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Abstract 10 

1. Accurate occurrence data is necessary for the conservation of keystone or endangered species, 11 

but acquiring it is usually slow, laborious, and costly. Automated acoustic monitoring offers a 12 

scalable alternative to manual surveys, but identifying species vocalisations requires large 13 

manually annotated training datasets, and is not always possible (e.g., for silent species). A new, 14 

intermediate approach is needed that rapidly predicts species occurrence without requiring 15 

extensive labelled data. 16 

2. We investigated whether local soundscapes could be used to infer the presence of 32 avifaunal 17 

and seven herpetofaunal species across a tropical forest degradation gradient in Sabah, Malaysia. 18 

We developed a machine-learning based approach to characterise species indicative 19 

soundscapes, training our models on a coarsely labelled manual point-count dataset. 20 

3. Soundscapes successfully predicted the occurrence of 34 out of the 39 species across the two 21 

taxonomic groups, with area under the curve (AUC) metrics of up to 0.87 (Bold-striped Tit-22 

babbler Macronus bornensis). The highest accuracies were achieved for common species with 23 

strong temporal occurrence patterns. 24 

4. Soundscapes were a better predictor of species occurrence than above-ground biomass – a metric 25 

often used to quantify habitat quality across forest degradation gradients.  26 
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5. Synthesis and applications: Our results demonstrate that soundscapes can be used to efficiently 27 

predict the occurrence of a wide variety of species. This provides a new direction for audio data 28 

to deliver large-scale, accurate assessments of habitat suitability using cheap and easily obtained 29 

field datasets. 30 

 31 

Introduction 32 

Ecosystems are being subjected to increasing external pressures from land-use change and global 33 

warming (Lambin and Meyfroidt, 2011; Walther et al., 2002). These pressures have resulted in global 34 

biodiversity declines, as the natural habitats required to support many species shrink and disappear 35 

(Newbold et al., 2015). Efforts to slow this decline often aim to protect areas of high conservation value 36 

that may support populations of endangered or keystone species (Mills et al., 1993). This leads to the 37 

key question; how can we identify such locations rapidly, accurately, and on a large scale? 38 

An established solution is to carry out manual surveys of the region of interest (Brown et al., 2013). 39 

Common approaches include actively searching for species of interest, deploying traps to capture them, 40 

or looking for features that may indicate their presence (e.g., nests). However, manual surveys are 41 

expensive, labour intensive, and do not scale well temporally or spatially (Gijzen, 2013). In contrast, 42 

automated acoustic monitoring has shown promise as a route to gaining scalable insight into ecological 43 

systems (Gibb et al., 2019). Audio data can be recorded and analysed inexpensively, in real-time, and 44 

over extended durations, making it an increasingly powerful tool for ecologists and conservationists 45 

(Hill et al., 2018; Sethi et al., 2018; Sethi et al., 2020a).  46 

Species occurrence data can be extracted from audio recordings automatically by detecting 47 

vocalisations. Using a large training dataset of annotated examples, a machine learning model can learn 48 

to identify calls made by a target species (Clink et al., 2019; Stowell et al., 2016; Wrege et al., 2017). 49 

This approach, however, relies upon three key assumptions; (i) the species has a unique vocalisation, 50 
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(ii) the species is active and audible during the recording, and (iii) there exists a large labelled dataset 51 

of the species’ vocalisations (or the resources to collate such training data from scratch). These barriers 52 

are particularly difficult to overcome when searching for rare or endangered species in highly biodiverse 53 

and noisy environments such as tropical forests (Gibb et al., 2019; Stowell et al., 2018), or for species 54 

that are largely silent.  55 

Analysing soundscapes in their entirety provides an alternate route to the automated analysis of eco-56 

acoustic data (Pijanowski et al., 2011). In this approach, features of the audio signal are used to directly 57 

infer habitat quality, without the need for species specific training data (Pieretti et al., 2011; Sethi et al., 58 

2020b; Sueur et al., 2008). Whilst soundscape features have been shown to correlate with high-level 59 

metrics of biodiversity, they are not normally used to provide direct evidence for how suitable a habitat 60 

is for a given species. 61 

In this study we demonstrate that an environment’s soundscape can in fact be used as a powerful 62 

indicator of species occurrence. Rather than focussing on species-specific vocalisations, our model 63 

learned acoustic features which indicated species presence using only coarsely-labelled point count data 64 

from across a gradient of tropical forest degradation in Sabah, Malaysia. We were able to predict 65 

occurrence accurately for a number of avifaunal and herpetofaunal species without the need for large, 66 

precisely annotated training datasets. Additionally, we showed that soundscapes are a more accurate 67 

predictor of species occurrence than above-ground biomass, a metric often used to quantify habitat 68 

quality across forest degradation gradients (Pfeifer et al., 2015). Our findings indicate a promising new 69 

route for audio data to be used for the conservation of species on a large scale, and across a wide range 70 

of taxa, without many of the limitations of vocalisation detection-based approaches. 71 

 72 

Materials and methods 73 

Study location and estimates of habitat quality 74 
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This work was undertaken at the Stability of Altered Forest Ecosystems (SAFE) Project in Sabah, 75 

Malaysia (Ewers et al., 2011) between March 2018 and February 2020. We surveyed eleven sites across 76 

a land-use intensity gradient: two sites in oil palm plantations, two sites in salvage logged forest (last 77 

logged in the early 2010’s), five sites in selectively twice-logged forest (logged in the 1970’s and early 78 

2000’s), and two sites in forest inside a protected area (where small amounts of illegal logging activity 79 

had occurred).  80 

From 2012 to 2013, Pfeifer and colleagues (Pfeifer et al., 2015) conducted ground surveys of over 100 81 

vegetation plots (25 x 25 m) across the SAFE project landscape to quantify above ground biomass 82 

(AGB). We averaged AGB from all surveyed plots within 1 km of each of our sampling sites (mean 83 

plots per site = 8.5, range = 2-16), for use as a quantitative measure of habitat quality.  84 

 85 

Avifaunal and herpetofaunal point counts 86 

Across the 11 sampling sites, we carried out 790 avifaunal and 771 herpetofaunal point counts (of which 87 

483 were undertaken simultaneously). Each point count lasted 20 minutes and surveys were distributed 88 

evenly throughout the 24 hours of the day, giving approximately three replicates per site per hour for 89 

both avifaunal and herpetofaunal point counts. 90 

During point counts, we recorded all visual or aural encounters of avifaunal or herpetofaunal species 91 

within a 10 m radius of the sampling site. Species were cross-referenced with the Global Biodiversity 92 

Information Facility (GBIF) backbone taxonomy to validate taxonomic classifications (GBIF 93 

Secretariat, 2020).  94 

Occurrence data (presence/absence) was thus acquired for 175 avifaunal and 53 herpetofaunal species. 95 

Species present in fewer than 50 point counts were removed from the dataset. For those species 96 

classified as vulnerable or critically endangered by the IUCN Red List (Baillie et al., 2004), a reduced 97 

threshold of 15 occurrences was used. In total this gave us a set of 32 avifaunal and seven herpetofaunal 98 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 25, 2020. ; https://doi.org/10.1101/2020.09.24.311381doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.24.311381
http://creativecommons.org/licenses/by-nc/4.0/


species (Supp. Table S1). Five of the 32 avifaunal species were listed as vulnerable or critically 99 

endangered, but none of the seven herpetofaunal species were.  100 

 101 

Audio data and acoustic feature extraction  102 

During each point count a simultaneous 20-minute audio recording was made using a Tascam DR-05 103 

recorder mounted at chest height. Raw audio data was recorded to a single channel at 44.1 kHz in the 104 

WAV format. 105 

We calculated learned acoustic features of the audio using a pretrained convolutional neural network 106 

(CNN), “VGGish”, developed by Hershey et. al (Hershey et al., 2017). The CNN was trained to perform 107 

a general-purpose audio classification task using an extremely large annotated dataset (Gemmeke et al., 108 

2017), resulting in a general 128-dimensional acoustic feature embedding. Prior work has shown that 109 

embedding eco-acoustic data using this approach allows multi-scale monitoring of ecosystems and 110 

efficient characterisation of soundscapes (Sethi et al., 2020b).  111 

The VGGish CNN takes a 16 kHz log-scaled Mel-frequency spectrogram as an input (96 temporal 112 

frames, 64 frequency bands) providing one feature vector per 0.96 s of audio. Since our raw audio data 113 

was recorded at a higher sample rate, we pre-processed it by down-sampling to 16 kHz (using a Kaiser 114 

window filter to avoid aliasing). During the analysis we also investigated how averaging consecutive 115 

acoustic features over the following longer time periods affected our results: 1.92, 2.88, 3.84, 4.80, 5.76, 116 

6.72, 7.68, 8.64, 9.60, 29.76, 59.52 and 299.52 s.  117 

 118 

Predictions of species occurrence  119 

For each species we split point counts into two groups; one where the target species was present (pres) 120 

and the other where it was absent (abs). We fit a Dirichlet-process Gaussian mixture model (DP-GMM) 121 
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to acoustic features from each group to obtain the probability density functions ppres and pabs (Blei and 122 

Jordan, 2006), using an upper bound of 500 components and diagonal covariance matrices. Other 123 

hyperparameters were left as default using the scikit-learn BayesianGaussianMixture implementation. 124 

For each 20-minute audio recording, we first split the audio into N non-overlapping 0.96 s segments. 125 

We defined the set S of acoustic feature vectors derived from each segment as, S = {X1, X1, … XN}. When 126 

using features on longer timescales than 0.96 s, we averaged consecutive members of S using non-127 

overlapping windows. For each feature Xi we calculated a likelihood ratio, Li = log(ppres(Xi)) – 128 

log(pabs(Xi)), allowing us to define a new set, SL = {L1, L2, … LN}. To obtain an overall classification 129 

confidence indicating the probability of the species being present in the full 20-minute recording, we 130 

looked at four properties of SL; (i) λ1 = max(SL), (ii) λ2 = min(SL), (iii) λ3 = mean(SL), and (iv) λ4 = P%( 131 

SL) (for percentiles 10, 20, 30, 40, 50, 60, 70, 80, and 90). We found that the 60th percentile metric, λ4 132 

= P60(SL), provided the most accurate predictions, and therefore report results only for this definition of 133 

classification confidence (Supp. Fig. S2). Henceforth λ will be used to refer to λ4. 134 

To assess the extent to which soundscapes can predict species occurrence we performed an eleven-fold 135 

cross-validation classification task for each species. In each fold, data from ten sites were used as a 136 

training set (to fit ppres and pabs), and data from the remaining eleventh site was used as a test set to 137 

assess the model’s accuracy. In this way we ensured that we did not report artificially high accuracies 138 

by overfitting to site specific soundscapes, but learned generalisable acoustic characteristics that 139 

indicated species presence in previously unseen locations. We measured the ability of λ to classify a 140 

species as present in a point count using the area under the receiver operating characteristic curve (AUC) 141 

metric. Mean AUC was calculated for each species across all 11 folds. 142 

For each species we generated null distributions of AUC values to calculate statistical significance of 143 

predictions. We used acoustic features at the 2.88s timescale, as these features maximised mean AUC 144 

across all species (Supp. Fig. S2). We randomly shuffled classification confidence scores (λ) 100 times 145 
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within each of the 11 folds, and measured AUC using the unshuffled occurrence labels. 100 null mean 146 

AUC values were obtained by averaging across the 11 folds, and we used a threshold of p ≤ 0.05 to 147 

determine statistical significance.  148 

We performed a similar eleven-fold cross-validation classification task using above-ground biomass 149 

data, to compare the predictive power of the two data sources. In each fold, we identified the site in the 150 

training set with AGB most similar to the site in the test set. Then, to predict species occurrence in each 151 

20-minute point count, we used the mean species occurrence from point counts at the same time of day 152 

from the previously identified similar site. 153 

 154 

Analysis of performance across species 155 

To quantify how temporally structured occurrence patterns were for each species, we formulated a 156 

contingency table with species occurrence as one variable and hour of day as the other (using the ground 157 

truth point count data). On this contingency table we calculated a χ2 statistic. We then calculated 158 

Pearson’s correlation coefficient, ρ, between the χ2 statistic and AUC across all 39 species to test 159 

whether accuracy of our predictions was correlated with how temporally structured each species’ 160 

occurrence patterns were. We also calculated Pearson’s correlation coefficient between the total number 161 

of point counts in which each species was found and AUC to investigate whether rarity of species had 162 

an effect on accuracy of predictions. In both cases p-values were obtained analytically. 163 

 164 

Results 165 

Soundscapes are highly indicative of species occurrence 166 

We were able to predict species occurrence from soundscape recordings for four of the seven non-167 

threatened herpetofaunal species, all 27 non-threatened avifaunal species, and three of the five 168 
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threatened avifaunal species (p≤0.05, Fig. 1a). Mean AUC across all species was highest using features 169 

on the 2.88 s timescale (Supp. Fig. S2), although the most accurate classifications for a single species 170 

was found for the Bold-striped Tit-babbler Macronus bornensis when using 0.96 s per feature (0.87 171 

AUC). Variation in AUC between species was larger than the variation for a given species across 172 

different timescales of features. Even with features averaged over almost five minutes, we were able to 173 

predict species occurrence from soundscapes with AUCs of up to 0.82 (Sooty-capped Babbler 174 

Malacopteron affine). Spectrograms (Supp. Fig. S3) confirm the intuition that we did not learn to 175 

identify species vocalisations, but rather the model learned indicative characteristics of the soundscape 176 

that played out over longer timescales than any single species call. From herein we will only consider 177 

results using acoustic features at the optimal 2.88 s timescale. 178 

AUC was correlated with total number of encounters of the species across all point counts (Pearson 179 

correlation; ρ=0.31, p=0.05). This explains the lower performance for the five rarer Red List threatened 180 

avifaunal species compared to the other 27 species (T-test on AUCs; p<0.001). Nevertheless, 181 

occurrence was still predicted with accuracies better than chance (p≤0.05) for three threatened avifaunal 182 

species; the Black Hornbill Anthracoceros malayanus (0.69 AUC, n = 15), the Rhinoceros Hornbill 183 

Buceros rhinoceros (0.69 AUC, n = 34) and the Short-toed Coucal Centropus rectunguis (0.75 AUC, n 184 

= 23). 185 

We also found that higher AUCs were attained when species were consistently encountered at the same 186 

hours of the day (Fig. 1b, Pearson correlation; ρ=0.64, p<0.001). Non-threatened avifaunal species had 187 

more temporally structured occurrence patterns than non-threatened herpetofaunal species (T-test on χ2 188 

statistics; p=0.04), explaining the difference in AUCs between the taxonomic groups (T-test on AUCs; 189 

p<0.001). Nevertheless, AUCs for four of the seven herpetofaunal species were still better than would 190 

be expected by chance, and reached up to 0.86 for the Tree Hole Frog Metaphrynella sundana.  191 
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Figure 1: Soundscape features reliably predict species occurrence. We measured how predictive 192 

soundscapes were of species presence across 27 non-threatened avifaunal species (blue), five 193 

threatened avifaunal species (brown), and seven non-threatened herpetofaunal species (green). (a) We 194 

found soundscapes features across a wide range of timescales were predictive of species occurrence 195 

for 34 species (dotted lines indicate species for which p>0.05). (b) The accuracy of occurrence 196 

predictions was significantly correlated with a χ2 statistic measuring how correlated hour of day was 197 

with species occurrence (p<0.001). In both panels we highlight results from four indicative taxa chosen 198 

to reflect the variety of species included in this study. 199 

 200 

There was a close relationship between predicted occurrence from soundscape data and the pattern of 201 

true occurrence across habitat types and time of day (Fig. 2; Supp. Fig. S4 shows similar visualisations 202 

for all 39 species). We found that soundscape classification confidence was higher at the true times at 203 

which a species would be present, whether the species was diurnal (Fig. 2a, Yellow-vented Bulbul 204 

Pycnonotus goiavier), nocturnal (Fig. 2c, Tree Hole Frog), or found only during very specific hours 205 

(Fig. 2b Sooty-capped Babbler). We also found that soundscape predictions reflected true observations 206 

of species habitat niches. For example, the Sooty-capped Babbler (Fig. 2b) and Tree Hole Frog (Fig. 207 

2c) were commonly found in forest habitats  – either logged or inside protected areas – whereas the 208 

Yellow-vented Bulbul was found more often in heavily disturbed habitats (salvage logged forest and oil 209 

palm). In all three cases, classification confidence derived from soundscape data reflected these habitat 210 

partitioning patterns.  211 
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Figure 2: Soundscapes predict occurrence for species with varying habitat and temporal niches. 212 

Median classification scores, λ, from dark blue (low) to white (high) are shown for occurrence 213 

predictions from soundscapes for three species: (a) Yellow-vented Bulbul, (b) Sooty-capped Babbler, 214 

and (c) Tree Hole Frog. Overlaid in red is true occurrence data, where circle sizes indicate how often 215 

the species was found at that site and hour during the manual point counts. Sites are ordered by above-216 

ground biomass with low-quality habitats at the top and high-quality habitats at the bottom. (Supp. Fig. 217 

S3 provides the same visualisation for all 39 species).  218 

 219 

Soundscapes predict occurrence more accurately than above-ground biomass 220 

We found that soundscape features predicted species occurrence more accurately than a comparison 221 

model based on above-ground biomass (AGB) data, a metric often used as a proxy for tropical forest 222 

habitat quality (Fig. 3, paired T-test on AUCs; p<0.001). The soundscape-based model produced 223 

increased AUCs for 31 of the 39 species surveyed, including for all five threatened avifaunal species. 224 

Mean accuracy of occurrence predictions for the non-threatened avifaunal group was increased by 0.08 225 

AUC, for the threatened avifaunal group by 0.06 AUC, and for the non-threatened herpetofaunal group 226 

by 0.03 AUC. This followed the trends noted earlier, as groups of species which were common, or 227 

exhibited strong temporal occurrence patterns benefited the most from the soundscape based approach. 228 

Per species there was a mean percentage increase in AUC of 10 % across all 39 species surveyed. 229 

  230 
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Figure 3: Soundscape features are a better indicator of species occurrence than above-ground 231 

biomass (AGB). We compared occurrence predictions using soundscapes to a comparison model using 232 

AGB data. Lines connect AUC metrics for the same species, with threatened avifaunal species in brown, 233 

non-threatened avifaunal species in blue, and non-threatened herpetofaunal species in green. In black 234 

is the mean and standard error for AUC across all 39 species for each model. 235 

 236 

Discussion 237 

We investigated whether soundscapes could indicate the occurrence patterns of 39 species across two 238 

taxonomic groups. Our results demonstrate this is indeed feasible, and that the most accurate indications 239 

can be obtained for species for which we have the most data (the most common species) and those with 240 

strong temporal occurrence patterns. This meant that our approach is less suited to the monitoring of 241 

endangered species, although we were able to successfully model occurrence for three species based on 242 

very sparce occurrence data of just 15, 23, and 34 observations across 790 point counts. Nevertheless, 243 

species listed as vulnerable or endangered by the IUCN Red List are not the only ones of conservation 244 

interest. Species which are particularly good indicators of habitat quality, those that have a 245 

disproportionate ecological impact on their environment, or those that fulfil important economic 246 

functions are often referred to as “keystone species” (Mills et al., 1993). Whilst these species are 247 

sometimes also endangered, this is not always the case. For example, within the “non-threatened” 248 

species, we had the Rough Guardian Frog Limnonectes finchi, a species only ever found close to suitable 249 
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water sources (Inger and Voris, 1988). We also had the White Crowned Shama Copsychus stricklandii 250 

which due to their unique singing ability is threatened by a high rate of unsustainable trade in South 251 

East Asia (Leupen et al., 2018). We were able to predict occurrence for both of these species accurately. 252 

Using soundscapes to assess habitat suitability for species like these would therefore be a promising 253 

route to take, with valuable conservation data to be gained. 254 

We found that our model was most accurate when using short timescale acoustic features. This may 255 

simply be a matter of resolution – with longer timescale features the details of how soundscapes move 256 

between different modes are lost. The average of shorter features over these long time periods will 257 

therefore only provide a crude overview of the overall soundscape, leading to less accurate predictions 258 

of occurrence. Nonetheless, there was still significant predictive information contained within long 259 

timescale features, indicating that a coarse acoustic overview is often all that is required. 260 

Our model learned to identify soundscape features that were uniquely found when the species of interest 261 

was present. In this study, we found that this did not correspond to species vocalisations, but sounds 262 

typical to the habitat type, or time of day that the species was likely to be found. This was probably due 263 

to the low number of positive samples we had for each species, together with the high overall temporal 264 

and spatial variability of soundscapes across all of our audio recordings. Whilst all species surveyed in 265 

this study were vocal, foregoing a reliance on vocalisations means that our approach can be used to 266 

explicitly predict the occurrence of completely silent species. Equally tantalisingly, there is a possibility 267 

that with a less heterogenous, larger dataset a similar approach to ours may enable identification of 268 

species vocalisations in an unsupervised manner. This would occur if the predominant distinguishing 269 

acoustic features between present and absent samples was the sound of the species vocalising. 270 

Automatically extracting vocalisations from passive recordings in situ may even allow us to discover 271 

calls and behaviours that cannot be reproduced with the same species in a more controlled environment. 272 
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Other types of data, beyond audio, can be used to predict species occurrence at a given place and time. 273 

AGB is a habitat quality indicator used for many species across tropical forest degradation gradients, 274 

and it has been used extensively at the field site we surveyed (e.g., Brant et al., 2016; Luke et al., 2017; 275 

Riutta et al., 2018). In this study, however, we showed that soundscapes were in fact better predictors 276 

of species occurrence for 31 of the 39 species surveyed. Furthermore, manual field surveys to collect 277 

AGB data are cumbersome (Pfeifer et al., 2015), and when data from planes or satellites are used the 278 

costs can be prohibitively high (Lefsky et al., 2002; Popescu et al., 2011). By contrast, our audio 279 

recording protocol only involved using an inexpensive handheld recorder deployed to gather a 24 hour 280 

acoustic record per site. Recordings of this type could be made rapidly from a large number of sites, 281 

providing wide coverage with minimal capital outlay. 282 

The link between habitat suitability and species occurrence data is clear – species are more likely to be 283 

found in habitats that are able to sustainably support their needs (Hirzel et al., 2006). Thus, by showing 284 

that occurrence for a wide range of species can be accurately predicted by soundscapes, this opens up a 285 

new avenue for assessing habitat suitability from audio data. One use-case may be in assisting the 286 

identification of areas of high conservation value within agricultural landscapes, as required by 287 

certification agencies such as the Roundtable for Sustainable Palm Oil (Brown et al., 2013). 288 

Additionally, as collaborative eco-acoustic datasets continue grow (Baker et al., 2015), we may be able 289 

to harness soundscape data to produce large-scale habitat suitability maps, and identify those species 290 

that are most at risk from global pressures such as climate change (Walther et al., 2002). 291 

 292 

Conclusion 293 

In this study we have demonstrated that soundscapes can be used to predict species occurrence across a 294 

wide range of species in tropical forests. We found that the most accurate predictions could be made for 295 

common species with strong temporal occurrence patterns, including for species of specific 296 
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conservation concern. Using a comparison model, we found that soundscapes were able to predict 297 

occurrence more accurately than above-ground biomass, a widely used indicator of habitat quality 298 

across forest degradation gradients. Our findings indicate a promising new route for audio data to be 299 

used as an impactful conservation tool whilst side-stepping many of the scalability issues of existing 300 

approaches. 301 
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Supplementary Information 432 

Species common name Latin binomial Red List status N occurrences 

Cricket Frog Hylarana nicobariensis LC 121 

Four-lined Tree Frog Polypedates leucomystax LC 75 

Grass Frog Fejervarya limnocharis LC 63 

House Gecko Hemidactylus frenatus LC 117 

Rough Guardian Frog Limnonectes finchi LC 78 

Smith’s Giant Gecko Gekko smithii LC 71 

Tree Hole Frog Metaphrynella sundana LC 211 

Ashy Tailorbird Orthotomus ruficeps LC 143 

Asian Red-eyed Bulbul Pycnonotus brunneus LC 62 

Black-and-yellow Broadbill  Eurylaimus ochromalus NT 63 

Black-headed Bulbul Pycnonotus atriceps LC 126 

Black-naped Monarch Hypothymis azurea LC 53 

Blue-eared Barbet Psilopogon duvaucelii LC 82 

Bold-striped Tit-babbler Macronus bornensis LC 269 

Chestnut-backed Scimitar Babbler Pomatorhinus montanus LC 66 

Chestnut-winged Babbler Cyanoderma erythropterum LC 182 

Common Emerald Dove Chalcophaps indica LC 55 

Dark-necked Tailorbird Orthotomus atrogularis LC 68 

Fluffy-backed Tit-babbler Macronus ptilosus NT 134 

Great Argus Argusianus argus NT 90 

Greater Coucal Centropus sinensis LC 139 

Lesser Coucal Centropus bengalensis LC 74 

Little Spiderhunter  Arachnothera longirostra LC 170 

Malaysian Pied Fantail Rhipidura javanica LC 119 

Plaintive Cuckoo Cacomantis merulinus LC 94 

Rufous-tailed Tailorbird Orthotomus sericeus LC 164 

Short-tailed Babbler Pellorneum malaccense NT 69 

Slender-billed Crow Corvus enca LC 113 

Sooty-capped Babbler Malacopteron affine NT 55 

Spectacled Bulbul Pycnonotus erythropthalmos LC 158 

White-crowned Shama Copsychus stricklandii LC 106 

Yellow-bellied Prinia Prinia flaviventris LC 179 

Yellow-rumped Flowerpecker  Prionochilus xanthopygius LC 56 

Yellow-vented Bulbul Pycnonotus goiavier LC 143 

Black Hornbill Anthracoceros malayanus VU 15 

Chestnut-necklaced Partridge Arborophila charltonii VU 21 
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Helmeted Hornbill Rhinoplax vigil CR 16 

Rhinoceros Hornbill Buceros rhinoceros VU 34 

Short-toed Coucal Centropus rectunguis VU 23 

 433 

Table S1: We surveyed 39 species across two taxonomic groups. Here we provide common names, 434 

Latin binomials, IUCN Red List status, and total number of occurrences across all point counts for each 435 

species we consider in this study. Red List acronyms are as follows: LC = least concern, NT = near 436 

threatened, VU = vulnerable, CR = critically endangered. We defined threatened species to be in either 437 

VU or CR categories. Non-threatened herpetofaunal species are in green, non-threatened avifaunal 438 

species in blue, and threatened avifaunal species are in brown. 439 

 440 

Figure S2: A grid search reveals the optimal parameters for classification using soundscape features. 441 

We performed a grid search across acoustic feature timescales and method of deriving classification 442 

confidence, λ. For each combination, we calculated mean AUC of classifications across all 39 species. 443 

We found acoustic features on the 2.88s timescale with the P60 (60th percentile) metric provided the 444 

most accurate classifications. 445 
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 446 

Figure S3: Classifications are not based on species vocalisations. We visualise per feature 447 

classification confidence (λi, red) together with a spectrogram of the audio data from one point count 448 

each for the Yellow-bellied Prinia and Tree Hole Frog. Shaded are regions during which each of the 449 

species is vocalising. Classification confidence does not increase significantly during these periods, 450 

indicating that predictions of occurrence are not based on exact species vocalisations, but other 451 

components of the overall soundscape that indicate species presence. 452 

 453 

  454 
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Figure S4: Classification confidence from soundscape data reflects true occurrence data for many 456 

species. Median classification scores, λ, from blue (low) to white (high) are shown for occurrence 457 

predictions from soundscapes for all 39 species tested. Overlaid in red is true occurrence data, where 458 

circle sizes indicate regularity with which the species was found at that site and hour. 459 
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