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Abstract 

 Emotion is understood as an internal subjective experience created in the brain, yet in the 

somatosensory system hedonic information is coded by mechanoreceptors at the point of sensory 

contact. It remains unknown, however, how tactile hedonic information contributes to 

representations of interoceptive states relative to exteroceptive information, and where these 

representations may be instantiated in the brain. In this fMRI study we applied representational 

similarity analyses with pattern component modeling, a technique that deconstructs 

representational states into a weighted set of distinct predefined constructs, to dissociate how 

discriminatory vs. hedonic tactile information, carried by A- and C-/CT-fibers respectively, 

contributes to population code representations in the human brain. Results demonstrated that 

information about appetitive and aversive tactile sensation is represented separately from non-

hedonic tactile information across cortical structures. Specifically, although hedonic touch 

originates as a peripheral signal, labeled at the point of contact, representations in somatosensory 

cortices are guided by experiences of non-hedonic touch, By contrast, representations in regions 

associated with interoception and affect encode signals of hedonic touch. This provides evidence 

of complex tactile encoding that involves both external-exteroceptive and internal-interoceptive 

dimensions. Importantly, hedonic touch contributes to representations of internal state as well as 

those of externally generated stimulation.  
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Introduction 

Sensory experiences, such as the embrace of a loved one or the pain of a stubbed toe, can 

be broken down into two central components: discrimination of the sensory information and the 

associated hedonic response. The information processed by sensory systems is typically viewed 

as objective, forming representations of a tangible external environment. In contrast, hedonic 

appraisal is a subjective centrally mediated process (Rolls, 2019; Todd et al., 2020) for 

estimation and comparison of affective value. However, there is evidence that hedonic 

information (good vs bad) is coded by the peripheral afferents of the somatosensory system 

(Iggo, 1959, 1960; Vallbo et al., 1999) suggesting that aspects of tactile sensation are valenced 

from the point of contact (Miskovic & Anderson, 2018). It has been proposed that these signals 

of peripherally identified hedonic information contribute to internal representations of 

homeostatic threat and social safety (Craig, 2011, 2015). If true, then this would be evidence for 

a unique dual role of our proximal senses, consistent with Sherrington’s classic distinction 

between exteroception and interoception (Sherrington, 1906), defined as sensation of an object in 

the external environment versus sensing the body itself as object. To examine hypothesized 

neural dissociations between exteroception and interoception in the experience of touch, we 

assessed whether affective qualities of aversive pressure and caress are represented distinctly 

from discriminative information. Such a dissociation would suggest anatomically distinct tactile 

signalling pathways for hedonic tactile information, reflecting decentralized affective processing 

(Kryklywy et al., 2020), in brain regions distinct from exteroceptive somatosensory cortices.   

The somatosensory system contains multiple functional subsystems, with specific 

peripheral nerves serving as labeled lines for information traveling into the central nervous 

system (McGlone & Reilly, 2010; McGlone et al., 2014). Fast large-diameter myelinated afferent 

fibers (A-fibers) support sensory discrimination. These fibers predominantly convey information 

about the timing and location of cutaneous sensory stimulation (McGlone & Reilly, 2010), with 

some fibers specialized for nociception (Nagi et al., 2019). Additional small-diameter 

unmyelinated afferent pathways (C-Fibers; Qiu et al., 2006) support the hedonic response to 

touch, conveying information about affective aspects of aversive touch and nociception. At the 

cortical level, primary somatosensory cortex (S1) is the dominant entry point for information 

carried along myelinated cutaneous pathways. There is evidence that integration of hedonic 

information into discriminatory touch representations in these early sensory structures occurs 
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through centrally-mediated appraisal of pain and pleasure (Bushnell et al., 1999; Gazzola et al., 

2012). This observation is consistent with conventional views positing that modulation of 

sensory information by emotion is a centrally mediated process that relies on re-entrant 

projections from higher order structures assessing hedonic value (e.g., prefrontal cortices [PFC], 

insula, amygdala) to the sensory cortices (Pessoa & Adolphs, 2010; Rolls, 2019).   

Yet, evidence for peripheral labeling of affective information suggests that not all 

affective modulation of sensory signals is the result of central feedback (Qiu et al., 2006). 

Considerable evidence exists to support a neural bases of pain-coding in the periphery (McGlone 

& Reilly, 2010; Nagi et al., 2019). Anatomical projection studies in primates indicate that 

information carried along unmyelinated C-fiber pathways does not project to the entirety of S1, 

as observed for A-fibers. Rather, it projects to an anterior region of S1 (insula-adjacent area 3a; 

Vierck et al., 2013; Whitsel et al., 2009), with additional direct projections to the insula, anterior 

cingulate cortex (ACC), and PFC (Baumgartner et al., 2006; Qiu et al., 2006). Similarly, recently 

identified pathways – C-tactile (CT) fibers – have been shown to carry information about caress 

or pleasant touch (Loken et al., 2009; Marshall et al., 2019). These fibers originate from 

mechanoreceptors located in hairy skin rather than the glabrous (i.e., hairless) skin of the palms, 

where previous research has focused (Marshall et al., 2019; McGlone & Reilly, 2010; McGlone 

et al., 2014). These CT-fiber afferents respond preferentially to touch that is subjectively 

perceived as pleasant caress (Croy et al., 2016; Loken et al., 2009; Olausson et al., 2002). Thus, 

in the cutaneous system there may be distinct parallel representations for tactile stimulation 

beginning from the point of contact, carried through hedonic labeled lines, that independently 

inform the experience of hedonic value.  

Previous functional Magnetic Resonance Imaging (fMRI) studies examining neural 

substrates of affective-tactile processing have investigated either C- or CT-fiber pathways, but 

not both. The independent examination of C- and CT-fibers does not allow for the dissociation 

between these two distinct systems and is unable to discriminate valence-specific hedonic from 

general tactile salience and arousal. Moreover, these studies have also relied predominantly on 

univariate statistical approaches (Loken et al., 2009; McGlone et al., 2014; Olausson et al., 

2002). Univariate approaches have limited ability to discriminate specific information that is 

represented within a region, particularly perceptual and hedonic information represented by 

different sensory systems (Chikazoe et al., 2014; Todd et al., 2020). By contrast, multivariate 
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analyses, including representational similarity analyses (Kriegeskorte et al., 2008) allow the 

examination of population-based neuronal coding in a multidimensional representational space. 

When further analysed through pattern component modelling (Diedrichsen et al., 2018), this 

representational space can be decomposed into weighted sub-components of experience 

(Diedrichsen et al., 2018), thus representing neural activity as an integration of multiple 

heterogeneous sets of overlapping neural representations. In the present study, we implemented 

an innovative analytic approach that uses theory-guided components to perform pattern 

component modelling (PCM; Diedrichsen et al., 2018; Kriegeskorte & Kievit, 2013). This PCM 

derivative (J.H. Kryklywy et al., 2021) works by fitting multiple theoretical similarity matrices 

characterizing perfect neural representation of information vectors, called here information 

pattern components (IPCs), to observed representational patterns extracted from a series of 

predefined regions of interest (ROIs).  

In the present study, functional neuroimaging data was collected while participants 

received aversive pressure on the thumb or appetitive caress stimulation on the forearm (Figure 

1A) and viewed images of faces with neutral expressions. RSA conducted on the BOLD signal 

identified similarity/dissimilarity between tactile conditions that not only represent distinct 

discriminatory patterns but also putatively stimulate distinct fiber pathways for aversive and 

appetitive tactile experience (Figure 1B). IPCs were created for task-relevant information 

constructs and included specific aspects of tactile and emotional experience. Bayesian 

information criterion (BIC) analyses were then performed to characterize the combination of 

IPCs that best predicted observed similarity patterns of neural activity in each ROI. This allowed 

us to identify and weigh dissociable representations of discriminative and hedonic tactile signals, 

revealing potential C-fiber and CT-fiber pathways projection targets (See supplementary figure 

SF1 for a detailed schematic on PCM).  

We predicted that representation of the hedonic components of the tactile stimulation in 

frontotemporal cortices, including vmPFC, ACC, and insula would be distinct from 

representations in primary somatosensory cortices. This would demonstrate the dual coding of 

somatosensation and indicate that tactile afferents coding appetitive and aversive touch are coded 

as internal states beyond their representation as external sensory events. We expected that 

dissociable representational patterns for appetitive vs. aversive tactile stimulation would be 

identified in the insula and vmPFC, as these regions may receive direct unprocessed information 
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from hedonic-labeled lines. Patterns observed in the ACC were predicted to be most heavily 

weighted towards representation of aversive touch, consistent with this region’s preferential 

activation in response to modality-general pain.  

Methods 

Participants 

 Four-hundred and eighty-eight participants were recruited from Cornell University to 

complete an initial behavioural pilot assessment of affiliative responding to tactile stimulation. 

Of these, 107 participants (x̄age = 21.1, sd = 2.8; 41F) were recruited to complete the current 

study. We were unable to complete preprocessing of data for 40 participants: 27 participants had 

raw data corrupted related to server-transfer errors prior to preprocessing, for five we were 

unable to obtain convergence during the multi-echo independent component analysis (ICA), five 

did not have correct stimulus timing information, and three were excluded due to motion 

artifacts. Results from the remaining 67 participants are reported. All participants gave written, 

informed consent and had normal or corrected-to-normal vision. Participants were pre-screened 

for a history of anxiety and depression as well as other psychopathology, epilepsy and brain 

surgery. Pre-screening was followed up in person by an additional interview to ensure inclusion 

criteria were met. As this study was conducted as part of larger research program, all participants 

provided saliva samples for genotyping, and fecal sample for microbiome analyses. The 

experiment was performed in accordance with the Institutional Review Board for Human 

Participants at Cornell University. 

Stimuli and Apparatus 

  Three male and three female faces with neutral expressions were chosen from the 

Karolinska directed emotional faces picture set (Goeleven et al., 2008). These faces were used as 

conditioned stimuli (CS) in two classical conditioning paradigms, each containing two CS+ and 

one CS- stimuli. Unconditioned stimuli (US) consisted of either aversive pressure delivered to 

the right thumb, or appetitive caress to the participant’s left forearm. These tactile manipulations 

were aimed to maximally activate C- and C-tactile somatosensory afferent respectively. Aversive 

pressure stimuli were delivered using a custom designed hydraulic device (Giesecke et al., 2004; 

Lopez-Sola et al., 2010) capable of transmitting controlled pressure to 1 cm2 surface placed on 

the subjects’ right thumbnail. Applied pressure levels were individually calibrated for each 
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participant prior to the experiment to ensure that the pressure intensity was experienced as 

aversive but not excessively painful. Light appetitive caress lasting ~4 s were manually applied 

to the left forearm with a brush by a trained experimenter to maximally activate CT-fiber 

pathways (McGlone et al., 2014). Individual subjective responses to brush stimuli were recorded 

in a separate session prior to scanning. Only participants from the initial behavioral experiment 

who had previously responded positively to the caress manipulation were invited to participant in 

the scanning session. 

Procedure 

 While undergoing functional MR scanning, participants completed two separate 

conditioning tasks (appetitive conditioning and aversive conditioning), each involving a series of 

tactile and visual pairings (Figure 1A) (Visser et al., 2015). In each task, participants completed 

seven CS-only blocks interleaved with six CS-US paired blocks. Single blocks of either the CS-

only or the CS-US pairing contained one presentation of each facial stimulus (i.e., 3 face stimuli, 

2 CS+ and 1 CS-, per block of each conditioning task). Individual trials consisted of an initial 

fixation period (19500 ms) followed by the presentation of a face (4000 ms). A fixed and long 

interstimulus interval (19500 ms) was included in the experimental design to reduce intrinsic 

noise correlations and enable trial by trial analyses by means of RSA (Visser et al., 2016; Visser 

et al., 2013). During CS-only trials, all faces were presented without tactile stimulation. During 

CS-US paired trials, two of three facial stimuli presentations overlapped with tactile stimulation, 

thus creating two CS+ and one CS-. The US was delivered from the midpoint of the face 

presentation (2000 ms post-onset), remained for the rest of the time the face was visible (2000 

ms) and persisted following the offset (2000 ms; total US = 4000 ms). The order of face 

presentation was randomized within each CS-US paired block. Participants completed two 

experimental tasks (one for each US, order counterbalanced across participants), totaling 26 

blocks (6 CS-US paired and 7 CS only blocks for each US type).  

MRI Acquisition and Preprocessing 

MR scanning was conducted on a 3 Tesla GE Discovery MR scanner using a 32-channel 

head coil. For each subject, a T1-weighted MPRAGE sequence was used to obtain high-

resolution anatomical images (TR = 7 ms, TE = 3.42 ms, field of view (FOV) 256 x 256 mm, 

slice thickness 1 mm, 176 slices). Functional tasks were acquired with the following multi-echo 
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(ME) EPI sequence: TR = 2000 ms, TE1 = 11.7 ms, TE2 = 24.2 ms and TE3 = 37.1 ms, flip 

angle 77°; FOV 240 x 240 mm. These parameters are consistent with recent work demonstrating 

improved effect-size estimation and statistical power for multi-echo acquisition parameters 

(Lombardo et al., 2016). Specifically, the multi-echo sequence was chosen due to its enhanced 

capacity for differentiating BOLD and non-BOLD signal (Kundu et al., 2012; Kundu et al., 

2014), as well as its sensitivity for discrimination of small nuclei in areas susceptible to high 

signal dropout (Markello et al., 2018). A total of 102 slices was acquired with a voxel size of 3 x 

3 x 3 mm. Pulse and respiration data were acquired with scanner-integrated devices.  

 Preprocessing and analysis of the fMRI data was conducted using Analysis of Functional 

NeuroImages software (AFNI; Cox, 1996) and the associated toolbox meica.py ((Kundu et al., 

2014; Kundu et al., 2017). For maximal sensitivity during multivariate pattern detection, no 

spatial smoothing was performed on the data (Haynes, 2015). Preprocessing of multi-echo 

imaging data followed the procedural steps outlined by Kundu et al. (Kundu et al., 2013; Kundu 

et al., 2012). An optimally combined (OC) dataset was generated from the functional multi-echo 

data by taking a weighted summation of the three echoes, using an exponential T2* weighting 

approach (Posse et al., 1999). Multi-echo principal components analysis (PCA) was first applied 

to the OC dataset to reduce the data dimensionality. Spatial independent components analysis 

(ICA) was then applied and the independent component time-series were fit to the pre-processed 

time-series from each of the three echoes to generate ICA weights for each echo. These weights 

were subsequently fitted to the linear TE-dependence and TE-independence models to generate 

F-statistics and component-level κ and ρ values, which respectively indicate BOLD and non-

BOLD weightings. The κ and ρ metrics were then used to identify non-BOLD-like components 

to be regressed out of the OC dataset as noise regressors. Regressor files of interest were 

generated for all individual trials across the experiment, modelling the time course of each 

stimulus presentation during each run (36 total events: 2 tasks X 6 CS-US blocks X 3 CS). The 

relevant hemodynamic response function was fit to each regressor for linear regression 

modeling. This resulted in a β coefficient and t value for each voxel and regressor. To facilitate 

group analysis, each individual’s data were transformed into the standard brain space of the 

Montreal Neurological Institute (MNI). 

fMRI Analyses: Structural Regions of Interest 
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 To assess tactile (pressure and caress and non-specific touch) and hedonic (pressure vs. 

caress) representations in neural patterns, nine bilateral regions of interest (ROIs) were generated 

from the standard anatomical atlas (MNIa_caez_ml_18) implemented with AFNI. Selected ROIS 

were: Primary somatosensory cortex (S1), secondary somatosensory cortex (S2), 

primary/secondary visual cortex (V1), ventral visual structures (VVS), amygdala, ventromedial 

prefrontal cortex (Posse et al., 1999), anterior cingulate cortex (ACC) and separate 

posterior/anterior insula (Ins) divisions (consistent with its functional and histological divisions; 

for review, see Nieuwenhuys, 2012). S1 and V1 were selected as the primary sites of tactile and 

visual information respectively. VVS were chosen due to their role in visual classification 

(Kanwisher et al., 1997; Kravitz et al., 2013). Amygdala, vmPFC, ACC and posterior/anterior 

Ins divisions were selected for their hypothesized roles in affect and pain representations 

subdivisions (Anderson & Phelps, 2002; for rationale behind multiple insular ROIs, see Cauda et 

al., 2012; Chikazoe et al., 2014; Kragel et al., 2018; Orenius et al., 2017) For extended details on 

defining our ROI see Supplementary Table ST2. 

fMRI Analyses: RSA and Ideal Model Specification 

 In order to identify and compare the representational pattern elicited by the experimental 

conditions, representational similarity analysis (RSA; Kriegeskorte & Kievit, 2013; Figure 1B; 

Mur et al., 2009) was performed using the PyMVPA Python package (Hanke et al., 2009). For 

each participant, a vector was created containing the spatial patterns derived from β coefficients 

from each voxel related to each particular event in each ROI. Pairwise Pearson coefficients were 

calculated between all vectors of a single ROI, thus resulting in a similarity matrix containing 

correlations for all trials for each participant (i.e., how closely the pattern of voxel activation 

elicited in one trial resembles the patterns of voxel activation observed in all other trials). Fisher 

transformations were performed on all similarity matrices to allow comparisons between 

participants. Correlation matrix transformations were performed using Matlab (The MathWorks, 

Natick, Massachusetts, USA) and BIC analyses were conducted in R (RCoreTeam, 2013) with 

the package PCMforR (J. H. Kryklywy et al., 2021). 

A novel theory-guided implementation of pattern component modelling (PCM; 

Kriegeskorte and Kievit, 2013; Diedrichsen et al., 2018 was performed using thirteen predefined 

models of potential information pattern component (IPCs). These models were generated to 
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represent similarity matrices that would be observed in the experimental data if it were to contain 

perfect representation of distinct sources of information (see Supplementary material S1 for 

details). IPCs were constructed for 1) Experimental task, 2) Non-specific touch, 3) Specific 

touch, 4) Appetitive caress 5) Aversive pressure, 6) Touch valence, 7) Positive events, 8) 

Negative events, 9) All valence, 10) Salience, 11) Face Stimulus, 12) Violation of expectation, 

and 13) Temporal adjacency. For a description of all thirteen IPCs, see Table 1 and for an 

extended description see Supplementary material S1. 

To determine the IPC combinations that best explained the observed correlations in the 

data for each ROI, we conducted Monte-Carlo cross validated PCM using Bayesian Information 

Criterion (BIC) to fit our pattern component models. As the theoretical independent pattern 

components (IPCs) in the current experiment contained some overlapping information, a 

regression of all potential components would be insufficient to identify those most informative. 

To address this, an uninformed greedy best-first search (GBFS) algorithm (Doran & Michie, 

1966) was implemented to identify the best fitting IPC combination in a step wise manner 

(Supplementary figure SF1A). Initial model testing was conducted for each fitting of each 

independent IPC to the observed similarity for a given ROI (Level 1). Upon identification of the 

best fitting IPC (IPCB1), model fitting was conducted on each remaining IPC in combination with 

IPCB (Level 2). The IPC combination (i.e., IPCB1 + IPCB2) that provided the best fit to the ROI 

data would be held as a constant for model fitting in Level 3. This process was repeated 

iteratively until no addition of remaining IPCs led to an improved fit to the ROI. A ΔBIC > 2 

was defined as indicative of an improved fit (Fabozzi, 2014). Following similar equivalency 

criteria, all IPC combinations at a given search level with ΔBIC scores < 2 to the best fitting 

combination were also extended to path completion (Fabozzi, 2014). This approach allowed for 

the decomposition of observed representational patterns into multiple unique contributing 

sources of information. fMRI Analyses: Cross-validation 

To ensure that regression fits were not a product of overfitting, these analyses was 

performed as a cross validation procedure on a randomly selected sample of participants 

(‘random-sample’, RS = 60), with the identified components fit as a predictor to data from the 

remaining participants held-out of this initial sample (the ‘hold-out’: HO = 7). Monte-Carlo 

cross-validation (CV; Picard & Cook, 1984) parameters were chosen to maximize CV 
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performance by minimizing CV-variance while maximizing model selection accuracy (Arlot & 

Celisse, 2010). These analyses identified IPCs contributing to representational patterns for each 

ROI in the RS. Beta coefficients and intercepts, determined by fitting these IPCs as predictors to 

the experimental data, were used to create a reconstructed and averaged dataset. The 

reconstructed dataset was then fitted as a predictor to the HO, with each iteration approximating 

a single fold of a 10-fold validation. 

Specific outputs of interest included the proportion of CV iterations (i = 1000) in which 

an IPC was identified as a contributing component of the experimental data in the RS, the 

average weight of representation for significantly identified components to the RS, the number of 

search paths required to fir the data on each iteration (n-path) and the model fit of the 

reconstructed RS data to the HO (Figure 2). Proportion of iterations for IPC identification were 

compared to chance identification for each ROI (i.e., # of IPCs identified / total # of IPCs). 

 

Results 

Results presented here focus on novel methodological approaches allowing for 

identification and weighting of theory-defined independent sources of information represented in 

individual brain regions (i.e., theory-guided PCM). Results presented here are generated from a 

Monte-Carlo cross validation procedure; for detailed results from full sample analyses (Figures 3 

and 4), see Supplemental Tables ST2-ST4. 

IPC identification and weighting 

 To deconstruct the observed representational similarities into defined independent pattern 

components (IPCs), thirteen IPCs were constructed representing ideal categories of task-relevant 

information for use in a novel form of Pattern Component Modeling. As an example of the 

differences between these models, consider ‘Specific touch [ST],’ ‘Non-specific touch [nST]’ 

and ‘Touch valence [TV]’ (Table 1). Significant fit of a Specific touch IPC would indicate that a 

region displayed a unique pattern of voxel-wise BOLD activation for each tactile experience 

encountered (i.e., appetitive touch, aversive touch and the absence of both), while significant fit 

of Non-specific touch would indicate that both salient tactile manipulations (i,e., appetitive and 

aversive touch) were being represented with high similarity to themselves and each other. 
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Contrasting both these examples, model fit of Touch valence would involve high 

representational similarity within appetitive and aversive trials, but dissimilarity between these 

two conditions, specifically placing the tactile valence on an opposing linear spectrum (Chikazoe 

et al., 2014).  

To determine the IPC combinations that best explained the observed correlations in the 

data for each ROI, PCM was conducted though Bayesian Information Criterion (BIC) analyses 

and an uninformed greedy best-first search (GBFS) algorithm. To ensure that regression fits 

were not a product of overfitting, these analyses were performed as a Monte-Carlo cross 

validation (MCCV) on a randomly selected sample of participants (‘RS’ = 60), then fit these 

results as a predictor for held-out participants (the ‘HO’ = 7). Specific outputs of interest 

included the proportion of cross-validation iterations (i = 1000) in which an IPC was identified 

as a contributing component of the experimental data in the random samples, the representational 

weight of those components identified at a rate significantly greater than chance, and the model 

fit of the reconstructed RS components to the holdout (Figure 2; for complete summary of the 

cross-validation results, see Table 2). Proportion of iterations for IPC identification were 

compared to chance identification for each region of interest (ROIS, i.e., # of IPCs identified / 

total # of IPCs). For each iteration of the MCCV procedure, the total number of paths required 

for a given search is defined as the n-path. 

Exteroceptive regions of interest 

Primary Somatosensory Cortex (S1): In S1, a component modeling non-specific aspects 

of tactile experience (nST) was identified as the strongest individual predictor of S1 

representational patterns in the random samples (βnST = 0.129). Additional components identified 

at a rate significantly greater than chance modeled experimental task and non-hedonic tactile 

experience (βET = 0.055 and βST = 0.025 respectively). In the held-out sample, components 

identified in the random sample explained 24.8 % of the variance (R2 = .248, F (1,145) = 52.13, p < 

.001). This pattern indicates a representation of distinct discriminative tactile experiences rather 

than hedonic value in S1 (Figure 3A).  

In consideration of the dominant contralateral input to S1 and the lateralized tactile 

stimulation across tasks (aversive pressure applied to the RIGHT thumbnail, and appetitive 

caress with a brush applied to the LEFT forearm), two additional PCM analyses were conducted 
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in unilateral S1 ROIs. Importantly, these analyses added two additional theoretical pattern 

components, modeling the left and right lateralized components of non-hedonic tactile 

experience. For full details on IPC adjustments for unilateral PCM analyses, see Supplementary 

materials S3. In a pattern similar to that observed across the bilateral ROI, data from the random 

sample was predicted most strongly by components modeling non-specific aspects of tactile 

experience (Left S1: βnST = 0.140; Right S1: βnST = 0.129), with secondary contributions from 

components modelling experimental tasks (Left S1: βET = 0.052; Right S1: βET = 0.066). This 

similarity, however, was not observed for representations of non-specific tactile experience 

observed in the bilateral ROI. Left S1 did not represented aversive pressure as isolated from 

other forms of non-hedonic tactile states (βAP = 0.032) and was lacking general representation for 

right lateralized non-hedonic touch. By contrast, right S1 represented non-hedonic touch 

experience (i.e., appetitive caress and scanner-generic touch as distinct states βlST = 0.045). In 

both unilateral ROIs, components identified in the random sample significantly predicted the 

representational patterns of the held-out participants (Left S1: R2 = .237, F (1,145) = 49.68, p < 

.001; Right S1: R2 = .240, F (1,145) = 49.97, p < .001)  

Secondary Somatosensory Cortex (S2): For S2, the strongest predictor of representational 

patterns in the random samples was non-specific touch components (βnST = 0.185). Additional 

components identified at a rate significantly greater than chance were aversive touch (βAP = 

0.094), experimental task (βET = 0.041), and the task-specific positive experience (i.e., caress, or 

safety; βPE = 0.002). Combined, weighted components identified in the random sample 

accounted for an average of 41.1 % of the variance in the held-out participants (R2 = .411, F (1,145) 

= 113.07, p < .001). This suggests that S2 may receive hedonic signals that are not represented in 

S1 (Figure 3B). 

Visual Cortices: The most predictive pattern components in for both V1 and VVS 

representational patterns were found for components modeling task-related changes in 

experience, with no other pattern components identified at a rate significantly greater than 

chance. In V1, this component explained and average of 5.9% of the variance in the initial 

random sample, while in VVS, it explained an average of 6.1% of the variance. This weighted 

components, however, failed to significantly predict patterns observed in the held-out 

participants in cross-validation procedures (V1: R2 = .021, F (1,145) = 4.27, p = .10; VVS: R2 = 

.028, F (1,145) = 5.27, p = .07) This demonstrates that representational patterns in visual cortices 
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may reflect visual attentional demands of the experimental task and are relatively uninformative 

of non-visual information, regardless of its hedonic value (Figure 3C/D). The inability to 

replicate significant findings in the held-out participants, however, indicates that activational 

patterns in these regions are likely not driven by information modeled in the current set of 

independent pattern components, but may instead be more accurately represented by pattern 

components modeling specific aspects of visual (rather than tactile) experience 

 

Interoceptive regions of interest 

Amygdalae: A combination of three pattern components were identified at a rate 

significantly greater than chance in the initial random sample for bilateral amygdalae. These 

components modeled a linear spectrum of tactile valence (βTV = 0.014), non-specific tactile 

experiences (βnST = 0.019), and global differences in experimental tasks (βET = 0.011). Pattern 

components identified in the random sample accounted for 11.6 % of the observed variance in 

the held-out participants (R2 = .116, F (1,145) = 20.86, p = .0049). Notably, this regions housed 

representations of valence on a linear spectrum, where appetitive and aversive touch were most 

dissimilar – polar opposites of a shared representational space (Figure 4A). 

Ventromedial Prefrontal Cortex: The vmPFC representational patterns in the random 

samples were predicted most by a number of separate theoretical pattern components, most 

notably the two distinct hedonic touch components; ‘Aversive pressure (βAP = 0.050)’ and 

‘Appetitive caress (βAB = 0.033)’. Additional components identified at a rate greater than chance 

in the random sample include those modeling differences in experimental task (βET = 0.011), 

non-specific tactile representations (βnST = 0.015), and the temporal adjacency of experiences 

(βTA = 0.005). Total variance accounted for in the held-out participant by the models identified in 

the random samples was on average 7.4 % (R2 = .074, F (1,145) = 12.98, p = .023). This 

demonstrates that vmPFC activity contains information about the hedonic value of the tactile 

stimulation, representing positive and negative values as distinctly independent and non-

opposing, signals (Figure 4B). Furthermore, the heterogeneity of non-hedonic component 

identification in this region this suggests that while vmPFC does consistently represents aversive 

pressure and appetitive caress representations, there may be extensive inter-participant variability 

for other processing in this region. 
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Anterior Cingulate Cortex: Aversive pressure (AP) was identified as the component with 

as the strongest predictor in the ACC data of the random samples (βAP = 0.067). Additional 

components identified at a rate significantly greater than chance included those modeling non-

specific tactile experience (βnST = 0.055) and experimental task (βET = 0.034). Recombined, these 

components identified in the random samples predicted an average of 19.1 % of the variance in 

the held-out participants (R2 = .191, F (1,145) = 37.84, p < .001). This suggests that ACC represents 

general tactile information but is particularly sensitive to tactile information associated with pain 

(Figure 4C). 

Insula: The insula was anatomically subdivided at the anterior commissure into distinct 

non-overlapping anterior/posterior regions. Representational patterns in the anterior insula (aIns) 

were significantly predicted by four pattern components. In order of representational strength, 

these components modeled aversive tactile experience (βAP = 0.107), non-specific tactile 

experience (βnST = 0.050), experimental tasks (βET = 0.029), and task-specific negative-events 

(βNE = -0.016). Components identified in the random sample predicted an average of 15.3 % of 

the variance in the held-out participants (R2 = .153, F (1,145) = 28.74, p < .0023). 

      Similar to representations observed in aIns, in pIns, activity was significantly 

predicted by components modeling aversive tactile experience (βAP = 0.059), non-specific tactile 

experience (βnST = 0.102), experimental tasks (βET = 0.043). An additional representational 

component modeling tactile valence (βTV = 0.009) was also identified in this region. In pIns, 

combinations of component identified in the random sample predicted an average of 36.3% of 

the variance in the held-out participants (R2 = .363, F (1,145) = 90.82, p < .001). This demonstrates 

that whereas the general type of information processed across the insula may be similar for the 

anterior and posterior sections - each region sensitive to both hedonic and non-hedonic signals - 

the precise nature and dominance of these representations differ (Figure 4D/E). 

 

N-path Analyses 

To assess the robustness of IPC contributions, a one-way ANOVA was conducted on the 

average number search paths required to find the best fitting component combination for each 

iteration (i.e., n-path data) which identified a significant main effect of region (F (8,7992) = 

195.507, p < .001). A follow-up series of independent sample t-tests (all reported p-values are 
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Bonferroni-corrected) identified four distinct clusters of ROIs characterized by their n-path. A 

lower search path likely indicates either a poor fit of the IPC models (if only a single model is 

frequently identified; e.g., V1/VVS), or robust representations for a specific subset of models (if 

identified IPC > 1; e.g. vmPFC). By contrast, a higher n-path likely indicates more overlapping 

representational space (e.g., insular subdivisions). Visual areas required expansion of fewer paths 

than required by any other area (all p < .001), yet they did not differ significantly from each other 

(p = 1.0). vmPFC had more branching than either V1 or VVS but less than all other ROIs (all p < 

0.001). ACC, amygdala, and S2 did not significantly differ from each other, yet required less 

expansion of search paths than S1 or either insular ROI. (all ps < .001). Finally, while the 

anterior insula did not significantly differ from either the posterior insula or S1 (both ps = 1), the 

posterior insula displayed greater branching than S1 (p < .001). The greater n-paths in these 

regions suggests that there is likely greater overlap of representational space in these regions 

between the modeled components compares to representations in other regions. 

 

Discussion 

     In this study we applied a novel form of pattern component modeling with 

representational similarity analysis to dissociate how discriminatory vs. hedonic tactile 

information, carried by A- and C-/CT-fibers respectively, contribute to population code 

representations in the human brain. Distinct representations of hedonic information were 

observed in frontal and temporal structures, including ventromedial prefrontal cortex (vmPFC), 

insula (Ins) and anterior cingulate cortex (ACC), as well as in secondary somatosensory cortex 

(S2). Importantly, primary somatosensory cortex (S1) did not represent all tactile information 

coded by peripheral receptors. We did not observe any representation of positive hedonic touch 

signals carried by CT-fiber afferents, and only limited representation of negative hedonic signals 

carried by C-fiber afferents. Visual areas, including primary/secondary visual cortex (V1) and 

ventral visual structures (VVS), displayed no representation of either affective or discriminative 

touch information. By contrast, negative hedonic information made a minor contribution to 

representational patterns in S1 contralateral to the tactile stimulation (see Supplementary 

material S2), indicating that some nociceptive information may reach this area independent of 

frontotemporal processing.  
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Together, the findings support the hypothesis that sensations carried by hedonic-labeled 

tactile signals from C and CT-fiber pathways, despite their salience and homeostatic 

significance, are for the most part not represented in S1. Rather, this information is represented 

predominantly in frontotemporal structures more typically implicated in interoception (Craig, 

2011; Pollatos et al., 2016; Strigo & Craig, 2016) and the central mediation of emotional 

relevance (McFarland & Sibly, 1975; Rolls, 2000; Todd et al., 2020). These findings suggest that 

that peripheral signals of positive and negative tactile experience are represented in 

frontotemporal structures, independent of non-hedonic touch; yet they lack distinct 

representation in early sensory cortices. Thus, tactile hedonic information is distinct from 

traditional exteroceptive signals highlighting non-traditional mechanisms (Kryklywy et al., 2020) 

by which prioritized information may be incorporated into emotionally-guided cognitive 

processes. 

Cortical representations for non-hedonic touch 

In S1, neural activity displayed representational patterns that discriminated tactile 

experiences, as well as non-valence specific components, of tactile manipulations. The 

identification of representations of specific touch experiences (IPC: ST) in this area substantiates 

its traditional primary exteroceptive role in processing discriminatory tactile information as 

carried by out A-fiber afferents (McGlone & Reilly, 2010; McGlone et al., 2014). Note that 

specific touch is defined such that trials with no tactile manipulation (i.e., the tactile experience 

of lying in a scanner) are represented with equal strength as trials with tactile manipulation. 

Thus, its manifestation is unlikely to be generated by peripheral hedonic signalling, as such 

signals would have equivalent strength. S1 strongly represented non-specific touch experience 

(IPC: nST), indicating activity in this region was driven by salient tactile experiences with a 

shared representational space for both appetitive and aversive tactile manipulations. This 

suggests that these representations are not shaped by information carried by C- and CT-fiber 

independently, as the two distinct peripheral signals are represented by overlapping activation 

patterns. These are potentially mediated by re-entrant projections of tactile salience from other 

frontotemporal structures (Pessoa & Adolphs, 2010; Vuilleumier, 2005). Non-specific touch 

representation is likely to be either a discriminatory representation of body location (i.e., arm; 

not dependent on C- or CT- fiber activation) or general tactile salience (may or may not integrate 

information from C- and CT-fiber activation; i.e., hedonic salience). In support of the latter 
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interpretation, there is evidence that S1 likely integrates re-entrant hedonic signals from 

multisensory emotion-related regions (Orenius et al., 2017).  

Components indexing unprocessed projections of hedonic-labeled afferent pathways (i.e., 

Aversive pressure and Appetitive caress) were absent in bilateral representational patterns 

observed in S1. This suggests that these hedonic signals may not be instantiated in traditional 

somatosensory processing structures despite originating as external cutaneous sensation. 

Interestingly, unilateral investigation of left S1 did identify a representation pattern associated 

with aversive pressure (see Supplementary material S1), though this was observed in the absence 

of specific tactile discriminability (i.e., ST or rST). This suggests that discriminative and 

nociceptive information may be integrated prior to reaching S1 (for candidate regions, see 

Abraira et al., 2017; Marshall & McGlone, 2020; Neubarth et al., 2020). Alternatively, it may be 

that sustained changes in tonic firing of rates of slow adapting mechanoreceptors (for review, see 

Abraham & Mathew, 2019; Knibestol, 1975) in response to the strong pressure manipulation 

(right hand), result in a distinct tactile representation in left S1 during CS- trials (pressure task). 

This representation would be distinct from the representation of scanner generic sensation (right 

hand) experienced during the caress (which was applied to the left hand). Given substantive 

evidence to support both interpretations, it is likely that the observed pattern component 

contributions reflect a combination of these processes; however, we found no evidence of unique 

representational patterns in S1 for signals of appetitive hedonic information carried by CT-fiber 

pathways. 

 Taken together, non-hedonic tactile representation, likely of signals carried along A-fiber 

pathways (McGlone & Reilly, 2010), appear to dominate activity in early somatosensory 

cortices. While some evidence for hedonic representations in these regions exists, it appears that 

pre-cortical integration of A and C-/CT-fibre pathways (Abraira et al., 2017; Marshall & 

McGlone, 2020; Neubarth et al., 2020), or re-entrant feedback from higher order integrative 

structures (Pessoa & Adolphs, 2010; Vuilleumier, 2005) are the most probable source of these 

representations. 

Cortical representations for hedonic touch 

 Amongst all regions investigated, only vmPFC displayed independent representation of 

both appetitive and aversive touch (IPCs: AC/AP). This suggests that this region either A) 
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receives information carried along C- and C-tactile fiber afferents as distinct signals prior to their 

integration with each other or other tactile information, or B) has decomposed an integrated 

hedonic representation back into distinct signals of positive and negative value to inform 

situation specific behaviours and decision. The potential of first order representation of 

peripherally labeled hedonic signals in vmPFC is particularly intriguing considering the critical 

role these ventral structures play in appraising emotional salience to guide value-based decision 

making (Dixon et al., 2017; Euston et al., 2012; Hiser & Koenigs, 2018). Propagation of 

hedonic-labeled tactile signals to these regions independent of any prior cortical processing 

would act as a mechanism to facilitate the prioritization of evolutionarily relevant sensation  

(Kryklywy et al., 2020), and allow for expedited integration of action-outcomes into value 

appraisal to guide decision-making processes.   

The absence of distinct representations for pleasurable tactile signals in both the anterior 

and posterior insula is notable, as these regions have been highlighted as potential cortical 

recipients of C-tactile fiber signalling (Olausson et al., 2002; Rolls et al., 2003). While this may 

be due to variability in response to the appetitive touch manipulation used in the current design, 

the identification of a clear appetitive caress pattern component in the vmPFC indicated that this 

is unlikely. Instead, it may be that aversive touch is the more salient tactile signal for the 

immediate well-being of an organism (Rolls, 2000), and thus given greater priority of resources. 

Furthermore, much of the prior work identifying modulation of insula activity by pleasurable 

touch has been performed either independent of aversive touch (Olausson et al., 2002), or 

treating the two signals orthogonally without direct comparison (Rolls et al., 2003). This leaves 

open the possibility that previous results were driven by general affective salience of the tactile 

cue as observed currently, rather than the pleasurable sensation alone. 

 Though distinct representation of appetitive touch was identified only in the vmPFC, 

distinct representations of aversive pressure were identified within the ACC as well as the 

anterior and posterior insula. Notably, both of these regions are heavily implicated in the 

representation of painful experience (Corradi-Dell'Acqua et al., 2016; Kragel et al., 2018)  and 

are postulated to underlie awareness of one’s own internal homeostatic balance (Craig, 2011, 

2015; Pollatos et al., 2016; Strigo & Craig, 2016), characterized as the interoceptive self  (Craig, 

2015). One potential explanation for this pattern of results is that hedonic-labeled peripheral 

afferents are not processed as tactile signals in the traditional view of sensation (Gazzaniga et al., 
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2019; Pinel & Barnes, 2018). That is, they may not be instantiated in neocortex as representing 

the experience of contact with external objects in the environment. Rather, information carried 

along these pathways indicates internal concerns about homeostatic threat or social safety (Craig, 

2011, 2015) and manifest cognitively as emotional feelings congruent with these states. Such 

patterns of representation demonstrate a potential dual function of proximal senses, consistent 

with Sherrington’s classic distinction between exteroception and interoception: they represent 

not signals of the external world, but instead of the body itself, Sherrington’s material “me” 

(Sherrington, 1906). Information about the internal state acts can then act as an immediate 

mechanism for motivating response, independent of its representation as an exteroceptive tactile 

experience or any other form of cognitive processing.  

Integrated representation of tactile experience 

Multiple structures displayed patterns of activity that indicated representation of C- and 

CT-fiber afferent information, though not in a mutually exclusive manner. Rather, 

representational patterns showed distinct similarity/dissimilarity between hedonic conditions, 

indicative of prior processing and representational integration of this information. Specifically, in 

the ACC as well as the anterior and posterior insula, patterns of neural activity were found to 

represent non-specific touch (IPC: nST) in addition to aversive pressure (IPC: AP). While the 

representation of non-specific tactile experiences is possibly dependent on information 

integrating both types of unmyelinated hedonic tactile afferents (C- and CT- fibers), the 

similarity of representation between the two valence manipulations indicate it is unlikely to be a 

first order representation of information carried along these fibers. Rather, this integrated 

representations likely indicate processing of sensory information prior to their affective 

representations, in a manner more typical of traditional models for emotional prioritization 

(Pessoa & Adolphs, 2010; Rolls, 2000, 2019; Vuilleumier, 2005). 

While none of the anterior or posterior insula, ACC, or vmPFC were found to display 

opposing representations of hedonic valence, in the amygdala, a clear representation of the 

hedonic experience of touch valence (IPC: TV) was observed. Here, signals of tactile valence 

were represented as a single linear vector, with hedonic conditions represented as polar ends of a 

single valence spectrum: pleasure on one end and pain on the other. Thus, prior to its 

representation, or as part of its processing, in the amygdala, tactile information initially carried as 
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unique signals along non-overlapping sensory afferents must be integrated into the same 

representational space. These amygdalar bi-polar valence representations are consistent with 

those identified in the olfactory domain (Jin et al., 2015), but have not been observed for either 

gustatory or visual hedonic information (Chikazoe et al., 2014, 2019). This divergence indicates 

a probable modal-specificity of hedonic processing in the amygdala rather than a centralized a-

modal representation of emotional information (Miskovic & Anderson, 2018). In the current 

work in particular, this unidimensional hedonic vector may be related to the association of the 

tactile sensation with the concurrent visual stimuli rather than with the raw tactile signals in 

isolation, as multiple studies in both humans and non-human primates have implicated this 

region in guiding affect-biased attention (Todd et al., 2020) and emotional learning in vision 

(Everitt et al., 2003; Morris et al., 1998).  

 

Conclusion 

Somatosensation contains more information about the environment than traditionally 

believed. Beyond discriminative information pertaining to the identity of objects contiguous to 

ourselves, this system also signals the value of an object to our wellbeing — the pain and 

pleasure of contact with it. In the current study, we performed a novel theory-driven 

implementation of multivariate pattern component modeling to deconstruct observed 

representational patterns into discrete contributing components. Using this approach, we 

demonstrated that hedonic tactile information is not processed in the same fashion as non-

hedonic tactile information. The full spectrum of hedonic tactile information is not uniquely 

represented in primary somatosensory cortices but is represented in frontotemporal structures. 

Notably, representations of hedonic tactile information are observed in brain areas proposed to 

underlie the emergence of an interoceptive self and the capacity for cognitive decision making. 

We propose that somatosensory signaling contains two distinct potential channels for affective 

prioritization. One channel, propagating through somatosensory cortex to frontotemporal regions 

processes the integrated experience of tactile sensation, extracts valuable information about the 

associated hedonic values. The second, potentially bypassing early somatosensory structures in 

favour of traditionally integrative regions, does not extract hedonic information, but rather uses 

what is already present in peripheral channels to inform representation our own homeostatic 
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representations and guide our decision-making processes. Through this lens, somatosensation, 

originating from cutaneous mechanoreceptors through contact with the external world, is not 

only critical for our exteroception – feeling about the world around us. but also for our 

interoception and emotion – feelings about the world inside. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2021. ; https://doi.org/10.1101/2020.09.24.310383doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.310383
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

References 

Abraham, J., & Mathew, S. (2019). Merkel Cells: A Collective Review of Current Concepts. Int J Appl Basic 
Med Res, 9(1), 9-13. https://doi.org/10.4103/ijabmr.IJABMR_34_18  

Abraira, V. E., Kuehn, E. D., Chirila, A. M., Springel, M. W., Toliver, A. A., Zimmerman, A. L., Orefice, L. L., 
Boyle, K. A., Bai, L., Song, B. J., Bashista, K. A., O'Neill, T. G., Zhuo, J., Tsan, C., Hoynoski, J., Rutlin, 
M., Kus, L., Niederkofler, V., Watanabe, M., Dymecki, S. M., Nelson, S. B., Heintz, N., Hughes, D. 
I., & Ginty, D. D. (2017). The Cellular and Synaptic Architecture of the Mechanosensory Dorsal 
Horn. Cell, 168(1-2), 295-310 e219. https://doi.org/10.1016/j.cell.2016.12.010  

Anderson, A. K., & Phelps, E. A. (2002). Is the human amygdala critical for the subjective experience of 
emotion? Evidence of intact dispositional affect in patients with amygdala lesions. J Cogn 
Neurosci, 14(5), 709-720. https://doi.org/10.1162/08989290260138618  

Arlot, A., & Celisse, A. (2010). A survey of cross-validation procedures. Statistical surveys, 4, 40-79.  
Baumgartner, U., Tiede, W., Treede, R. D., & Craig, A. D. (2006). Laser-evoked potentials are graded and 

somatotopically organized anteroposteriorly in the operculoinsular cortex of anesthetized 
monkeys. J Neurophysiol, 96(5), 2802-2808. https://doi.org/10.1152/jn.00512.2006  

Bushnell, M. C., Duncan, G. H., Hofbauer, R. K., Ha, B., Chen, J. I., & Carrier, B. (1999). Pain perception: is 
there a role for primary somatosensory cortex? Proc Natl Acad Sci U S A, 96(14), 7705-7709. 
https://doi.org/10.1073/pnas.96.14.7705  

Cauda, F., Costa, T., Torta, D. M., Sacco, K., D'Agata, F., Duca, S., Geminiani, G., Fox, P. T., & Vercelli, A. 
(2012). Meta-analytic clustering of the insular cortex: characterizing the meta-analytic 
connectivity of the insula when involved in active tasks. Neuroimage, 62(1), 343-355. 
https://doi.org/10.1016/j.neuroimage.2012.04.012  

Chikazoe, J., Lee, D. H., Kriegeskorte, N., & Anderson, A. K. (2014). Population coding of affect across 
stimuli, modalities and individuals. Nat Neurosci, 17(8), 1114-1122. 
https://doi.org/10.1038/nn.3749  

Chikazoe, J., Lee, D. H., Kriegeskorte, N., & Anderson, A. K. (2019). Distinct representations of basic taste 
qualities in human gustatory cortex. Nat Commun, 10(1), 1048. https://doi.org/10.1038/s41467-
019-08857-z  

Corradi-Dell'Acqua, C., Tusche, A., Vuilleumier, P., & Singer, T. (2016). Cross-modal representations of 
first-hand and vicarious pain, disgust and fairness in insular and cingulate cortex. Nat Commun, 
7, 10904. https://doi.org/10.1038/ncomms10904  

Craig, A. D. (2011). Significance of the insula for the evolution of human awareness of feelings from the 
body. Ann N Y Acad Sci, 1225, 72-82. https://doi.org/10.1111/j.1749-6632.2011.05990.x  

Craig, A. D. (2015). How do you feel? : an interoceptive moment with your neurobiological self. Princeton 
University Press.  

Croy, I., Luong, A., Triscoli, C., Hofmann, E., Olausson, H., & Sailer, U. (2016). Interpersonal stroking 
touch is targeted to C tactile afferent activation. Behav Brain Res, 297, 37-40. 
https://doi.org/10.1016/j.bbr.2015.09.038  

Diedrichsen, J., Yokoi, A., & Arbuckle, S. A. (2018). Pattern component modeling: A flexible approach for 
understanding the representational structure of brain activity patterns. Neuroimage, 180(Pt A), 
119-133. https://doi.org/10.1016/j.neuroimage.2017.08.051  

Dixon, M. L., Thiruchselvam, R., Todd, R., & Christoff, K. (2017). Emotion and the prefrontal cortex: An 
integrative review. Psychol Bull, 143(10), 1033-1081. https://doi.org/10.1037/bul0000096  

Doran, J. E., & Michie, D. (1966). Experiments with the Graph Traverser Program. Proceedings of the 
Royal Society of London A: Mathematical, Physical and Engineering Sciences, 294(1437), 235-
259.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2021. ; https://doi.org/10.1101/2020.09.24.310383doi: bioRxiv preprint 

https://doi.org/10.4103/ijabmr.IJABMR_34_18
https://doi.org/10.1016/j.cell.2016.12.010
https://doi.org/10.1162/08989290260138618
https://doi.org/10.1152/jn.00512.2006
https://doi.org/10.1073/pnas.96.14.7705
https://doi.org/10.1016/j.neuroimage.2012.04.012
https://doi.org/10.1038/nn.3749
https://doi.org/10.1038/s41467-019-08857-z
https://doi.org/10.1038/s41467-019-08857-z
https://doi.org/10.1038/ncomms10904
https://doi.org/10.1111/j.1749-6632.2011.05990.x
https://doi.org/10.1016/j.bbr.2015.09.038
https://doi.org/10.1016/j.neuroimage.2017.08.051
https://doi.org/10.1037/bul0000096
https://doi.org/10.1101/2020.09.24.310383
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The role of medial prefrontal cortex in memory 
and decision making. Neuron, 76(6), 1057-1070. https://doi.org/10.1016/j.neuron.2012.12.002  

Everitt, B. J., Cardinal, R. N., Parkinson, J. A., & Robbins, T. W. (2003). Appetitive behavior: impact of 
amygdala-dependent mechanisms of emotional learning. Ann N Y Acad Sci, 985, 233-250. 
https://www.ncbi.nlm.nih.gov/pubmed/12724162  

Fabozzi, F. J. (2014). The basics of financial econometrics : tools, concepts, and asset management 
applications. John Wiley & Sons, Inc.  

Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2019). Cognitive neuroscience : the biology of the mind 
(Fifth edition. ed.). W.W. Norton & Company.  

Gazzola, V., Spezio, M. L., Etzel, J. A., Castelli, F., Adolphs, R., & Keysers, C. (2012). Primary 
somatosensory cortex discriminates affective significance in social touch. Proc Natl Acad Sci U S 
A, 109(25), E1657-1666. https://doi.org/10.1073/pnas.1113211109  

Giesecke, T., Gracely, R. H., Grant, M. A., Nachemson, A., Petzke, F., Williams, D. A., & Clauw, D. J. 
(2004). Evidence of augmented central pain processing in idiopathic chronic low back pain. 
Arthritis Rheum, 50(2), 613-623. https://doi.org/10.1002/art.20063  

Goeleven, E., De Raedt, R., Leyman, L., & Verschuere, B. (2008). The Karolinska Directed Emotional 
Faces: A validation study. Cognition & Emotion, 22(6), 1094-1118. 
https://doi.org/10.1080/02699930701626582  

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., & Pollmann, S. (2009). PyMVPA: 
A python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics, 7(1), 37-53. 
https://doi.org/10.1007/s12021-008-9041-y  

Haynes, J. D. (2015). A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and 
Perspectives. Neuron, 87(2), 257-270. https://doi.org/10.1016/j.neuron.2015.05.025  

Hiser, J., & Koenigs, M. (2018). The Multifaceted Role of the Ventromedial Prefrontal Cortex in Emotion, 
Decision Making, Social Cognition, and Psychopathology. Biol Psychiatry, 83(8), 638-647. 
https://doi.org/10.1016/j.biopsych.2017.10.030  

Iggo, A. (1959). Cutaneous heat and cold receptors with slowly conducting (C) afferent fibres. Q J Exp 
Physiol Cogn Med Sci, 44, 362-370. https://www.ncbi.nlm.nih.gov/pubmed/13852621  

Iggo, A. (1960). Cutaneous mechanoreceptors with afferent C fibres. J Physiol, 152, 337-353. 
https://doi.org/10.1113/jphysiol.1960.sp006491  

Jin, J., Zelano, C., Gottfried, J. A., & Mohanty, A. (2015). Human Amygdala Represents the Complete 
Spectrum of Subjective Valence. J Neurosci, 35(45), 15145-15156. 
https://doi.org/10.1523/JNEUROSCI.2450-15.2015  

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human 
extrastriate cortex specialized for face perception. J Neurosci, 17(11), 4302-4311. 
https://www.ncbi.nlm.nih.gov/pubmed/9151747  

Knibestol, M. (1975). Stimulus-response functions of slowly adapting mechanoreceptors in the human 
glabrous skin area. J Physiol, 245(1), 63-80. https://doi.org/10.1113/jphysiol.1975.sp010835  

Kragel, P. A., Kano, M., Van Oudenhove, L., Ly, H. G., Dupont, P., Rubio, A., Delon-Martin, C., Bonaz, B. L., 
Manuck, S. B., Gianaros, P. J., Ceko, M., Reynolds Losin, E. A., Woo, C. W., Nichols, T. E., & 
Wager, T. D. (2018). Generalizable representations of pain, cognitive control, and negative 
emotion in medial frontal cortex. Nat Neurosci, 21(2), 283-289. https://doi.org/10.1038/s41593-
017-0051-7  

Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual 
pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci, 
17(1), 26-49. https://doi.org/10.1016/j.tics.2012.10.011  

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: integrating cognition, computation, 
and the brain. Trends Cogn Sci, 17(8), 401-412. https://doi.org/10.1016/j.tics.2013.06.007  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2021. ; https://doi.org/10.1101/2020.09.24.310383doi: bioRxiv preprint 

https://doi.org/10.1016/j.neuron.2012.12.002
https://www.ncbi.nlm.nih.gov/pubmed/12724162
https://doi.org/10.1073/pnas.1113211109
https://doi.org/10.1002/art.20063
https://doi.org/10.1080/02699930701626582
https://doi.org/10.1007/s12021-008-9041-y
https://doi.org/10.1016/j.neuron.2015.05.025
https://doi.org/10.1016/j.biopsych.2017.10.030
https://www.ncbi.nlm.nih.gov/pubmed/13852621
https://doi.org/10.1113/jphysiol.1960.sp006491
https://doi.org/10.1523/JNEUROSCI.2450-15.2015
https://www.ncbi.nlm.nih.gov/pubmed/9151747
https://doi.org/10.1113/jphysiol.1975.sp010835
https://doi.org/10.1038/s41593-017-0051-7
https://doi.org/10.1038/s41593-017-0051-7
https://doi.org/10.1016/j.tics.2012.10.011
https://doi.org/10.1016/j.tics.2013.06.007
https://doi.org/10.1101/2020.09.24.310383
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis - connecting the 
branches of systems neuroscience. Front Syst Neurosci, 2, 4. 
https://doi.org/10.3389/neuro.06.004.2008  

Kryklywy, J. H., Ehlers, M. R., Anderson, A. K., & Todd, R. M. (2020). From Architecture to Evolution: 
Multisensory Evidence of Decentralized Emotion. Trends Cogn Sci. 
https://doi.org/10.1016/j.tics.2020.08.002  

Kryklywy, J. H., Forys, B. J., & Todd, R. M. (2021). Pattern Component Modeling for R. In (Version 1.0)  
Kryklywy, J. H., Forys, B. J., & Todd, R. M. (2021). Pattern Component Modelling for R. In (Version 1.0)  
Kundu, P., Brenowitz, N. D., Voon, V., Worbe, Y., Vertes, P. E., Inati, S. J., Saad, Z. S., Bandettini, P. A., & 

Bullmore, E. T. (2013). Integrated strategy for improving functional connectivity mapping using 
multiecho fMRI. Proc Natl Acad Sci U S A, 110(40), 16187-16192. 
https://doi.org/10.1073/pnas.1301725110  

Kundu, P., Inati, S. J., Evans, J. W., Luh, W. M., & Bandettini, P. A. (2012). Differentiating BOLD and non-
BOLD signals in fMRI time series using multi-echo EPI. Neuroimage, 60(3), 1759-1770. 
https://doi.org/10.1016/j.neuroimage.2011.12.028  

Kundu, P., Santin, M. D., Bandettini, P. A., Bullmore, E. T., & Petiet, A. (2014). Differentiating BOLD and 
non-BOLD signals in fMRI time series from anesthetized rats using multi-echo EPI at 11.7 T. 
Neuroimage, 102 Pt 2, 861-874. https://doi.org/10.1016/j.neuroimage.2014.07.025  

Kundu, P., Voon, V., Balchandani, P., Lombardo, M. V., Poser, B. A., & Bandettini, P. A. (2017). Multi-echo 
fMRI: A review of applications in fMRI denoising and analysis of BOLD signals. Neuroimage, 154, 
59-80. https://doi.org/10.1016/j.neuroimage.2017.03.033  

Loken, L. S., Wessberg, J., Morrison, I., McGlone, F., & Olausson, H. (2009). Coding of pleasant touch by 
unmyelinated afferents in humans. Nat Neurosci, 12(5), 547-548. 
https://doi.org/10.1038/nn.2312  

Lopez-Sola, M., Pujol, J., Hernandez-Ribas, R., Harrison, B. J., Ortiz, H., Soriano-Mas, C., Deus, J., 
Menchon, J. M., Vallejo, J., & Cardoner, N. (2010). Dynamic assessment of the right lateral 
frontal cortex response to painful stimulation. Neuroimage, 50(3), 1177-1187. 
https://doi.org/10.1016/j.neuroimage.2010.01.031  

Marshall, A. G., & McGlone, F. P. (2020). Affective Touch: The Enigmatic Spinal Pathway of the C-Tactile 
Afferent. Neurosci Insights, 15, 2633105520925072. 
https://doi.org/10.1177/2633105520925072  

Marshall, A. G., Sharma, M. L., Marley, K., Olausson, H., & McGlone, F. P. (2019). Spinal signaling of C-
fiber mediated pleasant touch in humans. Elife, 8. https://doi.org/10.7554/eLife.51642  

McFarland, D. J., & Sibly, R. M. (1975). The behavioural final common path. Philos Trans R Soc Lond B 
Biol Sci, 270(907), 265-293. https://doi.org/10.1098/rstb.1975.0009  

McGlone, F., & Reilly, D. (2010). The cutaneous sensory system. Neurosci Biobehav Rev, 34(2), 148-159. 
https://doi.org/10.1016/j.neubiorev.2009.08.004  

McGlone, F., Wessberg, J., & Olausson, H. (2014). Discriminative and affective touch: sensing and 
feeling. Neuron, 82(4), 737-755. https://doi.org/10.1016/j.neuron.2014.05.001  

Miskovic, V., & Anderson, A. K. (2018). Modality general and modality specific coding of hedonic 
valence. Curr Opin Behav Sci, 19, 91-97. https://doi.org/10.1016/j.cobeha.2017.12.012  

Morris, J. S., Ohman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the 
human amygdala. Nature, 393(6684), 467-470. https://doi.org/10.1038/30976  

Mur, M., Bandettini, P. A., & Kriegeskorte, N. (2009). Revealing representational content with pattern-
information fMRI--an introductory guide. Soc Cogn Affect Neurosci, 4(1), 101-109. 
https://doi.org/10.1093/scan/nsn044  

Nagi, S. S., Marshall, A. G., Makdani, A., Jarocka, E., Liljencrantz, J., Ridderstrom, M., Shaikh, S., O'Neill, 
F., Saade, D., Donkervoort, S., Foley, A. R., Minde, J., Trulsson, M., Cole, J., Bonnemann, C. G., 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2021. ; https://doi.org/10.1101/2020.09.24.310383doi: bioRxiv preprint 

https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.1016/j.tics.2020.08.002
https://doi.org/10.1073/pnas.1301725110
https://doi.org/10.1016/j.neuroimage.2011.12.028
https://doi.org/10.1016/j.neuroimage.2014.07.025
https://doi.org/10.1016/j.neuroimage.2017.03.033
https://doi.org/10.1038/nn.2312
https://doi.org/10.1016/j.neuroimage.2010.01.031
https://doi.org/10.1177/2633105520925072
https://doi.org/10.7554/eLife.51642
https://doi.org/10.1098/rstb.1975.0009
https://doi.org/10.1016/j.neubiorev.2009.08.004
https://doi.org/10.1016/j.neuron.2014.05.001
https://doi.org/10.1016/j.cobeha.2017.12.012
https://doi.org/10.1038/30976
https://doi.org/10.1093/scan/nsn044
https://doi.org/10.1101/2020.09.24.310383
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Chesler, A. T., Bushnell, M. C., McGlone, F., & Olausson, H. (2019). An ultrafast system for 
signaling mechanical pain in human skin. Sci Adv, 5(7), eaaw1297. 
https://doi.org/10.1126/sciadv.aaw1297  

Neubarth, N. L., Emanuel, A. J., Liu, Y., Springel, M. W., Handler, A., Zhang, Q., Lehnert, B. P., Guo, C., 
Orefice, L. L., Abdelaziz, A., DeLisle, M. M., Iskols, M., Rhyins, J., Kim, S. J., Cattel, S. J., Regehr, 
W., Harvey, C. D., Drugowitsch, J., & Ginty, D. D. (2020). Meissner corpuscles and their spatially 
intermingled afferents underlie gentle touch perception. Science, 368(6497). 
https://doi.org/10.1126/science.abb2751  

Nieuwenhuys, R. (2012). The insular cortex: a review. Prog Brain Res, 195, 123-163. 
https://doi.org/10.1016/B978-0-444-53860-4.00007-6  

Olausson, H., Lamarre, Y., Backlund, H., Morin, C., Wallin, B. G., Starck, G., Ekholm, S., Strigo, I., Worsley, 
K., Vallbo, A. B., & Bushnell, M. C. (2002). Unmyelinated tactile afferents signal touch and 
project to insular cortex. Nat Neurosci, 5(9), 900-904. https://doi.org/10.1038/nn896  

Orenius, T. I., Raij, T. T., Nuortimo, A., Naatanen, P., Lipsanen, J., & Karlsson, H. (2017). The interaction of 
emotion and pain in the insula and secondary somatosensory cortex. Neuroscience, 349, 185-
194. https://doi.org/10.1016/j.neuroscience.2017.02.047  

Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: from a 'low road' to 'many 
roads' of evaluating biological significance. Nat Rev Neurosci, 11(11), 773-783. 
https://doi.org/10.1038/nrn2920  

Picard, R. R., & Cook, R. D. (1984). Cross-validation of regression models. Journal of the American 
Statistical Association, 79(387).  

Pinel, J. P. J., & Barnes, S. (2018). Biopsychology (Tenth edition. ed.). Pearson Higher Education.  
Pollatos, O., Herbert, B. M., Mai, S., & Kammer, T. (2016). Changes in interoceptive processes following 

brain stimulation. Philos Trans R Soc Lond B Biol Sci, 371(1708). 
https://doi.org/10.1098/rstb.2016.0016  

Posse, S., Wiese, S., Gembris, D., Mathiak, K., Kessler, C., Grosse-Ruyken, M. L., Elghahwagi, B., Richards, 
T., Dager, S. R., & Kiselev, V. G. (1999). Enhancement of BOLD-contrast sensitivity by single-shot 
multi-echo functional MR imaging. Magn Reson Med, 42(1), 87-97. 
https://www.ncbi.nlm.nih.gov/pubmed/10398954  

Qiu, Y. H., Noguchi, Y., Honda, M., Nakata, H., Tamura, Y., Tanaka, S., Sadato, N., Wang, X. H., Inui, K., & 
Kakigi, R. (2006). Brain processing of the signals ascending through unmyelinated C fibers in 
humans: An event-related functional magnetic resonance imaging study. Cerebral Cortex, 16(9), 
1289-1295. https://doi.org/10.1093/cercor/bhj071  

RCoreTeam. (2013). R: A language and environment for statistical computing. In http://www.R-
project.org/ 

Rolls, E. T. (2000). Precis of The brain and emotion. Behav Brain Sci, 23(2), 177-191; discussion 192-233. 
https://www.ncbi.nlm.nih.gov/pubmed/11301577  

Rolls, E. T. (2019). Emotion and reasoning in human decision-making. Economics-the Open Access Open-
Assessment E-Journal, 13. https://doi.org/ARTN 201939  

Rolls, E. T., O'Doherty, J., Kringelbach, M. L., Francis, S., Bowtell, R., & McGlone, F. (2003). 
Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. 
Cerebral Cortex, 13(3), 308-317. https://www.ncbi.nlm.nih.gov/pubmed/12571120  

Sherrington, C. S. (1906). The integrative action of the nervous system. C. Scribner's sons.  
Strigo, I. A., & Craig, A. D. (2016). Interoception, homeostatic emotions and sympathovagal balance. 

Philos Trans R Soc Lond B Biol Sci, 371(1708). https://doi.org/10.1098/rstb.2016.0010  
Todd, R. M., Miskovic, V., Chikazoe, J., & Anderson, A. K. (2020). Emotional Objectivity: Neural 

Representations of Emotions and Their Interaction with Cognition. Annu Rev Psychol, 71, 25-48. 
https://doi.org/10.1146/annurev-psych-010419-051044  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2021. ; https://doi.org/10.1101/2020.09.24.310383doi: bioRxiv preprint 

https://doi.org/10.1126/sciadv.aaw1297
https://doi.org/10.1126/science.abb2751
https://doi.org/10.1016/B978-0-444-53860-4.00007-6
https://doi.org/10.1038/nn896
https://doi.org/10.1016/j.neuroscience.2017.02.047
https://doi.org/10.1038/nrn2920
https://doi.org/10.1098/rstb.2016.0016
https://www.ncbi.nlm.nih.gov/pubmed/10398954
https://doi.org/10.1093/cercor/bhj071
http://www.r-project.org/
http://www.r-project.org/
https://www.ncbi.nlm.nih.gov/pubmed/11301577
https://doi.org/ARTN
https://www.ncbi.nlm.nih.gov/pubmed/12571120
https://doi.org/10.1098/rstb.2016.0010
https://doi.org/10.1146/annurev-psych-010419-051044
https://doi.org/10.1101/2020.09.24.310383
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

Vallbo, A. B., Olausson, H., & Wessberg, J. (1999). Unmyelinated afferents constitute a second system 
coding tactile stimuli of the human hairy skin. J Neurophysiol, 81(6), 2753-2763. 
https://doi.org/10.1152/jn.1999.81.6.2753  

Vierck, C. J., Whitsel, B. L., Favorov, O. V., Brown, A. W., & Tommerdahl, M. (2013). Role of primary 
somatosensory cortex in the coding of pain. Pain, 154(3), 334-344. 
https://doi.org/10.1016/j.pain.2012.10.021  

Visser, R. M., de Haan, M. I., Beemsterboer, T., Haver, P., Kindt, M., & Scholte, H. S. (2016). Quantifying 
learning-dependent changes in the brain: Single-trial multivoxel pattern analysis requires slow 
event-related fMRI. Psychophysiology, 53(8), 1117-1127. https://doi.org/10.1111/psyp.12665  

Visser, R. M., Kunze, A. E., Westhoff, B., Scholte, H. S., & Kindt, M. (2015). Representational similarity 
analysis offers a preview of the noradrenergic modulation of long-term fear memory at the time 
of encoding. Psychoneuroendocrinology, 55, 8-20. 
https://doi.org/10.1016/j.psyneuen.2015.01.021  

Visser, R. M., Scholte, H. S., Beemsterboer, T., & Kindt, M. (2013). Neural pattern similarity predicts long-
term fear memory. Nat Neurosci, 16(4), 388-390. https://doi.org/10.1038/nn.3345  

Vuilleumier, P. (2005). How brains beware: neural mechanisms of emotional attention. Trends in 
Cognitive Sciences, 9(12), 585-594. https://doi.org/10.1016/j.tics.2005.10.011  

Whitsel, B. L., Favorov, O. V., Li, Y., Quibrera, M., & Tommerdahl, M. (2009). Area 3a neuron response to 
skin nociceptor afferent drive. Cerebral Cortex, 19(2), 349-366. 
https://doi.org/10.1093/cercor/bhn086  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2021. ; https://doi.org/10.1101/2020.09.24.310383doi: bioRxiv preprint 

https://doi.org/10.1152/jn.1999.81.6.2753
https://doi.org/10.1016/j.pain.2012.10.021
https://doi.org/10.1111/psyp.12665
https://doi.org/10.1016/j.psyneuen.2015.01.021
https://doi.org/10.1038/nn.3345
https://doi.org/10.1016/j.tics.2005.10.011
https://doi.org/10.1093/cercor/bhn086
https://doi.org/10.1101/2020.09.24.310383
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

Figure 1. A) Experimental time course. Participants completed tactile visual conditioning tasks. Only data 

collected during CS-US paired blocked will be presented. B) Representational similarity analyses (RSA). 

RSA was conducted correlating all experimental trials independently. Resultant Pearson correlation 

coefficients were averaged across conditions (removing autocorrelation) to create a 6 x 6 condition 

similarity matrix comparing all conditions of interest.  

Figure 2. Cross-validation across brains. A 1000 iteration monte-carlo cross validation determined 1) 

that identified IPCs from the whole sample data (n = 67) were reliably identified when the procedure 

was replicated on subsets of the sample (n = 60) and 2) that reconstructed data generated through IPC 

identification and weighting accurately predicted activational similarity pattern in the held-out 

participants (n = 7). Results from each MCCV iteration are represented as a row of data, with the 

identified IPC noted and the dark blue, and the fit to the HO shown in the center-right column for each 

ROI. Data summaries collapsed across all MCCV iterations in shown in the red box for each ROI. 

Figure 3. Information pattern component in sensory cortices. For illustrative purposes, this figure 

presents data from group sample analyses. A) Representational similarity in primary somatosensory 

cortex (S1) was characterized by IPCs indicating representations of discriminatory touch, including non-

specific tactile salience (nST), and specific tactile experience (ST). B) Representation of both hedonic and 

discriminative tactile signals were observed in S2, with strongest representation of nST and aversive 

pressure (AP). C/D) Similarity of representations in primary visual cortex (V1) and ventral visual 

structures (VVS) were characterized by intra-task similarity, consistent with the conservation of visual 

stimuli within experimental tasks. 

Figure 4. Information pattern components in frontotemporal cortices. For illustrative purposes, this 

figure presents data from group sample analyses. A) Amygdalae displayed patterns of activation 

consistent with representations of a unidimensional hedonic-tactile spectrum (TV), as well as tactile 

saliency and general task effects. B) Activation patterns in vmPFC were unique, with representation of 

appetitive and aversive tactile experience as dissociable contributing components. C/D/E) Anterior and 

posterior insula and ACC all displayed patterns of activation consistent with representation of tactile 

salience and aversive touch, though the specific biases for these types of information varied between 

the structures. 
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Table 1: IPC Glossary 

Name Abbr. Description Visual Representation* 

    

Experimental Task ET r = 1 for all comparisons between all trials in each conditioning task. 

• i.e., within conditioning tasks, CS+ has shared representation with CS- 

 
    

    

Non-Specific Touch nST r = 1 for all comparisons between all trials where a tactile manipulation 

occurred. 

• i.e., shared representation both within and between *APCS+ and 

**AVCS+.  
    

    

Specific-Touch ST r = 1 for all comparisons between all trials where an identical tactile 

experience occurred. 

• i.e., shared representation within, but not between APCS+, AVCS+ and 

CS- trials  
    

    

Appetitive Brush AC r = 1 for all comparisons between all trials that involved the delivery of an 

appetitive caress to the participant’s arm. 

 
    

    

Aversive Pressure AP r = 1 for all comparisons between all trials that involved the delivery of 

aversive pressure to the participant’s thumb. 

 
    

    

Touch Valence TV r = 1 for all comparisons between CS+ trials within each conditioning task. 

r = -1 for all comparisons between CS+ trials between conditioning tasks. 

NOTE: This reflects a linear representation of hedonic tactile 

information.  
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Positive Events PE r = 1 for all comparisons between all trials experienced as positively valenced 

relative to its experimental task.  

• i.e., APCS+ has shared representation with AVCS-. 

 
    

    

Negative Events NE r = 1 for all comparisons between all trials experienced as negatively valenced 

relative to its experimental task.  

• i.e., AVCS+ has shared representation with APCS-. 

 
    

    

All Valence AV r = 1 for all comparisons between trials containing positive events and 

between trials containing negative events. 

r = -1 for all comparisons between trials of positive events and negative 

events. 

*NOTE: This reflects a linear representation of all hedonic 

information. 
 

    

    

Salience Sa r = 1 for all comparisons between all trial with highly tactile salience. 

• shared representation both within and between APCS+ and AVCS+. 

r = 1 for all comparisons between all trial with minimal tactile salience 

• shared representation both within and between APCS- and AVCS-  

r = -1 for all correlation between highly and minimally salient trials  
 

    

    

Facial Stimulus FS r = 1 for all comparisons between trials where the visual stimulus presented 

(i.e., the face) was identical 

• i.e., distinct representation for each of the 6 CS (3CS X 2 Tasks) 

 
    

    

Violation of Expectation VE r = 1 for all comparisons correlation between all trials involving the less 

probable CS-US paired outcome 

NOTE: As there were two CS+ compared to one CS- for each 

experimental task, the less probable outcome was always the CS- trials   
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Temporal Adjacency TA r = 1 for all comparisons between all comparisons that included trials that 

were temporally contained within the same block (i.e., temporally adjacent 

exposures). 

NOTE: Due to the removal of autocorrelation from within condition 

averaging, these did not contain temporally adjacent trials   

    

 

*AV = Aversive conditioning task; CS+ indicates trials with painful pressure applied to the right thumbnail. 

**AP = Appetitive conditioning task; CS+ indicates trials with gentle caress applied to the left forearm. 

 

*NOTE: General matrix structure can be found in Figure 1B; red represents r = 1, blue represents r = -1 and yellow represents r = 0. 
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Table 2: Cross Validation – Average values 

 
a average βs are presented only for IPCs identified at a level significantly greater than chance (i.e., proportion of simulations IPC is identified > (Average # of 

contributing IPCs / Total IPCs)) 

b HO fit indicate the average fit across all 1000 Monte Carlo iterations. 

 
Av. n-path 

Information Pattern Component identification – % of Simulations (mean contributing βa; n = 55) HO Fitb (n = 6, df = 1,145) 

ROI ET nST ST AC AP TV PE NE AV S FS VE TA R2 P value Recon.  β   

                  

S1 1.934 
100 

(0.055) 

100 

(0.129) 

60.2 

(0.025) 

0 

- 

19.9 

- 

18.8 

- 

7.8 

- 

0 

- 

4.5 

- 

0 

- 

0 

- 

0 

- 

0 

- 
.248 4.1e-5 0.978 

                  

                  

S2 1.607 
96.8 

(0.041) 

100 

(0.185) 

0 

- 

1.2 

- 

98.8 

(0.094) 

3.3 

- 

54.8 

(0.002) 

5.8 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 
.411 1.5e-7 1.005 

                  

                  

V1 1.212 
100 

(0.059) 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 
.021 0.10 1.018 

                  

                  

VVS 1.183 
100 

(0.061) 

0 

- 

0 

- 

0 

- 

0.1 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 
.028 0.07 1.022 

                  

                  

Amy 1.539 
85.0 

(0.011) 

83.4 

(0.019) 

0 

- 

20.9 

- 

22.1 

- 

75.2 

(0.014) 

0 

- 

0.5 

- 

0.3 

- 

1.3 

- 

0 

- 

0 

- 

4.7 

- 
.116 0.0049 0.988 

                  

                  

vmPFC 1.327 
28.6 

(0.011) 

34.9 

(0.015) 

0 

- 

65.2 

(0.033) 

65.7 

(0.050) 

6.3 

- 

0 

- 

0.8 

- 

0 

- 

0 

- 

0 

- 

0 

- 

23.1 

(0.005) 
.074 0.023 0.934 

                  

                  

ACC 1.547 
94.4 

(0.034) 

94.4 

(0.055) 

0 

- 

5.6 

- 

100 

(0.067) 

0 

- 

0 

- 

0.1 

- 

5.5 

- 

0 

- 

0 

- 

0 

- 

0 

- 
.191 0.00033 0.991 

                  

                  

aIns 1.935 
91.0 

(0.029) 

99.8 

(0.050) 

0 

- 

0.2 

- 

100 

(0.107) 

0 

- 

0 

- 

42.2 

(-0.016) 

0 

- 

0 

- 

0 

- 

0 

- 

4.5 

- 
.153 0.0023 0.969 

                  

                  

pIns 2.043 
100 

(0.043) 

100 

(0.102) 

0 

- 

16.9 

- 

83.1 

(0.059) 

32.6 

(0.009) 

11.7 

- 

2.6 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 
.363 4.5e-6 0.991 
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