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Abstract

As animals adapt to their environments, their brains are tasked with processing stimuli in different sensory
contexts. Whether these computations are context dependent or independent, they are all implemented in the
same neural tissue. A crucial question is what neural architectures can respond flexibly to a range of stimulus
conditions and switch between them. This is a particular case of flexible architecture that permits multiple related
computations within a single circuit.

Here, we address this question in the specific case of the visual system circuitry, focusing on context integration,
defined as the integration of feedforward and surround information across visual space. We show that a biologically
inspired microcircuit with multiple inhibitory cell types can switch between visual processing of the static context
and the moving context. In our model, the VIP population acts as the switch and modulates the visual circuit
through a disinhibitory motif. Moreover, the VIP population is efficient, requiring only a relatively small number
of neurons to switch contexts. This circuit eliminates noise in videos by using appropriate lateral connections
for contextual spatio-temporal surround modulation, having superior denoising performance compared to circuits
where only one context is learned. Our findings shed light on a minimally complex architecture that is capable of
switching between two naturalistic contexts using few switching units.

Author Summary The brain processes information at all times and much of that information is context-dependent.
The visual system presents an important example: processing is ongoing, but the context changes dramatically when
an animal is still vs. running. How is context-dependent information processing achieved? We take inspiration from
recent neurophysiology studies on the role of distinct cell types in primary visual cortex (V1).We find that relatively
few “switching units” — akin to the VIP neuron type in V1 in that they turn on and off in the running vs. still
context and have connections to and from the main population — is sufficient to drive context dependent image
processing. We demonstrate this in a model of feature integration, and in a test of image denoising. The underlying
circuit architecture illustrates a concrete computational role for the multiple cell types under increasing study across
the brain, and may inspire more flexible neurally inspired computing architectures.

1 Introduction

Our brains are unique in their ability to adapt to the context in which stimuli appear. Animals face the problem
of processing visual stimuli rapidly and efficiently while adapting to different contexts every time they transition to
a new environment (e.g. from jungle to savanna, from the shores of a river to underwater). A classic example of
adaptation to different contexts is discussed in Barlow’s “efficient coding hypothesis” [4], which proposes that sensory
systems encode maximal information about environments with different statistics [46, 47]. In this and other cases,
when context changes, neural circuits switch from previous strategies of feature representation to new ones that are
better adapted to the statistical properties of the new context. How the neuronal circuitry of the brain is organized to
account for the multitude of contexts animals may encounter has not yet been established [62]. In particular, when do
we need separate circuits for different contexts, and when can single circuits be modulated to switch among multiple
contexts [23, 32, 65, 8, 38, 13, 62]? Our aim is to identify a biologically constrained network that is capable of switching
contexts, and to infer the building blocks required for such switching. In constructing such a network we will only
discuss and include the structural and functional detail needed for the switching of contexts.

We focus on a concrete setting in which rapid context switching is apparent. This is mouse V1, which responds
differently to inputs when the animal is running (moving condition), compared to when it is stationary (static con-
dition) [44, 20]. When the animal transitions from standing still to running, visually-evoked firing rates significantly
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increase. For example, in one experimental setting, the firing rate of neurons in layers II/III of area V1 more than
double [44], while in layer V of V1, noise correlations between pairs of neurons are substantially reduced [15].
While an enormous diversity of cell types has been characterized [57], in this work we focus on the three primary
classes of inhibitory interneurons: vasoactive intestinal peptide (VIP), somatostatin (SST), parvalbumin (PV), and
one class of long range projecting excitatory neurons the pyraidal neurons (PYR) [20, 9, 53, 48] (Fig. 1a). VIP is an
inhibitory population of neurons which is very strongly modulated by running [20]. In our simplified model of the
circuit, VIP neurons act in a switch-like manner: they are silent when animals are static, but start firing when animals
are running, inhibiting SST cells and hence releasing PYR cells from SST inhibition. The disinhibition of PYR cells
is not uniform, but rather a complex pattern which is dependent on the particular PYR cell response. We will show
that the switch can only be effective if PYR cells provide input information to the VIP cells. Although this simple
model does not capture all the physiological responses of VIP neurons, we believe the model captures the crux of the
disinhibitory switching computation at the expense of biological realism.

We study this circuit using a model in which the contextual information is stored in the lateral connections be-
tween neurons [26]. Each neuron receives information about the visual scene from feedforward connections (which
can be arbitrary in this model), and complements this with surround information provided by nearby neurons. The
connections are dependent on the statistics of the environment; more precisely they depend on the frequency of co-
occurrence in the environment of the features which the neurons represent. These connections are most useful if the
information from the feed-forward connections is corrupted (e.g. by an occlusions).
Importantly, the contextual information via lateral connections comes not only from the spatial surround, but also
from the past. Synaptic delays introduce a constraint on the available information each neuron gets. During the static
condition, past surround information matches present information, and thus there is no temporal variability of the
context. During movement, this no longer holds; neighboring features now also vary temporally, which changes the co-
occurrence frequency, and hence the statistics of the moving context is different. We aim to find connection strengths
from the switching VIP units that, during movement, modulate firing rates and neuronal correlation structure to adapt
and enhance encoding of visual stimuli when the moving context is turned on. Although throughout the paper we
focus on the visual circuit and the switching role of the VIP neural population, these results can be generalized to
circuits processing multiple contexts, and thus their applicability has broader scope. In the discussion section, we list
several other biological examples of circuits processing multiple contexts.

Understanding switching circuits may also further aid efforts to design both flexible and efficient artificial neural
architectures. This research area has benefited from bio-inspired architectures and algorithms like elastic weight con-
solidation [30], intelligent synapses [64], iterative pruning [37], leveraging prior knowledge through lateral connections
[54], task-based hard attention mechanism [52], block-modular architecture [58], etc. to enable sequential learning by
eliminating “catastrophic forgetting” (where previously acquired memories are overwritten once new tasks are learned).
We hypothesize that a few switching units akin to VIP can be incorporated as part of the hidden layers to enable
context modulation. This makes such a switching circuit architecture (Fig. 1c) more efficient than employing separate
circuits for the different contexts (Fig. 1b) because switching circuits have fewer connections to learn 1. We hope such
a circuit architecture will inspire next-generation flexible artificial nets that can process stimuli in changing contexts.

Outline of paper In section 2.1, we first detail a model introduced in [26] that describes neuronal connections and
firing rates of a circuit adapted to static visual scenes (images). We next extend this model to the case of circuits
adapted to moving visual scenes (videos). These circuits are attuned to the statistical regularities of movement and
take into account constraints of biological networks, like synaptic delay. We are able to map these two circuit models
to the V1 circuit, consisting of PYR, SST, and PV neuron populations. We thus obtain two different networks with full
cell-type specifications achieving optimal context integration for static and moving contexts, respectively. In section
2.2 we detail the datasets and procedures used to quantify connectivities and firing rates in these two circuits. In
section 2.3, we go on to describe a circuit that can switch between neuronal activity in static circuit and neuronal
activity in the moving circuit, by virtue of adding a single population, the VIP. We find that VIP projections to SST
and PYR are not enough to shift activity during movement, but that we need a feedback connection from the PYR to

1In general, if N is the number of neurons per location, L is the number of locations, and C is the number of connections per neuron,
then the total number of connections in a circuit is NLC. Two identical circuits have 2NLC connectivities, while a switching circuit has
NLC + LM(cin + cout), where M is the number of switching (VIP) units, and cin, cout are the number of connections to and from the
switching units, respectively. When M << N , then cin, cout < C and thus 2NLC > NLC+LM(cin+ cout) ⇔ NC > M(cin+ cout) which
is true for circuits with small M, cin, cout.
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the VIP (section 2.4). The resulting circuit is the minimally complex circuit resembling V1 we have found to switch
contexts. In section 2.5, we describe how this circuit switches using only a small number of VIP units. We follow
up on these results in section 2.6, where we utilize this switching circuit to obtain better reconstructions of videos in
conditions of high noise. Finally, we evaluate the new switching circuit architecture with data from V1 that confirms
some of the model’s predictions (section 2.7).
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Figure 1: a. Schematic of circuit involving VIP, SST, PV, and PYR groups of neurons. When VIP are silent, PYR are
self-excitatory, while SST and PV inhibit PYR. When VIP are active, they inhibit the PYR, while also creating a
disinhibitory motif given by VIP-SST-PYR. The potential connection from PYR to VIP explored in this paper is marked with
a dotted arrow. b. Processing of two input types (e.g. images, videos) happens using two separate networks for each type of
input, each having N units with 2N2 weights in total to learn. c. Processing of two input types can be done with one circuit
— a switching circuit with N units adapted to one of the contexts, and M switching units that turn on when the other
context is presented. We may want M << N , with N2 + 2NM connections to learn (assuming switching units are not
inter-connected). When the number of switching units required in a switching circuit is small, there are fewer connections that
need to be learned; more specifically, if M < N ⇒ N2 + 2MN < 2N2. This generalizes well to a range of circuits, including in
the case of sparse connectivities, as often presented throughout the paper.

2 Results

2.1 Theoretical models of processing visual information in static and moving contexts

We introduce a model of visual processing where feedforward and lateral connections between neurons serve different
roles. The lateral connections between neurons perform unsupervised learning of the probability of co-occurrence of
features in the visual space which the neurons represent. For the purpose of this study, the feedforward connections
can be arbitrary, and the microcircuit described here can be at any level of processing. This separation of the roles
for the feedforward and lateral connections allows for an easy implementation of both supervised and unsupervised
learning in deep networks [27].
Here, we show how this model can integrate information from the surround using these within-layer connectivities in
both static and moving states. However, integration of these two contexts results in two distinct circuits needed to
perform visual processing under different conditions (static vs moving). The model optimally integrates context in the
Bayes sense, meaning it uses priors on the co-occurrence of features in natural scenes when integrating information
from the surround. These priors reflect the known statistical regularities of the environment [55, 4, 39] and weigh the
surround contributions appropriately. We are then able to map this model formalism to the circuit architecture in
V1 described above while specifying steady state network weights and activations, as well as cell type functionality.
This model emphasises robust coding, and applies best in conditions of high noise, where parts of the visual scene
are missing due to occlusions or are corrupted, and thus where context information may play a critical role. We next
describe our model of visual processing in detail.
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Figure 2: a. Neurons receive stimulus input from a patch in space at position n, their classical receptive field (RF), but also
from surrounding patches in space (for e.g. the patch at position m) through interactions with other neurons. These neurons
are connected by weights Wmn

jk that depend on the statistical regularities of natural scenes. b. When features F1 and F2 at
positions m,n occur together often in natural scenes, then Wmn

21 is strong; when F1 and F2 occur together by chance, without
significant correlation, Wmn

21 is close to 0. c. Spatio-temporal surround for motion processing. Due to synaptic delay, context
integration uses surrounding patches that are also ∆t ms in the past to assess the features in the present frame.

Model of visual processing in the static context. To study optimal context integration in the static condition
(where the visual input is static images), we take as a starting point a model proposed by Iyer et al. in [26] where
model neurons respond to a patch in the visual space — the classical receptive field — but this response is modu-
lated by a larger region of space — the extra-classical receptive field. The extra-classical receptive field contribution
is determined by nearby local receptive fields providing indirect input from a larger area of visual space (Fig. 2a).
Specifically, inter-neuron interactions providing extra-classical information from the surround via lateral connections
(cfr. Methods sec. 4.1) complement intrinsic neuronal responses to classical receptive fields to determine firing rates.

Starting from the assumption that firing rates of a population of neurons encode the probability of specific fea-
tures being present in a given location of the image, we consider a probabilistic framework that includes probability
of feature occurrence and feature co-occurrence, that we can then map to an equation involving firing rates of neurons
and weights (cfr. Methods sec. 4.1). In general, a feature j, denoted by Fj , describes a specific pattern that neurons
are most attuned to, that can vary from simplistic, like Gabor filters, to complex, like faces or objects that are robust
to stimulus transformations such as scale and position changes. In more detail, for neurons responding to Fnj (feature
j at patch n), we define fnj to be the steady-state firing rate due to the classical receptive field, and rnj to be the
(overall) steady-state firing rate taking into account the extra-classical receptive field contribution. The probabilistic
assumption stated above is such that fnj relates to the probability p(Fnj |in) by the following relation:

fnj = g(p(Fnj |in)) (1)

where g is a monotonically increasing function, in is a patch n in visual space, and
∑
j p(F

n
j |in) = 1. For simplicity,

we fix g to be the identity, leaving the relaxation of this linear assumption for future work. With fnj = p(Fnj |in),
neurons tuned for distinct features respond differently to the same patch in in visual space depending on how well its
corresponding feature is represented. Operationally, to compute fnj in response to an image, we first chose a basis of
features, for e.g. features obtained by approximating spatial receptive fields from recorded neurons in V1. We then
pre-processed the image (cfr. Methods 4.2), convolved the image with feature j and normalized the result such that
the sum over all features is 1 at each spatial position, and finally considered the patch in of the normalized convolution.
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Once fnj is computed, we can continue assuming that neuronal firing rates contain information about feature oc-

currence in the surround, so that rnj = p(Fnj ) = p(Fnj |i1, i2, ..., in, ...), then using Bayes rule to express this in terms of
feature probability at patch in and at surrounding locations, and finally mapping the resulting equations to neurobio-
logical quantities. These operations yield that the firing rates rnj of neurons are the result of modulating the classical
receptive field firing rate fnj by extra-classical receptive field information from the surround which is a linear function
of other neurons’ classical receptive field firing rates, fmk . These firing rates are weighed by the lateral connections
Wstatic, representing the prior information about the statistical regularities of natural images. After ignoring terms
which are due to higher order modulation of the surround (cfr. Methods sec. 4.1), specifically neurons from the
surround having surround modulation of their own, we obtain the following firing rates as exemplified in the schematic
in Fig. 2a and explained in detail in Methods sec. 4.1:

rnj ≈ fnj ◦ (1 +
∑
m,k

Wmn
kj fmk ) (2)

with the weights expressed as:

Wmn
kj =

p(Fmk ∩ Fnj )

p(Fmk )p(Fnj )
− 1 =

〈fmk , fnj 〉all images

〈fmk 〉all images〈fnj 〉all images
− 1 (3)

where Fnj is a Gabor-like feature n at location j that we will illustrate shortly, the symbol ∩ denotes the co-occurrence of
two features, and ◦ is the Hadamard product, the element-wise multiplication between tensors fnj and 1+

∑
m,k Wmn

kj fmk .
Further, fnj is the evoked firing rate due to the classical receptive field of neurons firing for feature Fnj , and rnj is
the firing rate of neurons firing for feature Fnj using information from classical and extra-classical receptive fields.
The sum

∑
m,k Wmn

kj fmk is over neurons with receptive fields at different locations m, responsive to features k. Fi-
nally, Wmn

kj is the connectivity in the static context between neurons responsive to features Fmk and Fnj . We define

Wstatic ≡ {Wmn
kj }m,n,k,j as the connectivity applied to static visual scenes. Assuming that weights only connect

neurons with non-overlapping receptive fields, the resulting weights are sparse (see Methods sec. 4.2).

From a computational perspective, the organism cannot measure the feature probabilities and joint probabilities
in (1) and (3) directly, but these can be estimated given our defined neural code as the convolutions between image
and feature, i.e. p(Fnj |in) = fnj = in ∗Fj , and as the cross-correlations between classical receptive field firing rates, i.e.
p(Fk ∩ Fj) = 〈fk, fj〉. By mapping these probabilistic statements on feature occurrence to neurobiological quantities
that capture firing rates and weights, we have obtained a circuit that does approximate context integration, extracting
information through priors embedded in the neural connectivities. While the start of the model is Bayes-optimal via
Equations (36) - (38), a set of approximations are needed to keep the circuit simple.

There are multiple possible mappings from the probabilistic framework to the neurobiological circuit [26], but the
current correspondence is straightforward and yields successful predictions from data, such as like-to like connectivity,
as detailed below. When a pair of features is frequently co-occurring, weights between neurons preferential for these
features are strong and positive (Fig. 2b). In contrast, when two features are unlikely to co-occur in the same image the
connectivity is strong and negative. Overall occurrence probabilities of individual features normalize the co-occurrence
probabilities so that the weights express the co-occurrence of features over and above chance. Co-occurrence proba-
bilities of features are then averaged over many natural scenes so that the corresponding weights Wstatic capture the
statistical regularities of natural environments.

Model of visual processing in the moving context. We next show how the framework above can be applied to
the moving context. While Equations (2) - (3) show how connectivity and firing rates can be optimized to account for
spatially co-occurring features — features that appear at the same moment in time but in different locations of the
visual field — we now extend these equations to account for temporal co-occurring features — features which occur
at nearby moments in time at different locations of the visual field.
In more detail, context is generally integrated from ∆t in the past due to synaptic delay (Fig. 2c), and weights are
proportional to co-occurrence probabilities of neighboring features that are also separated by a time window ∆t. This is
a direct generalization of the model in [26] to the time domain, and includes synaptic delay as a biologically motivated
constraint. The extended model can capture how local circuit connectivity is shaped by spatio-temporal correlations
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Figure 3: a. Sample images from the BSDS dataset. Images of animals, human faces, landscapes, buildings, etc. are used. b.
Sliding window on images from the BSDS dataset so that the appearance of movement is achieved. Shown by the red arrow is
how much the window has moved from frame 1 to frame 4. In general, movement of sliding window is random and in any
direction, but we focus on horizontal movement in the case of natural videos. c. Images of horizontal and vertical bars (above)
and how the bars move in videos (below). d. 18 filters: ON, OFF, ON/OFF with 2 Gaussian subfields, different subfields
dominating, at different intensities and orientations. Colorbars show the different intensities of pixels. e. Example of a
spatio-temporal filter comprising of 2 frames. Spatio-temporal filters are added to the 18 original filters, to make up a total of
34 filters. The filter shown here over 2 frames captures a 45 deg bar moving to the left and is obtained by translating the
original filter by 3 pixels. Colorbars show the different intensities of pixels to the left. f. 2 filters for the simplistic “bar world”
comprising of a horizontal and a vertical bar, respectively.

across receptive fields and across time windows characteristic of biological processes like synaptic delay. The firing
rate during the moving context is (cfr. Methods sec. 4.2):

rn,tj ≈ fn,tj ◦ (1 +
∑
m,k

Wmn,∆t
kj fn,t−∆t

j ) (4)

with the weights expressed as:

Wmn,∆t
kj =

p(Fm,tk ∩ Fn,t−∆t
j )

p(Fm,tk )p(Fn,t−∆t
j )

− 1 =
< fm,tk , fn,t−∆t

j >all videos

< fm,tk >all videos< fn,t−∆t
j >all videos

− 1 (5)

where we apply an analogous notation as for Eq. (2) and Eq. (3), the only difference being the additional t,∆t, t−∆t

superscripts that denote the time coordinate for the features, firing rates, and weights. Wmoving ≡ Wnm,∆t
kj is the

connectivity in the moving context between neurons responsive to features Fm,tk and Fn,t−∆t
j whose activation is

separated by a time delay ∆t. Note that the expression for Wnm,∆t
kj as shown in (5) also holds for the static context

when we use static visual input to compute the weights, such that f t = f t−∆t, for all t,∆t.
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2.2 Modeling firing rates and weights in networks responding to images and videos

We next describe two separate circuits capable of doing optimal context integration in each of the moving and static
contexts. We characterize these two circuits through the connectivities Wstatic and Wmoving, computed by using
images and videos in training datasets and applying formulas (3) and (5). Once the corresponding connectivities are
specified, we can further characterize the static and moving circuits by their neural activations. In the following, we
elaborate, section by section, on the algorithm we implemented to compute the static and the moving weights.

Dataset and feature preparation. We applied our framework for processing static images and videos to dif-
ferent benchmark datasets, chosen to address differences in the statistics of visual features across conditions: during
viewing of static images (static condition) and during viewing of videos which contain motion (moving condition). For
the static condition, we used 300 selected grayscale images of the BSDS dataset [40] (Fig. 3a) while for videos, the
BSDS dataset is pre-processed through a smaller sliding window that travels along the image to reproduce motion
(Fig. 2b, cfr. Methods sec. 4.4). Although in general the sliding window can move in any direction (see Figs. S1 and S2
for results in this case), here we constrained it to move solely in the horizontal direction to roughly approximate flow
of images across the (sideways-facing) eyes of mice during forward movement. We have not used a generic dataset of
natural videos since most videos in such datasets contain limited movement of objects, humans, or animals, rather
than movement of sections of an environment that would mimic the visual experience of a running animal.

We generated a dictionary of features (filters) based on a parametrized set of models derived from recordings in V1 [19].
This contains 18 filters with Gaussian subfields (Fig. 3d) at different relative intensities and orientations. We added
filters containing a temporal dimension — spatio-temporal filters — to obtain a set of 34 filters. Our spatio-temporal
filters consist of 2 frames (Fig. 3e) and represent a temporal shift by several pixels in the horizontal direction, corre-
sponding to the direction of movement and amount of displacement of the sliding window in the videos described above.

To more easily illustrate and interpret our model, we first tested our framework on a different, synthetic context.
We analyzed a simplified 9 × 9 world of horizontal and vertical bars moving up-and-down as well as left-and-right
(Fig. 3c). This simple dataset has only two features, horizontal bars and vertical bars (Fig. 3f), but movement can be
in any of the four orthogonal directions.

Computing the weights Wstatic, Wmoving. The firing rates f due to the classical receptive field represent feature
probabilities (Equation (1) with g(x) = x) and were computed by the following sequence of operations: pre-processing
inputs and filters (cfr. Methods sec. 4.2), convolving the image or video frames with the respective sets of filters,
rectifying, and then normalizing so that all firing rates fmk lie in the interval between 0 and 1 and sum up to 1 across all
features k. To find the weights for static and moving contexts, Wstatic and Wmoving, we fixed ∆t. After convolving f tk
and f t−∆t

j in accordance with Equations (3), (5), and following the procedure outlined in Fig. 4a, we obtained a high di-
mensional tensor that characterizes the connections between each pair of cell types (k, j) at each position in the image.
Using the feature Fkj as a proxy for an excitatory cell “type,” the resulting tensor is 4 dimensional, with dimensions:
cell type of the source, cell type of the target, and relative spatial position of the source and target in x and y directions.

Simplifications to weights. We make three simplifications to reduce the number of parameters in this tensor
(cfr. Methods 4.2): (1) we assume translational invariance so that only the relative position of two filters is relevant
(Wn1,n2

j1,j2
= Wn3,n4

j1,j2
when ~n1 − ~n2 = ~n3 − ~n4); (2) the model is designed to compute connections to neurons which

receive independent observations, thus we only consider connections between neurons whose receptive fields are suf-
ficiently far apart (i.e. at least half a receptive field apart), (3) as statistical dependencies in natural images decay
with distance, we limit the spatial extent of connectivity to three times the size of the classical receptive field. Fig. 4b
shows several 2D slices through this tensor, corresponding to a specific cell source and target, as well as the full static
and moving weights (figs. 4b to 4f) ordered by spatial position and feature type (see also Fig. S1). Figures 4b and
4c serve to provide some intuition as to what these weights represent and how they are structured: in the dataset of
bars, horizontal feature F1 frequently occurs or is absent together with other horizontal features F1 at neighboring
locations, which leads Wstatic

11 to have positive values. Conversely, horizontal feature F1 occurs always when vertical
feature F2 is absent, and viceversa, leading to negative weights Wstatic

12 ,Wstatic
21 (Fig. 4b).

Characterizing Wmoving in the case of two different video statistics. In the generation of the video dataset
we use a sliding window to enforce controlled and comparable statistics between the moving and static contexts. When
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the sliding window is free to move in all directions, the moving weights tend to be weaker in absolute value, which
holds for the simple dataset of bars (figs. 4b to 4c), and the weights generated from the dataset of natural images and
videos (figs. S1a to S1b). This effect is due to the weaker statistical dependence of features separated by the time
window ∆t. Feature co-occurrence, and thus connectivity, is affected by the distortions during movement, like change
of orientation of objects, or appearance or disappearance of objects in the visual scene. Moving weights in this case
are approximately a smoothed out versions of the static weights (figs. 4b to 4c, figs. S1a to S1b). In these conditions,
as the information from surround is less reliable, the feedforward input plays a more important role during movement.

In the case when the sliding window moves s pixels horizontally in ∆t time steps, Fn,tk and F
n+(s,0),t−∆t
k actually

coincide so that their probability of co-occurrence is maximized. This means that for horizontal movement, Wmoving
kk

peaks s pixels from the center for any feature Fk and W
n,n+(s,0),∆t
kk is strong (figs. 4d to 4e). Results for natural

videos below are for horizontal movement, although the same general conclusions hold when movement is allowed in
any direction (see Fig. S3).

Finally, using Wstatic,Wmoving and applying Equations (2), (4), we obtain the corresponding firing rates r in both
static and moving contexts.

2.3 Implementing a switching circuit

Having two just defined the two optimal connectivities, Wstatic and Wmoving, for the static and moving contexts, we
next consider whether a single circuit involving the cell types described above (VIP, PYR, SST, and PV) can respond
optimally in these two contexts and switch between them. We additionally seek the computational principles behind
the minimally complex circuit (i.e. the circuit with fewest connections) for such a switching circuit. Specifically, we
ask whether a circuit with optimal weights for the static context can switch to produce nearly optimal activities in
the moving context, via projections from a set of switching units. In such a circuit every PYR neuron approximates
Bayesian inference, combining classical receptive field information with information from the surround to estimate
feature probability.

We start by rewriting the model described by Equations (3)- (4) in vector form to obtain the following firing rates:

rt,static = f t ◦ (1 + Wstaticf t) (6)

rt,moving = f t ◦ (1 + Wmovingf t) (7)

Assuming, as discussed above, that the activation of the VIP neural population implements the switch between con-
texts, we want the switching circuit to reproduce the firing rates given by (6) when the VIP neurons are silent in the
static context, and the firing rates given by (7) when the VIP neurons are active in the moving context (Fig. 5a). We
next explain how rstatic, rmoving above can be modeled as the firing rates of the PYR neurons.

When the VIP are silent, the only groups of neurons active are PV, SST, and PYR. This circuit is equivalent to
one without any VIP connections, reproducing firing rates of PYR given by (6) when the animal is static. PYR neu-
rons contribute to integrating surround information through excitatory projections, and receive inhibitory feedback
from SST interneurons [7]. PV implements a normalization of the PYR population in our model, consistent with data
on their connectivity [28, 48]. Empirically it has been shown these neurons receive the average inputs of the PYR
neurons whose receptive fields overlap with their classical receptive fields, and project back equally [48]. In our model,
this normalization applies to the classical receptive field f , as described in Methods sec. 4.2. As for the role of PYR
and SST, given that PYR are excitatory and SST are inhibitory, and that Wstatic = Wstatic

+ + Wstatic
− , it is natural

to map the positive component of the static weights, Wstatic
+ , to the connections within the PYR population, and the

negative component of the static weights, Wstatic
− to the inhibitory connections from SST to PYR. Hence, we obtain

the following:

rt,static = f t ◦ (1 + Wstaticf t) = f t ◦ (1 + Wstatic
+ f t + Wstatic

− f t) (8)

can be mapped to

rt,static = f t ◦ (1 + Wstaticf t) = f t ◦ (1 + WPYR→PYRf t + WSST→PYRf t) (9)
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Figure 4: a. Schematic of how weights are represented. Instead of representing weights corresponding to all pairs of patches
in visual space, we assume neighboring patches elicit the same connectivity regardless of where in the visual field the receptive
field is (weights obey the property of translational invariance). b. Static weights for the dataset of images of bars. c. Moving
weights for the dataset of videos of bars. d. Static weights (up) and moving weights (down) for the dataset of natural
images/videos during horizontal motion only. e. Sparse versions of slices from the static and moving weights for the datasets
of natural images/videos during horizontal motion. Weights between neurons whose receptive fields are not at certain
pre-selected, sufficiently far apart locations in the visual space were discarded to satisfy the constraint that patches are
independent. f. The full (non-sparse) tensors Wstatic, Wmoving, and Wmoving −Wstatic, ordered first by spatial position, then
by filter.
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where WX→Y denotes the weights that connect neuronal populations X (the source) and Y (the target).

On the other hand when VIP are active, PYR firing rates ought to reproduce the activity given by (7). We make the
simplifying assumptions that the switch from static to moving can happen instantaneously, and that the VIP switch is
binary. When the animal initiates movement and the VIP turns on, the model circuit should approximate the optimal
response of PYR neurons resulting from the Wmoving connectivities, within a circuit where the 4 neuronal populations
interact (Fig. 5b). For VIP modulation of PYR (which is either direct or through the SST) that gives rise to the
optimal firing rates in the moving context, we have:

rt,moving = f t ◦ (1 + Wmovingf t−∆t) (10)

is mapped to
rt,moving = f t ◦ (1 + Wstaticf t−∆t + VIP contribution) (11)

Thus, the switch in the circuit occurs as VIP neurons modulate SST and PYR neurons and make PYR switch firing
rates from rstatic to rmoving. We now proceed to find the unknown connectivities, from VIP to PYR and from VIP to
SST, that causes this to occur within the circuit (Figs. 5b to 5c).

Pyr 
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W
+
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-
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moving
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W
-
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Input 
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PV
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Figure 5: a. Two separate circuits for optimal visual processing of static (top) and moving contexts (bottom), respectively.
b. The proposed switching circuit with the VIP population approximates the static circuit when the VIP are silent and the
animal is static, and approximates the moving circuit when the VIP are active and the animal is moving. c. Previous circuit,
but with a feedback connection added from the PYR population to the VIP.

2.4 In the absence of feedback to VIP neurons, the circuit is unable to switch from
static to moving conditions

We attempt to describe the computational principles of the minimal switching circuit inspired by the V1 circuitry
whose main structure and logic was described in [20]. After adding the switching population VIP, the goal is to find
connectivities from VIP to the other two neuronal populations (PYR, SST) that would account for the PYR firing
rates that yield optimal representation in the moving context. With the VIP contribution, the firing rate of PYR
neurons can be expressed as (cfr. Methods sec. 4.5):

rt,moving = f t ◦ (1 + Wstaticf t−∆t + WSST→ PYRWVIP→ SSTf t−∆t,V IP + WVIP → PYRf t−∆t,V IP ), (12)

where f t, f t−∆t are firing rates due to the classical receptive field at times t and t−∆t and inferred from the dataset
of natural videos as outlined in sec. 2.1 and Methods sec. 4.2, f t,V IP are the intrinsic firing rates of the VIP at
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time t, and rt,moving is the firing rate during the moving context with the extra-classical receptive field contribution.
Here, WSST→ PYR are weights from SST to PYR, WVIP→ SST are weights from VIP to SST, and WVIP → PYR are
weights from VIP to PYR. VIP neurons project to PYR neurons directly via weights WV IP→PY R and indirectly
via the SST population. The effects of the indirect pathway VIP-SST-PYR can be captured by taking the product
of connectivities, yielding WSST→PY RWV IP→SST . The three unknown variables are then f t,VIP, WVIP→ SST, and
WVIP → PYR, but since we assume f t,V IP is constant in time t, this tensor can be combined with the connectivities to
form the effective parameters wα = WV IP→SST fV IP and wβ = WV IP→PY RfV IP and hence reduce the number of
unknowns and simplify notation. Our objective is to have firing rates in the switching circuit be as closely matched
as possible to the firing rates in the separate moving circuit with Wmoving:

rmoving,t = f t ◦ (1 + Wmovingf t−∆t)

≈ f t ◦ (1 + Wstaticf t−∆t + WSST→ PYRwα + wβ)
(13)

This amounts to minimizing the loss function defined by the approximation error Eswitch,1 over the variables wα,wβ :

min
wα,wβ

Eswitch,1 = min
wα,wβ

1

N

∑
f

||(Wmoving −Wstatic)f −WSST → PYRwα −wβ ||F , (14)

where || · ||F is the Frobenius norm of a tensor, for all f (firing rates due to classical receptive fields) correspond-
ing to video frames, and N is a normalization factor, the number of video frames in our dataset. f is inferred
through our model from the datasets of video frames and features using fnj = p(Fnj |in) = in ∗ Fj and thus is a

known quantity throughout the optimization. Importantly, since fV IP are firing rates and hence fV IP ≥ 0, while
WSST→ PYR ≤ 0,WVIP→ SST ≤ 0, and WVIP→ PYR ≤ 0, we have that wα,wβ ≤ 0, and WSST→ PYRwα ≥ 0.

This is a high dimensional constrained optimization problem with the loss function defined as in (14), which we
solved by means of a gradient descent method using the gradient-based Adam optimizer, implemented in pytorch 2.
The weights wα and wβ are unknown and learned by Stochastic Gradient Descent (SGD), while Wmoving,Wstatic,
WSST→PY R ≡ [Wstatic]− are fixed. Finding the global minimum of the loss function is difficult, but the main goal is
to find weights that give a small enough error Eswitch,1 instead and later test these on a specific task to demonstrate
that the optimal moving circuit can be approximated successfully (Section 2.6). We assessed the stability of our
optimization by modifying several learning hyperparameters: learning rate (ranging from 0.001 to 0.1), optimization
algorithm (SGD, AdaGrad, RMSProp, Adam), etc. and checking the generalization error on a small number of frames
(50) that were not used during training.

Regardless of hyperparameters, our optimization procedure did not find weights that together approximate the moving
circuit significantly better than the static circuit. In other words, adding VIP neurons in an attempt to switch contexts
does not lead to a significantly better approximation of the moving circuit than having no VIPs. This result holds
for both the simple dataset of horizontal and vertical bars, and for the more complex dataset of natural images and
videos (figs. 6b to 6c).

In order to understand the origin of this failure, we mathematically analyzed the circuit at hand. Analytically, if
the loss is small Eswitch,1 ≈ 0, then (Wmoving −Wstatic)f ≈ WSST→ PYRwα + wβ , where f is unique to each image
in the data. The left hand side becomes a term that varies across a wide range of video frames, while the right hand
side is a constant term incorporating the weights we are solving for: wα,wβ . This suggests that the failure of our
optimization procedure to yield weights that approximate the moving circuit results from the VIP having no stimulus
dependence.

We conclude that the circuit switching between static and moving contexts must be more complex than the sim-
ple circuit here, which has only outgoing projections from VIP. Below, we introduce recurrent connections which make
the VIP input-dependent, and overcome the limitations above.

2The tensor weights are very high-dimensional so that the least-squares method and variations thereof have failed due to the high
memory requirements.
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Figure 6: a. Goal: instead of two separate circuits for visual processing of static and moving contexts, the proposed circuit
approximates the static circuit when the VIP are silent and the animal is static, and the moving circuit when the VIP are
active and the animal is moving. b. Generalization/validation error found during the optimization to minimize the functional
Eswitch,1 for the datasets of static and moving bars does not converge. c. Generalization/validation error found during the
optimization to minimize the functional Eswitch,1 for the datasets of natural images and videos converges, but the norm of the
loss function decreases by only ≈ 25%. d. Circuit as in (a), but with a feedback connection added from the PYR population to
the VIP. e. Training error (blue) and generalization/validation error (red) found during the optimization to minimize the
functional Eswitch,2 (movement approximation error) for the datasets of natural images and videos converges to yield a
relatively small error. f. The movement approximation error for various circuit architectures: the static circuit with no VIP
switching units, the circuit depicted in (a) without PYR to VIP feedback, the circuit depicted in (d).

2.5 VIP circuit with feedback from the PYR cells can switch context integration from
static to moving conditions

Above we showed that a minimal switching circuit with only outgoing projections from the VIP units is insufficient
to switch between the two contexts. Hence, we added an additional connection between PYR and VIP, such that the
VIP group of neurons has access to information about the visual input through PYR (Fig. 5c). In this case we can
approximate the firing rate of PYR during movement as follows, using the same conventions and assumptions as before
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(cfr. Methods sec. 4.5):

rmoving,t = f t◦(1+Wstaticf t−∆t+WSST→ PYRWVIP→ SSTW PYR→ VIPf t−∆t+WVIP → PYRWPYR → VIPf t−∆t) (15)

We remind the reader that f is the contribution to the firing rate of the classical receptive field, WX→Y are the weights
from population X of neurons to population Y of neurons, where X,Y are the PYR, SST, VIP neurons. In addition
to the fixed Wstatic and Wmoving, we also fix WSST → PYR = [Wstatic]−. A schematic of the underlying circuit model,
along with the corresponding formula for the firing rate of PYR, is shown in Fig. 6d.

We would like to find the three unknown weights WV IP→PY R,WV IP→SST , and WPY R→V IP , to best achieve the
approximation:

rmoving,t = f t ◦ (1 + Wmovingf t−∆t) (16)

≈ f t ◦ (1 + Wstaticf t−∆t + WSST→ PYRWVIP→ SSTWPYR→VIPf t−∆t + WVIP→PYRWPYR→VIPf t−∆t) (17)

We denote the approximated expression of (17) by rapprox. This approximation rapprox ≈ rmoving amounts to minimizing
the loss function defining the movement approximation error Eswitch,2:

Eswitch,2 =
1

N

∑
f

||(Wmoving−Wstatic)f −WSST→ PYRWVIP→ SSTWPYR→VIPf −WVIP→PYRWPYR→VIPf ||F , (18)

for all N frames whose corresponding classical receptive field firing rate is f . In the case of simple images and videos
of bars we consider W · f to be the regular matrix vector multiplication, while in the case of natural scenes we perform
the convolution operation W ∗ f . Applying convolution for natural images and videos fits with the assumption we
have applied for the PYR, SST populations, that weights between neurons are translationally invariant, and further
reduces the number of parameters.

To solve this high dimensional optimization problem, we set up, as in Sec. 2.4, an optimization problem with the loss
function being the Frobenius norm as defined in (18). Weights to and from VIP are unknown (WVIP→SST, WVIP→PYR,
and WPYR→VIP) and learned by SGD, while Wmoving −Wstatic, WSST→ PYR are fixed. Importantly, Dale’s law is
enforced (WVIP→SST, WVIP→PYR ≤ 0, WPYR→VIP ≥ 0) for biological realism.

To find how many switching units are needed, we varied the number of VIP neurons, which was equivalent to varying
the dimensionality of tensors WVIP→SST, WVIP→PYR, and WPYR→VIP. We found the smallest number of switching
neurons VIP that enabled the loss (18) to be minimized. First, for an image/video set which was 9× 9 with horizontal
and vertical bars, the loss was minimized with at least 20 VIP neurons (Fig. 7a). For comparison, there are 162 PYR
and SST neurons, one for each filter and pixel in the image or frame. As increasing the number of VIP units further
does not decrease the loss function, so we conclude that, for the case of barlike images, having 20 switching units is
enough.
For images and videos of natural scenes, the movement approximation error in (18) was minimized when the number
of VIP units is 34 per unit space, which matches the number of units in the PYR and SST population. However, the
approximation error was already significantly minimized with only 5 VIP units per unit space, without any significant
improvement after adding more units (Fig. 7b). Varying the dimensionality of spatial components of the tensors
(Fig. S4) we were solving for (WV IP→SST , WV IP→PY R, WPY R→V IP ) and the synaptic delay ∆t for sparse weights
W that account for patch independence, we obtained the same qualitative results. Our results also hold for non-sparse
weights, as shown in Fig. S5. Fixing the number of VIP units to 5 per unit space, we find that the approximated firing
rate of (17) matches rmoving compared to the rstatic firing rates of a circuit without VIP units (Fig. 7c). We conclude
that for the specific parameters chosen in Fig. 7b, the ratio of PYR to switching VIP units is 34/5 = 6.9, so that
the switching operation requires relatively few units, a fact we return to in the context of the underlying biology below.

All in all, we have shown that a switching circuit with relatively few numbers of switching VIP units and appro-
priate feed-back connections can be implemented to achieve visual processing during the static and moving contexts,
and for both a simple synthetic dataset of bars, and a biologically relevant dataset of natural images and videos.
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Figure 7: a. Adding VIP switching units to the circuit processing videos of bars approximates the activity to that of the
optimal circuit for moving context for this simple dataset. However, no more than 20 VIPs are needed in practice, compared
to the 162 PYR and SST cells. b. Adding VIP switching units to the circuit processing natural videos approximates the
activity to that of the optimal circuit for moving context for the naturalistic dataset. However, no more than 5 VIPs per unit
space are needed in practice, compared to the 34 PYR and SST cells per unit space. The parameters chosen for this
optimization are ∆t = 2 and dim(WV IP→SST ) = dim(WV IP→PY R) = 34×Nf2 × 3× 3,
dim(WPY R→V IP ) = Nf2 × 34× 3× 3, where Nf2 is the variable number of VIP units. c. A random subset of activities
corresponding to different video frames, filters, spatial positions for the static, moving, and approximated moving circuit. Red
dots for activities for moving circuit (rmoving) vs activities for static circuit (rstatic); blue dots for activities for moving circuit
vs activities for approximated switching circuit (rapprox). Activities are computed using weights with 5 VIP units/unit space.
Activities chosen for the approximated switching circuit are able to better estimate the activities in the moving circuit in
comparison to the ability of the activities in the static circuit to estimate the activities in the moving circuit.

2.6 Context-dependent visual processing with extra-classical receptive fields leads to
denoising

According to our theory (Methods, sec. 4.1), the moving circuit achieves optimality of visual processing for videos, the
static circuit achieves optimality of processing for static images, and we have found appropriate connectivities to and
from a population of switching units — VIP — that can approximate either circuit in a model of V1, the switching
circuit. We have however not yet assessed the perfomance of these circuits on specific visual processing tasks. We
pursue this here for the task of denoising. Specifically, we ask how well (a) extra-classical receptive field contributions
from the static or moving circuits (Fig. 5a) can improve reconstructions of noisy videos and (b) whether the switch-
ing circuit can achieve the same level of performance as the separately optimized moving circuit when processing videos.

To reconstruct a visual scene during movement, our brain uses information from the present, but also time-delayed
surround information, both of which can be inaccurate or incomplete. We use Wmoving to weigh the past surround
information, as these weights encapsulate the cross-correlational structure between features of the past and the present,
thereby informing which features are more or less likely. We note that, during motion, using Wstatic to weigh surround
information may still be better that using no surround at all: if movement in the videos is slow enough, or ∆t is small,
features are smooth and Wstatic and Wmoving are highly correlated.
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To apply our models to the task of denoising, we apply Gaussian white noise or salt and pepper noise ξ to the
original frames X of the videos (Fig. 8c), and compute firing rates in the circuits in responses to the noisy frames
X + ξ. The firing rates are expressed as:

rno EXC(t) = f t (19)

rstatic(t) = f t ◦ (1 + Wstaticf t−∆t) (20)

rmoving(t) = f t ◦ (1 + Wmovingf t−∆t) (21)

rapprox(t) = f t ◦ (1 + Wstaticf t−∆t + WSST→PY RWV IP→SSTWPY R→V IP f t−∆t + WV IP→PY RWPY R→V IP f t−∆t)
(22)

We denote “EXC” throughout the figures and text to represent the extra-classical receptive field contribution. Hence,
rno EXC is the firing rate due to only the feedforward pathway, with no lateral connections, and thus without any
extra-classical, surround modulation. In the case of rstatic (rmoving), Wstatic (Wmoving) weights are the lateral con-
nections applied that weigh the extra-classical receptive field information from the past surround. While Wstatic are
non-optimal weights to compute the firing rate, Wmoving are optimal for inferring features in noisy conditions as
described below (cfr. Methods sec. 4.1). Finally, rapprox results from lateral connections from our switching circuit
with connections to and from VIP.

For each image frame X we computed the corresponding firing rate r via equations (19) - (22), to obtain a ten-
sor with entries for every filter and spatial position of X. We then deconvolved r for each filter Fj (Methods sec. 4.6)
along its corresponding dimension to obtain the “reconstructed” frame X ′:

X + ξ → r→ X ′ (23)

Although there are ways for a biological circuit to do more accurate reconstructions (e.g. via learning weights), we
have chosen a simple reconstruction approach that does not require additional assumptions here (e.g. the circuit does
not know the structure of the noise or the input), as described in Methods sec. 4.6.

We compare the quality of reconstructions from the four circuit models above. The baseline for these comparisons
is the reconstruction of a noiseless image frame (ξ = 0), where the extra-classical contribution does not provide any
additional information. (Note that this reconstruction X ′ is not the same as the original frame X, as all feature
information not included in the filters is lost in initial convolution of the image frame to get r). We denote by ρ(·) a
metric of the quality of the reconstruction. This takes the firing rate r as input, and generates the Pearson correlation
coefficient between the reconstruction X ′ and the baseline reconstruction described above as output. The metric ρ for
a video frame with noise ξ is

ρ(r) = Corr(X ′ξ, X
′
ξ=0) =

(X ′ξ − X̄ ′ξ) · (X ′ξ=0 − X̄ ′ξ=0)

||Xξ − X̄ξ||2||Xξ=0 − X̄ξ=0||2
(24)

where · is the dot product, and X̄, X̄ ′ are the means of the image and reconstruction, respectively.

Thus equipped, we ask which circuit architecture gives rise to neural activity best suited for decoding visual scenes in
noisy conditions. Fig. 8c shows reconstructions of a video frame using different such circuit architectures. We expect
ρ(rno EXC), ρ(rstatic) < ρ(rmoving), ρ(rapprox) on average, as Wmoving are the optimal lateral connections as defined
above. However, the exact relationship between ρ(rno EXC), ρ(rstatic), ρ(rmoving), ρ(rapprox) depends on the exact
correlational structure of the frames for each video. Some videos match our prediction that ρ(rmoving) is maximized
(Fig. 8a), while other videos do not (Fig. 8b). Specifically, there are videos where surround modulation is not effective,
which appears to be due to the presence of independent features where the information in the extra-classical receptive
field does not aid image reconstruction.

On average throughout the videos, rmoving and rapprox yield the best reconstructions (dark and light green bars),
displaying the highest cross-correlation coefficients ρ between the noiseless reconstruction (the baseline) and the recon-
structed frames (Fig. 8d). Figs. 8d and 8e show this holds true when we added to the original frames either salt and
pepper noise, when we varied the proportion of pixels occluded, or Gaussian white noise, when we varied the standard
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deviation of the normal distribution of noise. The relation ρ(rno EXC), ρ(rstatic) < ρ(rmoving) ≈ ρ(rapprox) is robust to
the amount of noise added to the frames (Fig. 8f), whether for salt and pepper noise or Gaussian noise. This holds
true both when the complete set of 34 spatio-temporal filters is used (Fig. 8g), and when only the set of 18 filters with
no temporal component is used (Fig. 8h). As expected, the addition of filters with a temporal component improves
the reconstruction performance in all the four circuit architectures presented (Fig. 8i).

Thus, the switching circuit provides reconstruction performance comparable to that of a dedicated moving circuit.
This is because the switching circuit reproduces firing rates that are close enough to rmoving to improve reconstruction
fidelity. The correlation coefficients found between noiseless baseline reconstructions and reconstructions due to the
moving and switching circuits, respectively, present almost perfect overlap (light and dark green curves in Fig. 8g,
Fig. 8h). In sum, we conclude that the extra-classical receptive field contribution in the moving circuit and approxi-
mated switching circuit generates neural activity that can be decoded to produce more accurate frame reconstructions.

2.7 Experimental evidence of VIP role in movement-related visual coding

Activity Published experimental findings already provide strong evidence that the VIP inhibitory population acts to
modulate the visual circuitry in a movement dependent manner [48, 20]. Very recent results show that VIP neurons
respond synergistically to stimuli moving front to back during locomotion, a conjunction expected during locomotion
in a natural environment for mice, with a preference for low but non-zero contrasts [42]. Such an activity matches the
one required in our models.
Additionally, we perform a small set of new analyses of experimental data in the context of our model. These draw
both on the literature and on the Allen Brain Observatory [1], which contains in vivo physiological activity in the
mouse visual cortex, featuring representations of visually evoked Calcium responses from GCaMP6-expressing neurons
in selected cortical layers, visual areas, and Cre lines. The dataset contains calcium activations across multiple exper-
imental conditions, and here we focus on periods of spontaneous activity, natural images, and drifting gratings.

Our model of the switching circuit shows that the relative number of VIP neurons required to switch between moving
and static contexts is relatively low when compared the number of PYR or SST neurons (Figs. 7a to 7b). This number
qualitatively matches the relative abundance of neurons in the three populations. Excitatory neurons PYR are more
abundant than inhibitory ones (roughly 80% to 20%), and VIP are a minority of inhibitory cells. Moreover, the
existing VIP cells recorded in the Allen Observatory do not appear to exploit substantially more degrees of freedom
(as measured by their relative dimensionality) than other cell populations (Fig. S8a), consistent with a small number
of effective VIP “units.”

We now highlight two aspects of VIP neural activity which are directly related to our model and which justify the choice
of VIP as switching units whose activities are modulated by the locomotion state of the animal. First, VIP activity
dimensionality is significantly modulated across the moving and static conditions during periods of spontaneous activ-
ity, as shown in Fig. 9a and Fig. 9b. To extract such dimensionality modulation, we considered periods of spontaneous
activity in the recordings and divided the statistical distribution of the animal’s speed, for each experimental session,
into 4 quartiles. We then computed the average dimensionality, or Participation Ratio (PR, cf. Methods sec. 4.7) for
each recording in each quartile, which we define here as the (lower) dimension of a subspace where the data of activa-
tions can be represented while retaining some meaningful properties of the original data. We define the “dimensionality
modulation” to be the ratio between the average speed distribution within the highest quartile (movement condition)
and the average within the first quartile (static condition). Such ratio is displayed in Fig. 9b. The dimensionality of
the VIP population is significantly modulated by movement, while in other populations the same quantity was not
significantly different across moving and static conditions (Fig. 9a). The histogram of such statistics is shown in Fig. 9b.

Second, we analyzed evoked activity during the animals’ viewing of natural scenes. We performed a Calcium signal
modulation analysis and found that, for this stimulus set, the activity was strongly modulated for the VIP population
and less so for other neural populations (Fig. 9c) across moving and static conditions assessed via the quartile method
just described. This further confirms the stronger VIP modulation across the moving-static conditions. In the supple-
mentary we discuss further pieces of experimental evidence, cf. Fig. S8.

Connectivity While not as strong as the evidence regarding activity, we find connectivity data to be consistent
with our model. Connection weights in the model can be interpreted as corresponding to a combination of connection
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Figure 8: a. Example of a reconstructed frame for each condition/circuit architecture: no EXC, static EXC, moving EXC,
approximated EXC. b. Average correlation coefficients between reconstructed noisy frames and reconstructed noiseless frames
to assess denoising performance, for each frame in our video dataset. In this video, reconstruction benefits from surround
contextual information. c. Same as a, but in this case the general inequality that holds on average
ρ(rno EXC), ρ(rstatic) < ρ(rmoving) ≈ ρ(rapprox) breaks down and r(rno EXC) ≈ r(rmoving). d. Average correlation coefficient over
all frames and all videos after salt and pepper noise was added to the video frames. The probability is 0.2 each pixel is
changed to white and 0.2 each pixel is changed to black. ∆t is set to 2 (frames). The average correlation coefficient is higher
for moving and approximated EXC, than it is for static EXC, or in cases when no EXC is used (p-value < 0.05 using the
Wilcoxon rank-sum test for all relevant comparisons). Inset: Correlation coefficients in time, averaged across videos. e. Same
as d, for Gaussian white noise with 0.5 standard deviation. ∆t is fixed to 2 (frames). p < 0.05 for all relevant comparisons,
Wilcoxon rank-sum test. f. Average correlation coefficient over frames and videos as noise level is varied. Top: Noise level as
salt and pepper noise is varied; Down: Noise level as Gaussian white noise std is varied. g. Correlation coefficients over frames
and videos for different conditions/circuit architectures when all 34 spatio-temporal filters are used. h. Correlation coefficients
over frames and videos for different conditions/circuit architectures when only 18 filters are used. The filters used are ones
without the temporal component. i. Comparison of average correlation coefficients across conditions/circuit architectures for
the 34 spatio-temporal filters and the 18 “simple” spatial filters.
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probabilities and connection strengths in the data, as these have been shown to correlate well [12]. Connection prob-
ability as a function of the difference in orientation tuning (figs. S2c to S2d) qualitatively matches the same graph
reported experimentally [31]. This like-to-like connectivity, with neurons responding to similar features (orientations)
more strongly connected, holds true for both static (shown in [26] and figs. S2c to S2d) and moving weights (shown in
Fig. S3). A second feature concerns the amplitude of static and moving weights which decreases with distance from
the classical receptive field, with lower weights on average between neurons whose classical receptive fields are far
away. Fig. S2 shows the dependence of the maximum, minimum, and average positive and negative synaptic weights,
on distance between neuronal receptive fields. Assuming an exponential spatial decay of weights with distance and
using the first two points in the plot displaying decreasing distance dependence in the mean positive static weights
curve (Fig. S2a), we computed the spatial constants Dstatic/moving = 0.8× the classical receptive field size. This is in
accordance with past findings [2, 26], suggesting that the near surround extends over a range which is similar in size
to the classical receptive field.

Experimental data on connectivity in the visual cortex has shown that in layer 4 of V1, the average connection
probability from VIP to SST is double the connection probability from VIP to PYR (0.625 compared to 0.351), while
in layer 5, VIP to SST is 5 times more probable (0.625 compared to 0.125) [48]. VIP to SST connections are also
stronger than VIP to PYR throughout all the layers (0.32 compared to 0.28) [48]. When we examine the weights W
we have inferred in our model, we find that there are a few, equally correct solutions for the optimization problem
(18) due to the multiple local minima of the movement approximation error. One of the possible solutions we found
matched experimental data showing that in various layers of V1, the VIP to SST connection is strong compared to
other connections, specifically the VIP to PYR connection (Fig. S7a). Interestingly, this property arose only when
including weights from SST to VIP in the circuit, consistent with experiments (Pfeffer et al. [48] found the connec-
tion probability/strength to be quite strong between SST to VIP: 0.77 for connection probability, 0.5 for connection
strength [48]). We conclude that our model can work well with strong weights from VIP to SST, making use of the
observed disinhibitory motif (Fig. S7).

Altogether these comparisons provide further support for our modeling assumptions, and for the role of VIP neu-
rons in visual coding across static and moving conditions. Further analysis of future datasets, as examined in the
Discussion section, will guide next steps of circuit modeling.
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Figure 9: Data analysis of VIP population activity in calcium imaging data. a) Dimensionality ratio (Participation Ratio
measure) during periods of spontaneous activity between movement and static conditions across CRE lines. b) Histrogram of
the modulation of dimensionality (statistics relative to the blue bar in panel (a)). c) Activity (dff signal) ratio during periods
of natural images viewing between movement and static conditions across CRE lines.

3 Discussion

We have introduced a computational model for V1 circuitry that uses multiple cell types to integrate contextual infor-
mation into local visual processing, during two different — static and moving — contexts. We have identified a need
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for recurrence, leading to the architecture of a switching circuit with bidirectional, learned connections to a switching
population (here, the VIP cell class). Beyond V1 and biological circuit modeling, this circuit may be useful in searching
for artificial neural network (ANN) architectures that can operate in different contexts and switch effectively between
them.

Our model connects to a body of recent empirical studies elucidating V1 neural cell types and network logic. First,
Niell and Stryker have established that as the speed of mice increases, the circuit increases spiking overall and changes
the frequency content of local field potentials [44]. Potentially, distinct activity patterns during locomotion could be
attributed to effects from eye movements, however Niell and Stryker [44] provide evidence against this hypothesis.
These findings prompt us to model the network as a switching circuit that adapts its activity as the state of the animal
changes from static to moving. Later studies have focused on the connection strengths for excitatory and inhibitory
neurons: neurons display “like-to-like” connectivity [12, 31], whereby neurons with similar orientation tuning have a
higher probability of connecting and display stronger connections on average. Pfeffer et al. describe the V1 circuit logic
by using transgenic mouse lines expressing fluorescent proteins or Cre-recombinase, providing a consistent classification
of cell-populations across experiments [48]. Three large non-overlapping classes of molecularly distinct interneurons
that interact via a simple connectivity scheme were identified: PV, SST, and VIP inhibitory neurons. In particular,
PV inhibit one another, SST avoid one another and inhibit all other types of interneurons, and VIP preferentially
inhibit SST cells.

Another important development made by Fu et al. [20] has established that locomotion activates VIP neurons inde-
pendent of visual stimulation and predominantly through nicotinic inputs from basal forebrain. This study was the
first to propose the existence of a cortical circuit for the enhancement of visual response by locomotion, describing
a modulation of sensory processing by behavioral state. These studies motivate us to choose VIP as switching units
and to map the positive and negative weights of our model to connectivities between different neuronal populations.
Finally, another study suggests that differentiated network response during locomotion can be advantageous for visual
processing [15]: an increase in firing rates can enhance the mutual information between visual stimuli and single neuron
responses over a fixed window of time, while noise correlations decrease across the population which further improves
stimulus discriminability. The authors hypothesize that cortical state modulation due to locomotion likely increases
visually pertinent information encoded in the V1 population during times when visual information changes rapidly,
such as during movement.

There is a vast literature on models of efficient coding starting with Barlow 1961 [4], Attneave 1954 [3] (for a great
description of this literature see Chalk, Marre, and Tkačik 2018 [11]). On one extreme, if the signal to noise ra-
tio is high and additional constraints (e.g. sparsity) are introduced, such models emphasize redundancy reduction
[46, 51, 24, 14, 5, 63, 16]. At the other extreme, if the signal to noise ratio is low, such models emphasize robust
coding [29, 18]. We use a theoretical framework that emphasises robust coding and that we have selected because
of its generality. It starts with an assumption on neuronal activation functionality (i.e. firing rates of neurons en-
code the probability of specific features being present in a given location of the image). This model describes local
circuit interactions needed for integration of information from surrounding visual stimuli in noisy conditions for an
arbitrary representation. The model matches multiple empirical findings, for example that statistical regularities of
natural images give rise to “like-to-like” local circuit connectivities, as observed experimentally [12, 31]. However, in
different contexts the model predicts different functional lateral interactions. Therefore, we looked at circuits which
can implement multiple functional interactions in one circuit.

Our model also relates to other switching circuits reported in the experimental literature. For example, selective
inhibition of a subset of neurons in central nucleus of the amygdala (CeA) led to decreased conditioned freezing be-
havior and increased cortical arousal as visualized by fMRI [23]. This therefore identifies a circuit that can shift fear
reactions from passive to active. Another study has unraveled the cellular identity of the neural switch that governs
the alternative activation of aggression and courtship in Drosophila fruit flies [32]. While these studies detail circuits
responsible for switching behaviors, there are circuits switching between contexts: from detection of weak visual stim-
uli to discrimination after adaptation in mice [45]; from high response firing during active whisker movement, to low
response when no tactile processing is initiated [65]; from odor attraction in food deprived larva switching to odor
aversion in well-fed larva [61].

19

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.309500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.309500
http://creativecommons.org/licenses/by-nc-nd/4.0/


In contrast to this rich body of experimental studies, there are relatively few computational models proposed so
far that explain switching of circuits [62]. We may compare our V1 circuit to the recurrent circuits utilizing FORCE
learning, where a single unit or few units project their feedback onto a recurrent neural net and momentarily disrupt
chaotic activity to enable training. VIP units in our model precisely resemble such output units providing feedback in
the FORCE framework, but it is unclear how far this analogy goes and to what extent the framework in [56] is helpful
in understanding V1 circuitry.
Another interesting example of circuit with flexible, context-dependent behavior has been proposed by Mante et al.
in [38], where pre-frontal cortex (PFC) activity is modulated by the presence of a visual cue signaling which feature
(color vs direction) the animals must integrate in a random-dots decision task. PFC functionality in this task has
been modeled using a recurrent neural network (RNN) that takes the direction of motion, color of random dots, and
visual cue as input, and outputs the appropriate, reward-generating, direction to saccade. This suggests the RNN
enacts a potentially new mechanism for selection and integration of context-dependent inputs, with gating possible
because the representations of the inputs and the upcoming choice are separable at the population level, even though
they are deeply entangled at the single neuron level. The architecture of the model RNN proposed in this study is
simpler than what we have laid out, while also attaining high flexibility. There are important differences between the
framework outlined in this paper and our work: first, it is unclear what the number of weights in the network might
be for the circuit in [38] to be multi-tasking. One of our main motivations has been to achieve a switching circuit
with few added units and weights, so that the circuit has fewer weights to learn than two separate circuits processing
the two contexts independently. It is unclear if this potential advantage holds in the case of Mante et al. Second,
our circuit adapts to the statistics of both static and moving scenes and yields firing rates that are optimal for visual
processing in either context. In the case of Mante et al., the circuit does not change momentary input processing
when the context changes, it simply adapts its dynamics to integrate the appropriate feature and initiate the action
that will be rewarded. Context takes on different meanings in these two instances: in our model, context is given by
the statistical regularities of a certain environment, static or moving; in Mante et al. context refers to an input cue
that changes the goals and reward dependencies of actions within the task. Importantly, we have focused on switching
circuits that modulate their responses to different sensory contexts, as opposed to different input cues and behaviors.
It is unclear whether identical or different mechanisms for switching apply in the case of sensory processing or action
selection, when the animal changes scene statistics or behaviors, respectively.

Although our model is faithful to some aspects of the biology of V1 circuits, it has several limitations. First, it
has been reported that during animal locomotion, firing rates of neurons more than double, at least in layers II/III of
V1. Our firing rates are normalized to sum to roughly one across features and cannot reproduce a doubling occurring
uniformly over features. Second, another study [15] reported that noise correlations are reduced during motion, but
this does not occur in our model. Further, we model VIP as a switch which is off during the static condition and has
an activation during locomotion dependent on input images, whereas data shows VIP activity is modulated at a finer
scale and correlates strongly with speed [20]. In addition, VIP switching units in our model turn on based on perfect
knowledge of whether the animal is static or moving, rather than based on more subtle time-varying visual or motor
features. Furthermore, data from [31, 48, 28, 25, 33, 59, 10] on connection probabilities and strengths between neuron
populations presents a richer, more complex picture than our simplified circuit. There is wide-ranging connectivity to
and from PV, there are strong connections from PYR to SST in most layers, and the weights from SST to VIP are
strong (in terms of both connection probability and strength across layers), details that our simplified model cannot
describe. Enabling weights from SST to VIP showed that we can similarly infer weights to and from VIP so that we
are able to approximate the circuit during the moving condition (figs. S6a to S6b). However, there are still many more
potential connectivity structures between neuron populations our model does not describe.

From a computational perspective, our model makes several simplifications in describing context integration in circuits
tuned to the statistical regularities of natural scenes. These include approximating a product with a sum in Equation
(36) in Methods and ignoring higher order surround modulation going from Equation (30) to (32) in Methods. For
simplicity, we have also limited the basis set of filters to one that extracts information about oriented edges in natural
scenes. However, the computation of the extra-classical receptive fields need not be intrinsically limited to simple
cells responding to Gabor-like filters, but can be extended to encompass neurons responding to more complex features
in areas beyond V1. Switching circuits can occur more generally, including in somatosensory and auditory cortices,
where some of the same neuronal populations interact using similar circuit logic [44, 6]. Populations of neurons in gen-
eral switching circuits can respond to diverse stimuli (e.g. the VIP in auditory cortex are activated by punishment [49]).
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Here, we showed how a biologically inspired switching mechanism can enable a network to efficiently process stimuli
in two different conditions. Most artificial neural networks (ANNs) suffer from what has been termed “catastrophic
forgetting”, by which previously acquired memories are overwritten once new tasks are learned. Conversely, humans
and other animals are capable of “transfer learning”, the ability to use past information without overwriting previous
knowledge. Proposed solutions to this problem, like elastic weight consolidation or intelligent synapses, are discussed
in [30], [64], and [36]. When applied to a narrow condition of learning new contexts, our work adds a switching
mechanism based on the connections among different cell types in V1. This may open new doors to artificial neural
networks with analogous switching architectures.

4 Methods

4.1 A theory of optimal integration of static context in images

A theory of optimal context integration was first outlined in [26] and describes a probabilistic framework for inferring
features at particular locations of an image given the features at surrounding locations. The probabilities of these
feature occurring and co-occurring are then mapped to elements of a biological circuit (firing rates, weights).

Neuronal code We assume the firing rate of neurons to be a function of the probability of a feature being present
at a specific location of the image:

fmk,X = g(p(Fmk |iX)) (25)

where fmk,X represents the firing rate due to the classical receptive field of a neuron coding for feature Fk at location m
in response to image iX , and g is a monotonic function. For every image and every location we impose a normalization
over features: ∑

k

p(Fmk |iX) =
∑
k

g−1(fmk,X) = 1 (26)

Thus, the sum over probabilities of features adds up to 1. Throughout the paper, we assume g(y) = y, although the
model may be applied with other monotonic functions as well.

Probabilistic framework We subdivide the image X into N patches that correspond to the classical receptive
fields of neurons. Thus, we have:

p(Fmk |iX) = p(Fmk |i1X , i2X , ..., iNX) (27)

We will assume from this point forward that the firing rates are in response to an image X (iX), but omit the subscript
X to simplify the notation.

We first look at the simple case where there are only 2 patches: the classical receptive field (patch im) and the
surround, which is part of the extra-classical receptive field (patch in). We will take into account other surrounding
patches later, when we perform an order expansion from p(Fmk |im, in) to p(Fmk |i1, i2, ..., iN ). The aim in the simple
case with two patches is to infer to what extent feature Fk at patch im, denoted by Fmk , is present given information
from both the classical receptive field and the surrounding extra-classical receptive field. Using Bayes rule and simple
probabilistic relations, we sum over all possible features Fmj in patch im to get:

p(Fmk |im, in) =
∑
j

p(Fmk |im, in,Fnj )p(Fnj |im, in) (28)

We can simplify the above relation by assuming the surround contribution from in does not contain higher order
surround information, instead it includes only data from the classical receptive field: p(Fmk |im, in,Fnj ) ≈ p(Fmk |im,Fnj ).
Our previous probabilistic statement (28) thus becomes

p(Fmk |im, in) =
∑
j

p(Fmk |im,Fnj )p(Fnj |im, in). (29)

21

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.309500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.309500
http://creativecommons.org/licenses/by-nc-nd/4.0/


Using Bayes rule for the first term,

p(Fmk |im,Fnj ) =
p(Fnj |Fmk , im)p(Fmk |im)

p(Fnj |im)
, (30)

Equation (29) becomes

p(Fmk |im, in) = p(Fmk |im)
∑
j

p(Fnj |im,Fmk )

p(Fnj |im)
p(Fnj |im, in). (31)

Assuming that we can ignore higher order contributions due to surround modulation, i.e. the surround modulation
of the surround, we can make the following simplifications: p(Fnj |im,Fmk ) ≈ p(Fnj |Fmk ), p(Fnj |im) ≈ p(Fnj ), and
p(Fnj |im, in) ≈ p(Fnj |in). This way, patch in is in the surround of patch im and modulates the firing rate due to im,
but we are not concerned about the further effect im has on in. Then equation (30) thus becomes

p(Fmk |im,Fnj ) =
p(Fnj ∩ Fmk )p(Fmk |im)

p(Fnj )p(Fmk )
. (32)

The original equation (28) becomes:

p(Fmk |im, in) = p(Fmk |im)
∑
j

(1 +
p(Fnj ∩ Fmk )− p(Fnj )p(Fmk )

p(Fnj )p(Fmk )
)p(Fnj |in)⇔ (33)

p(Fmk |im, in) = p(Fmk |im)(1 +
∑
j

p(Fnj ∩ Fmk )− p(Fnj )p(Fmk )

p(Fnj )p(Fmk )
p(Fnj |in)) (34)

The last equivalence holds because we have assumed in (26) that all probabilities sum to 1.

We can now go from two patches to N patches that cover the entire image: i1, i2, ..., iN . We further assume that
each patch provides independent information to a neuron coding for Fmk so that we obtain:

p(Fmk |i) = p(Fmk |i1, i2, ..., iN )

= p(Fmk |im) ·
N∏

n 6=m

(1 +
∑
j

p(Fnj ∩ Fmk )− p(Fnj )p(Fmk )

p(Fnj )p(Fmk )
p(Fnj |in))

(35)

If the contribution from each patch is very small, we can ignore the higher order terms in (38) and apply the approxi-
mation

∏
i(1 + xi) ≈ 1 +

∑
i xi for xi � 1:

p(Fmk |i) = p(Fmk |i1, i2, ..., iN )

= p(Fmk |im) · (1 +
∑

n,n6=m

∑
j

p(Fnj ∩ Fmk )− p(Fnj )p(Fmk )

p(Fnj )p(Fmk )
p(Fnj |in))

(36)

Mapping from the probabilistic framework to a neural network Using a simple neural code with g(x) = x,
so that the firing rate represents the probability of feature presence, we obtain a simple mapping to a network of
neurons. We denote

Wmn
kj =

p(Fmk ∩ Fnj )− p(Fmk )p(Fnj )

p(Fmk )p(Fnj )
=
p(Fmk ∩ Fnj )

p(Fmk )p(Fnj )
− 1 (37)

and map Wmn
kj to the synaptic weight between neurons responding preferentially to features Fmk and Fnj , respectively.

Then equation (36) becomes,

p(Fmk |i) = p(Fmk |im) · (1 +
∑

n,n6=m

∑
j

Wmn
kj p(F

n
j |in)). (38)
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We can also map firing rates to probabilities: rmk = p(Fmk |i) and fmk = p(Fmk |im), where rmk is the firing of the neuron
with receptive field at patch m and most responsive to feature Fk, and fmk is the firing rate of the same neuron due
to just the classical receptive field im. As we recognize below, inferring these firing rates from our image and video
datasets requires rectification and normalization so that f and r can be interpreted as probabilities.

The formula for synaptic weight can be expressed based on average activities of cells, when X spans a comprehensive
set of natural images:

Wmn
kj =

〈rmk rnj 〉X
〈rmk 〉X〈rnj 〉X

− 1 (39)

These weights can be achieved using Hebbian learning in an unsupervised manner. To avoid writing implicit equations
for the firing rates which are difficult to solve, and to make the computation tractable in practice without requiring
learning, we use an approximation that requires only f , the firing rates due to the classical receptive fields:

Wmn
kj ≈

〈fmk fnj 〉X
〈fmk 〉X〈fnj 〉X

− 1 (40)

Finally, the probabilistic equations (36)-(38) outlined above can be re-written in terms of biologically-relevant quantities
like firing rates and synaptic weights by applying the appropriate mappings:

rmk =
1

Lm
fmk

∏
n,n6=1

(1 +
∑
j

Wmn
kj fnj ), (41)

or, more simply,

rmk ≈
1

Lm
fmk (1 +

∑
n,n6=m

∑
j

Wmn
kj fnj ). (42)

when lateral connections given by Wmn
kj all sum up together to have a multiplicative effect. Here Lm is a normalization

coefficient for patch im, since we require ∑
k

rmk = 1 (43)

and thus denote

Lm =
∑
k

fmk ·
N∏

n 6=m

(1 +
∑
j

Wmn
kj fnj ) (44)

As outlined in [26], this can be implemented in a network in which a set of neurons responsible for normalization have
a divisive effect on the neurons, are patch-specific (have a classical receptive field of similar size to the neurons), inhibit
equally all the neurons in their image patch, are untuned to features in the visual space, and receive inputs equal to
the average of the inputs of the neurons in the patch.

4.2 Computing the synaptic weights

To compute weights according to (40), we first compute fnk , the firing rates due to the classical receptive field for every
image X in a large dataset. Initially, we pre-process the image: we convert the image to grayscale, subtract the mean,
and normalize the image to have a maximum value of 1. Similarly, we pre-process the filters so the mean of each is 0.
fk is the result of convolving X with feature k, rectifying and then normalizing so that at each location n the sum over
features k of firing rates fnk is equal to 1. Rectification ensures that firing rates are non-negative, while normalization
further ensures we can interpret f as probabilities. We average these firing rates over all images X in the dataset to
obtain < fnk >X for each feature k. The feature co-occurrence probability given by < fmk , f

n
j >X in the numerator for

the synaptic weight formula is then computed by further pairwise convolution of firing rates due to the classical recep-
tive field for each possible pair of filters in the basis set and each image in the dataset, and then averaged over all images.

For a dataset of videos, formula (40) becomes
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Wn1n2,∆t
k1k2

=
〈fm,tk , fn,t−∆t

j 〉frames

〈fm,tk 〉frames〈fn,t−∆t
j 〉frames

− 1 (45)

The feature co-occurrence probability given by 〈fm,tk , fn,t−∆t
j 〉frames is computed by convolution of firing rates due to

the classical receptive field at different frames (t and t − ∆t) for each video and averaged over all videos and video
frames. The assumption here is that extra-classical effects are delayed by a time ∆t that corresponds with the time
between movie frames or, biologically, corresponds to the synaptic delay.

We first assume translational invariance so that only the relative position of two filters is relevant: Wn1,n2

j1,j2
= Wn3,n4

j1,j2
when ~n1 − ~n2 = ~n3 − ~n4. The assumption that weights act with translational invariance allows to rewrite the connec-
tivities as simply a function of the distance, in image space, between the receptive field centers of the two neurons.
Second, the mathematical validity of our probabilistic framework relies on the assumption that patches in the vi-
sual space, representing receptive fields of neurons, contain independent information. To reconcile this assumption
with our empirically derived weights, we only consider connections between neurons whose receptive fields are suf-
ficiently far apart, regardless of their corresponding feature identity. This leads to the usage of sparse weights for
moving and static contexts (Fig. 4e), where the only non-zero weights we allow in W are spatially half of receptive
field apart. More precisely, for every feature k, synaptic weights from target filters were sampled in steps of 0.5×
the receptive field size at 3 distances in each direction around (0, 0), so that we have synaptic weights on a (7 × 7)
grid (3 connections to the left/up + 3 connections to the right/down + self-connection = 7). Instead of using these
sparse weights after sampling, we could have also re-scaled the original, non-sparse weights by a scalar α so that
||Wstatic/moving (sparse) − αWstatic/moving|| ≈ 0. Searching over possible values of α, we find α ≈ 1/50. We choose
however to work with sparse weights, or test our results on the original, non-sparse weights without worrying about
the re-scaling by α. Although results presented in this study are largely for sparse weights, we have checked that the
main results also hold when using full connectivity, at least for small ∆t ∈ {1, 2} (Fig. S5a). Further, assuming that
the contribution due to context integration decays as the filters are spatially further and further apart, we can limit
the weights in space to three times the size of the classical receptive field. Sample synaptic weights obtained using this
procedure are shown in Fig. 4e (and Figures Figs. 4d and 4f without the sampling of weights).

4.3 Constructing the feature space for natural images and videos

We chose a basis of spatial filters that was constructed as outlined in [26]. This is done by averaging approximations
of spatial receptive field sizes from 212 recorded neurons in V1 [19]. This set of filters is our first feature space and
consists of four classes of spatial RFs observed experimentally: ON (1 feature), OFF (1 feature), and two versions of
ON/OFF neurons (8 features each, for a total of 16), with the first version having a stronger ON subfield, and the
second a stronger OFF subfield. Each subfield was modeled as a 2D Gaussian with a standard deviation of σ = 0.5×
average subfield size, which was measured to be 4.8 degrees for the OFF subfield, and 4.2 degrees for the ON subfield.
The relative orientation between two subfields for each ON/OFF class was varied uniformly in steps of 45 degrees,
from 0 to 315 degrees. Also for the ON/OFF class, the relative distance between the centers of the ON and OFF
subfields was chosen to be 5 degrees, which equates to roughly 2σ. According to the data, the amplitude of the weaker
subfield is chosen to be half that of the stronger subfield, whose highest amplitude was chosen to be unity. These two
subfields are then combined additively to form a receptive field whose size is 7 degrees (the distance between the two
subfields plus σ). The set of 18 features is shown in Fig. 3d.

We then added 16 more filters with a temporal component, for a total of 34 filters. These filters have 2 frames
with the first frame being one of the ON/OFF filters. The second frame is the ON/OFF filter in the previous frame
shifted 3 pixels to the left, which matches the distance the sliding window moves every frame to generate the video.
Such a spatio-temporal filter is shown in Fig. 3e.

4.4 Datasets of natural and synthetic images and videos

Natural images and videos For the dataset of images, we used the Berkeley Segmentation Dataset (BSDS) train-
ing and test datasets [40]. The training dataset consists of 200 images of animals, human faces, landscapes, buildings
etc. and is used compute the weights Wstatic. This same training set is then employed to construct the dataset of
200 videos where a sliding window moves across the image for each frame of the video. In the simple case, the sliding
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window (167 × 167) moves 3 pixels per frame in the horizontal direction across the image (321 × 481 or 481 × 321),
from left to right for 50 frames (Fig. 3b). The sliding window may also move in any random direction, resulting in
different statistics of the video dataset and hence different Wmoving. This different dataset of videos is generated by
choosing any pixel in the image and moving the sliding window toward it in smaller increments until that pixel is
reached; a new pixel is then chosen from the image until there are a maximum limit of frames in the video (50 frames).
Results from this different dataset are shown in Figs. S1 and S2. We further get 100 images from the BSDS test
set to generate the corresponding 100 videos and use in the optimization problem. These video frames are provided
as input to the optimizer that minimizes the loss functions Eswitch,1 and Eswitch,2 to find wα, wβ for Eswitch,1 and
WV IP→SST , WV IP→PY R, and WPY R→V IP for Eswitch,2. For both optimization problems we set 50 frames aside
from these 100 videos to compute the generalization error during the minimization procedure.

In order to generate the figures in Fig. 8, another set of 100 videos generated from BSDS testing dataset is al-
tered by adding Gaussian and salt-and-pepper noise of different parameters to each frame. The resulting noisy video
frames are used to establish the ability of the switching circuit to do visual processing of stimuli with better recon-
struction capability than the circuit implementing the static extra-classical receptive field or without extra-classical
receptive field (Section 2.7). Gaussian white noise has standard deviation σ = 0.5 for reconstructions in Fig. 8e, while
salt-and-pepper noise turns pixels black or white with probability p = 0.2 each, for reconstructions in Fig. 8d, figs. 8g
to 8i. Parameters σ and p are varied (σ ∈ [0.5, 3], p ∈ [0.05, 0.3]) in Fig. 8f.

Synthetic datasets of images and videos of horizontal and vertical bars This simple synthetic dataset
consists of 18 images of horizontal and vertical bars (9 horizontal, 9 vertical). Images are 9× 9, each image having a
bar at a different location. Videos consist of bars moving in any direction 1 pixel at a time: left or right (for horizontal
bars), and up or down (for vertical bars).

4.5 Deriving an equation for PYR firing rate consistent with V1 circuit architecture

Let f be the firing rate due to the classical receptive field, r the firing rate incorporating extra-classical receptive field
information, and WX→Y the weights between neuronal populations X,Y . We can write approximated expressions for
firing rates of PYR, SST, VIP neurons at time t:

a) When there is no feedback connection from PYR to VIP

rtPY R = f tPY R ◦ (1 + WPY R→PY Rrt−1
PY R + WSST→PY Rrt−1

SST + WV IP→PY Rrt−1
V IP ) (46)

rtSST = f tSST + WV IP→SST rtV IP (47)

rtV IP = st ·wt
V IP . (48)

b) When there is feedback from PYR to VIP

rtPY R = f tPY R · (1 + WPY R→PY Rrt−1
PY R + WSST→PY Rrt−1

SST + WV IP→PY Rrt−1
V IP ) (49)

rtSST = f tSST + WV IP→SST rtV IP (50)

rtV IP = st ·WPY R→V IP rtPY R, (51)

where st is a binary variable that takes the value 1 during the moving condition and 0 during the static condition. For
the analysis of the firing rate during movement we assume st = 1. Equations (46) and (49), expressing the firing rate
rtPY R of the PYR population, assume the extra-classical receptive field contribution given by lateral connections has
a multiplicative effect on the feedforward activities fPY R. This multiplicative gain is the result of mapping from the
probabilistic framework of Equations (38) to (42) and their analogs for the moving circuit activities and weights. This
results in the network doing optimal inference of visual features via PYR firing rates as expressed in (46) and (49), and
as detailed in Section 2.1. The VIP firing rate rV IP expression involves a binary gating term that switches based on
state (static or moving), a simplification of what has been found empirically. The model could incorporate a term fV IP

into the expression (51) describing VIP firing rates driven independently from PYR such that rtV IP = st ·wt
V IP +fV IP ,

but this change would not alter our main results. Finally, only the inter-neuron connections with the longest synaptic
delay are assumed to be non-instantaneous (connections to and from PYR), while other connections are presumed to
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occur at a much faster time-scale (connections between inhibitor neurons). Biologically, PYR are assumed to carry out
computations by using dendritic trees, as outlined in [50], while SST and VIP are more spatially compact than PYR
[22]. Hence, synaptic delays between PYR and other neuron populations are longer than between other populations.

Making the appropriate substitutions in (46) and in (49), we get the PYR firing rates:
for case a),

rtPY R = f tPY R ◦ [1 + WPY R→PY Rrt−1
PY R + WSST→PY R(f t−1

SST + WV IP→SSTwt−1
V IP )+

+ WV IP→PY Rwt−1
V IP ]

(52)

for case b),

rtPY R = f tPY R ◦ [1 + WPY R→PY Rrt−1
PY R + WSST→PY R(f t−1

SST + WV IP→SSTWPY R→V IP rt−1
PY R)+

+ WV IP→PY RWPY R→V IP rt−1
PY R]

(53)

We can ignore further recurrence due to additional extra-classical receptive field contributions by making the ap-
proximation rt−1

PY R = f t−1
PY R. We are thus ignoring contextual surround modulation that is itself subject to surround

influence — a “higher order” surround modulation — and instead consider only the classical receptive field response
from surround neurons. These terms are small since this additional contribution is a linear combination of fifj , fifjfk,
etc, where fi are classical receptive field firing rates of neuron i and 0 ≤ fi ≤ 1.

Additionally, we assume PYR and SST receive the same input so that f tPY R = f tSST . With these simplifications
and dropping the subscript PYR for clarity, the equations for rtPY R become:
for case a),

rt = f t ◦ (1 + WPY R→PY Rf t−1 + WSST→PY Rf t−1

+ WSST→PY RWV IP→SSTwV IP + WV IP→PY RwV IP )
(54)

which leads to

rt = f t ◦ (1 + WPY R→PY Rf t−1 + WSST→PY Rf t−1

+ WSST→PY Rwα + wβ)
(55)

where wα ≡WV IP→SSTwV IP and wβ ≡WV IP→PY RwV IP , while

for case b),

rt = f t ◦ (1 + WPY R→PY Rf t−1 + WSST→PY Rf t−1

+ WSST→PY RWV IP→SSTWPY R→V IP f t−1 + WV IP→PY RWPY R→V IP f t−1) .
(56)

During the static condition, there is no contribution from the VIP and f t = f t−1 so the firing rate becomes

rstatic = f ◦ (1 + WPY R→PY Rf + WSST→PY Rf) . (57)

However, we know from our theoretical framework that the firing rate during the static context can be written as:

rstatic = f ◦ (1 + Wstaticf) (58)

where Wstatic has been computed from the dataset(s) of images and is proportional to the average feature co-occurrence
probability for pairs of spatial features. Therefore, we can consider a simple mapping that assigns WPY R→PY R and
WSST→PY R to known weights: WPY R→PY R = Wstatic

+ and WSST→PY R = Wstatic
− , where Wstatic

+ is the posi-
tive and Wstatic

− is the negative component of Wstatic. The unknowns of equation (59) corresponding to the V1
circuit model with PYR to VIP connections, are thus only three sets of weights to and from VIP: WV IP→SST ,
WV IP→PY R,WPY R→V IP .
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Finally, the equation for the firing rate of PYR neurons during the moving condition that we focus on throughout the
paper (with PYR projecting to VIP) becomes:

rt = f t ◦ (1 + Wstatic
+ f t−1 + Wstatic

− f t−1

+ Wstatic
− WV IP→SSTWPY R→V IP f t−1 + WV IP→PY RWPY R→V IP f t−1)

= f t ◦ (1 + Wstaticf t−1+

+ WSST→PY RWV IP→SSTWPY R→V IP f t−1 + WV IP→PY RWPY R→V IP f t−1).

(59)

4.6 Reconstructions from noisy videos using firing rates and optimal synaptic weights
of different circuit architectures

To gain insight into how optimal synaptic weights can facilitate decoding of information present in the neuronal
activity, we reconstructed natural image frames from videos using 4 distinct circuits. The firing rates in these circuits
are described by the following equations:

rno EXC(t) = f t (60)

rstatic(t) = f t ◦ (1 + Wstaticf t−∆t) (61)

rmoving(t) = f t ◦ (1 + Wmovingf t−∆t) (62)

rapprox(t) = f t ◦ (1 + Wstaticf t−∆t + WSST→PY RWV IP→SSTWPY R→V IP f t−∆t + WV IP→PY RWPY R→V IP f t−∆t)
(63)

The first equation above describing rno EXC relies solely on the feedforward information where no extra-classical re-
ceptive field contribution is included. The next two expressions re-state how the firing rates for the static and moving
circuits require contributions from the extra-classical receptive fields through lateral connections Wstatic,Wmoving,
reflective of the statistical regularities of images/videos. Equation (63) describes the switching circuit we have imple-
mented and characterized above and should approximate the firing rate in the moving circuit when VIP are active:
rmoving ≈ rapprox.

The reconstruction was performed as follows. For any noisy input image X + ξ, where ξ is some random variable
representing a noisy process, we calculated the effective firing rate (activity) r of neuron/feature k at location n using
the eqs. (60) to (63) above. To reconstruct image frames from firing rates, we convolved the firing rates computed
with the inverses of the filters in our basis set. More specifically, the activity rk corresponding to filter k was convolved
with the inverse of k, which was obtained by flipping k about the horizontal and vertical axes. These convolutions for
all filters were then averaged to obtain the final reconstruction.

We then performed the reconstruction for the same image frame X without any noise added. We assessed the
de-noising capability of our circuits by computing the Pearson correlation coefficient ρ between the reconstruction of
X + ξ and the reconstruction of X. The latter is a baseline for our comparisons, as there is no noise to remove from
the image frame through extra-classical surround modulation. The Pearson correlation coefficient ρ is a function of
the activity r of different circuit architectures and is discussed and compared across circuits in Section 2.7.

There are two further issues that merit further discussion. First, if the spectral content of the noise and image
frame is known, a Wiener de-convolution can be applied which minimizes the mean square error between the esti-
mated reconstruction and the original frame. Such a Wiener de-convolution would minimize the impact of de-convolved
noise at frequencies with poor signal-to-noise ratio. However, we assume here that interpretation of signals is done
without access to knowledge of this spectral content, but rather implementing a naive reconstruction as would be
optimal in the noise-free limit. Second, given the presence of extra-classical surround contribution, the de-convolution
operation may be more complex than the simple, filter by filter, convolution with the inverse filter FT . Specifically,
the inverse may contain information about the cross-correlation of features. Again we work in the simplifying limit
in which this is not the case. We do not exclude however the possibility that the biological circuit may apply a more
complex reconstruction (e.g. via learning weights), an interesting avenue to explore in future work.
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4.7 Measuring dimensionality with the participation ratio

We aim to characterize the dimensionality of the distribution of population vector responses representing neural
activity. Across many trials, these population vectors populate a cloud of points. The dimensionality is a weighted
measure of the number of axes explored by that cloud:

Dim(C) =
(TrC)2

TrC2
=

(
∑
i λi)

2∑
i λ

2
i

(64)

where C is the covariance matrix of the matrix of neural activations, and λi is the ith eigenvalue of the covariance
matrix C. Dim(C) measures the dimensionality of neural activity of our network and is termed the participation
ratio. The eigenvectors of the covariance matrix C are the axes of our cloud of points representing activity in neural
space. If the neural activities are independent and all have equal variance, all the eigenvalues of the covariance matrix
have the same value and Dim(C) = N . Alternatively, if the components are correlated so that the variance is evenly
spread across M dimensions, only M eigenvalues would be nonzero and Dim(C) = M . For other correlation structures,
this measure interpolates between these two regimes and, as a rule of thumb, the dimensionality can be thought as
corresponding to the number of dimensions required to explain about 80% of the total population variance in many
settings [41, 21, 34].

5 Supplemental figures
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Figure S1: a. Slices of Wstatic corresponding to different pairs of filters (feature F1 paired with features F1 - F4). b. Slices
of Wmoving computed for dataset of videos where movement is in any direction. Slices shown correspond to different pairs of
filters (feature F1 paired with features F1 - F4). c. Scatter plot of |Wstatic| vs |Wmoving|. This reveals that on average,
‖Wstatic‖ > ‖Wmoving‖ for this dataset of natural images and videos where movement can be in any direction.
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Figure S2: a. Dependence of the maximum, minimum, average positive and negative synaptic weights for the static context
onto a target neuron k from all neurons on the distance measured in terms of receptive field size (1 unit = 1/2 RF size = 7
pixels). This distance dependence enables us to compute the spatial constant in terms of the classical receptive field size and
compare it to data. b. Dependence of the maximum, minimum, average positive and negative synaptic weights for the moving
context (∆t = 2) onto a target neuron k from all neurons on the distance measured in terms of receptive field size (1 unit = 1/2
RF size = 7 pixels). The dataset of videos used to compute the weights here and in d, e is the one where the movement can be
in any direction. c. Predicted average positive synaptic weight in the static context as a function of difference in orientation of
features. This predicts that excitatory weights between neurons responsive to more similar features (similar in orientation) are
stronger than those between neurons responsive to different features. The trend matches data in [12]. d. Predicted average
positive synaptic weight in the moving context (∆t = 2) as a function of difference in orientation of features. e. Average
strength of moving synaptic weights as a function of ∆t, a parameter describing synaptic delay. The higher the synaptic delay,
the closer to chance the co-occurrence probability is, and thus the lower the absolute values of the synaptic weights are.
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Figure S3: a. Dependence of the maximum, minimum, average positive and negative synaptic weights for the moving context
with ∆t = 1 onto a target neuron k from all neurons on the distance measured in terms of receptive field size (1 unit = 1/2 RF
size = 7 pixels). The dataset of videos used to compute the weights here and throughout this figure is the one where the
movement can be only in the horizontal rightward direction. Because the movement is 3 pixels/frame and ∆t = 1 frame, the
peak weight is between neurons responding preferentially to identical features and classical receptive fields centered 3 pixels
apart (i.e. peak is at W3,0

kk , where ∆x = 3 ≈ 1/4 RF = 1/2 unit distance, not shown in the plot). b. Dependence of the
maximum, minimum, average positive and negative synaptic weights for the moving context with ∆t = 2 onto a target neuron
k from all neurons on the distance measured in terms of receptive field size (1 unit = 1/2 RF size = 7 pixels). Because the
movement is 3 pixels/frame and ∆t = 2 frames, the peak weight is between neurons responding preferentially to identical
features and classical receptive fields centered 6 pixels apart (i.e. peak is at W6,0

kk , where ∆x = 6 ≈ 1/2 RF = 1 unit distance).
c. Predicted average positive synaptic weight in the moving context (∆t = 1) as a function of difference in orientation of
features. d. Same as c, but with ∆t = 2. e. Average weight strength in terms of synaptic delay ∆t, where ∆t = 0 corresponds
to Wstatic. Unlike the weights in Figure Fig. S2, which correspond to movement in any direction, the average weight strength
does not decrease significantly with ∆t. Indeed, the peak of the tensor simply shifts at different spatial positions depending on
how large the synaptic delay is, but otherwise the tensor remains (mostly) unchanged.
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Figure S4: Varying the dimensionality of the tensors WVIP→SST, WVIP→PYR, WPYR→VIP can lower the movement
approximation error as defined in (18). These tensors have dimension Nf1 ×Nf2 × c× c, where Nf1, Nf2 represent the
number of VIP, SST, or PYR neurons, and c represents the dimensionality corresponding to the spatial component (shown on
x-axis). We set ∆t = 2, Nf1 = 5, Nf2 = 34 for WVIP→SST,WVIP→PYR, Nf1 = 34, Nf2 = 5 for WPYR→VIP, and use sparse
weights for the optimization procedure.
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Figure S5: a. Movement approximation error (defined as in (18)) decreases with increasing number of VIP neurons for
synaptic delay ∆t = 1 and using the full Wmoving (non-sparse). b. Movement approximation error decreases with increasing
number of VIP neurons for synaptic delay ∆t = 1 and using the sparse sampled Wmoving.
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additional connection from SST to VIP is added. We set synaptic delay to ∆t = 1 and use the sparse sampled Wmoving. b.
Movement approximation error for different circuits: a circuit with no VIP units (leftmost bar), a circuit with VIP and
connections from VIP to PYR and SST (middle left bar), a circuit with an additional connection from PYR to VIP added
(middle right bar), a circuit with an additional connection from SST to VIP added (rightmost bar).
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Figure S7: a. Comparison of WV IP→SST average weights to WV IP→PY R average weights (0.12 compared to 0.022). The
ratio between these average weights is invariant to re-scaling due to patch independence that results in sparse weights
WV IP→SST ,WV IP→PY R. These weights have been computed by optimizing (18) for Wmoving with ∆t = 1 (although a
similar result holds for ∆t = 2) b. Verifying that using the solutions WV IP→SST ,WV IP→PY R to the optimization problem
(18) yields a small movement approximation error (right bar) compared to the same error Eswitch,2 when no VIP units are
considered (left bar). The movement approximation error when VIP units are added (right bar) is for the circuit that includes
SST to VIP and PYR to VIP connections.
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Figure S8: a. Average dimensionality across sessions normalized to the number of neurons in each session for multiple neural
populations. Dimensionality is assessed by means of the measure Participation Ratio during epochs of spontaneous activity for
the dff signal of calcium. While the average dimensionality of the activity of the PYR population is lower, this is partially due
to the number of PYR units recorded being higher. b. Average dff calcium signal activation across different orientations for
the VIP population during drifting gratings stimuli. Despite the trend appearing across orientations this is not significant as
the Standard Error (not shown) is high due to the high variability across recordings.
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