bp reads and 550bp insert size and other was 
sequenced at 60X coverage with 250bp reads and a 400 bp insert size (Figure 5A). The 
model performed equally well across all libraries, clearly demonstrating that new models 
are not required for each library. Additionally, between LUMPY and Manta, Samplot-ML 
correctly genotyped 91.28% of hemizygous deletions (1 copy losses) and 97.26% of 
homozygous deletions (2 copy losses) for the 20X run (Figure 4A). For the 60X run 
(Figure 4B), Samplot-ML correctly genotyped 94.57% of hemizygous deletions and 
97.26% of the homozygous deletions. These results clearly show that the model has 
learned both copy-loss states. 

Calling SVs in tumor samples can be a challenge when subclones and normal 
tissue contamination produce variants with a wide range of allele balances (the ratio of 

Figure 4. SV filtering performance of duphold (DHFFC) and Samplot-ML. A-C) Short-read SVs callsets generated 
by LUMPY/SVTYPER and MANTA were then filtered by duphold (DHFFC) and Samplot-ML, then compared to the 
long-read-validated truthset. D) Long-reads SVs were called with Sniffles, filtered by Samplot-ML, then compared to 
the GIAB truth set. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2020. ; https://doi.org/10.1101/2020.09.23.310110doi: bioRxiv preprint 

https://paperpile.com/c/Trgo0Y/r8qf
https://paperpile.com/c/Trgo0Y/CuUK
https://doi.org/10.1101/2020.09.23.310110
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

reads from the variant allele to the total number of reads). The result is fewer discordant 
alignments and a less distinct change in coverage, which has a direct effect on the 
Samplot images (Supplementary Figure 7). To test how well our model performs in 
these instances, we mixed sequences from two diploid cell lines (CHM1 and CHM13) at 
different rates (Figure 5B) then reclassified SVs  from a truth set8 using duphold and 
Samplot-ML. For each combination, we compared how many true positive SVs each 
method recovered from the minor allele. While the recovery rates between the two 
methods were similar, ranging from over 70% when the samples were equally mixed (0.5 
allele balance) to less than 40% when the SV minor allele was at 0.1  (Supplementary 
Table 2), Samplot-ML provided an improvement over duphold especially as the minor 
allele became more rare, peaking at a 12.9% improvement when CHM1 was the minor 

allele at 20%. Low-frequency SVs are clearly difficult to detect and filter, but Samplot-
ML’s classifier is robust to evidence depth fluctuations, further proof of the generality of 
the model. 

Discussion 

Samplot provides a fast and easy-to-use command-line and web interface to visualize 
sequence data for most structural variant classes. Pre-screening large SV call sets with 
Samplot allows researchers and clinicians to remove SVs that are likely to be false-
positives and focus orthogonal molecular validation assays on smaller groups of variants 
with far more true-positives. Rapid review could improve SV detection sensitivity in, for 
example, low cover sequencing experiments and genomic regions that are thought to be 
enriched for false positives and excluded in most SV analysis. 

We have also trained a convolutional neural network to assist in SV curation. Key 
to the performance of our model was identifying and training on realistic negative 
examples (false positives SV calls). In genome feature detection broadly, and SV 
detection specifically, negatives far outnumber positives. To achieve maximum 
classification performance, collecting negative training examples must be given as much 

Figure 5. Model performance in data sets that differ from the training set. A) The number of true positive and 
false positive SVs from different SV calling and filtering methods considering the same sample (HG002), sequenced 
using two libraries with different coverages, read lengths, and insert sizes. B) The percent increase in true positive 
SVs that Samplot-ML recovers versus duphold for SVs in simulated mixtures of samples (CHM13 and CHM1 cell 
lines) at different rates. 
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consideration as any other aspect of the machine learning architecture. Just as it is highly 
unlikely that any genomic detection algorithm would return a random genomic region as 
a putative event, we cannot expect that randomly sampled areas of the genome that do 
not overlap true positives will be good negative examples. Special care must be taken to 
sample from regions enriched with edge cases that pass detection filters but do not 
contain true positives. By incorporating putative false positive areas of the genome, we 
were able to improve the performance of Samplot-ML immensely because these regions 
strongly resembled the types of false positives that were being made by SV callers.  

Our model performs well across sequencing libraries and SV calling algorithms, 
but currently only supports deletions. As more SV data becomes available, we will extend 
our model to consider other SV classes. By enabling scalable and straightforward SV 
review, Samplot can extend robust SV discovery and interpretation to a wide range of 
applications, from validating individual pathogenic variants to curating SVs from 
population-scale sequencing experiments. 

Methods 

Samplot-ML model and image generation 

 

Samplot-ML is a resnet27-like model that takes Samplot images of putative deletion SVs as input 

and predicts a genotype (homozygous reference, heterozygous, or homozygous alternate).  

Samplot-ML was built using Tensorflow28 and is available at 

https://github.com/mchowdh200/samplot-ml.  For additional model details see Supplemental 

Figure 6. Train and test images were generated using the command:  

samplot plot -c $chrom -s $start -e $end --min_mqual 10 -t DEL -b $bam 

-o $out file -r $fasta  

Additionally, for SVs with length > 5000 bases, we added --zoom 1000 which only shows 1000 

bp centered around each breakpoint.  After an image is generated, we crop out the plot text and 

axes using imagemagik29.  Finally, before input into a Samplot-ML model, the vertical and 

horizontal dimensions are reduced by a factor of eight.  Instructions for how to run Samplot-ML 

can be found in the Supplement under Running Samplot-ML. 

Training Data 

Short read model 

The short read version of Samplot-ML was trained on data from the 1000 Genomes Project (1kg)4, 

including the phase three SV call set and the newer high coverage alignments (see Supplemental 

Tables 3-4 for data URLs). We excluded individuals present in or directly related to individuals in 

our test sets (NA12878, NA12891, NA12892, HG00512, HG00513, HG00731, HG00732, 

NA19238, NA19239). While direct relatives of our test set were removed from our training set, it 

is still possible that samples in our test set contributed some information to the samples in our 

training in the joint variant calling and genotyping process. 
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True positive Regions   

Heterozygous and homozygous deletions were sampled from the GRCh38 liftover of the phase 3 

integrated SV map.  Although this set contains high confidence SV calls, there were still a few 

regions that did not exhibit drops in coverage (i.e., false positive call).  To minimize the possibility 

of sampling a false positive, we filtered this set using Duphold’s DHFFC metric which measures 

the fold change in coverage between the called and flanking regions.  To filter, we removed 

regions with a DHFFC > 0.7.After filtering, we sampled 150,000 heterozygous deletions and 

50,000 homozygous deletions. 

 

 

True negative regions 

Care must be taken to sample “true negatives” properly.  Before choosing a negative set, we must 

consider the use case of our model.  In practice our model will remove false positives from the 

output set of an SV caller or genotyper.  That means that our model will encounter two different 

classes of regions: those containing real SVs and edge cases that confuse the SV caller’s filters. 

While we could have sampled regions from homozygous reference samples in the 1kg calls (i.e., 

samples without deletions) to get “true negatives”, these regions would have had very few 

discordant alignments and level depths of coverage.  Crucially, they would look nothing like the 

regions that we would want our model to filter. 

We took a more principled approach to pick true negatives.  Many SV callers have the 

option to provide a set of “exclude regions”, which prevents the caller from considering potential 

problematic regions of the genome30.  Since these are enriched for false positives, we used these 

regions’ calls as our true negatives.  To get variants in these regions, we recalled SVs on the 1kg 

high coverage alignments using LUMPY21 with SVTyper10.  We then selected areas in the 

resultant calls that intersected problematic regions.  To ensure that no true positives were 

selected, we filtered out regions with a DHFFC ≤ 0.7.  Finally, to construct our set of true 

negatives, we took roughly 35,000 “exclude regions” and 15,000 homozygous reference regions 

from the 1kg SV call set. One issue with this strategy is that while these regions are enriched for 

false positives, they could also be enriched for a specific subclass of real variation. We are 

exploring other training strategies, including using regions that appear to be mutated from short-

read data but are normal in long-read data. 

Long read model 

For the long-read model training data, we used PacBio samples from the HGSV consortium (cite) 

that were present in the 1kg phase 3 SV callset (HG00513, HG00731, HG00732, NA19238, 

NA19239, see Supplemental Tables 3-4 for data URLs).  This reduced set of samples yielded 

5404 true positive regions.  Just as with the short-read model, we sampled a mix of “exclude 

regions” and normal homozygous reference regions.  Using the same set of regions called by 

LUMPY and SVTyper in the short-read alignments, we sampled 452 exclude regions and 4354 

homozygous reference regions. 
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Training Procedure 

 

From our training set, we held out regions from chromosome 1, 2, and 3 to use as a validation set 

during training.  To train our model, we used stochastic gradient descent with warm restarts 

(SGDR31).  The initial learning rate was 0.2 and decayed with a cosine annealing schedule.  The 

initial restart period was set to two epochs and doubled after each restart.  We trained for 50 

epochs and kept the model with the best validation loss after training was completed. 

Model Testing  

Short read model 

To evaluate the efficacy of the short-read model, we called deletions using both LUMPY/SVTyper 

and manta on each of our test samples.  We then filtered both LUMPY and Manta callsets with 

Duphold (rejecting calls with DHFFC ≤ 0.7) and Samplot-ML.  To compare the filtered callsets 

with their respective gold standard VCFs (Supplemental Table 4), we used Truvari24, which 

compares regions in VCFs based on percent overlap as well as breakpoint accuracy.  We used 

the following truvari command:   

truvari -b $truth_set -c $filtered call set -o $out_dir --sizemax 1000000 

--sizemin 300 --sizefilt 270 --pctovl 0.6 --refdist 20 

Long read model 

To evaluate the long read model, we called deletions using Sniffles26 on the PacBio HG002 

alignments (Supplemental Table 3) and filtered the result using Samplot-ML. 

Variable allele balance simulation 

We used sequencing data from human Hydatidiform mole samples CHM1 and CHM13 (See 

supplemental Table 4).  Alignments (bams) were generated with BWA-MEM32 and duplicates 

were removed with Samblaster33.  We then randomly subsampled both alignments at a rate of 10 

to 90 percent with 10 percent increments and merged CHM1 and CHM13 subsampled alignments 

such that each mixture added up to 100 percent.  We sampled regions (Supplemental Table 4) 

for evaluation that contained homozygous deletions in one sample but not the other.  Regions 

below 10x coverage after filtering reads with less than 10 mapping quality in the non-variant 

sample were omitted. 

. 
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