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Abstract 25 

In the present study, 241 natural accessions of Arabidopsis thaliana were grown under two 26 

different temperature regimes, 16 °C and 6 °C, and growth parameters were recorded 27 

together with metabolite profiles to investigate the natural variation in metabolic responses 28 

and growth rates. Primary metabolism and growth rates of accessions significantly differed 29 

between accessions and both growth conditions. Relative growth rates showed high 30 

correlations to specific metabolite pools. Metabolic distances based on whole metabolite 31 

profiles were built from principal component centroids between both growth setups. 32 

Genomic prediction using ridge-regression best linear unbiased prediction (rrBLUP) revealed 33 

a significant prediction accuracy of metabolite profiles in both conditions and metabolic 34 

distances, which suggests a tight relationship between genome and primary metabolome. 35 

GWAS analysis revealed significantly associated SNPs for a number of metabolites, especially 36 

for fumarate metabolism at low temperature. A highly significant correlation was observed 37 

between metabolic distances and maximum temperature in the original growth habitat 38 

between January and March. Inverse data-driven modelling revealed that metabolic pathway 39 

regulation and metabolic reaction elasticities distinguish accessions originating from warm 40 

and cold growth habitats.  41 

  42 
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Introduction 43 

Acclimation and adaptation of metabolism to a changing environment are key processes for 44 

plant survival and reproductive success. The multitude of different abiotic and biotic stressors 45 

requires plant metabolism to be highly flexible, as the mode of reprograming of metabolism 46 

depends on the type and strength of stress that plants are exposed to 1,2. The metabolic 47 

response to changing environmental factors differs significantly between plant species 3, as 48 

well as among ecotypes or cultivars of the same species 4-6. Temperature affects plant 49 

development and has been shown to be an important determinant for the geographical 50 

distribution range of many temperate plant species, e.g., A. thaliana 7. Considering that only 51 

5 % of the land mass worldwide is free of freezing events 8 and low temperature damage leads 52 

to significant losses in agricultural yield 9,10, the investigation of plant cold response bears a 53 

large potential in establishing a sustainable supply of food for a growing world population 11. 54 

Exposure to low temperature immediately affects plant metabolism by reducing enzymatic 55 

reaction rates, which has a significant effect on biosynthesis, degradation and transport 56 

processes (see, e.g., 12). Within a process termed cold acclimation, metabolism is adjusted to 57 

low temperature, which, in many temperate plant species, results in increased freezing 58 

tolerance 13. Cold acclimation is a multigenic process that affects hundreds of genes, 59 

numerous signalling cascades and metabolic pathways to stabilize photosynthetic capacity 60 

and plant performance 14. Cold exposure typically results in a rapid increase of the C-repeat 61 

binding factor (CBF) transcription factors (TFs) that regulate more than 100 genes, the so-62 

called CBF regulon, that plays a dominant role in cold acclimation 15. Comparing Italian and 63 

Swedish A. thaliana accessions revealed lower induction of the CBF regulon in the Italian 64 

accessions, which contributed to lower freezing tolerance compared to the Swedish 65 

accessions 16. Although CBF TFs rapidly increase after cold exposure, comparison of time-66 

resolved cold response of A. thaliana revealed a faster metabolic response when compared 67 

to transcriptional response 2. This finding indicates a complex mode of regulation, which, in 68 

addition to transcription, also includes translational, post-translational and metabolic 69 

regulation 17  70 

A. thaliana inhabits a large latitudinal range 18, and is therefore confronted with a wide range 71 

of climatic conditions. This wide distribution and the predominantly selfing reproduction type 72 

have led to the development of a large number of genetically distinct (homozygous) inbred 73 
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lines called accessions, which are well adapted to the prevailing microclimate 19-21. The 74 

accessions feature large variances in cold and freezing resistance, acquired after cold 75 

acclimation and naïve, without cold acclimation. These adaptions were shown to be 76 

connected to the mean minimum temperature of origin, indicating selective pressure by the 77 

ability to adapt to low temperatures 22,23. The variance in freezing tolerance along 78 

geographical clines of origin, were correlated to several differences in the accumulation of 79 

sugars and the expression of a number of CBF-regulated genes, after an acclimation phase at 80 

low, non-freezing temperatures 24. A further example of the adaptation of A. thaliana to local 81 

climates was recently given, by showing a strong connection of climate of origin and the life-82 

history strategy, i.e. the prevalence of winter or summer annuality 25. 83 

It has been reported earlier that habitat temperature of natural A. thaliana accessions 84 

determines the response of physiological parameters like photosynthesis and transpiration 85 

to growth temperature 26. Although it is known that photosynthesis needs to be tightly linked 86 

to carbohydrates and primary metabolism in order to sustain growth and development, it 87 

remains unclear how natural variation of primary metabolism relates to growth rates. In this 88 

study, natural variation of growth rates of A. thaliana was monitored together with dynamics 89 

of primary metabolites under moderate (16 °C) and low (6 °C) temperature. In total, 241 90 

natural accessions were analysed growing for three weeks under each condition.  91 

 92 

Results 93 

Natural variation allows for genomic prediction of metabolome plasticity and metabolic 94 

distance between 6 °C and 16 °C growth conditions 95 

Absolute metabolite amount was quantified from leaf material of A. thaliana accessions, 96 

comprising 37 primary metabolites of which 18 changed at least two-fold and significantly in 97 

their amount (ANOVA, p<0.05) between the two different growth temperature regimes, i.e., 98 

16 °C and 6 °C (Figure 1). Metabolite profiles differed in an accession specific manner. Most 99 

of significantly changed metabolites (15) accumulated in the plants grown at 6 °C, and only 100 

spermidine, ornithine, and glycine accumulated to higher amounts in plants grown at 16 °C. 101 

Strongest accumulation in the cold growth condition with fold changes > 45 was observed for 102 

raffinose and galactinol. Principal component analysis (PCA) separated the two growth 103 
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conditions, and the two first principal components (PCs) together covered 48.52 % of total 104 

variance (Figure 2). Highest factor loadings separating 6 °C from 16 °C were found for 105 

carbohydrates and alcohols, e.g., raffinose, galactinol, sucrose, trehalose, and myo – inositol 106 

(Supplemental Table 2). Genomic prediction was performed applying the Best Linear 107 

Unbiased Predication (BLUP) methodology 27 and a strong predictability of metabolite profiles 108 

could be shown (Figure 3a). 25,826 unique SNPs were used to predict the 37 metabolites in 109 

both growth conditions, as well as a cross condition approach in which the metabolite profiles 110 

of the 16 °C condition were utilized to predict the metabolite profiles of the 6 °C condition 111 

and vice versa. For within condition prediction, Kernel density functions of predictability, 112 

scored by Pearson correlation of observed versus predicted values, peaked at a correlation 113 

coefficient of ~0.5 for the 16 °C condition and ~0.4 for the 6 °C condition. Cross-condition 114 

prediction accuracy was slightly lower (Figure 3a). Metabolic distances were calculated for all 115 

accessions to investigate natural variation of metabolic responses to the cold growth 116 

conditions. Metabolic distance values represented Euclidian distances in the PCA space 117 

covering the divergence of metabolism between 6 °C and 16 °C. Distances comprised 118 

information about all quantified metabolites and, therefore, allowed insight into the 119 

amplitude of changes on a large part of plant primary metabolism between different 120 

conditions. rrBLUP was used for prediction of metabolic distance. As shown in figure 3a 121 

metabolic distance was predicted with a slightly better correlation coefficient than the 122 

average of individual metabolites in the metabolite profile, indicating that the amplitude of 123 

change to environmental perturbation is closely related to genome variation. To investigate 124 

the genetic background of differences metabolism, GWAS was conducted using the 125 

metabolite levels in both conditions (Supplemental Table 5). The strongest , significant 126 

correlation was found for SNPs in the promotor region of the FUM2 gene (AT5g50950) in the 127 

6 °C condition, which highlights the influence of genetic variation in the regulation of 128 

fumarate metabolism under the applied growth condition (Figure 3 b and c).  129 

 130 

Q1 temperature at the natural origin of Arabidopsis accessions is linked to metabolic 131 

distances between cold and warm growth conditions 132 

Accessions showed large diversity in metabolic adjustments to the cold growth conditions, 133 

reflected by a large range of metabolic distances (Figure 4). For southern accessions, a 134 
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relatively small metabolic distance was observed, while northern accessions showed 135 

relatively large metabolic distances. Each of the accessions was assigned to a genetic 136 

admixture group 28 and a one-way ANOVA revealed significant differences in metabolic 137 

distance between the groups (one-way ANOVA p-value: 9.54E-13). A trend along a gradient 138 

of latitude of origin of the admixture groups was revealed (Figure 4b & Figure S 1) indicating 139 

a directed influence of genetic and geographic origin on the metabolic response to cold 140 

growth conditions. As the metabolic distance roughly correlated to a north – south gradient, 141 

a dataset containing climatic variables was used to find correlations between the climate of 142 

origin for the analysed accessions and their metabolic response. To investigate the 143 

relationship of metabolic response to cold and climate of origin, Spearman correlation 144 

coefficients between the metabolic distance and environmental variables, comprising 145 

temperature, solar radiation, water vapour pressure, precipitation and wind speed were 146 

calculated. Highest correlation coefficients for metabolic distance were observed for 147 

temperature variables between January and March, i.e., the first quarter of the year (Q1). 148 

Correlation coefficients between metabolic distance and values of climate parameters for 149 

each month revealed that temperature was the most influential parameter throughout the 150 

year, but the correlation strength decreased in the warmer part of the year, i.e., between 151 

May and August (Figure 5, Table S 1). Precipitation had a neglible correlation with metabolic 152 

distance, indicating a low impact of this factor on regulation of metabolic reactions of plants 153 

to the applied cold growth conditions. To investigate if a combination of climate variables 154 

could yield a better explanatory model for metabolic distance, backwards stepwise linear 155 

regression, selecting for the lowest RMSE (root mean square error) was employed. Using a 156 

dataset containing summary variables of climate parameters for each quarter of the year, the 157 

model with the lowest RMSE contained only the variable describing the average maximum 158 

temperature of Q1. Additional statistical analyses using different methods for variable 159 

selection, i.e., ridge regression, lasso regression and partial least square discriminant analysis 160 

(PLS-DA) confirmed that Q1 temperature was consistently the strongest predictor for 161 

metabolic distance. Additionally, stepwise backwards linear regression on a dataset 162 

containing climate variables for each month, as well as a dataset of bioclimatic variables, 163 

yielded models containing temperatures in Q1 as the most influential independent variable. 164 

Evaluation of a linear model of metabolic distance and maximum temperature in January to 165 

March showed a significantly negative correlation (R² = 0.2687, p= <2.2E-16; Figure 6). This 166 
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correlation was stronger than the correlation of metabolic distance with geographic latitude 167 

(R² = 0.1861, p= 1.6E-12). The correlation of temperature at the geographical origin and the 168 

observed metabolic distance stayed significant after including a correction for population 169 

structure via a partial Mantel test using a genetic relatedness matrix as control variable (Table 170 

S 1). 171 

 172 

Accessions from cold and warm climate have specific metabolite profiles under cold growth 173 

conditions 174 

Climate of origin, especially maximum Q1 temperature, was significantly correlated to 175 

metabolic distance. Therefore, two subsets of the dataset, representing accessions 176 

originating from colder or warmer climate, defined by the upper and lower quartiles (25 % 177 

and 75 %; 4.77 °C and 7.86 °C respectively) of maximum Q1 temperature (Figure S 4), were 178 

selected to investigate the differences in metabolic response to the cold growth conditions. 179 

In accessions originating from colder climate (< 4.77 °C maximum Q1 temperature), most 180 

investigated metabolites were present in higher concentration at 6 °C compared to accessions 181 

originating from warmer climate (> 7.86 °C maximum Q1 temperature). Of these metabolites, 182 

10 were present in significantly higher concentration (one-Way ANOVA p-Value <0.05, fold 183 

change >2; Figure 7 A) and 20 were present in slightly, but significantly higher concentration 184 

(one-Way ANOVA p-Value <0.05, fold change >1 & <2). Only glutamic acid and glutamine were 185 

found at significantly higher concentrations in accessions originating from warmer climate in 186 

the 6 °C condition (one-Way ANOVA p-Value <0.05, fold change <1).  187 

Accessions originating from colder climates contained higher concentrations of sugars, and 188 

particularly of raffinose, than accessions from warm climates at 6 °C. However, raffinose was 189 

also found in higher concentration in the 16 °C growth condition in those accessions. 190 

Therefore, the proportional increase between the 6 °C and the 16 °C condition, representing 191 

the raffinose accumulation caused by the low temperature, was not significantly different 192 

between the two groups of colder or warmer origin. Glucose and fructose, on the other hand, 193 

both accumulated to higher absolute amount and in higher proportion in the accession group 194 

originating from colder climate at 6 °C (fold change ~2). In general, the accumulation of 195 

glucose and fructose was negatively correlated with maximum Q1 temperature (glc: 196 

spearman`s ρ = -0.45, p-value = 1.85E-13; frc: spearman`s ρ = -0.35, p-value = 2.19E-8). 197 
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The amount of galactinol, which is a substrate for raffinose biosynthesis, was significantly 198 

higher at 6 °C and the accumulation caused by the 6 °C condition, compared to the 16 °C 199 

condition was stronger in accessions from colder climate. Also, the amount of ornithine was 200 

higher at 6 °C and it accumulated stronger in the plants from cold climates (Figure 7).  201 

With decreasing Q1 temperature of origin, both the average in metabolic distance and the 202 

deviation from this average increased, resulting in a higher absolute variance in metabolic 203 

distance in accessions originating from colder regions (Figure 6, Figure S 2). Therefore, some 204 

accessions from colder habitats feature a similarly small metabolic response to 6 °C as 205 

accessions coming from warmer regions, while others show metabolic distances, which are 206 

more than three times as big. The increase of variance reflected in the metabolic distance of 207 

accessions originating from colder climates was based on strong increases in the absolute 208 

variance of levels of galactinol, raffinose, threitol, fructose, glucose, citric acid, threonic acid, 209 

and proline in 6 °C (Figure 6, Figure S 2). The variance of galactinol and raffinose, described 210 

by the Full Width at Half Maximum (FWHM) of kernel density functions, was higher by a factor 211 

of ~4.5 and ~6.5 respectively, in the accessions originating from colder climates.  212 

To test to what extent genetic variance was explaining the observed variation in metabolite 213 

levels, broad-sense heritabilities were calculated for each metabolite in both temperatures. 214 

These heritabilities ranged from close to zero to 0.52 and 0.43 in respectively 16 °C and 6 °C. 215 

Four metabolites of those that lead to increased variance in metabolic distance had the 216 

highest heritabilities in 6 °C: galactinol, raffinose, fructose, glucose (Figure S 3). The highest 217 

heritabilities in both temperatures were found for galactinol and raffinose. This shows that 218 

there is a genetic basis for the observed variance in metabolites. With a mixed-effect model 219 

we tested for significance of the genotype specific temperature response (genotype by 220 

environment interaction; GxE) of each metabolite. Eleven metabolites showed a significant 221 

GxE effect (citric acid, fructose, galactinol, glucose, malic acid, myo inositol, oxoglutaric acid, 222 

proline, raffinose, serine, and trehalose; fdr < 0.05). Together, this shows that there is a 223 

genetic basis for both the variation of certain metabolites within specific temperatures, as for 224 

the temperature response itself. 225 

 226 
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Inverse data driven modelling indicates different regulation of amino and organic acid 227 

metabolism as well as sucrose cycling between accessions originating from warm and cold 228 

climates 229 

To investigate regulation of metabolism, reaction elasticities were calculated based on a 230 

method for inverse data driven modelling, which connects metabolite variance information 231 

with a metabolic network 29,30. Metabolite data from the 6 °C condition of two subsets 232 

representing cold and warm Q1 climate were used for this approach. Calculations resulted in 233 

the biochemical Jacobian matrix, representing rate elasticities for both groups. Inverse 234 

approximation was performed in five independent replicates using different threshold values 235 

for the definition of cold and warm origin accessions (Figure S 4). To find the strongest 236 

differences in Jacobian entries between accessions originating from warm and cold regions, 237 

reaction elasticities, i.e., entries of the Jacobian matrix, were statistically analysed in a PCA 238 

(Figure 8). This analysis showed a clear separation between the two groups of origin on PC1 239 

(>50 %) indicating strong differences in the biochemical regulation in response to the cold 240 

growth condition. Absolute values of loading scores for the individual Jacobian matrix entries 241 

for PC1 were listed according to their influence on separation (Figure 9). Strongest changes in 242 

reaction elasticities were observed in fumarate metabolism, amino acid biosynthesis, sugar 243 

cleavage, and branched chain amino acid (BCAA) metabolism. 244 

Jacobian entries related to fumarate metabolism had a strong influence on the separation of 245 

the two origin groups, pointing to a differential regulation of fumarate metabolism under low 246 

temperature, which is further highlighted by the strong correlation of SNPs in the promotor 247 

region of FUM2 with fumarate levels in the 6 °C condition (Figure 3c).  248 

Reaction elasticities for glucose, which were related to sucrose cleavage, were different in the 249 

6 °C condition between the two origin groups. This, together with the link of hexose 250 

accumulation to Q1 climate of origin, pointed to different strategies in the central sucrose 251 

metabolism. Furthermore, SNPs in 6 invertase genes (AT1G35580, AT3G13784, AT1G12240, 252 

AT3G13790, AT1G62660, AT3G52600, AT4G09510) showed strong correlation with 253 

temperature of origin in the first months of the year in an analysis performed with the online 254 

tool GenoCLIM 31. 255 

Reaction elasticities in raffinose metabolism, represented by the dependency of raffinose on 256 

galactinol levels (galactinol --> raffinose) were observed to be very similar between the two 257 
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origin groups, indicated by a low loadings-score in the principal component analysis (Figure 258 

9). This finding reflected similar raffinose accumulation rates in both groups (Figure 7b). Even 259 

though the total concentrations of raffinose were significantly different (Figure 7a), the 260 

sensitivity of the respective metabolic system seemed to be very similar in the prevalent 261 

scenario. 262 

Reaction elasticities related to alanine metabolism showed strong differences between the 263 

two origin groups (Figure 9), despite no apparent differences in accumulation or absolute 264 

concentration (Figure 7). Likewise, high loading scores for Jacobian entries of valine and 265 

isoleucine, i.e., branched chain amino acids (BCAAs), indicated its importance in cold 266 

acclimation strategies. Like for alanine, BCAAs did not differ significantly in their absolute 267 

concentration and accumulation rate between the origin groups (Figure 7). Generally, valine, 268 

isoleucine and alanine concentration did not contribute strongly in separating the growth 269 

conditions (6 °C and 16 °C) in the PCA based on the metabolite measurements (Figure 2), but 270 

rather added to the variance within the conditions, pointing to a high variance in these 271 

metabolites between the individual accessions, as well as to differences in the variance 272 

between accessions from colder and accessions from warmer climates. 273 

 274 

Relative growth rate was connected to different metabolite pools under cold growth 275 

conditions 276 

To investigate correlations between metabolite levels and overall growth rates in both growth 277 

conditions, stepwise linear modelling was used to find the strongest connection between 278 

metabolism and growth. In the 6 °C growth condition, the resulting model contained 279 

phenylalanine, raffinose, serine, spermidine, and trehalose (R² = 0.26, p = 2.64e-15). When 280 

these correlations were investigated one by one, phenylalanine, spermidine, and trehalose 281 

correlated positively and raffinose and serine correlated negatively with overall growth rate. 282 

In the 16 °C condition, the model with the lowest RMSE contained asparagine, glycine, pyruvic 283 

acid, serine, spermidine, and trehalose (R² = 0.49, p < 2.2e-16). In this case, glycine, 284 

spermidine, and trehalose correlated positively and asparagine, pyruvic acid and serine 285 

correlated negatively with overall growth rate. Comparing the two models, three metabolites 286 

(serine, spermidine and trehalose) correlated with the growth rate in both conditions, 287 

indicating a general connection of growth with these metabolites, while phenylalanine and 288 
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raffinose occurred only in the model for 6 °C and asparagine, glycine and pyruvic acid were 289 

only contained in the model for growth in the 16 °C condition.  290 

 291 

Discussion  292 

Natural habitat temperature in the first quarter of the year predicts the response of primary 293 

metabolism in cold grown plants  294 

In previous studies, it has been described that freezing tolerance of cold acclimated plants 295 

significantly correlates with latitude of geographical origin of natural Arabidopsis accessions 296 
24,32. In the present study is was shown that the extent of primary metabolism response to 297 

growth at 6 °C is connected to geographical latitude as well, but a correlation with climatic 298 

variables revealed a much stronger connection to the temperature between January to 299 

March. The general direction of separation between the growth conditions in a PCA was 300 

similar for all included accessions, but the metabolic response to the 6 °C condition was 301 

stronger in plants originating from colder climates. A strong connection of freezing tolerance 302 

and the temperature in January could be linked to the expression level of CBFs in four Chinese 303 

Arabidopsis accessions 33. Interestingly, no direct relation between genetic relatedness and 304 

freezing tolerance after acclimation was observed 24, which strongly suggests that local 305 

adaption to climate is the key driving factor for the cold response and freezing tolerance in A. 306 

thaliana 34,35. Similarly, it has recently been shown, that grapevine varieties adapted to local 307 

climate deal better with abiotic stress in a range typical for the specific climate compared to 308 

widely used commercial varieties 36. Climatic range boundaries of A. thaliana distribution 309 

were shown to be determined by a combination of temperature and precipitation 7, which 310 

can explain the connection of temperature in Q1, and metabolic reaction to cold. In the 311 

present study, however, no significant correlation of metabolic distance and precipitation at 312 

the original habitat was detected. This lack of correlation suggests that, even though both, 313 

temperature and precipitation, limit the distribution range, the metabolic response to these 314 

factors is uncoupled from each other. Additionally, the correlation of metabolic distance with 315 

original habitat temperature was less significant in the warmer part of the year, i.e., between 316 

May and August (Figure 5). This allows us to speculate that the extent of metabolic response 317 

to low ambient temperature underlies selective pressure only by the temperature in the cold 318 
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part of the year, even though mean temperatures throughout the year also correlate to a 319 

strong extent. The increase in metabolic distance with decreasing Q1 temperature was 320 

predominantly driven by strong accumulation of raffinose, galactinol, fructose, glucose, 321 

citrate and malate (see Figure 7). Soluble sugars have been shown earlier to positively 322 

correlate with the capability of natural accessions to acclimate to low temperature and to 323 

increase freezing tolerance 22. However, plant development and growth under low 324 

temperature results in a different metabolic constitution than observed for plants which were 325 

shifted from ambient to low temperature in mature stage for cold acclimation 37. In particular, 326 

Arabidopsis leaves which developed at 5°C accumulated relatively high amounts of soluble 327 

sugars but, in contrast to cold shifted plants, released suppression of photosynthetic genes 328 

which the authors discussed to be essential for development of full freezing tolerance 37. 329 

Although photosynthetic parameters were not quantified in the present study, correlation of 330 

metabolites with growth rates at 16 °C and 6 °C revealed a significantly positive correlation 331 

with spermidine and trehalose while phenylalanine only correlated positively under 6 °C. 332 

Interestingly, spermidine and trehalose have previously been found to correlate positively 333 

with growth under 20°C while phenylalanine correlated negatively under these conditions 38. 334 

Following the discussion of Meyer and colleagues, who interpreted growth-correlated 335 

metabolites as positive (or negative) signals, this would indicate that also under low 336 

temperature spermidine and trehalose represent conserved growth signals. Consequentially, 337 

due to its negative correlation under ambient temperature 38 and a missing correlation with 338 

growth rate at 16 °C, phenylalanine would represent a cold-specific growth signal. 339 

Phenylalanine represents a central metabolic precursor for numerous secondary metabolites, 340 

e.g., flavonoids and lignin 39,40. Hence, in contrast to spermidine and trehalose, which were 341 

rather discussed as pure growth signals than growth substrate molecules 38, phenylalanine 342 

might play a more complex role and might serve as a central metabolic integrator for growth, 343 

development and stress protection under low temperature.  344 

The metabolic response was predictable from genetic variation among the investigated 345 

genotypes (Figure 3a). Interestingly, the predictability improved gradually from the 16°C to 346 

the 6°C growth condition and showed the best predictability for metabolic distance (Figure 3 347 

a). Metabolic distance comprises the sum of all metabolite perturbations from reference 348 

growth (16°C) to stressed condition (6°C). Accordingly, it is the most comprehensive and 349 
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synergetic parameter for the description of the cold stress response in relation to the 350 

reference metabolome and, thus, correlates even stronger to genetic variation then individual 351 

metabolite concentrations. 352 

 353 

Cold-grown accessions originating from warmer and colder regions differ in the plasticity of 354 

primary metabolism  355 

Accessions from colder climates showed a stronger variability in their metabolic response 356 

under 6 °C. This was reflected in higher variance of metabolic distances when compared to 357 

accessions originating from warmer regions. The applied 6 °C growth condition seemed to 358 

trigger a highly conserved and less variable metabolic response in accessions originating from 359 

warmer climates, which might be explained by a reduced amplitude of extremely low 360 

temperatures in the original habitat. In plants from colder climates the metabolic response to 361 

cold was generally stronger, but also more diverse, which hints at a larger number of 362 

employed metabolic strategies in dealing with cold, and potentially also freezing stress, 363 

among the different accessions. For plants from colder regions which are regularly confronted 364 

with freezing events, the strategy to invest in a stronger metabolic response to cool 365 

temperatures´, potentially preparing for even lower temperatures seems to be feasible, while 366 

plants from warmer regions react with smaller metabolic deviations when confronted with 367 

low temperatures, which indicates a strategy of trying to endure without investing too many 368 

resources in adaption.  369 

As a consequence of differential metabolite covariances, the calculated reaction elasticities, 370 

described by Jacobian matrices, revealed strong differences between accessions from cold 371 

and accessions from warm climates. In general, Jacobian matrices allow the investigation of 372 

causal relations between metabolites and point to differences in metabolic regulation. Most 373 

pronounced differences in Jacobian entries between accessions originating from cold and 374 

warm habitats were found in fumarate metabolism, sucrose cleavage and BCAA metabolism. 375 

Under low temperature, fumarate serves as a carbon sink in leaf metabolism, aiding in the 376 

acclimatisation of photosynthesis to a new homeostasis 41. The differential accumulation of 377 

fumarate under stress in A. thaliana accessions with different cold acclimation potential could 378 

already be shown in an earlier study 42 and fumarase 2 (FUM2) was described to have a strong 379 

effect on carbon partition and growth rates in A. thaliana accessions 43. Remarkably, both 380 
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absolute amount and accumulation rate of fumarate were not significantly correlated with 381 

the Q1 temperature of origin and therefore not different between the two origin groups in 382 

this study, which points to the importance of differences in reaction elasticity in this metabolic 383 

pathway, rather than absolute concentration differences in the cold response. Organic acids 384 

like fumarate play an important role in regulating the accumulation of solutes within the 385 

vacuole by controlling cold induced acidification 44, which makes them a good target for 386 

metabolic regulation, as indicated by the differences in reaction elasticities.  387 

The score for the influence of ornithine on the metabolic function of fumarate additionally 388 

points to the plastidial conversion of ornithine to arginine via ornithine carbamoyltransferase 389 

(OTC), argininosuccinate synthase (ASSY), and argininosuccinate lyase (ASL). This 390 

transformation is an important part of nitrogen cycling and homeostasis 45,46. The connection 391 

of natural variation along the gradient of Q1 temperature of origin and this pathway is 392 

supported by  the prevalence of a SNP in the ASL gene (At5g10920), which is highly correlated 393 

with temperature of origin in >1000 Arabidopsis accessions 31. This points to differences in 394 

the extent of regulation of amino acid metabolism caused by cold temperature between 395 

accessions originating from colder and accessions originating from warmer climate. It has 396 

been shown that amino acid metabolism and nitrogen usage have to be heavily adjusted 397 

under stress conditions to allow survival in plants 47-49.  398 

Sucrose metabolism plays a central role in plant development, stress response and growth 399 

regulation, and its cyclic metabolism, composed of invertase-driven cleavage and cytosolic re-400 

synthesis, represents an important buffer mechanism against environmental fluctuation 50,51 401 

and the observed differences in reaction elasticities connected to sucrose metabolism 402 

strongly point to differences in regulation in this pathway between plants from warmer and 403 

colder habitats. While futile cycling of sucrose might stabilize the cellular energy status by 404 

providing electron acceptor molecules for photosynthesis and serve as an efficient 405 

mechanism to control carbon partitioning 52.  406 

Entries of the Jacobian matrix connected to alanine metabolism had strong discriminatory 407 

loadings between the origin groups in the PCA (see Figure 8). Alanine plays an important part 408 

in amino group transfer reactions in amino acid and protein biosynthesis and has been 409 

described to accumulate during cold exposure in various plant species 53. Furthermore, 410 
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alanine serves as amino group donor in photorespiration to replace nitrogen taken out of the 411 

cycle in form of serine or glycine 54,55.  412 

The elasticities of reactions involved in BCAA metabolism, especially valine and isoleucine, are 413 

highly different between the investigated groups of origin at 6 °C. As for alanine there was no 414 

significant change in concentration, but the investigation of jacobian entries revealed that 415 

accessions from colder climates likely feature differences in regulation of this metabolic 416 

pathway, which has been shown to be strongly regulated in response to changes in 417 

environmental condition 56,57. 418 

 419 

Conclusions 420 

Changes in ambient temperatures have different ecological implications in the different 421 

growth habitats of Arabidopsis. We could show that within a large group of accessions from 422 

diverse growth habitats, a significant connection of origin temperature from January to March 423 

and metabolic reaction to cold exists. Key pathways of primary metabolism were affected 424 

differently between accessions originating from cold or warm climates, not only in the 425 

amount of accumulated products, but also in the strategies of regulation. Furthermore, we 426 

could show that plants from colder regions employ a larger spectrum of metabolic responses 427 

to low ambient temperature.   428 

While cool temperatures might be the signal for an upcoming frost period, implying long-term 429 

endurance for accessions coming from more northern, colder climates, in southern, warmer 430 

climates lower temperatures could rather indicate a short-term event requiring less adaption 431 

of metabolism. Thus, the observed differences in metabolic regulation while growing in cold 432 

conditions indicate two different strategies. Preparation for even more adverse, freezing 433 

conditions in accessions from colder climates, or trying to survive the current, mild stress 434 

situation while preparing for a fast recovery after the end of the cold phase in accessions from 435 

warmer climates. Additionally, the necessity of developing new strategies to deal with cool 436 

temperatures is of low importance for accessions from warm climates, resulting in low 437 

variance of metabolic responses, compared to accessions from climates, which are regularly 438 

exposed to sub-zero temperatures.  439 

 440 
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Methods: 441 

Experimental design and plant growth 442 

Seeds of 241 natural accessions (Supplemental Table 3) of A. thaliana described in the 1001 443 

genomes project28 were sown on sieved (6 mm) substrate (Einheitserde ED63). Pots were 444 

filled with 71.5 g ±1.5 g of soil to assure homogenous packing. The prepared pots were all 445 

covered with blue mats 58 to enable a robust performance of the high-throughput image 446 

analysis algorithm. Stratification was done for 4 days at 4 °C in the dark, upon which the seeds 447 

were germinated and seedlings established at 21 °C for 14 days (relative humidity: 55 %; light 448 

intensity: 160 µmol m-2 s-1; 14 h light). The temperature treatments were started by 449 

transferring the seedlings to either 6 °C or 16 °C. To simulate natural conditions temperatures 450 

fluctuated diurnally between 16-21 °C, 0.5-6 °C and 8-16 °C for respectively the 21 °C initial 451 

growth conditions and the 6 °C and 16 °C treatments (Fig. S X). Relative humidity (55 - 95 %) 452 

and light intensity (160 µmol m-2 s-1) were kept the same for all experiments. Daylength was 453 

9h during the 16 °C and 6 °C treatments and 14h during the 21 °C initial growth conditions. 454 

Each temperature treatment was repeated three times. Five replicate plants were grown for 455 

every genotype per experiment. Plants were randomly distributed across the growth chamber 456 

with an independent randomisation pattern for each experiment.  During the temperature 457 

treatments (14 DAS – 35 DAS), plants were photographed twice a day (1 hour. after/before 458 

lights switched on/off), using an RGB camera (IDS uEye UI-548xRE-C; 5MP) mounted to a 459 

robotic arm. At 35 DAS, whole rosettes were harvested, immediately frozen in liquid nitrogen 460 

and stored at -80 °C until further analysis. Rosette areas were extracted from the plant images 461 

using Lemnatec OS (LemnaTec GmbH, Aachen, Germany) software. Growth parameters were 462 

obtained through non-linear modelling. Plant sizes did not reach a plateau phase, therefore 463 

we opted for power-law function as described by Paine 59. 464 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑑𝑑𝛽𝛽 465 

Equation 1 466 

  467 

𝑑𝑑𝑡𝑡 = (𝑑𝑑0
1−𝛽𝛽 + 𝑟𝑟𝑑𝑑(1 − 𝛽𝛽))

1
1−𝛽𝛽�  468 

Equation 2 469 
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The power-law function is described with three parameters: M0/t is the plant size at time 470 

point 0 or timepoint t, respectively; r is the overall growth rate; beta is scaling factor for the 471 

growth rates, letting growth rates increase or decrease with plant size. Parameter estimates 472 

for each accession were obtained in a three-step procedure. First, non-linear regression was 473 

performed for each individual plant using the nlsList function 60 with the power-law selfStart 474 

function (Equation 2) from Paine 59. In a second step, the initially obtained parameter 475 

estimates were used to define priors for Bayesian nonlinear modelling. The brm function 61 476 

was used to model growth with Equation 2 for each individual plant.  477 

priors were defined for M0, r and beta as follows: 478 

𝑑𝑑0~𝑁𝑁𝑁𝑁𝑟𝑟𝑁𝑁𝑁𝑁𝑁𝑁(𝜇𝜇𝑎𝑎,𝑟𝑟 , 0.2) 479 

𝑟𝑟~𝑁𝑁𝑁𝑁𝑟𝑟𝑁𝑁𝑁𝑁𝑁𝑁(𝜇𝜇𝑎𝑎,𝑡𝑡,𝜎𝜎𝑎𝑎,𝑡𝑡) 480 

𝛽𝛽~𝑁𝑁𝑁𝑁𝑟𝑟𝑁𝑁𝑁𝑁𝑁𝑁(0.87, 0.005) 481 

For M0 µa,r was defined as the median M0 estimate from the non-linear regression for 482 

accession a in replicate r. For the overall growth rate ma,t was defined as the median r estimate 483 

from the non-linear regression for accession a in temperature t, sa,t was defined as the 484 

standard deviation of the r estimates obtained from the non-linear regression for accession a 485 

in temperature t. 486 

For every accession, estimates for each growth parameter in each temperature were 487 

obtained from a mixed model 60 with accession, temperature and their interaction as fixed 488 

effects and experiment as random factor. Estimates for each accession in each temperature 489 

were then calculated as estimated marginal means 62. 490 

Metabolite quantification and profiling via gas chromatography coupled to mass 491 

spectrometry (GC-MS) 492 

Frozen leaf material was homogenized in a ball mill (Retsch GmbH, Haan, Germany). Polar 493 

metabolites were extracted and measured on gas chromatography coupled to mass 494 

spectrometry as previously described 50, with slight modifications. In brief, homogenized plant 495 

material was extracted with a methanol-chloroform-water mixture (MCW, 2.5/1/0.5, v/v/v) 496 

on ice for 15 min, which was split in a polar and an apolar fraction by addition of water after 497 

extraction. Subsequently, pellets were re-extracted twice using 80% ethanol at 80 °C for 30 498 
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minutes. Ethanol extracts were combined with the polar phase of the MCW extraction and 499 

dried in a vacuum concentrator (ScanVac, LaboGene, Allerød, Denmark). To compensate 500 

technical variance in the measurements, two internal standards, i.e. pentaerythritol and 501 

phenyl b-D-glucopyranoside (both Sigma-Aldrich) were spiked to the extracts before drying. 502 

Dry extracts were derivatized by methoximation for 90 min at 30°C with methoxylamine 503 

hydrochloride (Merck KGaA, Darmstadt, Germany) in pyridine and silylation for 30 min at 37°C 504 

with N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA, Macherey – Nagel, Düren, 505 

Germany). Measurements were conducted on a LECO Pegasus® GCxGC-TOF mass 506 

spectrometer (LECO Corporation, St. Joseph, USA) coupled to an Agilent 6890 gas 507 

chromatograph (Agilent Technologies® , Santa Clara, USA) using an Agilent HP-5Ms column 508 

(length: 30 m, inner diameter: 0.25 mm, film: 0.25 mm). For targeted analysis, baseline 509 

correction, chromatogram deconvolution, peak finding, retention index calculation and peak 510 

area extraction were done in the software LECO Chromatof®. Retention index calculation was 511 

conducted by measuring a mixture of linear alkanes (C12-C40) with every measurement 512 

batch. All metabolites included in the targeted analysis were identified and quantified by 513 

measuring a mixture of pure standard compounds in different concentrations in every 514 

measurement batch. Areas of each metabolite were normalised to the internal standard with 515 

a minimum distance of retention time to the metabolite. Internal standard normalized areas 516 

where then normalized to the slope of peak areas of the corresponding externally measured 517 

standard row and to sample fresh weight yielding the absolute amount of metabolites [µmol 518 

gFW-1]. The data table containing all metabolite quantifications can be found in the 519 

supplement (Supplemental Table 4).  520 

Statistical analysis 521 

Statistical analyses were conducted within the free statistical software environment R 63. Data 522 

manipulation, summarisation and plotting was conducted using the R package tidyverse 64. 523 

Principal component analysis (PCA) was performed within R, after scaling and centering of 524 

metabolite data. The plot was visualised using the R package ggfortify 65. To calculate 525 

metabolic distances, multidimensional means (centroids) using the first 15 principal 526 

components (PCs) were built for each natural Arabidopsis accession in both conditions. 527 

Coordinates of centroids were consecutively used for the calculation of Euclidian distances 528 
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between the centroid of the 6 °C and the 16 °C growth condition for each accession, 529 

representing the metabolic distances 66.  530 

Spearman correlation coefficients and p-values for single correlations were calculated using 531 

the R package Hmisc 67. Climate and bioclimatic data were taken from the WorldClim 532 

Database 68, which was further used to calculate summary variables as three month means. 533 

The worldClim2 data was linked to each natural Arabidopsis accession based on longitude and 534 

latitude of their origin. 535 

Stepwise backwards linear regression modelling and partial least square discriminant analysis 536 

(PLS-DA) were conducted within the R packages caret 69 and leaps 70, employing five times 537 

repeated 10-fold cross-validation. Model selection was based on minimizing RMSE in cross-538 

validation (root-mean-square-error). Ridge regression, and Lasso selection were fitted with 539 

the R package glmnet 71 by splitting the dataset into training data (75 %) and test data (25 %) 540 

and selecting the penalty parameter λ (lambda) by minimising MSE (mean square error).  541 

Population-structure-corrected correlation coefficients were calculated using the 542 

mantel.partial function included in the R package vegan 72 correcting the correlations with a 543 

genetic kinship matrix 28.  544 

Broad sense heritabilities were calculated as the ratio between genetic variation and total 545 

phenotypic variation. Variances were estimated from a random effect model (lme function in 546 

nlme package 60; R), with genotype as random effect. Genetic variance was the variance 547 

allocated to the random effect ‘genotype’, total phenotypic variance was the sum of the 548 

random effect and residual variance (VarCorr function in nlme package 60; R). 549 

 550 

Data-driven inverse modelling 551 

Calculation of Jacobian matrices was conducted as previously described 30,73. In brief, 552 

covariance data, calculated directly from the metabolite concentrations in the 6 °C condition 553 

for the two origin groups of Arabidopsis accessions, which were defined by maximum Q1 (first 554 

three months of the year) temperature of origin, under both applied growth conditions were 555 

connected with biochemical network information and used for an inverse approximation of 556 

biochemical Jacobian matrices. The calculations were repeated five times, varying the 557 
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quantile threshold for the definition of the two origin groups (20 %, 80 %; 23 %, 77 %; 24 %, 558 

76 %; 25 %, 75 %; 26 %, 74 %, upper and lower quantiles of tmax_01_02_03 temperature 559 

respectively). For each variation threshold, the inverse calculation of Jacobian matrices was 560 

conducted 1x104 times and the resulting median was normalized to the inverse variance of 561 

all calculations. Each calculation was repeated 1x104 times and a median was taken and 562 

normalized to the inverse variance of all calculations. The calculations were done using the 563 

numerical software environment MATLAB® (R2019b). 564 

 565 

Genomic prediction 566 

SNP information was obtained from the Arabidopsis 1001 genome project information portal 567 

(SNPEFF file, version 3.1). Requiring all of the 241 accessions to have a valid (no “.” character) 568 

and homozygous allele call, and furthermore requiring the minor allele to be present in at 569 

least 10 accessions (minor allele frequency (MFA) = 4.1% of all 241 accessions) resulted in 570 

5,613 unique SNPs. Given a genome size of approximately ~135 Mb and considering an 571 

average linkage-disequilibrium (LD) distance of 10Kb 74,75, SNP coverage was deemed too low 572 

(one SNP every 24Kb). Hence, we tolerated one accession to have no valid allele call yielding 573 

25,826 unique SNPs (with MAF>4.1%, 10 accessions), corresponding to an average coverage 574 

of 5.2Kb per SNP, i.e. within the average LD) distance. In case of missing allele information, 575 

the population mean was taken as the imputed value. Alleles were encoded as -1 and 1 to 576 

reflect the two different diploid homozygous genotypes. Metabolite level data of the 37 577 

profiled metabolites were log-transformed to render their distributions more concordant 578 

with a normal distribution. 579 

Genomic prediction was performed applying the Best Linear Unbiased Predication (BLUP) 580 

methodology as implemented in the R-package “rrBLUP“ 27 (Cross-validation (split of 581 

accessions into training and test population) was performed on 180 (training)/61 (test) 582 

random accession splits. As a metric of predictability, Pearson correlation coefficients of 583 

predicted vs. observed metabolite level data (log-transformed) were computed and reported 584 

over all 37 profiled metabolites. 585 

Genome wide association analysis (GWAS) was performed to test associations between SNPs 586 

and metabolite levels for each of the metabolites, at either 16 °C or 6 °C. SNPs for all 241 587 
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accessions were obtained from the 1001 genomes project (www.1001genomes.org) and 588 

filtered to have a minor allele frequency above 5%. GWAS was done using the single trait test 589 

implemented in LIMIX 76. A relatedness matrix was added as covariate to the mixed effects 590 

model in order to correct for population structure.  591 
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 602 

Figure 1 Volcano plot of targeted GC-MS data, depicting fold changes and significance of difference (p-values calculated by 603 
ANOVA, adjusted with Bonferroni correction) of metabolites between the 16 °C and the 6 °C growth condition (ratio 604 
c(6 °C)/c(16 °C)). Red dots depict metabolites with fold change ≥ 2 (≥ 1 on log2 scale) and p-value ≤ 0.05 (≥ 1.3 on negative 605 
log10 scale). Blue dots depict metabolites with fold change ≤ 0.5 (≤ - 1 on log2 scale) and p-value ≤ 0.05 (≥ 1.3 on negative 606 
log10 scale). 607 

 608 
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 609 

Figure 2 Principal Component Analysis (biplot) of targeted GC-MS data. Red dots represent samples grown at 16 °C; blue dots 610 
represent samples grown at 6 °C, arrows denote loadings of metabolites on PC1 and PC2, respectively. 611 

  612 
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 613 

 614 

Figure 3 a- Prediction accuracy of genomic prediction by BLUP shown as kernel density functions of Pearson correlation 615 
coefficients of predicted versus measured concentrations of 37 metabolites. Solid lines show accuracy of predictions based on 616 
a subset of the same condition (red – 16 °C, blue – 6 °C) and dashed lines show predictions based on a subset of the other 617 
condition (red – subset of the 16 °C metabolite profiles predicting 6 °C profiles; blue – a subset of 6 °C profiles predicting 16 °C 618 
profiles). The green line shows the prediction accuracy for the metabolic distance which is the overall change from 16 °C to 619 
6 °C growth conditions (for more details see text). b- mGWAS of fumarate concentration in the 16 °C condition, red line 620 
indicates significance threshold after Bonferroni correction. c- mGWAS of fumarate concentration in the 6 °C condition, red 621 
line indicates significance threshold after Bonferroni correction, the peak in chromosome 5 corresponds to the FUM2 gene. 622 

  623 
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 624 
Figure 4 a – Map of included natural Arabidopsis accessions, colour corresponds to metabolic distance between 16 °C and 625 
6 °C growth condition (4 Asian accessions not shown). b - Metabolic distances of Arabidopsis natural accessions, grouped by 626 
genetic admixture group. Letters denote significance groups according to ANOVA with a Tukey- HSD post-hoc test. 627 

  628 
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 629 

 630 

Figure 5 Spearman’s ρ (absolute values) describing the relation between metabolic distance and climate of origin for each 631 
month (Jan-Dec). red – temperature maximum, pink – temperature average, blue – temperature minimum, teal – solar 632 
radiation, green – water vapour pressure, yellow – precipitation, orange – wind speed  633 

 634 
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 635 

Figure 6 Relationship of maximum Q1 temperature (January – March) and metabolic distance (n=241). R² = 0.2687, p= <2.2e-636 
16, Spearman’s ρ = -0.55. 637 

  638 
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 639 
Figure 7 Volcano plots of differences between accessions originating from cold climate (< 4.71 °C maximum Q1 640 
temperature) and accessions from warm climates (> 7.93 °C maximum Q1 temperature). A – Differences in absolute 641 
metabolite concentration in the cold growth condition; B- Differences in accumulation (Metabolite concentration 6 °C/ 642 
Metabolite concentration 16 °C).  643 

  644 
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 645 

Figure 8 Principal component analysis (PCA) of Jacobian matrix entries of accessions from cold (teal) and warm (orange) 646 
origins. Five Variations of quantile threshold in definition of cold and warm are depicted ((20 %, 80 %; 23 %, 77 %; 24 %, 76 %; 647 
25 %, 75 %; 26 %, 74 %). Jacobian matrices were calculated from covariance matrices based on metabolite data from plants 648 
grown in the 6 °C condition. Depicted are the 10 strongest loadings (lines) and the 5 weakest loadings (dashed lines) for PC, 649 
X --> Y = Metabolic function Y depending on metabolite X 1. Orange – warmer origin, teal – colder origin. 650 
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 652 

Figure 9: Absolute loading scores of Jacobian matrix entries, representing the contribution to separating the two origin groups 653 
on PC1; X --> Y = Metabolic function Y depending on metabolite X  654 
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SUPPLEMENTS: 815 

 816 
Figure S 1 Relationship of metabolic distance and latitude of origin.  817 
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 819 
Figure S 2 Ratios of Full Width at Half Maximum (FWHM) of kernel density functions of colder and warmer origin accessions. 820 
This ratio represents differences in variance between the groups of climatic origin. White bars – metabolites, grey bar – 821 
metabolic distance.  822 
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 824 

 825 
Figure S 3 Heritabilities of individual metabolites in 16 °C and 6 °C. Broad sense heritabilities for each metabolite in 6 °C and 826 
16 °C. Indicated are the metabolites whose increased variance were responsible for increased variance in metabolic distance.  827 
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 828 

 829 

Figure S 4 Accessions are ordered according to tmax_01_02_03 (maximum temperature in January, February and March). 830 
The lower 25 % and the upper 75 % of accessions were used as colder or warmer origin accessions respectively. For Jacobian 831 
modelling, additionally the lower 20, 23, 24 or 25 % and the upper 74, 76, 77 or 80 % of the dataset were used as variations 832 
of the threshold. 833 
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 834 
Figure S 5 Temperature profiles of the different growth conditions. A - Temperature trajectory over 24 hours for the initial 835 
germination and growth condition with temperatures ranging from 16 to 21 °C. B – The temperature trajectory over 24 hours 836 
for the 16 °C and 6 °C growth conditions (indicated with labels 16C and 6C respectively. Yellow indicates when lights were on. 837 
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